1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
/* C-Ares integration to Quagga mainloop
* Copyright (c) 2014-2015 Timo Teräs
*
* This file is free software: you may copy, redistribute and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*/
#include <ares.h>
#include <ares_version.h>
#include "vector.h"
#include "thread.h"
#include "nhrpd.h"
struct resolver_state {
ares_channel channel;
struct thread *timeout;
vector read_threads, write_threads;
};
static struct resolver_state state;
#define THREAD_RUNNING ((struct thread *)-1)
static void resolver_update_timeouts(struct resolver_state *r);
static int resolver_cb_timeout(struct thread *t)
{
struct resolver_state *r = THREAD_ARG(t);
r->timeout = THREAD_RUNNING;
ares_process(r->channel, NULL, NULL);
r->timeout = NULL;
resolver_update_timeouts(r);
return 0;
}
static int resolver_cb_socket_readable(struct thread *t)
{
struct resolver_state *r = THREAD_ARG(t);
int fd = THREAD_FD(t);
vector_set_index(r->read_threads, fd, THREAD_RUNNING);
ares_process_fd(r->channel, fd, ARES_SOCKET_BAD);
if (vector_lookup(r->read_threads, fd) == THREAD_RUNNING) {
t = NULL;
thread_add_read(master, resolver_cb_socket_readable, r, fd, &t);
vector_set_index(r->read_threads, fd, t);
}
resolver_update_timeouts(r);
return 0;
}
static int resolver_cb_socket_writable(struct thread *t)
{
struct resolver_state *r = THREAD_ARG(t);
int fd = THREAD_FD(t);
vector_set_index(r->write_threads, fd, THREAD_RUNNING);
ares_process_fd(r->channel, ARES_SOCKET_BAD, fd);
if (vector_lookup(r->write_threads, fd) == THREAD_RUNNING) {
t = NULL;
thread_add_write(master, resolver_cb_socket_writable, r, fd,
&t);
vector_set_index(r->write_threads, fd, t);
}
resolver_update_timeouts(r);
return 0;
}
static void resolver_update_timeouts(struct resolver_state *r)
{
struct timeval *tv, tvbuf;
if (r->timeout == THREAD_RUNNING)
return;
THREAD_OFF(r->timeout);
tv = ares_timeout(r->channel, NULL, &tvbuf);
if (tv) {
unsigned int timeoutms = tv->tv_sec * 1000 + tv->tv_usec / 1000;
thread_add_timer_msec(master, resolver_cb_timeout, r, timeoutms,
&r->timeout);
}
}
static void ares_socket_cb(void *data, ares_socket_t fd, int readable,
int writable)
{
struct resolver_state *r = (struct resolver_state *)data;
struct thread *t;
if (readable) {
t = vector_lookup_ensure(r->read_threads, fd);
if (!t) {
thread_add_read(master, resolver_cb_socket_readable, r,
fd, &t);
vector_set_index(r->read_threads, fd, t);
}
} else {
t = vector_lookup(r->read_threads, fd);
if (t) {
if (t != THREAD_RUNNING) {
THREAD_OFF(t);
}
vector_unset(r->read_threads, fd);
}
}
if (writable) {
t = vector_lookup_ensure(r->write_threads, fd);
if (!t) {
thread_add_read(master, resolver_cb_socket_writable, r,
fd, &t);
vector_set_index(r->write_threads, fd, t);
}
} else {
t = vector_lookup(r->write_threads, fd);
if (t) {
if (t != THREAD_RUNNING) {
THREAD_OFF(t);
}
vector_unset(r->write_threads, fd);
}
}
}
void resolver_init(void)
{
struct ares_options ares_opts;
state.read_threads = vector_init(1);
state.write_threads = vector_init(1);
ares_opts = (struct ares_options){
.sock_state_cb = &ares_socket_cb,
.sock_state_cb_data = &state,
.timeout = 2,
.tries = 3,
};
ares_init_options(&state.channel, &ares_opts,
ARES_OPT_SOCK_STATE_CB | ARES_OPT_TIMEOUT
| ARES_OPT_TRIES);
}
static void ares_address_cb(void *arg, int status, int timeouts,
struct hostent *he)
{
struct resolver_query *query = (struct resolver_query *)arg;
union sockunion addr[16];
size_t i;
if (status != ARES_SUCCESS) {
debugf(NHRP_DEBUG_COMMON, "[%p] Resolving failed", query);
query->callback(query, -1, NULL);
query->callback = NULL;
return;
}
for (i = 0; i < ZEBRA_NUM_OF(addr) && he->h_addr_list[i] != NULL; i++) {
memset(&addr[i], 0, sizeof(addr[i]));
addr[i].sa.sa_family = he->h_addrtype;
switch (he->h_addrtype) {
case AF_INET:
memcpy(&addr[i].sin.sin_addr,
(uint8_t *)he->h_addr_list[i], he->h_length);
break;
case AF_INET6:
memcpy(&addr[i].sin6.sin6_addr,
(uint8_t *)he->h_addr_list[i], he->h_length);
break;
}
}
debugf(NHRP_DEBUG_COMMON, "[%p] Resolved with %d results", query,
(int)i);
query->callback(query, i, &addr[0]);
query->callback = NULL;
}
void resolver_resolve(struct resolver_query *query, int af,
const char *hostname,
void (*callback)(struct resolver_query *, int,
union sockunion *))
{
if (query->callback != NULL) {
zlog_err(
"Trying to resolve '%s', but previous query was not finished yet",
hostname);
return;
}
debugf(NHRP_DEBUG_COMMON, "[%p] Resolving '%s'", query, hostname);
query->callback = callback;
ares_gethostbyname(state.channel, hostname, af, ares_address_cb, query);
resolver_update_timeouts(&state);
}
|