summaryrefslogtreecommitdiffstats
path: root/src/boot/ticks.c
blob: 873b9fe9e6d624acf1e416f0f924daf87eb7d1a9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
/* SPDX-License-Identifier: LGPL-2.1-or-later */

#include "ticks.h"
#include "util.h"
#include "vmm.h"

#if defined(__i386__) || defined(__x86_64__)
#  include <cpuid.h>

static uint64_t ticks_read_arch(void) {
        /* The TSC might or might not be virtualized in VMs (and thus might not be accurate or start at zero
         * at boot), depending on hypervisor and CPU functionality. If it's not virtualized it's not useful
         * for keeping time, hence don't attempt to use it. */
        if (in_hypervisor())
                return 0;

        return __builtin_ia32_rdtsc();
}

static uint64_t ticks_freq_arch(void) {
        /* Detect TSC frequency from CPUID information if available. */

        unsigned max_leaf, ebx, ecx, edx;
        if (__get_cpuid(0, &max_leaf, &ebx, &ecx, &edx) == 0)
                return 0;

        /* Leaf 0x15 is Intel only. */
        if (max_leaf < 0x15 || ebx != signature_INTEL_ebx || ecx != signature_INTEL_ecx ||
            edx != signature_INTEL_edx)
                return 0;

        unsigned denominator, numerator, crystal_hz;
        __cpuid(0x15, denominator, numerator, crystal_hz, edx);
        if (denominator == 0 || numerator == 0)
                return 0;

        uint64_t freq = crystal_hz;
        if (crystal_hz == 0) {
                /* If the crystal frequency is not available, try to deduce it from
                 * the processor frequency leaf if available. */
                if (max_leaf < 0x16)
                        return 0;

                unsigned core_mhz;
                __cpuid(0x16, core_mhz, ebx, ecx, edx);
                freq = core_mhz * 1000ULL * 1000ULL * denominator / numerator;
        }

        return freq * numerator / denominator;
}

#elif defined(__aarch64__)

static uint64_t ticks_read_arch(void) {
        uint64_t val;
        asm volatile("mrs %0, cntvct_el0" : "=r"(val));
        return val;
}

static uint64_t ticks_freq_arch(void) {
        uint64_t freq;
        asm volatile("mrs %0, cntfrq_el0" : "=r"(freq));
        return freq;
}

#else

static uint64_t ticks_read_arch(void) {
        return 0;
}

static uint64_t ticks_freq_arch(void) {
        return 0;
}

#endif

static uint64_t ticks_freq(void) {
        static uint64_t cache = 0;

        if (cache != 0)
                return cache;

        cache = ticks_freq_arch();
        if (cache != 0)
                return cache;

        /* As a fallback, count ticks during a millisecond delay. */
        uint64_t ticks_start = ticks_read_arch();
        BS->Stall(1000);
        uint64_t ticks_end = ticks_read_arch();

        if (ticks_end < ticks_start) /* Check for an overflow (which is not that unlikely, given on some
                                      * archs the value is 32-bit) */
                return 0;

        cache = (ticks_end - ticks_start) * 1000UL;
        return cache;
}

uint64_t time_usec(void) {
        uint64_t ticks = ticks_read_arch();
        if (ticks == 0)
                return 0;

        uint64_t freq = ticks_freq();
        if (freq == 0)
                return 0;

        return 1000UL * 1000UL * ticks / freq;
}