summaryrefslogtreecommitdiffstats
path: root/docs/manual/misc/perf-tuning.html.en.utf8
blob: 7515296b214efcd7c784761a435694ec893605a8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en"><head>
<meta content="text/html; charset=UTF-8" http-equiv="Content-Type" />
<!--
        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
              This file is generated from xml source: DO NOT EDIT
        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
      -->
<title>Apache Performance Tuning - Apache HTTP Server Version 2.5</title>
<link href="../style/css/manual.css" rel="stylesheet" media="all" type="text/css" title="Main stylesheet" />
<link href="../style/css/manual-loose-100pc.css" rel="alternate stylesheet" media="all" type="text/css" title="No Sidebar - Default font size" />
<link href="../style/css/manual-print.css" rel="stylesheet" media="print" type="text/css" /><link rel="stylesheet" type="text/css" href="../style/css/prettify.css" />
<script src="../style/scripts/prettify.min.js" type="text/javascript">
</script>

<link href="../images/favicon.ico" rel="shortcut icon" /></head>
<body id="manual-page"><div id="page-header">
<p class="menu"><a href="../mod/">Modules</a> | <a href="../mod/quickreference.html">Directives</a> | <a href="http://wiki.apache.org/httpd/FAQ">FAQ</a> | <a href="../glossary.html">Glossary</a> | <a href="../sitemap.html">Sitemap</a></p>
<p class="apache">Apache HTTP Server Version 2.5</p>
<img alt="" src="../images/feather.png" /></div>
<div class="up"><a href="./"><img title="&lt;-" alt="&lt;-" src="../images/left.gif" /></a></div>
<div id="path">
<a href="http://www.apache.org/">Apache</a> &gt; <a href="http://httpd.apache.org/">HTTP Server</a> &gt; <a href="http://httpd.apache.org/docs/">Documentation</a> &gt; <a href="../">Version 2.5</a> &gt; <a href="./">Miscellaneous Documentation</a></div><div id="page-content"><div id="preamble"><h1>Apache Performance Tuning</h1>
<div class="toplang">
<p><span>Available Languages: </span><a href="../en/misc/perf-tuning.html" title="English">&nbsp;en&nbsp;</a> |
<a href="../fr/misc/perf-tuning.html" hreflang="fr" rel="alternate" title="Français">&nbsp;fr&nbsp;</a> |
<a href="../ko/misc/perf-tuning.html" hreflang="ko" rel="alternate" title="Korean">&nbsp;ko&nbsp;</a> |
<a href="../tr/misc/perf-tuning.html" hreflang="tr" rel="alternate" title="Türkçe">&nbsp;tr&nbsp;</a></p>
</div>


    <div class="warning"><h3>Warning</h3>
      <p>This document is partially out of date and might be inaccurate.</p>
    </div>

    <p>Apache 2.4 is a general-purpose webserver, designed to
    provide a balance of flexibility, portability, and performance.
    Although it has not been designed specifically to set benchmark
    records, Apache 2.4 is capable of high performance in many
    real-world situations.</p>

    <p>This document describes the options that a server administrator
    can configure to tune the performance of an Apache 2.4 installation.
    Some of these configuration options enable the httpd to better take
    advantage of the capabilities of the hardware and OS, while others allow
    the administrator to trade functionality for speed.</p>

  </div>
<div id="quickview"><ul id="toc"><li><img alt="" src="../images/down.gif" /> <a href="#hardware">Hardware and Operating System Issues</a></li>
<li><img alt="" src="../images/down.gif" /> <a href="#runtime">Run-Time Configuration Issues</a></li>
<li><img alt="" src="../images/down.gif" /> <a href="#compiletime">Compile-Time Configuration Issues</a></li>
<li><img alt="" src="../images/down.gif" /> <a href="#trace">Appendix: Detailed Analysis of a Trace</a></li>
</ul><h3>See also</h3><ul class="seealso"><li><a href="#comments_section">Comments</a></li></ul></div>
<div class="top"><a href="#page-header"><img alt="top" src="../images/up.gif" /></a></div>
<div class="section">
<h2><a name="hardware" id="hardware">Hardware and Operating System Issues</a> <a title="Permanent link" href="#hardware" class="permalink">&para;</a></h2>

    

    <p>The single biggest hardware issue affecting webserver
    performance is RAM. A webserver should never ever have to swap,
    as swapping increases the latency of each request beyond a point
    that users consider "fast enough". This causes users to hit
    stop and reload, further increasing the load. You can, and
    should, control the <code class="directive"><a href="../mod/mpm_common.html#maxrequestworkers">MaxRequestWorkers</a></code> setting so that your server
    does not spawn so many children that it starts swapping. The procedure
    for doing this is simple: determine the size of your average Apache
    process, by looking at your process list via a tool such as
    <code>top</code>, and divide this into your total available memory,
    leaving some room for other processes.</p>

    <p>Beyond that the rest is mundane: get a fast enough CPU, a
    fast enough network card, and fast enough disks, where "fast
    enough" is something that needs to be determined by
    experimentation.</p>

    <p>Operating system choice is largely a matter of local
    concerns. But some guidelines that have proven generally
    useful are:</p>

    <ul>
      <li>
        <p>Run the latest stable release and patch level of the
        operating system that you choose. Many OS suppliers have
        introduced significant performance improvements to their
        TCP stacks and thread libraries in recent years.</p>
      </li>

      <li>
        <p>If your OS supports a <code>sendfile(2)</code> system
        call, make sure you install the release and/or patches
        needed to enable it. (With Linux, for example, this means
        using Linux 2.4 or later. For early releases of Solaris 8,
        you may need to apply a patch.) On systems where it is
        available, <code>sendfile</code> enables Apache to deliver
        static content faster and with lower CPU utilization.</p>
      </li>
    </ul>

  </div><div class="top"><a href="#page-header"><img alt="top" src="../images/up.gif" /></a></div>
<div class="section">
<h2><a name="runtime" id="runtime">Run-Time Configuration Issues</a> <a title="Permanent link" href="#runtime" class="permalink">&para;</a></h2>

    

    <table class="related"><tr><th>Related Modules</th><th>Related Directives</th></tr><tr><td><ul><li><code class="module"><a href="../mod/mod_dir.html">mod_dir</a></code></li><li><code class="module"><a href="../mod/mpm_common.html">mpm_common</a></code></li><li><code class="module"><a href="../mod/mod_status.html">mod_status</a></code></li></ul></td><td><ul><li><code class="directive"><a href="../mod/core.html#allowoverride">AllowOverride</a></code></li><li><code class="directive"><a href="../mod/mod_dir.html#directoryindex">DirectoryIndex</a></code></li><li><code class="directive"><a href="../mod/core.html#hostnamelookups">HostnameLookups</a></code></li><li><code class="directive"><a href="../mod/core.html#enablemmap">EnableMMAP</a></code></li><li><code class="directive"><a href="../mod/core.html#enablesendfile">EnableSendfile</a></code></li><li><code class="directive"><a href="../mod/core.html#keepalivetimeout">KeepAliveTimeout</a></code></li><li><code class="directive"><a href="../mod/prefork.html#maxspareservers">MaxSpareServers</a></code></li><li><code class="directive"><a href="../mod/prefork.html#minspareservers">MinSpareServers</a></code></li><li><code class="directive"><a href="../mod/core.html#options">Options</a></code></li><li><code class="directive"><a href="../mod/mpm_common.html#startservers">StartServers</a></code></li></ul></td></tr></table>

    <h3><a name="dns" id="dns">HostnameLookups and other DNS considerations</a></h3>

      

      <p>Prior to Apache 1.3, <code class="directive"><a href="../mod/core.html#hostnamelookups">HostnameLookups</a></code> defaulted to <code>On</code>.
      causing an extra latency penalty for every request due to a
      DNS lookup to complete before the request was finished.
      In Apache 2.4 this setting defaults to <code>Off</code>. If you need
      to have addresses in your log files resolved to hostnames, please
      consider post-processing rather than forcing Apache to do it in the first
      place. It is recommended that you do this sort of post-processing of
      your log files on some machine other than the production web
      server machine, in order that this activity not adversely affect
      server performance.</p>

      <p>If you use any <code><code class="directive"><a href="../mod/mod_access_compat.html#allow">Allow</a></code> from domain</code> or <code><code class="directive"><a href="../mod/mod_access_compat.html#deny">Deny</a></code> from domain</code>
      directives (i.e., using a hostname, or a domain name, rather than
      an IP address) then you will pay for
      two DNS lookups (a reverse, followed by a forward lookup
      to make sure that the reverse is not being spoofed). For best
      performance, whenever it is possible, use IP addresses rather
      than domain names.</p>

      <div class="warning"><h3>Warning:</h3>
      <p>Please use the <code class="directive"><a href="../mod/mod_authz_core.html#require">Require</a></code> directive with Apache 2.4;
      more info in the related <a href="../upgrading.html">upgrading guide</a>.</p>
      </div>

      <p>Note that it's possible to scope the directives, such as
      within a <code>&lt;Location "/server-status"&gt;</code> section.
      In this case the DNS lookups are only performed on requests
      matching the criteria. Here's an example which disables lookups
      except for <code>.html</code> and <code>.cgi</code> files:</p>

      <pre class="prettyprint lang-config">&lt;Files ~ "\.(html|cgi)$"&gt;
  HostnameLookups on
&lt;/Files&gt;</pre>


      <p>But even still, if you just need DNS names in some CGIs you
      could consider doing the <code>gethostbyname</code> call in the
      specific CGIs that need it.</p>

    

    <h3><a name="symlinks" id="symlinks">FollowSymLinks and SymLinksIfOwnerMatch</a></h3>

      

      <p>Wherever in your URL-space you do not have an <code>Options
      FollowSymLinks</code>, or you do have an <code>Options
      SymLinksIfOwnerMatch</code>, Apache will need to issue extra
      system calls to check up on symlinks. (One extra call per
      filename component.) For example, if you had:</p>

      <pre class="prettyprint lang-config">DocumentRoot "/www/htdocs"
&lt;Directory "/"&gt;
  Options SymLinksIfOwnerMatch
&lt;/Directory&gt;</pre>


      <p>and a request is made for the URI <code>/index.html</code>,
      then Apache will perform <code>lstat(2)</code> on
      <code>/www</code>, <code>/www/htdocs</code>, and
      <code>/www/htdocs/index.html</code>. The results of these
      <code>lstats</code> are never cached, so they will occur on
      every single request. If you really desire the symlinks
      security checking, you can do something like this:</p>

      <pre class="prettyprint lang-config">DocumentRoot "/www/htdocs"
&lt;Directory "/"&gt;
  Options FollowSymLinks
&lt;/Directory&gt;

&lt;Directory "/www/htdocs"&gt;
  Options -FollowSymLinks +SymLinksIfOwnerMatch
&lt;/Directory&gt;</pre>


      <p>This at least avoids the extra checks for the
      <code class="directive"><a href="../mod/core.html#documentroot">DocumentRoot</a></code> path.
      Note that you'll need to add similar sections if you
      have any <code class="directive"><a href="../mod/mod_alias.html#alias">Alias</a></code> or
      <code class="directive"><a href="../mod/mod_rewrite.html#rewriterule">RewriteRule</a></code> paths
      outside of your document root. For highest performance,
      and no symlink protection, set <code>FollowSymLinks</code>
      everywhere, and never set <code>SymLinksIfOwnerMatch</code>.</p>

    

    <h3><a name="htaccess" id="htaccess">AllowOverride</a></h3>

      

      <p>Wherever in your URL-space you allow overrides (typically
      <code>.htaccess</code> files), Apache will attempt to open
      <code>.htaccess</code> for each filename component. For
      example,</p>

      <pre class="prettyprint lang-config">DocumentRoot "/www/htdocs"
&lt;Directory "/"&gt;
  AllowOverride all
&lt;/Directory&gt;</pre>


      <p>and a request is made for the URI <code>/index.html</code>.
      Then Apache will attempt to open <code>/.htaccess</code>,
      <code>/www/.htaccess</code>, and
      <code>/www/htdocs/.htaccess</code>. The solutions are similar
      to the previous case of <code>Options FollowSymLinks</code>.
      For highest performance use <code>AllowOverride None</code>
      everywhere in your filesystem.</p>

    

    <h3><a name="negotiation" id="negotiation">Negotiation</a></h3>

      

      <p>If at all possible, avoid content negotiation if you're
      really interested in every last ounce of performance. In
      practice the benefits of negotiation outweigh the performance
      penalties. There's one case where you can speed up the server.
      Instead of using a wildcard such as:</p>

      <pre class="prettyprint lang-config">DirectoryIndex index</pre>


      <p>Use a complete list of options:</p>

      <pre class="prettyprint lang-config">DirectoryIndex index.cgi index.pl index.shtml index.html</pre>


      <p>where you list the most common choice first.</p>

      <p>Also note that explicitly creating a <code>type-map</code>
      file provides better performance than using
      <code>MultiViews</code>, as the necessary information can be
      determined by reading this single file, rather than having to
      scan the directory for files.</p>

    <p>If your site needs content negotiation, consider using
    <code>type-map</code> files, rather than the <code>Options
    MultiViews</code> directive to accomplish the negotiation. See the
    <a href="../content-negotiation.html">Content Negotiation</a>
    documentation for a full discussion of the methods of negotiation,
    and instructions for creating <code>type-map</code> files.</p>

    

    <h3>Memory-mapping</h3>

      

      <p>In situations where Apache 2.x needs to look at the contents
      of a file being delivered--for example, when doing server-side-include
      processing--it normally memory-maps the file if the OS supports
      some form of <code>mmap(2)</code>.</p>

      <p>On some platforms, this memory-mapping improves performance.
      However, there are cases where memory-mapping can hurt the performance
      or even the stability of the httpd:</p>

      <ul>
        <li>
          <p>On some operating systems, <code>mmap</code> does not scale
          as well as <code>read(2)</code> when the number of CPUs increases.
          On multiprocessor Solaris servers, for example, Apache 2.x sometimes
          delivers server-parsed files faster when <code>mmap</code> is disabled.</p>
        </li>

        <li>
          <p>If you memory-map a file located on an NFS-mounted filesystem
          and a process on another NFS client machine deletes or truncates
          the file, your process may get a bus error the next time it tries
          to access the mapped file content.</p>
        </li>
      </ul>

      <p>For installations where either of these factors applies, you
      should use <code>EnableMMAP off</code> to disable the memory-mapping
      of delivered files. (Note: This directive can be overridden on
      a per-directory basis.)</p>

    

    <h3>Sendfile</h3>

      

      <p>In situations where Apache 2.x can ignore the contents of the file
      to be delivered -- for example, when serving static file content --
      it normally uses the kernel sendfile support for the file if the OS
      supports the <code>sendfile(2)</code> operation.</p>

      <p>On most platforms, using sendfile improves performance by eliminating
      separate read and send mechanics.  However, there are cases where using
      sendfile can harm the stability of the httpd:</p>

      <ul>
        <li>
          <p>Some platforms may have broken sendfile support that the build
          system did not detect, especially if the binaries were built on
          another box and moved to such a machine with broken sendfile support.</p>
        </li>
        <li>
          <p>With an NFS-mounted filesystem, the kernel may be unable
          to reliably serve the network file through its own cache.</p>
        </li>
      </ul>

      <p>For installations where either of these factors applies, you
      should use <code>EnableSendfile off</code> to disable sendfile
      delivery of file contents. (Note: This directive can be overridden
      on a per-directory basis.)</p>

    

    <h3><a name="process" id="process">Recycle child processes</a></h3>

    

    <p><code class="directive"><a href="../mod/mpm_common.html#maxconnectionsperchild">MaxConnectionsPerChild</a></code>
    limits the numbers of connections that a child process can handle during
    its lifetime (by default set to <code>0</code> - unlimited). This affects all
    the <a href="../mpm.html#defaults">MPMs</a>, even the ones using threads.
    For example, each process created by the <code class="module"><a href="../mod/worker.html">worker</a></code> MPM spawns
    multiple threads that will handle connections, but this does not influence
    the overall count. It only means that the sum of requests handled by all the
    threads spawned by a single process will be counted against the
    <code class="directive"><a href="../mod/mpm_common.html#maxconnectionsperchild">MaxConnectionsPerChild</a></code> value.</p>

    <p><code class="directive"><a href="../mod/mpm_common.html#maxconnectionsperchild">MaxConnectionsPerChild</a></code> should
    not have any limit in the optimal use case, since there should not be any
    reason to force a process kill other than software bugs causing memory leaks
    or excessive CPU usage.</p>

    <p>When keep-alives are in use, a process (or a thread spawned by a process)
    will be kept busy doing nothing but waiting for more requests on the already open
    connection. The default <code class="directive"><a href="../mod/core.html#keepalivetimeout">KeepAliveTimeout</a></code> of <code>5</code>
    seconds attempts to minimize this effect. The tradeoff here is
    between network bandwidth and server resources.</p>
    

  </div><div class="top"><a href="#page-header"><img alt="top" src="../images/up.gif" /></a></div>
<div class="section">
<h2><a name="compiletime" id="compiletime">Compile-Time Configuration Issues</a> <a title="Permanent link" href="#compiletime" class="permalink">&para;</a></h2>

    

    <h3>Choosing an MPM</h3>

      

      <p>Apache 2.x supports pluggable concurrency models, called
      <a href="../mpm.html">Multi-Processing Modules</a> (MPMs).
      When building Apache, you must choose an MPM to use.  There
      are platform-specific MPMs for some platforms:
      <code class="module"><a href="../mod/mpm_netware.html">mpm_netware</a></code>,
      <code class="module"><a href="../mod/mpmt_os2.html">mpmt_os2</a></code>, and <code class="module"><a href="../mod/mpm_winnt.html">mpm_winnt</a></code>.  For
      general Unix-type systems, there are several MPMs from which
      to choose.  The choice of MPM can affect the speed and scalability
      of the httpd:</p>

      <ul>

        <li>The <code class="module"><a href="../mod/worker.html">worker</a></code> MPM uses multiple child
        processes with many threads each.  Each thread handles
        one connection at a time.  Worker generally is a good
        choice for high-traffic servers because it has a smaller
        memory footprint than the prefork MPM.</li>

        <li>The <code class="module"><a href="../mod/event.html">event</a></code> MPM is threaded like the
        Worker MPM, but is designed to allow more requests to be
        served simultaneously by passing off some processing work
        to supporting threads, freeing up the main threads to work
        on new requests.</li>

        <li>The <code class="module"><a href="../mod/prefork.html">prefork</a></code> MPM uses multiple child
        processes with one thread each.  Each process handles
        one connection at a time.  On many systems, prefork is
        comparable in speed to worker, but it uses more memory.
        Prefork's threadless design has advantages over worker
        in some situations: it can be used with non-thread-safe
        third-party modules, and it is easier to debug on platforms
        with poor thread debugging support.</li>

      </ul>

      <p>For more information on these and other MPMs, please
      see the MPM <a href="../mpm.html">documentation</a>.</p>

    

    <h3><a name="modules" id="modules">Modules</a></h3>

        

        <p>Since memory usage is such an important consideration in
        performance, you should attempt to eliminate modules that you are
        not actually using. If you have built the modules as <a href="../dso.html">DSOs</a>, eliminating modules is a simple
        matter of commenting out the associated <code class="directive"><a href="../mod/mod_so.html#loadmodule">LoadModule</a></code> directive for that module.
        This allows you to experiment with removing modules and seeing
        if your site still functions in their absence.</p>

        <p>If, on the other hand, you have modules statically linked
        into your Apache binary, you will need to recompile Apache in
        order to remove unwanted modules.</p>

        <p>An associated question that arises here is, of course, what
        modules you need, and which ones you don't. The answer here
        will, of course, vary from one web site to another. However, the
        <em>minimal</em> list of modules which you can get by with tends
        to include <code class="module"><a href="../mod/mod_mime.html">mod_mime</a></code>, <code class="module"><a href="../mod/mod_dir.html">mod_dir</a></code>,
        and <code class="module"><a href="../mod/mod_log_config.html">mod_log_config</a></code>. <code>mod_log_config</code> is,
        of course, optional, as you can run a web site without log
        files. This is, however, not recommended.</p>

    

    <h3>Atomic Operations</h3>

      

      <p>Some modules, such as <code class="module"><a href="../mod/mod_cache.html">mod_cache</a></code> and
      recent development builds of the worker MPM, use APR's
      atomic API.  This API provides atomic operations that can
      be used for lightweight thread synchronization.</p>

      <p>By default, APR implements these operations using the
      most efficient mechanism available on each target
      OS/CPU platform.  Many modern CPUs, for example, have
      an instruction that does an atomic compare-and-swap (CAS)
      operation in hardware.  On some platforms, however, APR
      defaults to a slower, mutex-based implementation of the
      atomic API in order to ensure compatibility with older
      CPU models that lack such instructions.  If you are
      building Apache for one of these platforms, and you plan
      to run only on newer CPUs, you can select a faster atomic
      implementation at build time by configuring Apache with
      the <code>--enable-nonportable-atomics</code> option:</p>

      <div class="example"><p><code>
        ./buildconf<br />
        ./configure --with-mpm=worker --enable-nonportable-atomics=yes
      </code></p></div>

      <p>The <code>--enable-nonportable-atomics</code> option is
      relevant for the following platforms:</p>

      <ul>

        <li>Solaris on SPARC<br />
            By default, APR uses mutex-based atomics on Solaris/SPARC.
            If you configure with <code>--enable-nonportable-atomics</code>,
            however, APR generates code that uses a SPARC v8plus opcode for
            fast hardware compare-and-swap.  If you configure Apache with
            this option, the atomic operations will be more efficient
            (allowing for lower CPU utilization and higher concurrency),
            but the resulting executable will run only on UltraSPARC
            chips.
        </li>

        <li>Linux on x86<br />
            By default, APR uses mutex-based atomics on Linux.  If you
            configure with <code>--enable-nonportable-atomics</code>,
            however, APR generates code that uses a 486 opcode for fast
            hardware compare-and-swap.  This will result in more efficient
            atomic operations, but the resulting executable will run only
            on 486 and later chips (and not on 386).
        </li>

      </ul>

    

    <h3>mod_status and ExtendedStatus On</h3>

      

      <p>If you include <code class="module"><a href="../mod/mod_status.html">mod_status</a></code> and you also set
      <code>ExtendedStatus On</code> when building and running
      Apache, then on every request Apache will perform two calls to
      <code>gettimeofday(2)</code> (or <code>times(2)</code>
      depending on your operating system), and (pre-1.3) several
      extra calls to <code>time(2)</code>. This is all done so that
      the status report contains timing indications. For highest
      performance, set <code>ExtendedStatus off</code> (which is the
      default).</p>

    

    <h3>accept Serialization - Multiple Sockets</h3>

      

    <div class="warning"><h3>Warning:</h3>
      <p>This section has not been fully updated
      to take into account changes made in the 2.x version of the
      Apache HTTP Server. Some of the information may still be
      relevant, but please use it with care.</p>
    </div>

      <p>This discusses a shortcoming in the Unix socket API. Suppose
      your web server uses multiple <code class="directive"><a href="../mod/mpm_common.html#listen">Listen</a></code> statements to listen on either multiple
      ports or multiple addresses. In order to test each socket
      to see if a connection is ready, Apache uses
      <code>select(2)</code>. <code>select(2)</code> indicates that a
      socket has <em>zero</em> or <em>at least one</em> connection
      waiting on it. Apache's model includes multiple children, and
      all the idle ones test for new connections at the same time. A
      naive implementation looks something like this (these examples
      do not match the code, they're contrived for pedagogical
      purposes):</p>

      <pre class="prettyprint lang-c">        for (;;) {
          for (;;) {
            fd_set accept_fds;

            FD_ZERO (&amp;accept_fds);
            for (i = first_socket; i &lt;= last_socket; ++i) {
              FD_SET (i, &amp;accept_fds);
            }
            rc = select (last_socket+1, &amp;accept_fds, NULL, NULL, NULL);
            if (rc &lt; 1) continue;
            new_connection = -1;
            for (i = first_socket; i &lt;= last_socket; ++i) {
              if (FD_ISSET (i, &amp;accept_fds)) {
                new_connection = accept (i, NULL, NULL);
                if (new_connection != -1) break;
              }
            }
            if (new_connection != -1) break;
          }
          process_the(new_connection);
        }</pre>


      <p>But this naive implementation has a serious starvation problem.
      Recall that multiple children execute this loop at the same
      time, and so multiple children will block at
      <code>select</code> when they are in between requests. All
      those blocked children will awaken and return from
      <code>select</code> when a single request appears on any socket.
      (The number of children which awaken varies depending on the
      operating system and timing issues.) They will all then fall
      down into the loop and try to <code>accept</code> the
      connection. But only one will succeed (assuming there's still
      only one connection ready). The rest will be <em>blocked</em>
      in <code>accept</code>. This effectively locks those children
      into serving requests from that one socket and no other
      sockets, and they'll be stuck there until enough new requests
      appear on that socket to wake them all up. This starvation
      problem was first documented in <a href="http://bugs.apache.org/index/full/467">PR#467</a>. There
      are at least two solutions.</p>

      <p>One solution is to make the sockets non-blocking. In this
      case the <code>accept</code> won't block the children, and they
      will be allowed to continue immediately. But this wastes CPU
      time. Suppose you have ten idle children in
      <code>select</code>, and one connection arrives. Then nine of
      those children will wake up, try to <code>accept</code> the
      connection, fail, and loop back into <code>select</code>,
      accomplishing nothing. Meanwhile none of those children are
      servicing requests that occurred on other sockets until they
      get back up to the <code>select</code> again. Overall this
      solution does not seem very fruitful unless you have as many
      idle CPUs (in a multiprocessor box) as you have idle children
      (not a very likely situation).</p>

      <p>Another solution, the one used by Apache, is to serialize
      entry into the inner loop. The loop looks like this
      (differences highlighted):</p>

      <pre class="prettyprint lang-c">        for (;;) {
          <strong>accept_mutex_on ();</strong>
          for (;;) {
            fd_set accept_fds;

            FD_ZERO (&amp;accept_fds);
            for (i = first_socket; i &lt;= last_socket; ++i) {
              FD_SET (i, &amp;accept_fds);
            }
            rc = select (last_socket+1, &amp;accept_fds, NULL, NULL, NULL);
            if (rc &lt; 1) continue;
            new_connection = -1;
            for (i = first_socket; i &lt;= last_socket; ++i) {
              if (FD_ISSET (i, &amp;accept_fds)) {
                new_connection = accept (i, NULL, NULL);
                if (new_connection != -1) break;
              }
            }
            if (new_connection != -1) break;
          }
          <strong>accept_mutex_off ();</strong>
          process the new_connection;
        }</pre>


      <p><a id="serialize" name="serialize">The functions</a>
      <code>accept_mutex_on</code> and <code>accept_mutex_off</code>
      implement a mutual exclusion semaphore. Only one child can have
      the mutex at any time. There are several choices for
      implementing these mutexes. The choice is defined in
      <code>src/conf.h</code> (pre-1.3) or
      <code>src/include/ap_config.h</code> (1.3 or later). Some
      architectures do not have any locking choice made, on these
      architectures it is unsafe to use multiple
      <code class="directive"><a href="../mod/mpm_common.html#listen">Listen</a></code>
      directives.</p>

      <p>The <code class="directive"><a href="../mod/core.html#mutex">Mutex</a></code> directive can
      be used to change the mutex implementation of the
      <code>mpm-accept</code> mutex at run-time.  Special considerations
      for different mutex implementations are documented with that
      directive.</p>

      <p>Another solution that has been considered but never
      implemented is to partially serialize the loop -- that is, let
      in a certain number of processes. This would only be of
      interest on multiprocessor boxes where it's possible that multiple
      children could run simultaneously, and the serialization
      actually doesn't take advantage of the full bandwidth. This is
      a possible area of future investigation, but priority remains
      low because highly parallel web servers are not the norm.</p>

      <p>Ideally you should run servers without multiple
      <code class="directive"><a href="../mod/mpm_common.html#listen">Listen</a></code>
      statements if you want the highest performance.
      But read on.</p>

    

    <h3>accept Serialization - Single Socket</h3>

      

      <p>The above is fine and dandy for multiple socket servers, but
      what about single socket servers? In theory they shouldn't
      experience any of these same problems because all children can
      just block in <code>accept(2)</code> until a connection
      arrives, and no starvation results. In practice this hides
      almost the same "spinning" behavior discussed above in the
      non-blocking solution. The way that most TCP stacks are
      implemented, the kernel actually wakes up all processes blocked
      in <code>accept</code> when a single connection arrives. One of
      those processes gets the connection and returns to user-space.
      The rest spin in the kernel and go back to sleep when they
      discover there's no connection for them. This spinning is
      hidden from the user-land code, but it's there nonetheless.
      This can result in the same load-spiking wasteful behavior
      that a non-blocking solution to the multiple sockets case
      can.</p>

      <p>For this reason we have found that many architectures behave
      more "nicely" if we serialize even the single socket case. So
      this is actually the default in almost all cases. Crude
      experiments under Linux (2.0.30 on a dual Pentium pro 166
      w/128Mb RAM) have shown that the serialization of the single
      socket case causes less than a 3% decrease in requests per
      second over unserialized single-socket. But unserialized
      single-socket showed an extra 100ms latency on each request.
      This latency is probably a wash on long haul lines, and only an
      issue on LANs. If you want to override the single socket
      serialization, you can define
      <code>SINGLE_LISTEN_UNSERIALIZED_ACCEPT</code>, and then
      single-socket servers will not serialize at all.</p>

    

    <h3>Lingering Close</h3>

      

      <p>As discussed in <a href="http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt">
      draft-ietf-http-connection-00.txt</a> section 8, in order for
      an HTTP server to <strong>reliably</strong> implement the
      protocol, it needs to shut down each direction of the
      communication independently. (Recall that a TCP connection is
      bi-directional. Each half is independent of the other.)</p>

      <p>When this feature was added to Apache, it caused a flurry of
      problems on various versions of Unix because of shortsightedness.
      The TCP specification does not state that the <code>FIN_WAIT_2</code>
      state has a timeout, but it doesn't prohibit it.
      On systems without the timeout, Apache 1.2 induces many sockets
      stuck forever in the <code>FIN_WAIT_2</code> state. In many cases this
      can be avoided by simply upgrading to the latest TCP/IP patches
      supplied by the vendor. In cases where the vendor has never
      released patches (<em>i.e.</em>, SunOS4 -- although folks with
      a source license can patch it themselves), we have decided to
      disable this feature.</p>

      <p>There are two ways to accomplish this. One is the socket
      option <code>SO_LINGER</code>. But as fate would have it, this
      has never been implemented properly in most TCP/IP stacks. Even
      on those stacks with a proper implementation (<em>i.e.</em>,
      Linux 2.0.31), this method proves to be more expensive (cputime)
      than the next solution.</p>

      <p>For the most part, Apache implements this in a function
      called <code>lingering_close</code> (in
      <code>http_main.c</code>). The function looks roughly like
      this:</p>

      <pre class="prettyprint lang-c">        void lingering_close (int s)
        {
          char junk_buffer[2048];

          /* shutdown the sending side */
          shutdown (s, 1);

          signal (SIGALRM, lingering_death);
          alarm (30);

          for (;;) {
            select (s for reading, 2 second timeout);
            if (error) break;
            if (s is ready for reading) {
              if (read (s, junk_buffer, sizeof (junk_buffer)) &lt;= 0) {
                break;
              }
              /* just toss away whatever is here */
            }
          }

          close (s);
        }</pre>


      <p>This naturally adds some expense at the end of a connection,
      but it is required for a reliable implementation. As HTTP/1.1
      becomes more prevalent, and all connections are persistent,
      this expense will be amortized over more requests. If you want
      to play with fire and disable this feature, you can define
      <code>NO_LINGCLOSE</code>, but this is not recommended at all.
      In particular, as HTTP/1.1 pipelined persistent connections
      come into use, <code>lingering_close</code> is an absolute
      necessity (and <a href="http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html">
      pipelined connections are faster</a>, so you want to support
      them).</p>

    

    <h3>Scoreboard File</h3>

      

      <p>Apache's parent and children communicate with each other
      through something called the scoreboard. Ideally this should be
      implemented in shared memory. For those operating systems that
      we either have access to, or have been given detailed ports
      for, it typically is implemented using shared memory. The rest
      default to using an on-disk file. The on-disk file is not only
      slow, but it is unreliable (and less featured). Peruse the
      <code>src/main/conf.h</code> file for your architecture, and
      look for either <code>USE_MMAP_SCOREBOARD</code> or
      <code>USE_SHMGET_SCOREBOARD</code>. Defining one of those two
      (as well as their companions <code>HAVE_MMAP</code> and
      <code>HAVE_SHMGET</code> respectively) enables the supplied
      shared memory code. If your system has another type of shared
      memory, edit the file <code>src/main/http_main.c</code> and add
      the hooks necessary to use it in Apache. (Send us back a patch
      too, please.)</p>

      <div class="note">Historical note: The Linux port of Apache didn't start to
      use shared memory until version 1.2 of Apache. This oversight
      resulted in really poor and unreliable behavior of earlier
      versions of Apache on Linux.</div>

    

    <h3>DYNAMIC_MODULE_LIMIT</h3>

      

      <p>If you have no intention of using dynamically loaded modules
      (you probably don't if you're reading this and tuning your
      server for every last ounce of performance), then you should add
      <code>-DDYNAMIC_MODULE_LIMIT=0</code> when building your
      server. This will save RAM that's allocated only for supporting
      dynamically loaded modules.</p>

    

  </div><div class="top"><a href="#page-header"><img alt="top" src="../images/up.gif" /></a></div>
<div class="section">
<h2><a name="trace" id="trace">Appendix: Detailed Analysis of a Trace</a> <a title="Permanent link" href="#trace" class="permalink">&para;</a></h2>

    

    <p>Here is a system call trace of Apache 2.0.38 with the worker MPM
    on Solaris 8. This trace was collected using:</p>

    <div class="example"><p><code>
      truss -l -p <var>httpd_child_pid</var>.
    </code></p></div>

    <p>The <code>-l</code> option tells truss to log the ID of the
    LWP (lightweight process--Solaris' form of kernel-level thread)
    that invokes each system call.</p>

    <p>Other systems may have different system call tracing utilities
    such as <code>strace</code>, <code>ktrace</code>, or <code>par</code>.
    They all produce similar output.</p>

    <p>In this trace, a client has requested a 10KB static file
    from the httpd. Traces of non-static requests or requests
    with content negotiation look wildly different (and quite ugly
    in some cases).</p>

    <div class="example"><pre>/67:    accept(3, 0x00200BEC, 0x00200C0C, 1) (sleeping...)
/67:    accept(3, 0x00200BEC, 0x00200C0C, 1)            = 9</pre></div>

    <p>In this trace, the listener thread is running within LWP #67.</p>

    <div class="note">Note the lack of <code>accept(2)</code> serialization. On this
    particular platform, the worker MPM uses an unserialized accept by
    default unless it is listening on multiple ports.</div>

    <div class="example"><pre>/65:    lwp_park(0x00000000, 0)                         = 0
/67:    lwp_unpark(65, 1)                               = 0</pre></div>

    <p>Upon accepting the connection, the listener thread wakes up
    a worker thread to do the request processing. In this trace,
    the worker thread that handles the request is mapped to LWP #65.</p>

    <div class="example"><pre>/65:    getsockname(9, 0x00200BA4, 0x00200BC4, 1)       = 0</pre></div>

    <p>In order to implement virtual hosts, Apache needs to know
    the local socket address used to accept the connection. It
    is possible to eliminate this call in many situations (such
    as when there are no virtual hosts, or when
    <code class="directive"><a href="../mod/mpm_common.html#listen">Listen</a></code> directives
    are used which do not have wildcard addresses). But
    no effort has yet been made to do these optimizations. </p>

    <div class="example"><pre>/65:    brk(0x002170E8)                                 = 0
/65:    brk(0x002190E8)                                 = 0</pre></div>

    <p>The <code>brk(2)</code> calls allocate memory from the heap.
    It is rare to see these in a system call trace, because the httpd
    uses custom memory allocators (<code>apr_pool</code> and
    <code>apr_bucket_alloc</code>) for most request processing.
    In this trace, the httpd has just been started, so it must
    call <code>malloc(3)</code> to get the blocks of raw memory
    with which to create the custom memory allocators.</p>

    <div class="example"><pre>/65:    fcntl(9, F_GETFL, 0x00000000)                   = 2
/65:    fstat64(9, 0xFAF7B818)                          = 0
/65:    getsockopt(9, 65535, 8192, 0xFAF7B918, 0xFAF7B910, 2190656) = 0
/65:    fstat64(9, 0xFAF7B818)                          = 0
/65:    getsockopt(9, 65535, 8192, 0xFAF7B918, 0xFAF7B914, 2190656) = 0
/65:    setsockopt(9, 65535, 8192, 0xFAF7B918, 4, 2190656) = 0
/65:    fcntl(9, F_SETFL, 0x00000082)                   = 0</pre></div>

    <p>Next, the worker thread puts the connection to the client (file
    descriptor 9) in non-blocking mode. The <code>setsockopt(2)</code>
    and <code>getsockopt(2)</code> calls are a side-effect of how
    Solaris' libc handles <code>fcntl(2)</code> on sockets.</p>

    <div class="example"><pre>/65:    read(9, " G E T   / 1 0 k . h t m".., 8000)     = 97</pre></div>

    <p>The worker thread reads the request from the client.</p>

    <div class="example"><pre>/65:    stat("/var/httpd/apache/httpd-8999/htdocs/10k.html", 0xFAF7B978) = 0
/65:    open("/var/httpd/apache/httpd-8999/htdocs/10k.html", O_RDONLY) = 10</pre></div>

    <p>This httpd has been configured with <code>Options FollowSymLinks</code>
    and <code>AllowOverride None</code>.  Thus it doesn't need to
    <code>lstat(2)</code> each directory in the path leading up to the
    requested file, nor check for <code>.htaccess</code> files.
    It simply calls <code>stat(2)</code> to verify that the file:
    1) exists, and 2) is a regular file, not a directory.</p>

    <div class="example"><pre>/65:    sendfilev(0, 9, 0x00200F90, 2, 0xFAF7B53C)      = 10269</pre></div>

    <p>In this example, the httpd is able to send the HTTP response
    header and the requested file with a single <code>sendfilev(2)</code>
    system call. Sendfile semantics vary among operating systems. On some other
    systems, it is necessary to do a <code>write(2)</code> or
    <code>writev(2)</code> call to send the headers before calling
    <code>sendfile(2)</code>.</p>

    <div class="example"><pre>/65:    write(4, " 1 2 7 . 0 . 0 . 1   -  ".., 78)      = 78</pre></div>

    <p>This <code>write(2)</code> call records the request in the
    access log. Note that one thing missing from this trace is a
    <code>time(2)</code> call. Unlike Apache 1.3, Apache 2.x uses
    <code>gettimeofday(3)</code> to look up the time. On some operating
    systems, like Linux or Solaris, <code>gettimeofday</code> has an
    optimized implementation that doesn't require as much overhead
    as a typical system call.</p>

    <div class="example"><pre>/65:    shutdown(9, 1, 1)                               = 0
/65:    poll(0xFAF7B980, 1, 2000)                       = 1
/65:    read(9, 0xFAF7BC20, 512)                        = 0
/65:    close(9)                                        = 0</pre></div>

    <p>The worker thread does a lingering close of the connection.</p>

    <div class="example"><pre>/65:    close(10)                                       = 0
/65:    lwp_park(0x00000000, 0)         (sleeping...)</pre></div>

    <p>Finally the worker thread closes the file that it has just delivered
    and blocks until the listener assigns it another connection.</p>

    <div class="example"><pre>/67:    accept(3, 0x001FEB74, 0x001FEB94, 1) (sleeping...)</pre></div>

    <p>Meanwhile, the listener thread is able to accept another connection
    as soon as it has dispatched this connection to a worker thread (subject
    to some flow-control logic in the worker MPM that throttles the listener
    if all the available workers are busy).  Though it isn't apparent from
    this trace, the next <code>accept(2)</code> can (and usually does, under
    high load conditions) occur in parallel with the worker thread's handling
    of the just-accepted connection.</p>

  </div></div>
<div class="bottomlang">
<p><span>Available Languages: </span><a href="../en/misc/perf-tuning.html" title="English">&nbsp;en&nbsp;</a> |
<a href="../fr/misc/perf-tuning.html" hreflang="fr" rel="alternate" title="Français">&nbsp;fr&nbsp;</a> |
<a href="../ko/misc/perf-tuning.html" hreflang="ko" rel="alternate" title="Korean">&nbsp;ko&nbsp;</a> |
<a href="../tr/misc/perf-tuning.html" hreflang="tr" rel="alternate" title="Türkçe">&nbsp;tr&nbsp;</a></p>
</div><div class="top"><a href="#page-header"><img src="../images/up.gif" alt="top" /></a></div><div class="section"><h2><a id="comments_section" name="comments_section">Comments</a></h2><div class="warning"><strong>Notice:</strong><br />This is not a Q&amp;A section. Comments placed here should be pointed towards suggestions on improving the documentation or server, and may be removed by our moderators if they are either implemented or considered invalid/off-topic. Questions on how to manage the Apache HTTP Server should be directed at either our IRC channel, #httpd, on Freenode, or sent to our <a href="https://httpd.apache.org/lists.html">mailing lists</a>.</div>
<script type="text/javascript"><!--//--><![CDATA[//><!--
var comments_shortname = 'httpd';
var comments_identifier = 'http://httpd.apache.org/docs/trunk/misc/perf-tuning.html';
(function(w, d) {
    if (w.location.hostname.toLowerCase() == "httpd.apache.org") {
        d.write('<div id="comments_thread"><\/div>');
        var s = d.createElement('script');
        s.type = 'text/javascript';
        s.async = true;
        s.src = 'https://comments.apache.org/show_comments.lua?site=' + comments_shortname + '&page=' + comments_identifier;
        (d.getElementsByTagName('head')[0] || d.getElementsByTagName('body')[0]).appendChild(s);
    }
    else {
        d.write('<div id="comments_thread">Comments are disabled for this page at the moment.<\/div>');
    }
})(window, document);
//--><!]]></script></div><div id="footer">
<p class="apache">Copyright 2020 The Apache Software Foundation.<br />Licensed under the <a href="http://www.apache.org/licenses/LICENSE-2.0">Apache License, Version 2.0</a>.</p>
<p class="menu"><a href="../mod/">Modules</a> | <a href="../mod/quickreference.html">Directives</a> | <a href="http://wiki.apache.org/httpd/FAQ">FAQ</a> | <a href="../glossary.html">Glossary</a> | <a href="../sitemap.html">Sitemap</a></p></div><script type="text/javascript"><!--//--><![CDATA[//><!--
if (typeof(prettyPrint) !== 'undefined') {
    prettyPrint();
}
//--><!]]></script>
</body></html>