1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
|
/* _ _
** _ __ ___ ___ __| | ___ ___| | mod_ssl
** | '_ ` _ \ / _ \ / _` | / __/ __| | Apache Interface to OpenSSL
** | | | | | | (_) | (_| | \__ \__ \ | www.modssl.org
** |_| |_| |_|\___/ \__,_|___|___/___/_| ftp.modssl.org
** |_____|
** ssl_util_table.c
** High Performance Hash Table Functions
*/
/* ====================================================================
* The Apache Software License, Version 1.1
*
* Copyright (c) 2000-2002 The Apache Software Foundation. All rights
* reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
*
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in
* the documentation and/or other materials provided with the
* distribution.
*
* 3. The end-user documentation included with the redistribution,
* if any, must include the following acknowledgment:
* "This product includes software developed by the
* Apache Software Foundation (http://www.apache.org/)."
* Alternately, this acknowledgment may appear in the software itself,
* if and wherever such third-party acknowledgments normally appear.
*
* 4. The names "Apache" and "Apache Software Foundation" must
* not be used to endorse or promote products derived from this
* software without prior written permission. For written
* permission, please contact apache@apache.org.
*
* 5. Products derived from this software may not be called "Apache",
* nor may "Apache" appear in their name, without prior written
* permission of the Apache Software Foundation.
*
* THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
* WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL THE APACHE SOFTWARE FOUNDATION OR
* ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
* USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
* OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
* OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
* ====================================================================
*/
/*
* Generic hash table handler
* Table 4.1.0 July-28-1998
*
* This library is a generic open hash table with buckets and
* linked lists. It is pretty high performance. Each element
* has a key and a data. The user indexes on the key to find the
* data.
*
* Copyright 1998 by Gray Watson <gray@letters.com>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose and without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies,
* and that the name of Gray Watson not be used in advertising or
* publicity pertaining to distribution of the document or software
* without specific, written prior permission.
*
* Gray Watson makes no representations about the suitability of the
* software described herein for any purpose. It is provided "as is"
* without express or implied warranty.
*
* Modified in March 1999 by Ralf S. Engelschall <rse@engelschall.com>
* for use in the mod_ssl project:
* o merged table_loc.h header into table.c
* o removed fillproto-comments from table.h
* o removed mmap() support because it's too unportable
* o added support for MM library via ta_{malloc,calloc,realloc,free}
*/
#include <stdlib.h>
#include <string.h>
/* forward definitions for table.h */
typedef struct table_st table_t;
typedef struct table_entry_st table_entry_t;
#define TABLE_PRIVATE
#include "ssl_util_table.h"
#include "mod_ssl.h"
/****************************** local defines ******************************/
#ifndef BITSPERBYTE
#define BITSPERBYTE 8
#endif
#ifndef BITS
#define BITS(type) (BITSPERBYTE * (int)sizeof(type))
#endif
#define TABLE_MAGIC 0xBADF00D /* very magic magicness */
#define LINEAR_MAGIC 0xAD00D00 /* magic value for linear struct */
#define DEFAULT_SIZE 1024 /* default table size */
#define MAX_ALIGNMENT 128 /* max alignment value */
#define MAX_SORT_SPLITS 128 /* qsort can handle 2^128 entries */
/* returns 1 when we should grow or shrink the table */
#define SHOULD_TABLE_GROW(tab) ((tab)->ta_entry_n > (tab)->ta_bucket_n * 2)
#define SHOULD_TABLE_SHRINK(tab) ((tab)->ta_entry_n < (tab)->ta_bucket_n / 2)
/*
* void HASH_MIX
*
* DESCRIPTION:
*
* Mix 3 32-bit values reversibly. For every delta with one or two bits
* set, and the deltas of all three high bits or all three low bits,
* whether the original value of a,b,c is almost all zero or is
* uniformly distributed.
*
* If HASH_MIX() is run forward or backward, at least 32 bits in a,b,c
* have at least 1/4 probability of changing. If mix() is run
* forward, every bit of c will change between 1/3 and 2/3 of the
* time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
*
* HASH_MIX() takes 36 machine instructions, but only 18 cycles on a
* superscalar machine (like a Pentium or a Sparc). No faster mixer
* seems to work, that's the result of my brute-force search. There
* were about 2^68 hashes to choose from. I only tested about a
* billion of those.
*/
#define HASH_MIX(a, b, c) \
do { \
a -= b; a -= c; a ^= (c >> 13); \
b -= c; b -= a; b ^= (a << 8); \
c -= a; c -= b; c ^= (b >> 13); \
a -= b; a -= c; a ^= (c >> 12); \
b -= c; b -= a; b ^= (a << 16); \
c -= a; c -= b; c ^= (b >> 5); \
a -= b; a -= c; a ^= (c >> 3); \
b -= c; b -= a; b ^= (a << 10); \
c -= a; c -= b; c ^= (b >> 15); \
} while(0)
#define TABLE_POINTER(table, type, pnt) (pnt)
/*
* Macros to get at the key and the data pointers
*/
#define ENTRY_KEY_BUF(entry_p) ((entry_p)->te_key_buf)
#define ENTRY_DATA_BUF(tab_p, entry_p) \
(ENTRY_KEY_BUF(entry_p) + (entry_p)->te_key_size)
/*
* Table structures...
*/
/*
* HACK: this should be equiv as the table_entry_t without the key_buf
* char. We use this with the ENTRY_SIZE() macro above which solves
* the problem with the lack of the [0] GNU hack. We use the
* table_entry_t structure to better map the memory and make things
* faster.
*/
typedef struct table_shell_st {
unsigned int te_key_size; /* size of data */
unsigned int te_data_size; /* size of data */
struct table_shell_st *te_next_p; /* pointer to next in the list */
/* NOTE: this does not have the te_key_buf field here */
} table_shell_t;
/*
* Elements in the bucket linked-lists. The key[1] is the start of
* the key with the rest of the key and all of the data information
* packed in memory directly after the end of this structure.
*
* NOTE: if this structure is changed, the table_shell_t must be changed
* to match.
*/
struct table_entry_st {
unsigned int te_key_size; /* size of data */
unsigned int te_data_size; /* size of data */
struct table_entry_st *te_next_p; /* pointer to next in the list */
unsigned char te_key_buf[1]; /* 1st byte of key buf */
};
/* external structure for debuggers be able to see void */
typedef table_entry_t table_entry_ext_t;
/* main table structure */
struct table_st {
unsigned int ta_magic; /* magic number */
unsigned int ta_flags; /* table's flags defined in table.h */
unsigned int ta_bucket_n; /* num of buckets, should be 2^X */
unsigned int ta_entry_n; /* num of entries in all buckets */
unsigned int ta_data_align; /* data alignment value */
table_entry_t **ta_buckets; /* array of linked lists */
table_linear_t ta_linear; /* linear tracking */
unsigned long ta_file_size; /* size of on-disk space */
void *(*ta_malloc)(void *opt_param, size_t size);
void *(*ta_calloc)(void *opt_param, size_t number, size_t size);
void *(*ta_realloc)(void *opt_param, void *ptr, size_t size);
void (*ta_free)(void *opt_param, void *ptr);
void *opt_param;
};
/* external table structure for debuggers */
typedef table_t table_ext_t;
/* local comparison functions */
typedef int (*compare_t) (const void *element1_p, const void *element2_p,
table_compare_t user_compare,
const table_t * table_p);
/*
* to map error to string
*/
typedef struct {
int es_error; /* error number */
char *es_string; /* assocaited string */
} error_str_t;
static error_str_t errors[] =
{
{TABLE_ERROR_NONE, "no error"},
{TABLE_ERROR_PNT, "invalid table pointer"},
{TABLE_ERROR_ARG_NULL, "buffer argument is null"},
{TABLE_ERROR_SIZE, "incorrect size argument"},
{TABLE_ERROR_OVERWRITE, "key exists and no overwrite"},
{TABLE_ERROR_NOT_FOUND, "key does not exist"},
{TABLE_ERROR_ALLOC, "error allocating memory"},
{TABLE_ERROR_LINEAR, "linear access not in progress"},
{TABLE_ERROR_OPEN, "could not open file"},
{TABLE_ERROR_SEEK, "could not seek to position in file"},
{TABLE_ERROR_READ, "could not read from file"},
{TABLE_ERROR_WRITE, "could not write to file"},
{TABLE_ERROR_EMPTY, "table is empty"},
{TABLE_ERROR_NOT_EMPTY, "table contains data"},
{TABLE_ERROR_ALIGNMENT, "invalid alignment value"},
{0}
};
#define INVALID_ERROR "invalid error code"
/********************** wrappers for system functions ************************/
static void *sys_malloc(void *param, size_t size)
{
return malloc(size);
}
static void *sys_calloc(void *param, size_t size1, size_t size2)
{
return calloc(size1, size2);
}
static void *sys_realloc(void *param, void *ptr, size_t size)
{
return realloc(ptr, size);
}
static void sys_free(void *param, void *ptr)
{
free(ptr);
}
/****************************** local functions ******************************/
/*
* static table_entry_t *first_entry
*
* DESCRIPTION:
*
* Return the first entry in the table. It will set the linear
* structure counter to the position of the first entry.
*
* RETURNS:
*
* Success: A pointer to the first entry in the table.
*
* Failure: NULL if there is no first entry.
*
* ARGUMENTS:
*
* table_p - Table whose next entry we are finding.
*
* linear_p - Pointer to a linear structure which we will advance and
* then find the corresponding entry.
*/
static table_entry_t *first_entry(table_t * table_p,
table_linear_t * linear_p)
{
table_entry_t *entry_p;
unsigned int bucket_c = 0;
/* look for the first non-empty bucket */
for (bucket_c = 0; bucket_c < table_p->ta_bucket_n; bucket_c++) {
entry_p = table_p->ta_buckets[bucket_c];
if (entry_p != NULL) {
if (linear_p != NULL) {
linear_p->tl_bucket_c = bucket_c;
linear_p->tl_entry_c = 0;
}
return TABLE_POINTER(table_p, table_entry_t *, entry_p);
}
}
return NULL;
}
/*
* static table_entry_t *next_entry
*
* DESCRIPTION:
*
* Return the next entry in the table which is past the position in
* our linear pointer. It will advance the linear structure counters.
*
* RETURNS:
*
* Success: A pointer to the next entry in the table.
*
* Failure: NULL.
*
* ARGUMENTS:
*
* table_p - Table whose next entry we are finding.
*
* linear_p - Pointer to a linear structure which we will advance and
* then find the corresponding entry.
*
* error_p - Pointer to an integer which when the routine returns will
* contain a table error code.
*/
static table_entry_t *next_entry(table_t * table_p, table_linear_t * linear_p,
int *error_p)
{
table_entry_t *entry_p;
int entry_c;
/* can't next if we haven't first-ed */
if (linear_p == NULL) {
if (error_p != NULL)
*error_p = TABLE_ERROR_LINEAR;
return NULL;
}
if (linear_p->tl_bucket_c >= table_p->ta_bucket_n) {
/*
* NOTE: this might happen if we delete an item which shortens the
* table bucket numbers.
*/
if (error_p != NULL)
*error_p = TABLE_ERROR_NOT_FOUND;
return NULL;
}
linear_p->tl_entry_c++;
/* find the entry which is the nth in the list */
entry_p = table_p->ta_buckets[linear_p->tl_bucket_c];
/* NOTE: we swap the order here to be more efficient */
for (entry_c = linear_p->tl_entry_c; entry_c > 0; entry_c--) {
/* did we reach the end of the list? */
if (entry_p == NULL)
break;
entry_p = TABLE_POINTER(table_p, table_entry_t *, entry_p)->te_next_p;
}
/* did we find an entry in the current bucket? */
if (entry_p != NULL) {
if (error_p != NULL)
*error_p = TABLE_ERROR_NONE;
return TABLE_POINTER(table_p, table_entry_t *, entry_p);
}
/* find the first entry in the next non-empty bucket */
linear_p->tl_entry_c = 0;
for (linear_p->tl_bucket_c++; linear_p->tl_bucket_c < table_p->ta_bucket_n;
linear_p->tl_bucket_c++) {
entry_p = table_p->ta_buckets[linear_p->tl_bucket_c];
if (entry_p != NULL) {
if (error_p != NULL)
*error_p = TABLE_ERROR_NONE;
return TABLE_POINTER(table_p, table_entry_t *, entry_p);
}
}
if (error_p != NULL)
*error_p = TABLE_ERROR_NOT_FOUND;
return NULL;
}
/*
* static unsigned int hash
*
* DESCRIPTION:
*
* Hash a variable-length key into a 32-bit value. Every bit of the
* key affects every bit of the return value. Every 1-bit and 2-bit
* delta achieves avalanche. About (6 * len + 35) instructions. The
* best hash table sizes are powers of 2. There is no need to use mod
* (sooo slow!). If you need less than 32 bits, use a bitmask. For
* example, if you need only 10 bits, do h = (h & hashmask(10)); In
* which case, the hash table should have hashsize(10) elements.
*
* By Bob Jenkins, 1996. bob_jenkins@compuserve.com. You may use
* this code any way you wish, private, educational, or commercial.
* It's free. See
* http://ourworld.compuserve.com/homepages/bob_jenkins/evahash.htm
* Use for hash table lookup, or anything where one collision in 2^^32
* is acceptable. Do NOT use for cryptographic purposes.
*
* RETURNS:
*
* Returns a 32-bit hash value.
*
* ARGUMENTS:
*
* key - Key (the unaligned variable-length array of bytes) that we
* are hashing.
*
* length - Length of the key in bytes.
*
* init_val - Initialization value of the hash if you need to hash a
* number of strings together. For instance, if you are hashing N
* strings (unsigned char **)keys, do it like this:
*
* for (i=0, h=0; i<N; ++i) h = hash( keys[i], len[i], h);
*/
static unsigned int hash(const unsigned char *key,
const unsigned int length,
const unsigned int init_val)
{
const unsigned char *key_p = key;
unsigned int a, b, c, len;
/* set up the internal state */
a = 0x9e3779b9; /* the golden ratio; an arbitrary value */
b = 0x9e3779b9;
c = init_val; /* the previous hash value */
/* handle most of the key */
for (len = length; len >= 12; len -= 12) {
a += (key_p[0]
+ ((unsigned long) key_p[1] << 8)
+ ((unsigned long) key_p[2] << 16)
+ ((unsigned long) key_p[3] << 24));
b += (key_p[4]
+ ((unsigned long) key_p[5] << 8)
+ ((unsigned long) key_p[6] << 16)
+ ((unsigned long) key_p[7] << 24));
c += (key_p[8]
+ ((unsigned long) key_p[9] << 8)
+ ((unsigned long) key_p[10] << 16)
+ ((unsigned long) key_p[11] << 24));
HASH_MIX(a, b, c);
key_p += 12;
}
c += length;
/* all the case statements fall through to the next */
switch (len) {
case 11:
c += ((unsigned long) key_p[10] << 24);
case 10:
c += ((unsigned long) key_p[9] << 16);
case 9:
c += ((unsigned long) key_p[8] << 8);
/* the first byte of c is reserved for the length */
case 8:
b += ((unsigned long) key_p[7] << 24);
case 7:
b += ((unsigned long) key_p[6] << 16);
case 6:
b += ((unsigned long) key_p[5] << 8);
case 5:
b += key_p[4];
case 4:
a += ((unsigned long) key_p[3] << 24);
case 3:
a += ((unsigned long) key_p[2] << 16);
case 2:
a += ((unsigned long) key_p[1] << 8);
case 1:
a += key_p[0];
/* case 0: nothing left to add */
}
HASH_MIX(a, b, c);
return c;
}
/*
* static int entry_size
*
* DESCRIPTION:
*
* Calculates the appropriate size of an entry to include the key and
* data sizes as well as any associated alignment to the data.
*
* RETURNS:
*
* The associated size of the entry.
*
* ARGUMENTS:
*
* table_p - Table associated with the entries whose size we are
* determining.
*
* key_size - Size of the entry key.
*
* data - Size of the entry data.
*/
static int entry_size(const table_t * table_p, const unsigned int key_size,
const unsigned int data_size)
{
int size, left;
/* initial size -- key is already aligned if right after struct */
size = sizeof(struct table_shell_st) + key_size;
/* if there is no alignment then it is easy */
if (table_p->ta_data_align == 0)
return size + data_size;
/* add in our alignement */
left = size & (table_p->ta_data_align - 1);
if (left > 0)
size += table_p->ta_data_align - left;
/* we add the data size here after the alignment */
size += data_size;
return size;
}
/*
* static unsigned char *entry_data_buf
*
* DESCRIPTION:
*
* Companion to the ENTRY_DATA_BUF macro but this handles any
* associated alignment to the data in the entry.
*
* RETURNS:
*
* Pointer to the data segment of the entry.
*
* ARGUMENTS:
*
* table_p - Table associated with the entry.
*
* entry_p - Entry whose data pointer we are determining.
*/
static unsigned char *entry_data_buf(const table_t * table_p,
const table_entry_t * entry_p)
{
const unsigned char *buf_p;
int size, pad;
buf_p = entry_p->te_key_buf + entry_p->te_key_size;
/* if there is no alignment then it is easy */
if (table_p->ta_data_align == 0)
return (unsigned char *) buf_p;
/* we need the size of the space before the data */
size = sizeof(struct table_shell_st) + entry_p->te_key_size;
/* add in our alignment */
pad = size & (table_p->ta_data_align - 1);
if (pad > 0)
pad = table_p->ta_data_align - pad;
return (unsigned char *) buf_p + pad;
}
/******************************* sort routines *******************************/
/*
* static int our_compare
*
* DESCRIPTION:
*
* Compare two entries by calling user's compare program or by using
* memcmp.
*
* RETURNS:
*
* < 0, == 0, or > 0 depending on whether p1 is > p2, == p2, < p2.
*
* ARGUMENTS:
*
* p1 - First entry pointer to compare.
*
* p2 - Second entry pointer to compare.
*
* compare - User comparison function. Ignored.
*
* table_p - Associated table being ordered. Ignored.
*/
static int local_compare(const void *p1, const void *p2,
table_compare_t compare, const table_t * table_p)
{
const table_entry_t *const *ent1_p = p1, *const *ent2_p = p2;
int cmp;
unsigned int size;
/* compare as many bytes as we can */
size = (*ent1_p)->te_key_size;
if ((*ent2_p)->te_key_size < size)
size = (*ent2_p)->te_key_size;
cmp = memcmp(ENTRY_KEY_BUF(*ent1_p), ENTRY_KEY_BUF(*ent2_p), size);
/* if common-size equal, then if next more bytes, it is larger */
if (cmp == 0)
cmp = (*ent1_p)->te_key_size - (*ent2_p)->te_key_size;
return cmp;
}
/*
* static int external_compare
*
* DESCRIPTION:
*
* Compare two entries by calling user's compare program or by using
* memcmp.
*
* RETURNS:
*
* < 0, == 0, or > 0 depending on whether p1 is > p2, == p2, < p2.
*
* ARGUMENTS:
*
* p1 - First entry pointer to compare.
*
* p2 - Second entry pointer to compare.
*
* user_compare - User comparison function.
*
* table_p - Associated table being ordered.
*/
static int external_compare(const void *p1, const void *p2,
table_compare_t user_compare,
const table_t * table_p)
{
const table_entry_t *const *ent1_p = p1, *const *ent2_p = p2;
/* since we know we are not aligned we can use the EXTRY_DATA_BUF macro */
return user_compare(ENTRY_KEY_BUF(*ent1_p), (*ent1_p)->te_key_size,
ENTRY_DATA_BUF(table_p, *ent1_p),
(*ent1_p)->te_data_size,
ENTRY_KEY_BUF(*ent2_p), (*ent2_p)->te_key_size,
ENTRY_DATA_BUF(table_p, *ent2_p),
(*ent2_p)->te_data_size);
}
/*
* static int external_compare_align
*
* DESCRIPTION:
*
* Compare two entries by calling user's compare program or by using
* memcmp. Alignment information is necessary.
*
* RETURNS:
*
* < 0, == 0, or > 0 depending on whether p1 is > p2, == p2, < p2.
*
* ARGUMENTS:
*
* p1 - First entry pointer to compare.
*
* p2 - Second entry pointer to compare.
*
* user_compare - User comparison function.
*
* table_p - Associated table being ordered.
*/
static int external_compare_align(const void *p1, const void *p2,
table_compare_t user_compare,
const table_t * table_p)
{
const table_entry_t *const *ent1_p = p1, *const *ent2_p = p2;
/* since we are aligned we have to use the entry_data_buf function */
return user_compare(ENTRY_KEY_BUF(*ent1_p), (*ent1_p)->te_key_size,
entry_data_buf(table_p, *ent1_p),
(*ent1_p)->te_data_size,
ENTRY_KEY_BUF(*ent2_p), (*ent2_p)->te_key_size,
entry_data_buf(table_p, *ent2_p),
(*ent2_p)->te_data_size);
}
/*
* static void split
*
* DESCRIPTION:
*
* This sorts an array of longs via the quick sort algorithm (it's
* pretty quick)
*
* RETURNS:
*
* None.
*
* ARGUMENTS:
*
* first_p - Start of the list that we are splitting.
*
* last_p - Last entry in the list that we are splitting.
*
* compare - Comparison function which is handling the actual
* elements. This is either a local function or a function to setup
* the problem element key and data pointers which then hands off to
* the user function.
*
* user_compare - User comparison function. Could be NULL if we are
* just using a local comparison function.
*
* table_p - Associated table being sorted.
*/
static void split(void *first_p, void *last_p, compare_t compare,
table_compare_t user_compare, table_t * table_p)
{
void *pivot_p, *left_p, *right_p, *left_last_p, *right_first_p;
void *firsts[MAX_SORT_SPLITS], *lasts[MAX_SORT_SPLITS];
int split_c = 0;
for (;;) {
/* no need to split the list if it is < 2 elements */
while (first_p >= last_p) {
if (split_c == 0) {
/* we are done */
return;
}
split_c--;
first_p = firsts[split_c];
last_p = lasts[split_c];
}
left_p = first_p;
right_p = last_p;
pivot_p = first_p;
do {
/* scan from right hand side */
while (right_p > left_p
&& compare(right_p, pivot_p, user_compare, table_p) > 0)
right_p = (char *) right_p - sizeof(table_entry_t *);
/* scan from left hand side */
while (right_p > left_p
&& compare(pivot_p, left_p, user_compare, table_p) >= 0)
left_p = (char *) left_p + sizeof(table_entry_t *);
/* if the pointers haven't met then swap values */
if (right_p > left_p) {
/* swap_bytes(left_p, right_p) */
table_entry_t *temp;
temp = *(table_entry_t **) left_p;
*(table_entry_t **) left_p = *(table_entry_t **) right_p;
*(table_entry_t **) right_p = temp;
}
} while (right_p > left_p);
/* now we swap the pivot with the right-hand side */
{
/* swap_bytes(pivot_p, right_p); */
table_entry_t *temp;
temp = *(table_entry_t **) pivot_p;
*(table_entry_t **) pivot_p = *(table_entry_t **) right_p;
*(table_entry_t **) right_p = temp;
}
pivot_p = right_p;
/* save the section to the right of the pivot in our stack */
right_first_p = (char *) pivot_p + sizeof(table_entry_t *);
left_last_p = (char *) pivot_p - sizeof(table_entry_t *);
/* do we need to save the righthand side? */
if (right_first_p < last_p) {
if (split_c >= MAX_SORT_SPLITS) {
/* sanity check here -- we should never get here */
abort();
}
firsts[split_c] = right_first_p;
lasts[split_c] = last_p;
split_c++;
}
/* do the left hand side of the pivot */
/* first_p = first_p */
last_p = left_last_p;
}
}
/*************************** exported routines *******************************/
/*
* table_t *table_alloc
*
* DESCRIPTION:
*
* Allocate a new table structure.
*
* RETURNS:
*
* A pointer to the new table structure which must be passed to
* table_free to be deallocated. On error a NULL is returned.
*
* ARGUMENTS:
*
* bucket_n - Number of buckets for the hash table. Our current hash
* value works best with base two numbers. Set to 0 to take the
* library default of 1024.
*
* error_p - Pointer to an integer which, if not NULL, will contain a
* table error code.
*
* malloc_f, realloc_f, free_f - Pointers to malloc(3)-, realloc(3)-
* and free(3)-style functions.
*/
table_t *table_alloc(const unsigned int bucket_n, int *error_p,
void *(*malloc_f)(void *opt_param, size_t size),
void *(*calloc_f)(void *opt_param, size_t number, size_t size),
void *(*realloc_f)(void *opt_param, void *ptr, size_t size),
void (*free_f)(void *opt_param, void *ptr), void *opt_param)
{
table_t *table_p = NULL;
unsigned int buck_n;
/* allocate a table structure */
if (malloc_f != NULL)
table_p = malloc_f(opt_param, sizeof(table_t));
else
table_p = malloc(sizeof(table_t));
if (table_p == NULL) {
if (error_p != NULL)
*error_p = TABLE_ERROR_ALLOC;
return NULL;
}
if (bucket_n > 0)
buck_n = bucket_n;
else
buck_n = DEFAULT_SIZE;
/* allocate the buckets which are NULLed */
if (calloc_f != NULL)
table_p->ta_buckets = (table_entry_t **)calloc_f(opt_param, buck_n,
sizeof(table_entry_t *));
else
table_p->ta_buckets = (table_entry_t **)calloc(buck_n, sizeof(table_entry_t *));
if (table_p->ta_buckets == NULL) {
if (error_p != NULL)
*error_p = TABLE_ERROR_ALLOC;
if (free_f != NULL)
free_f(opt_param, table_p);
else
free(table_p);
return NULL;
}
/* initialize structure */
table_p->ta_magic = TABLE_MAGIC;
table_p->ta_flags = 0;
table_p->ta_bucket_n = buck_n;
table_p->ta_entry_n = 0;
table_p->ta_data_align = 0;
table_p->ta_linear.tl_magic = 0;
table_p->ta_linear.tl_bucket_c = 0;
table_p->ta_linear.tl_entry_c = 0;
table_p->ta_file_size = 0;
table_p->ta_malloc = malloc_f != NULL ? malloc_f : sys_malloc;
table_p->ta_calloc = calloc_f != NULL ? calloc_f : sys_calloc;
table_p->ta_realloc = realloc_f != NULL ? realloc_f : sys_realloc;
table_p->ta_free = free_f != NULL ? free_f : sys_free;
table_p->opt_param = opt_param;
if (error_p != NULL)
*error_p = TABLE_ERROR_NONE;
return table_p;
}
/*
* int table_attr
*
* DESCRIPTION:
*
* Set the attributes for the table. The available attributes are
* specified at the top of table.h.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Pointer to a table structure which we will be altering.
*
* attr - Attribute(s) that we will be applying to the table.
*/
int table_attr(table_t * table_p, const int attr)
{
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
table_p->ta_flags = attr;
return TABLE_ERROR_NONE;
}
/*
* int table_set_data_alignment
*
* DESCRIPTION:
*
* Set the alignment for the data in the table. For data elements
* sizeof(long) is recommended unless you use smaller data types
* exclusively.
*
* WARNING: This must be done before any data gets put into the table.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Pointer to a table structure which we will be altering.
*
* alignment - Alignment requested for the data. Must be a power of
* 2. Set to 0 for none.
*/
int table_set_data_alignment(table_t * table_p, const int alignment)
{
int val;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (table_p->ta_entry_n > 0)
return TABLE_ERROR_NOT_EMPTY;
/* defaults */
if (alignment < 2)
table_p->ta_data_align = 0;
else {
/* verify we have a base 2 number */
for (val = 2; val < MAX_ALIGNMENT; val *= 2) {
if (val == alignment)
break;
}
if (val >= MAX_ALIGNMENT)
return TABLE_ERROR_ALIGNMENT;
table_p->ta_data_align = alignment;
}
return TABLE_ERROR_NONE;
}
/*
* int table_clear
*
* DESCRIPTION:
*
* Clear out and free all elements in a table structure.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer that we will be clearing.
*/
int table_clear(table_t * table_p)
{
#if 0
table_entry_t *entry_p, *next_p;
#endif
table_entry_t **bucket_p, **bounds_p;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
/* free the table allocation and table structure */
bounds_p = table_p->ta_buckets + table_p->ta_bucket_n;
for (bucket_p = table_p->ta_buckets; bucket_p <= bounds_p; bucket_p++) {
#if 0
for (entry_p = *bucket_p; entry_p != NULL; entry_p = next_p) {
/* record the next pointer before we free */
next_p = entry_p->te_next_p;
table_p->ta_free(table_p->opt_param, entry_p);
}
#endif
/* clear the bucket entry after we free its entries */
*bucket_p = NULL;
}
/* reset table state info */
table_p->ta_entry_n = 0;
table_p->ta_linear.tl_magic = 0;
table_p->ta_linear.tl_bucket_c = 0;
table_p->ta_linear.tl_entry_c = 0;
return TABLE_ERROR_NONE;
}
/*
* int table_free
*
* DESCRIPTION:
*
* Deallocates a table structure.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer that we will be freeing.
*/
int table_free(table_t * table_p)
{
int ret;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
ret = table_clear(table_p);
if (table_p->ta_buckets != NULL)
table_p->ta_free(table_p->opt_param, table_p->ta_buckets);
table_p->ta_magic = 0;
table_p->ta_free(table_p->opt_param, table_p);
return ret;
}
/*
* int table_insert_kd
*
* DESCRIPTION:
*
* Like table_insert except it passes back a pointer to the key and
* the data buffers after they have been inserted into the table
* structure.
*
* This routine adds a key/data pair both of which are made up of a
* buffer of bytes and an associated size. Both the key and the data
* will be copied into buffers allocated inside the table. If the key
* exists already, the associated data will be replaced if the
* overwrite flag is set, otherwise an error is returned.
*
* NOTE: be very careful changing the values since the table library
* provides the pointers to its memory. The key can _never_ be
* changed otherwise you will not find it again. The data can be
* changed but its length can never be altered unless you delete and
* re-insert it into the table.
*
* WARNING: The pointers to the key and data are not in any specific
* alignment. Accessing the key and/or data as an short, integer, or
* long pointer directly can cause problems.
*
* WARNING: Replacing a data cell (not inserting) will cause the table
* linked list to be temporarily invalid. Care must be taken with
* multiple threaded programs which are relying on the first/next
* linked list to be always valid.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer into which we will be inserting a
* new key/data pair.
*
* key_buf - Buffer of bytes of the key that we are inserting. If you
* are storing an (int) as the key (for example) then key_buf should
* be a (int *).
*
* key_size - Size of the key_buf buffer. If set to < 0 then the
* library will do a strlen of key_buf and add 1 for the '\0'. If you
* are storing an (int) as the key (for example) then key_size should
* be sizeof(int).
*
* data_buf - Buffer of bytes of the data that we are inserting. If
* it is NULL then the library will allocate space for the data in the
* table without copying in any information. If data_buf is NULL and
* data_size is 0 then the library will associate a NULL data pointer
* with the key. If you are storing a (long) as the data (for
* example) then data_buf should be a (long *).
*
* data_size - Size of the data_buf buffer. If set to < 0 then the
* library will do a strlen of data_buf and add 1 for the '\0'. If
* you are storing an (long) as the key (for example) then key_size
* should be sizeof(long).
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the key storage that was allocated in the table. If you are
* storing an (int) as the key (for example) then key_buf_p should be
* (int **) i.e. the address of a (int *).
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that was allocated in the table. If you are
* storing an (long) as the data (for example) then data_buf_p should
* be (long **) i.e. the address of a (long *).
*
* overwrite - Flag which, if set to 1, will allow the overwriting of
* the data in the table with the new data if the key already exists
* in the table.
*/
int table_insert_kd(table_t * table_p,
const void *key_buf, const int key_size,
const void *data_buf, const int data_size,
void **key_buf_p, void **data_buf_p,
const char overwrite_b)
{
int bucket;
unsigned int ksize, dsize;
table_entry_t *entry_p, *last_p;
void *key_copy_p, *data_copy_p;
/* check the arguments */
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (key_buf == NULL)
return TABLE_ERROR_ARG_NULL;
/* data_buf can be null but size must be >= 0, if it isn't null size != 0 */
if ((data_buf == NULL && data_size < 0)
|| (data_buf != NULL && data_size == 0))
return TABLE_ERROR_SIZE;
/* determine sizes of key and data */
if (key_size < 0)
ksize = strlen((char *) key_buf) + sizeof(char);
else
ksize = key_size;
if (data_size < 0)
dsize = strlen((char *) data_buf) + sizeof(char);
else
dsize = data_size;
/* get the bucket number via a hash function */
bucket = hash(key_buf, ksize, 0) % table_p->ta_bucket_n;
/* look for the entry in this bucket, only check keys of the same size */
last_p = NULL;
for (entry_p = table_p->ta_buckets[bucket];
(entry_p != NULL) && (entry_p->te_next_p != last_p);
last_p = entry_p, entry_p = entry_p->te_next_p) {
if (entry_p->te_key_size == ksize
&& memcmp(ENTRY_KEY_BUF(entry_p), key_buf, ksize) == 0)
break;
}
/* did we find it? then we are in replace mode. */
if (entry_p != NULL) {
/* can we not overwrite existing data? */
if (!overwrite_b) {
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
return TABLE_ERROR_OVERWRITE;
}
/* re-alloc entry's data if the new size != the old */
if (dsize != entry_p->te_data_size) {
/*
* First we delete it from the list to keep the list whole.
* This properly preserves the linked list in case we have a
* thread marching through the linked list while we are
* inserting. Maybe this is an unnecessary protection but it
* should not harm that much.
*/
if (last_p == NULL)
table_p->ta_buckets[bucket] = entry_p->te_next_p;
else
last_p->te_next_p = entry_p->te_next_p;
/*
* Realloc the structure which may change its pointer. NOTE:
* this may change any previous data_key_p and data_copy_p
* pointers.
*/
entry_p = (table_entry_t *)
table_p->ta_realloc(table_p->opt_param, entry_p,
entry_size(table_p, entry_p->te_key_size, dsize));
if (entry_p == NULL)
return TABLE_ERROR_ALLOC;
/* add it back to the front of the list */
entry_p->te_data_size = dsize;
entry_p->te_next_p = table_p->ta_buckets[bucket];
table_p->ta_buckets[bucket] = entry_p;
}
/* copy or replace data in storage */
if (dsize > 0) {
if (table_p->ta_data_align == 0)
data_copy_p = ENTRY_DATA_BUF(table_p, entry_p);
else
data_copy_p = entry_data_buf(table_p, entry_p);
if (data_buf != NULL)
memcpy(data_copy_p, data_buf, dsize);
}
else
data_copy_p = NULL;
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (data_buf_p != NULL)
*data_buf_p = data_copy_p;
/* returning from the section where we were overwriting table data */
return TABLE_ERROR_NONE;
}
/*
* It is a new entry.
*/
/* allocate a new entry */
entry_p = (table_entry_t *)
table_p->ta_malloc(table_p->opt_param,
entry_size(table_p, ksize, dsize));
if (entry_p == NULL)
return TABLE_ERROR_ALLOC;
/* copy key into storage */
entry_p->te_key_size = ksize;
key_copy_p = ENTRY_KEY_BUF(entry_p);
memcpy(key_copy_p, key_buf, ksize);
/* copy data in */
entry_p->te_data_size = dsize;
if (dsize > 0) {
if (table_p->ta_data_align == 0)
data_copy_p = ENTRY_DATA_BUF(table_p, entry_p);
else
data_copy_p = entry_data_buf(table_p, entry_p);
if (data_buf != NULL)
memcpy(data_copy_p, data_buf, dsize);
}
else
data_copy_p = NULL;
if (key_buf_p != NULL)
*key_buf_p = key_copy_p;
if (data_buf_p != NULL)
*data_buf_p = data_copy_p;
/* insert into list, no need to append */
entry_p->te_next_p = table_p->ta_buckets[bucket];
table_p->ta_buckets[bucket] = entry_p;
table_p->ta_entry_n++;
/* do we need auto-adjust? */
if (table_p->ta_flags & TABLE_FLAG_AUTO_ADJUST
&& SHOULD_TABLE_GROW(table_p))
return table_adjust(table_p, table_p->ta_entry_n);
return TABLE_ERROR_NONE;
}
/*
* int table_insert
*
* DESCRIPTION:
*
* Exactly the same as table_insert_kd except it does not pass back a
* pointer to the key after they have been inserted into the table
* structure. This is still here for backwards compatibility.
*
* See table_insert_kd for more information.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer into which we will be inserting a
* new key/data pair.
*
* key_buf - Buffer of bytes of the key that we are inserting. If you
* are storing an (int) as the key (for example) then key_buf should
* be a (int *).
*
* key_size - Size of the key_buf buffer. If set to < 0 then the
* library will do a strlen of key_buf and add 1 for the '\0'. If you
* are storing an (int) as the key (for example) then key_size should
* be sizeof(int).
*
* data_buf - Buffer of bytes of the data that we are inserting. If
* it is NULL then the library will allocate space for the data in the
* table without copying in any information. If data_buf is NULL and
* data_size is 0 then the library will associate a NULL data pointer
* with the key. If you are storing a (long) as the data (for
* example) then data_buf should be a (long *).
*
* data_size - Size of the data_buf buffer. If set to < 0 then the
* library will do a strlen of data_buf and add 1 for the '\0'. If
* you are storing an (long) as the key (for example) then key_size
* should be sizeof(long).
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that was allocated in the table. If you are
* storing an (long) as the data (for example) then data_buf_p should
* be (long **) i.e. the address of a (long *).
*
* overwrite - Flag which, if set to 1, will allow the overwriting of
* the data in the table with the new data if the key already exists
* in the table.
*/
int table_insert(table_t * table_p,
const void *key_buf, const int key_size,
const void *data_buf, const int data_size,
void **data_buf_p, const char overwrite_b)
{
return table_insert_kd(table_p, key_buf, key_size, data_buf, data_size,
NULL, data_buf_p, overwrite_b);
}
/*
* int table_retrieve
*
* DESCRIPTION:
*
* This routine looks up a key made up of a buffer of bytes and an
* associated size in the table. If found then it returns the
* associated data information.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer into which we will be searching
* for the key.
*
* key_buf - Buffer of bytes of the key that we are searching for. If
* you are looking for an (int) as the key (for example) then key_buf
* should be a (int *).
*
* key_size - Size of the key_buf buffer. If set to < 0 then the
* library will do a strlen of key_buf and add 1 for the '\0'. If you
* are looking for an (int) as the key (for example) then key_size
* should be sizeof(int).
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that was allocated in the table and that is
* associated with the key. If a (long) was stored as the data (for
* example) then data_buf_p should be (long **) i.e. the address of a
* (long *).
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data stored in the table that is associated with
* the key.
*/
int table_retrieve(table_t * table_p,
const void *key_buf, const int key_size,
void **data_buf_p, int *data_size_p)
{
int bucket;
unsigned int ksize;
table_entry_t *entry_p, **buckets;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (key_buf == NULL)
return TABLE_ERROR_ARG_NULL;
/* find key size */
if (key_size < 0)
ksize = strlen((char *) key_buf) + sizeof(char);
else
ksize = key_size;
/* get the bucket number via a has function */
bucket = hash(key_buf, ksize, 0) % table_p->ta_bucket_n;
/* look for the entry in this bucket, only check keys of the same size */
buckets = table_p->ta_buckets;
for (entry_p = buckets[bucket];
entry_p != NULL;
entry_p = entry_p->te_next_p) {
entry_p = TABLE_POINTER(table_p, table_entry_t *, entry_p);
if (entry_p->te_key_size == ksize
&& memcmp(ENTRY_KEY_BUF(entry_p), key_buf, ksize) == 0)
break;
}
/* not found? */
if (entry_p == NULL)
return TABLE_ERROR_NOT_FOUND;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
return TABLE_ERROR_NONE;
}
/*
* int table_delete
*
* DESCRIPTION:
*
* This routine looks up a key made up of a buffer of bytes and an
* associated size in the table. If found then it will be removed
* from the table. The associated data can be passed back to the user
* if requested.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* NOTE: this could be an allocation error if the library is to return
* the data to the user.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we will be deleteing
* the key.
*
* key_buf - Buffer of bytes of the key that we are searching for to
* delete. If you are deleting an (int) key (for example) then
* key_buf should be a (int *).
*
* key_size - Size of the key_buf buffer. If set to < 0 then the
* library will do a strlen of key_buf and add 1 for the '\0'. If you
* are deleting an (int) key (for example) then key_size should be
* sizeof(int).
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that was allocated in the table and that was
* associated with the key. If a (long) was stored as the data (for
* example) then data_buf_p should be (long **) i.e. the address of a
* (long *). If a pointer is passed in, the caller is responsible for
* freeing it after use. If data_buf_p is NULL then the library will
* free up the data allocation itself.
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that was stored in the table and that was
* associated with the key.
*/
int table_delete(table_t * table_p,
const void *key_buf, const int key_size,
void **data_buf_p, int *data_size_p)
{
int bucket;
unsigned int ksize;
unsigned char *data_copy_p;
table_entry_t *entry_p, *last_p;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (key_buf == NULL)
return TABLE_ERROR_ARG_NULL;
/* get the key size */
if (key_size < 0)
ksize = strlen((char *) key_buf) + sizeof(char);
else
ksize = key_size;
/* find our bucket */
bucket = hash(key_buf, ksize, 0) % table_p->ta_bucket_n;
/* look for the entry in this bucket, only check keys of the same size */
for (last_p = NULL, entry_p = table_p->ta_buckets[bucket]; entry_p != NULL;
last_p = entry_p, entry_p = entry_p->te_next_p) {
if (entry_p->te_key_size == ksize
&& memcmp(ENTRY_KEY_BUF(entry_p), key_buf, ksize) == 0)
break;
}
/* did we find it? */
if (entry_p == NULL)
return TABLE_ERROR_NOT_FOUND;
/*
* NOTE: we may want to adjust the linear counters here if the entry
* we are deleting is the one we are pointing on or is ahead of the
* one in the bucket list
*/
/* remove entry from the linked list */
if (last_p == NULL)
table_p->ta_buckets[bucket] = entry_p->te_next_p;
else
last_p->te_next_p = entry_p->te_next_p;
/* free entry */
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
/*
* if we were storing it compacted, we now need to malloc some
* space if the user wants the value after the delete.
*/
*data_buf_p = table_p->ta_malloc(table_p->opt_param,
entry_p->te_data_size);
if (*data_buf_p == NULL)
return TABLE_ERROR_ALLOC;
if (table_p->ta_data_align == 0)
data_copy_p = ENTRY_DATA_BUF(table_p, entry_p);
else
data_copy_p = entry_data_buf(table_p, entry_p);
memcpy(*data_buf_p, data_copy_p, entry_p->te_data_size);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
table_p->ta_free(table_p->opt_param, entry_p);
entry_p = NULL;
table_p->ta_entry_n--;
/* do we need auto-adjust down? */
if ((table_p->ta_flags & TABLE_FLAG_AUTO_ADJUST)
&& (table_p->ta_flags & TABLE_FLAG_ADJUST_DOWN)
&& SHOULD_TABLE_SHRINK(table_p))
return table_adjust(table_p, table_p->ta_entry_n);
return TABLE_ERROR_NONE;
}
/*
* int table_delete_first
*
* DESCRIPTION:
*
* This is like the table_delete routines except it deletes the first
* key/data pair in the table instead of an entry corresponding to a
* particular key. The associated key and data information can be
* passed back to the user if requested. This routines is handy to
* clear out a table.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* NOTE: this could be an allocation error if the library is to return
* the data to the user.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we will be deleteing
* the first key.
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the storage of the first key that was allocated in the table.
* If an (int) was stored as the first key (for example) then
* key_buf_p should be (int **) i.e. the address of a (int *). If a
* pointer is passed in, the caller is responsible for freeing it
* after use. If key_buf_p is NULL then the library will free up the
* key allocation itself.
*
* key_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the key that was stored in the table and that was
* associated with the key.
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that was allocated in the table and that was
* associated with the key. If a (long) was stored as the data (for
* example) then data_buf_p should be (long **) i.e. the address of a
* (long *). If a pointer is passed in, the caller is responsible for
* freeing it after use. If data_buf_p is NULL then the library will
* free up the data allocation itself.
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that was stored in the table and that was
* associated with the key.
*/
int table_delete_first(table_t * table_p,
void **key_buf_p, int *key_size_p,
void **data_buf_p, int *data_size_p)
{
unsigned char *data_copy_p;
table_entry_t *entry_p;
table_linear_t linear;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
/* take the first entry */
entry_p = first_entry(table_p, &linear);
if (entry_p == NULL)
return TABLE_ERROR_NOT_FOUND;
/*
* NOTE: we may want to adjust the linear counters here if the entry
* we are deleting is the one we are pointing on or is ahead of the
* one in the bucket list
*/
/* remove entry from the linked list */
table_p->ta_buckets[linear.tl_bucket_c] = entry_p->te_next_p;
/* free entry */
if (key_buf_p != NULL) {
if (entry_p->te_key_size == 0)
*key_buf_p = NULL;
else {
/*
* if we were storing it compacted, we now need to malloc some
* space if the user wants the value after the delete.
*/
*key_buf_p = table_p->ta_malloc(table_p->opt_param,
entry_p->te_key_size);
if (*key_buf_p == NULL)
return TABLE_ERROR_ALLOC;
memcpy(*key_buf_p, ENTRY_KEY_BUF(entry_p), entry_p->te_key_size);
}
}
if (key_size_p != NULL)
*key_size_p = entry_p->te_key_size;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
/*
* if we were storing it compacted, we now need to malloc some
* space if the user wants the value after the delete.
*/
*data_buf_p = table_p->ta_malloc(table_p->opt_param,
entry_p->te_data_size);
if (*data_buf_p == NULL)
return TABLE_ERROR_ALLOC;
if (table_p->ta_data_align == 0)
data_copy_p = ENTRY_DATA_BUF(table_p, entry_p);
else
data_copy_p = entry_data_buf(table_p, entry_p);
memcpy(*data_buf_p, data_copy_p, entry_p->te_data_size);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
table_p->ta_free(table_p->opt_param, entry_p);
table_p->ta_entry_n--;
/* do we need auto-adjust down? */
if ((table_p->ta_flags & TABLE_FLAG_AUTO_ADJUST)
&& (table_p->ta_flags & TABLE_FLAG_ADJUST_DOWN)
&& SHOULD_TABLE_SHRINK(table_p))
return table_adjust(table_p, table_p->ta_entry_n);
return TABLE_ERROR_NONE;
}
/*
* int table_info
*
* DESCRIPTION:
*
* Get some information about a table_p structure.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we are getting
* information.
*
* num_buckets_p - Pointer to an integer which, if not NULL, will
* contain the number of buckets in the table.
*
* num_entries_p - Pointer to an integer which, if not NULL, will
* contain the number of entries stored in the table.
*/
int table_info(table_t * table_p, int *num_buckets_p, int *num_entries_p)
{
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (num_buckets_p != NULL)
*num_buckets_p = table_p->ta_bucket_n;
if (num_entries_p != NULL)
*num_entries_p = table_p->ta_entry_n;
return TABLE_ERROR_NONE;
}
/*
* int table_adjust
*
* DESCRIPTION:
*
* Set the number of buckets in a table to a certain value.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer of which we are adjusting.
*
* bucket_n - Number buckets to adjust the table to. Set to 0 to
* adjust the table to its number of entries.
*/
int table_adjust(table_t * table_p, const int bucket_n)
{
table_entry_t *entry_p, *next_p;
table_entry_t **buckets, **bucket_p, **bounds_p;
int bucket;
unsigned int buck_n;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
/*
* NOTE: we walk through the entries and rehash them. If we stored
* the hash value as a full int in the table-entry, all we would
* have to do is remod it.
*/
/* normalize to the number of entries */
if (bucket_n == 0)
buck_n = table_p->ta_entry_n;
else
buck_n = bucket_n;
/* we must have at least 1 bucket */
if (buck_n == 0)
buck_n = 1;
/* make sure we have somethign to do */
if (buck_n <= table_p->ta_bucket_n)
return TABLE_ERROR_NONE;
/* allocate a new bucket list */
buckets = (table_entry_t **)
table_p->ta_calloc(table_p->opt_param,
buck_n, sizeof(table_entry_t *));
if (table_p->ta_buckets == NULL)
return TABLE_ERROR_ALLOC;
/*
* run through each of the items in the current table and rehash
* them into the newest bucket sizes
*/
bounds_p = table_p->ta_buckets + table_p->ta_bucket_n;
for (bucket_p = table_p->ta_buckets; bucket_p < bounds_p; bucket_p++) {
for (entry_p = *bucket_p; entry_p != NULL; entry_p = next_p) {
/* hash the old data into the new table size */
bucket = hash(ENTRY_KEY_BUF(entry_p), entry_p->te_key_size, 0) % buck_n;
/* record the next one now since we overwrite next below */
next_p = entry_p->te_next_p;
/* insert into new list, no need to append */
entry_p->te_next_p = buckets[bucket];
buckets[bucket] = entry_p;
/*
* NOTE: we may want to adjust the bucket_c linear entry here to
* keep it current
*/
}
/* remove the old table pointers as we go by */
*bucket_p = NULL;
}
/* replace the table buckets with the new ones */
table_p->ta_free(table_p->opt_param, table_p->ta_buckets);
table_p->ta_buckets = buckets;
table_p->ta_bucket_n = buck_n;
return TABLE_ERROR_NONE;
}
/*
* const char *table_strerror
*
* DESCRIPTION:
*
* Return the corresponding string for the error number.
*
* RETURNS:
*
* Success - String equivalient of the error.
*
* Failure - String "invalid error code"
*
* ARGUMENTS:
*
* error - Error number that we are converting.
*/
const char *table_strerror(const int error)
{
error_str_t *err_p;
for (err_p = errors; err_p->es_error != 0; err_p++) {
if (err_p->es_error == error)
return err_p->es_string;
}
return INVALID_ERROR;
}
/*
* int table_type_size
*
* DESCRIPTION:
*
* Return the size of the internal table type.
*
* RETURNS:
*
* The size of the table_t type.
*
* ARGUMENTS:
*
* None.
*/
int table_type_size(void)
{
return sizeof(table_t);
}
/************************* linear access routines ****************************/
/*
* int table_first
*
* DESCRIPTION:
*
* Find first element in a table and pass back information about the
* key/data pair. If any of the key/data pointers are NULL then they
* are ignored.
*
* NOTE: This function is not reentrant. More than one thread cannot
* be doing a first and next on the same table at the same time. Use
* the table_first_r version below for this.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we are getting the
* first element.
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the storage of the first key that is allocated in the table. If
* an (int) is stored as the first key (for example) then key_buf_p
* should be (int **) i.e. the address of a (int *).
*
* key_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the key that is stored in the table and that is
* associated with the first key.
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that is allocated in the table and that is
* associated with the first key. If a (long) is stored as the data
* (for example) then data_buf_p should be (long **) i.e. the address
* of a (long *).
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that is stored in the table and that is
* associated with the first key.
*/
int table_first(table_t * table_p,
void **key_buf_p, int *key_size_p,
void **data_buf_p, int *data_size_p)
{
table_entry_t *entry_p;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
/* initialize our linear magic number */
table_p->ta_linear.tl_magic = LINEAR_MAGIC;
entry_p = first_entry(table_p, &table_p->ta_linear);
if (entry_p == NULL)
return TABLE_ERROR_NOT_FOUND;
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (key_size_p != NULL)
*key_size_p = entry_p->te_key_size;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
return TABLE_ERROR_NONE;
}
/*
* int table_next
*
* DESCRIPTION:
*
* Find the next element in a table and pass back information about
* the key/data pair. If any of the key/data pointers are NULL then
* they are ignored.
*
* NOTE: This function is not reentrant. More than one thread cannot
* be doing a first and next on the same table at the same time. Use
* the table_next_r version below for this.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we are getting the
* next element.
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the storage of the next key that is allocated in the table. If
* an (int) is stored as the next key (for example) then key_buf_p
* should be (int **) i.e. the address of a (int *).
*
* key_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the key that is stored in the table and that is
* associated with the next key.
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that is allocated in the table and that is
* associated with the next key. If a (long) is stored as the data
* (for example) then data_buf_p should be (long **) i.e. the address
* of a (long *).
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that is stored in the table and that is
* associated with the next key.
*/
int table_next(table_t * table_p,
void **key_buf_p, int *key_size_p,
void **data_buf_p, int *data_size_p)
{
table_entry_t *entry_p;
int error;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (table_p->ta_linear.tl_magic != LINEAR_MAGIC)
return TABLE_ERROR_LINEAR;
/* move to the next entry */
entry_p = next_entry(table_p, &table_p->ta_linear, &error);
if (entry_p == NULL)
return error;
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (key_size_p != NULL)
*key_size_p = entry_p->te_key_size;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
return TABLE_ERROR_NONE;
}
/*
* int table_this
*
* DESCRIPTION:
*
* Find the current element in a table and pass back information about
* the key/data pair. If any of the key/data pointers are NULL then
* they are ignored.
*
* NOTE: This function is not reentrant. Use the table_current_r
* version below.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we are getting the
* current element.
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the storage of the current key that is allocated in the table.
* If an (int) is stored as the current key (for example) then
* key_buf_p should be (int **) i.e. the address of a (int *).
*
* key_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the key that is stored in the table and that is
* associated with the current key.
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that is allocated in the table and that is
* associated with the current key. If a (long) is stored as the data
* (for example) then data_buf_p should be (long **) i.e. the address
* of a (long *).
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that is stored in the table and that is
* associated with the current key.
*/
int table_this(table_t * table_p,
void **key_buf_p, int *key_size_p,
void **data_buf_p, int *data_size_p)
{
table_entry_t *entry_p = NULL;
int entry_c;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (table_p->ta_linear.tl_magic != LINEAR_MAGIC)
return TABLE_ERROR_LINEAR;
/* if we removed an item that shorted the bucket list, we may get this */
if (table_p->ta_linear.tl_bucket_c >= table_p->ta_bucket_n) {
/*
* NOTE: this might happen if we delete an item which shortens the
* table bucket numbers.
*/
return TABLE_ERROR_NOT_FOUND;
}
/* find the entry which is the nth in the list */
entry_p = table_p->ta_buckets[table_p->ta_linear.tl_bucket_c];
/* NOTE: we swap the order here to be more efficient */
for (entry_c = table_p->ta_linear.tl_entry_c; entry_c > 0; entry_c--) {
/* did we reach the end of the list? */
if (entry_p == NULL)
break;
entry_p = TABLE_POINTER(table_p, table_entry_t *, entry_p)->te_next_p;
}
/* is this a NOT_FOUND or a LINEAR error */
if (entry_p == NULL)
return TABLE_ERROR_NOT_FOUND;
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (key_size_p != NULL)
*key_size_p = entry_p->te_key_size;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
return TABLE_ERROR_NONE;
}
/*
* int table_first_r
*
* DESCRIPTION:
*
* Reetrant version of the table_first routine above. Find first
* element in a table and pass back information about the key/data
* pair. If any of the key/data pointers are NULL then they are
* ignored.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we are getting the
* first element.
*
* linear_p - Pointer to a table linear structure which is initialized
* here. The same pointer should then be passed to table_next_r
* below.
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the storage of the first key that is allocated in the table. If
* an (int) is stored as the first key (for example) then key_buf_p
* should be (int **) i.e. the address of a (int *).
*
* key_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the key that is stored in the table and that is
* associated with the first key.
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that is allocated in the table and that is
* associated with the first key. If a (long) is stored as the data
* (for example) then data_buf_p should be (long **) i.e. the address
* of a (long *).
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that is stored in the table and that is
* associated with the first key.
*/
int table_first_r(table_t * table_p, table_linear_t * linear_p,
void **key_buf_p, int *key_size_p,
void **data_buf_p, int *data_size_p)
{
table_entry_t *entry_p;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (linear_p == NULL)
return TABLE_ERROR_ARG_NULL;
/* initialize our linear magic number */
linear_p->tl_magic = LINEAR_MAGIC;
entry_p = first_entry(table_p, linear_p);
if (entry_p == NULL)
return TABLE_ERROR_NOT_FOUND;
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (key_size_p != NULL)
*key_size_p = entry_p->te_key_size;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
return TABLE_ERROR_NONE;
}
/*
* int table_next_r
*
* DESCRIPTION:
*
* Reetrant version of the table_next routine above. Find next
* element in a table and pass back information about the key/data
* pair. If any of the key/data pointers are NULL then they are
* ignored.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we are getting the
* next element.
*
* linear_p - Pointer to a table linear structure which is incremented
* here. The same pointer must have been passed to table_first_r
* first so that it can be initialized.
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the storage of the next key that is allocated in the table. If
* an (int) is stored as the next key (for example) then key_buf_p
* should be (int **) i.e. the address of a (int *).
*
* key_size_p - Pointer to an integer which, if not NULL will be set
* to the size of the key that is stored in the table and that is
* associated with the next key.
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that is allocated in the table and that is
* associated with the next key. If a (long) is stored as the data
* (for example) then data_buf_p should be (long **) i.e. the address
* of a (long *).
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that is stored in the table and that is
* associated with the next key.
*/
int table_next_r(table_t * table_p, table_linear_t * linear_p,
void **key_buf_p, int *key_size_p,
void **data_buf_p, int *data_size_p)
{
table_entry_t *entry_p;
int error;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (linear_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (linear_p->tl_magic != LINEAR_MAGIC)
return TABLE_ERROR_LINEAR;
/* move to the next entry */
entry_p = next_entry(table_p, linear_p, &error);
if (entry_p == NULL)
return error;
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (key_size_p != NULL)
*key_size_p = entry_p->te_key_size;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
return TABLE_ERROR_NONE;
}
/*
* int table_this_r
*
* DESCRIPTION:
*
* Reetrant version of the table_this routine above. Find current
* element in a table and pass back information about the key/data
* pair. If any of the key/data pointers are NULL then they are
* ignored.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we are getting the
* current element.
*
* linear_p - Pointer to a table linear structure which is accessed
* here. The same pointer must have been passed to table_first_r
* first so that it can be initialized.
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the storage of the current key that is allocated in the table.
* If an (int) is stored as the current key (for example) then
* key_buf_p should be (int **) i.e. the address of a (int *).
*
* key_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the key that is stored in the table and that is
* associated with the current key.
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage that is allocated in the table and that is
* associated with the current key. If a (long) is stored as the data
* (for example) then data_buf_p should be (long **) i.e. the address
* of a (long *).
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that is stored in the table and that is
* associated with the current key.
*/
int table_this_r(table_t * table_p, table_linear_t * linear_p,
void **key_buf_p, int *key_size_p,
void **data_buf_p, int *data_size_p)
{
table_entry_t *entry_p;
int entry_c;
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (linear_p->tl_magic != LINEAR_MAGIC)
return TABLE_ERROR_LINEAR;
/* if we removed an item that shorted the bucket list, we may get this */
if (linear_p->tl_bucket_c >= table_p->ta_bucket_n) {
/*
* NOTE: this might happen if we delete an item which shortens the
* table bucket numbers.
*/
return TABLE_ERROR_NOT_FOUND;
}
/* find the entry which is the nth in the list */
for (entry_c = linear_p->tl_entry_c,
entry_p = table_p->ta_buckets[linear_p->tl_bucket_c];
entry_p != NULL && entry_c > 0;
entry_c--, entry_p = TABLE_POINTER(table_p, table_entry_t *,
entry_p)->te_next_p) {
}
if (entry_p == NULL)
return TABLE_ERROR_NOT_FOUND;
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (key_size_p != NULL)
*key_size_p = entry_p->te_key_size;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
return TABLE_ERROR_NONE;
}
/******************************** table order ********************************/
/*
* table_entry_t *table_order
*
* DESCRIPTION:
*
* Order a table by building an array of table entry pointers and then
* sorting this array using the qsort function. To retrieve the
* sorted entries, you can then use the table_entry routine to access
* each entry in order.
*
* NOTE: This routine is now thread safe in that two table_order calls
* can now happen at the same time, even on the same table.
*
* RETURNS:
*
* An allocated list of entry pointers which must be freed later.
* Returns null on error.
*
* ARGUMENTS:
*
* table_p - Pointer to the table that we are ordering.
*
* compare - Comparison function defined by the user. Its definition
* is at the top of the table.h file. If this is NULL then it will
* order the table my memcmp-ing the keys.
*
* num_entries_p - Pointer to an integer which, if not NULL, will
* contain the number of entries in the returned entry pointer array.
*
* error_p - Pointer to an integer which, if not NULL, will contain a
* table error code.
*/
table_entry_t **table_order(table_t * table_p, table_compare_t compare,
int *num_entries_p, int *error_p)
{
table_entry_t *entry_p, **entries, **entries_p;
table_linear_t linear;
compare_t comp_func;
int error;
if (table_p == NULL) {
if (error_p != NULL)
*error_p = TABLE_ERROR_ARG_NULL;
return NULL;
}
if (table_p->ta_magic != TABLE_MAGIC) {
if (error_p != NULL)
*error_p = TABLE_ERROR_PNT;
return NULL;
}
/* there must be at least 1 element in the table for this to work */
if (table_p->ta_entry_n == 0) {
if (error_p != NULL)
*error_p = TABLE_ERROR_EMPTY;
return NULL;
}
entries = (table_entry_t **)
table_p->ta_malloc(table_p->opt_param,
table_p->ta_entry_n *sizeof(table_entry_t *));
if (entries == NULL) {
if (error_p != NULL)
*error_p = TABLE_ERROR_ALLOC;
return NULL;
}
/* get a pointer to all entries */
entry_p = first_entry(table_p, &linear);
if (entry_p == NULL) {
if (error_p != NULL)
*error_p = TABLE_ERROR_NOT_FOUND;
return NULL;
}
/* add all of the entries to the array */
for (entries_p = entries;
entry_p != NULL;
entry_p = next_entry(table_p, &linear, &error))
*entries_p++ = entry_p;
if (error != TABLE_ERROR_NOT_FOUND) {
if (error_p != NULL)
*error_p = error;
return NULL;
}
if (compare == NULL) {
/* this is regardless of the alignment */
comp_func = local_compare;
}
else if (table_p->ta_data_align == 0)
comp_func = external_compare;
else
comp_func = external_compare_align;
/* now qsort the entire entries array from first to last element */
split(entries, entries + table_p->ta_entry_n - 1, comp_func, compare,
table_p);
if (num_entries_p != NULL)
*num_entries_p = table_p->ta_entry_n;
if (error_p != NULL)
*error_p = TABLE_ERROR_NONE;
return entries;
}
/*
* int table_entry
*
* DESCRIPTION:
*
* Get information about an element. The element is one from the
* array returned by the table_order function. If any of the key/data
* pointers are NULL then they are ignored.
*
* RETURNS:
*
* Success - TABLE_ERROR_NONE
*
* Failure - Table error code.
*
* ARGUMENTS:
*
* table_p - Table structure pointer from which we are getting the
* element.
*
* entry_p - Pointer to a table entry from the array returned by the
* table_order function.
*
* key_buf_p - Pointer which, if not NULL, will be set to the address
* of the storage of this entry that is allocated in the table. If an
* (int) is stored as this entry (for example) then key_buf_p should
* be (int **) i.e. the address of a (int *).
*
* key_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the key that is stored in the table.
*
* data_buf_p - Pointer which, if not NULL, will be set to the address
* of the data storage of this entry that is allocated in the table.
* If a (long) is stored as this entry data (for example) then
* data_buf_p should be (long **) i.e. the address of a (long *).
*
* data_size_p - Pointer to an integer which, if not NULL, will be set
* to the size of the data that is stored in the table.
*/
int table_entry_info(table_t * table_p, table_entry_t * entry_p,
void **key_buf_p, int *key_size_p,
void **data_buf_p, int *data_size_p)
{
if (table_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (table_p->ta_magic != TABLE_MAGIC)
return TABLE_ERROR_PNT;
if (entry_p == NULL)
return TABLE_ERROR_ARG_NULL;
if (key_buf_p != NULL)
*key_buf_p = ENTRY_KEY_BUF(entry_p);
if (key_size_p != NULL)
*key_size_p = entry_p->te_key_size;
if (data_buf_p != NULL) {
if (entry_p->te_data_size == 0)
*data_buf_p = NULL;
else {
if (table_p->ta_data_align == 0)
*data_buf_p = ENTRY_DATA_BUF(table_p, entry_p);
else
*data_buf_p = entry_data_buf(table_p, entry_p);
}
}
if (data_size_p != NULL)
*data_size_p = entry_p->te_data_size;
return TABLE_ERROR_NONE;
}
|