summaryrefslogtreecommitdiffstats
path: root/src/lib/dhcp/tests/option_definition_unittest.cc
blob: 8b7f827218a6109392d191c2fab443517103facb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
// Copyright (C) 2012-2017 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.

#include <config.h>

#include <asiolink/io_address.h>
#include <dhcp/dhcp4.h>
#include <dhcp/dhcp6.h>
#include <dhcp/option4_addrlst.h>
#include <dhcp/option6_addrlst.h>
#include <dhcp/option6_ia.h>
#include <dhcp/option6_iaaddr.h>
#include <dhcp/option_custom.h>
#include <dhcp/option_definition.h>
#include <dhcp/option_int.h>
#include <dhcp/option_int_array.h>
#include <dhcp/option_string.h>
#include <dhcp/option_opaque_data_tuples.h>
#include <exceptions/exceptions.h>

#include <boost/pointer_cast.hpp>
#include <boost/shared_ptr.hpp>
#include <gtest/gtest.h>

using namespace std;
using namespace isc;
using namespace isc::dhcp;
using namespace isc::util;

namespace {

/// @brief OptionDefinition test class.
///
/// This class does not do anything useful but we keep
/// it around for the future.
class OptionDefinitionTest : public ::testing::Test {
public:
    /// @brief Constructor.
    OptionDefinitionTest() { }

};

// The purpose of this test is to verify that OptionDefinition
// constructor initializes its members correctly.
TEST_F(OptionDefinitionTest, constructor) {
    // Specify the option data type as string. This should get converted
    // to enum value returned by getType().
    OptionDefinition opt_def1("OPTION_CLIENTID", D6O_CLIENTID, "string");
    EXPECT_EQ("OPTION_CLIENTID", opt_def1.getName());

    EXPECT_EQ(1, opt_def1.getCode());
    EXPECT_EQ(OPT_STRING_TYPE,  opt_def1.getType());
    EXPECT_FALSE(opt_def1.getArrayType());
    EXPECT_TRUE(opt_def1.getEncapsulatedSpace().empty());
    EXPECT_NO_THROW(opt_def1.validate());

    // Specify the option data type as an enum value.
    OptionDefinition opt_def2("OPTION_RAPID_COMMIT", D6O_RAPID_COMMIT,
                              OPT_EMPTY_TYPE);
    EXPECT_EQ("OPTION_RAPID_COMMIT", opt_def2.getName());
    EXPECT_EQ(14, opt_def2.getCode());
    EXPECT_EQ(OPT_EMPTY_TYPE, opt_def2.getType());
    EXPECT_FALSE(opt_def2.getArrayType());
    EXPECT_TRUE(opt_def2.getEncapsulatedSpace().empty());
    EXPECT_NO_THROW(opt_def2.validate());

    // Specify encapsulated option space name and option data type
    // as enum value.
    OptionDefinition opt_def3("OPTION_VENDOR_OPTS", D6O_VENDOR_OPTS,
                              OPT_UINT32_TYPE, "isc");
    EXPECT_EQ("OPTION_VENDOR_OPTS", opt_def3.getName());
    EXPECT_EQ(D6O_VENDOR_OPTS, opt_def3.getCode());
    EXPECT_EQ(OPT_UINT32_TYPE, opt_def3.getType());
    EXPECT_FALSE(opt_def3.getArrayType());
    EXPECT_EQ("isc", opt_def3.getEncapsulatedSpace());
    EXPECT_NO_THROW(opt_def3.validate());

    // Specify encapsulated option space name and option data type
    // as string value.
    OptionDefinition opt_def4("OPTION_VENDOR_OPTS", D6O_VENDOR_OPTS,
                              "uint32", "isc");
    EXPECT_EQ("OPTION_VENDOR_OPTS", opt_def4.getName());
    EXPECT_EQ(D6O_VENDOR_OPTS, opt_def4.getCode());
    EXPECT_EQ(OPT_UINT32_TYPE, opt_def4.getType());
    EXPECT_FALSE(opt_def4.getArrayType());
    EXPECT_EQ("isc", opt_def4.getEncapsulatedSpace());
    EXPECT_NO_THROW(opt_def4.validate());

    // Check if it is possible to set that option is an array.
    OptionDefinition opt_def5("OPTION_NIS_SERVERS", 27,
                              OPT_IPV6_ADDRESS_TYPE,
                              true);
    EXPECT_EQ("OPTION_NIS_SERVERS", opt_def5.getName());
    EXPECT_EQ(27, opt_def5.getCode());
    EXPECT_EQ(OPT_IPV6_ADDRESS_TYPE, opt_def5.getType());
    EXPECT_TRUE(opt_def5.getArrayType());
    EXPECT_NO_THROW(opt_def5.validate());

    // The created object is invalid if invalid data type is specified but
    // constructor shouldn't throw exception. The object is validated after
    // it has been created.
    EXPECT_NO_THROW(
        OptionDefinition opt_def6("OPTION_SERVERID",
                                  OPT_UNKNOWN_TYPE + 10,
                                  OPT_STRING_TYPE);
    );
}

// This test checks that the copy constructor works properly.
TEST_F(OptionDefinitionTest, copyConstructor) {
    OptionDefinition opt_def("option-foo", 27, "record", true);
    ASSERT_NO_THROW(opt_def.addRecordField("uint16"));
    ASSERT_NO_THROW(opt_def.addRecordField("string"));

    OptionDefinition opt_def_copy(opt_def);
    EXPECT_EQ("option-foo", opt_def_copy.getName());
    EXPECT_EQ(27, opt_def_copy.getCode());
    EXPECT_TRUE(opt_def_copy.getArrayType());
    EXPECT_TRUE(opt_def_copy.getEncapsulatedSpace().empty());
    ASSERT_EQ(OPT_RECORD_TYPE, opt_def_copy.getType());
    const OptionDefinition::RecordFieldsCollection fields =
        opt_def_copy.getRecordFields();
    ASSERT_EQ(2, fields.size());
    EXPECT_EQ(OPT_UINT16_TYPE, fields[0]);
    EXPECT_EQ(OPT_STRING_TYPE, fields[1]);

    // Let's make another test to check if encapsulated option space is
    // copied properly.
    OptionDefinition opt_def2("option-bar", 30, "uint32", "isc");
    OptionDefinition opt_def_copy2(opt_def2);
    EXPECT_EQ("option-bar", opt_def_copy2.getName());
    EXPECT_EQ(30, opt_def_copy2.getCode());
    EXPECT_FALSE(opt_def_copy2.getArrayType());
    EXPECT_EQ(OPT_UINT32_TYPE, opt_def_copy2.getType());
    EXPECT_EQ("isc", opt_def_copy2.getEncapsulatedSpace());
}

// This test checks that two option definitions may be compared for equality.
TEST_F(OptionDefinitionTest, equality) {
    // Equal definitions.
    EXPECT_TRUE(OptionDefinition("option-foo", 5, "uint16", false)
                == OptionDefinition("option-foo", 5, "uint16", false));
    EXPECT_FALSE(OptionDefinition("option-foo", 5, "uint16", false)
                 != OptionDefinition("option-foo", 5, "uint16", false));

    // Differ by name.
    EXPECT_FALSE(OptionDefinition("option-foo", 5, "uint16", false)
                 == OptionDefinition("option-foobar", 5, "uint16", false));
    EXPECT_FALSE(OptionDefinition("option-bar", 5, "uint16", false)
                == OptionDefinition("option-foo", 5, "uint16", false));
    EXPECT_TRUE(OptionDefinition("option-bar", 5, "uint16", false)
                 != OptionDefinition("option-foo", 5, "uint16", false));

    // Differ by option code.
    EXPECT_FALSE(OptionDefinition("option-foo", 5, "uint16", false)
                == OptionDefinition("option-foo", 6, "uint16", false));
    EXPECT_TRUE(OptionDefinition("option-foo", 5, "uint16", false)
                 != OptionDefinition("option-foo", 6, "uint16", false));

    // Differ by type of the data.
    EXPECT_FALSE(OptionDefinition("option-foo", 5, "uint16", false)
                == OptionDefinition("option-foo", 5, "uint32", false));
    EXPECT_TRUE(OptionDefinition("option-foo", 5, "uint16", false)
                 != OptionDefinition("option-foo", 5, "uint32", false));

    // Differ by array-type property.
    EXPECT_FALSE(OptionDefinition("option-foo", 5, "uint16", false)
                == OptionDefinition("option-foo", 5, "uint16", true));
    EXPECT_TRUE(OptionDefinition("option-foo", 5, "uint16", false)
                 != OptionDefinition("option-foo", 5, "uint16", true));

    // Differ by record fields.
    OptionDefinition def1("option-foo", 5, "record");
    OptionDefinition def2("option-foo", 5, "record");

    // There are no record fields specified yet, so initially they have
    // to be equal.
    ASSERT_TRUE(def1 == def2);
    ASSERT_FALSE(def1 != def2);

    // Add some record fields.
    ASSERT_NO_THROW(def1.addRecordField("uint16"));
    ASSERT_NO_THROW(def2.addRecordField("uint16"));

    // Definitions should still remain equal.
    ASSERT_TRUE(def1 == def2);
    ASSERT_FALSE(def1 != def2);

    // Add additional record field to one of the definitions but not the
    // other. They should now be unequal.
    ASSERT_NO_THROW(def1.addRecordField("string"));
    ASSERT_FALSE(def1 == def2);
    ASSERT_TRUE(def1 != def2);

    // Add the same record field to the other definition. They should now
    // be equal again.
    ASSERT_NO_THROW(def2.addRecordField("string"));
    EXPECT_TRUE(def1 == def2);
    EXPECT_FALSE(def1 != def2);
}

// The purpose of this test is to verify that various data fields
// can be specified for an option definition when this definition
// is marked as 'record' and that fields can't be added if option
// definition is not marked as 'record'.
TEST_F(OptionDefinitionTest, addRecordField) {
    // We can only add fields to record if the option type has been
    // specified as 'record'. We try all other types but 'record'
    // here and expect exception to be thrown.
    for (int i = 0; i < OPT_UNKNOWN_TYPE; ++i) {
        // Do not try for 'record' type because this is the only
        // type for which adding record will succeed.
        if (i == OPT_RECORD_TYPE) {
            continue;
        }
        OptionDefinition opt_def("OPTION_IAADDR", 5,
                                 static_cast<OptionDataType>(i));
        EXPECT_THROW(opt_def.addRecordField("uint8"), isc::InvalidOperation);
    }

    // Positive scenario starts here.
    OptionDefinition opt_def("OPTION_IAADDR", 5, "record");
    EXPECT_NO_THROW(opt_def.addRecordField("ipv6-address"));
    EXPECT_NO_THROW(opt_def.addRecordField("uint32"));
    // It should not matter if we specify field type by its name or using enum.
    EXPECT_NO_THROW(opt_def.addRecordField(OPT_UINT32_TYPE));

    // Check what we have actually added.
    OptionDefinition::RecordFieldsCollection fields = opt_def.getRecordFields();
    ASSERT_EQ(3, fields.size());
    EXPECT_EQ(OPT_IPV6_ADDRESS_TYPE, fields[0]);
    EXPECT_EQ(OPT_UINT32_TYPE, fields[1]);
    EXPECT_EQ(OPT_UINT32_TYPE, fields[2]);

    // Let's try some more negative scenarios: use invalid data types.
    EXPECT_THROW(opt_def.addRecordField("unknown_type_xyz"), isc::BadValue);
    OptionDataType invalid_type =
        static_cast<OptionDataType>(OPT_UNKNOWN_TYPE + 10);
    EXPECT_THROW(opt_def.addRecordField(invalid_type), isc::BadValue);

    // It is bad if we use 'record' option type but don't specify
    // at least two fields.
    OptionDefinition opt_def2("OPTION_EMPTY_RECORD", 100, "record");
    EXPECT_THROW(opt_def2.validate(), MalformedOptionDefinition);
    opt_def2.addRecordField("uint8");
    EXPECT_THROW(opt_def2.validate(), MalformedOptionDefinition);
    opt_def2.addRecordField("uint32");
    EXPECT_NO_THROW(opt_def2.validate());
}

// The purpose of this test is to check that validate() function
// reports errors for invalid option definitions.
TEST_F(OptionDefinitionTest, validate) {
    // Not supported option type string is not allowed.
    OptionDefinition opt_def1("OPTION_CLIENTID", D6O_CLIENTID, "non-existent-type");
    EXPECT_THROW(opt_def1.validate(), MalformedOptionDefinition);

    // Not supported option type enum value is not allowed.
    OptionDefinition opt_def2("OPTION_CLIENTID", D6O_CLIENTID, OPT_UNKNOWN_TYPE);
    EXPECT_THROW(opt_def2.validate(), MalformedOptionDefinition);

    OptionDefinition opt_def3("OPTION_CLIENTID", D6O_CLIENTID,
                              static_cast<OptionDataType>(OPT_UNKNOWN_TYPE
                                                                      + 2));
    EXPECT_THROW(opt_def3.validate(), MalformedOptionDefinition);

    // Empty option name is not allowed.
    OptionDefinition opt_def4("", D6O_CLIENTID, "string");
    EXPECT_THROW(opt_def4.validate(), MalformedOptionDefinition);

    // Option name must not contain spaces.
    OptionDefinition opt_def5(" OPTION_CLIENTID", D6O_CLIENTID, "string");
    EXPECT_THROW(opt_def5.validate(), MalformedOptionDefinition);

    // Option name must not contain spaces.
    OptionDefinition opt_def6("OPTION CLIENTID", D6O_CLIENTID, "string");
    EXPECT_THROW(opt_def6.validate(), MalformedOptionDefinition);

    // Option name may contain lower case letters.
    OptionDefinition opt_def7("option_clientid", D6O_CLIENTID, "string");
    EXPECT_NO_THROW(opt_def7.validate());

    // Using digits in option name is legal.
    OptionDefinition opt_def8("option_123", D6O_CLIENTID, "string");
    EXPECT_NO_THROW(opt_def8.validate());

    // Using hyphen is legal.
    OptionDefinition opt_def9("option-clientid", D6O_CLIENTID, "string");
    EXPECT_NO_THROW(opt_def9.validate());

    // Using hyphen or underscore at the beginning or at the end
    // of the option name is not allowed.
    OptionDefinition opt_def10("-option-clientid", D6O_CLIENTID, "string");
    EXPECT_THROW(opt_def10.validate(), MalformedOptionDefinition);

    OptionDefinition opt_def11("_option-clientid", D6O_CLIENTID, "string");
    EXPECT_THROW(opt_def11.validate(), MalformedOptionDefinition);

    OptionDefinition opt_def12("option-clientid_", D6O_CLIENTID, "string");
    EXPECT_THROW(opt_def12.validate(), MalformedOptionDefinition);

    OptionDefinition opt_def13("option-clientid-", D6O_CLIENTID, "string");
    EXPECT_THROW(opt_def13.validate(), MalformedOptionDefinition);

    // Having array of strings does not make sense because there is no way
    // to determine string's length.
    OptionDefinition opt_def14("OPTION_CLIENTID", D6O_CLIENTID, "string", true);
    EXPECT_THROW(opt_def14.validate(), MalformedOptionDefinition);

    // It does not make sense to have string field within the record before
    // other fields because there is no way to determine the length of this
    // string and thus there is no way to determine where the other field
    // begins.
    OptionDefinition opt_def15("OPTION_STATUS_CODE", D6O_STATUS_CODE,
                               "record");
    opt_def15.addRecordField("string");
    opt_def15.addRecordField("uint16");
    EXPECT_THROW(opt_def15.validate(), MalformedOptionDefinition);

    // ... but it is ok if the string value is the last one.
    OptionDefinition opt_def16("OPTION_STATUS_CODE", D6O_STATUS_CODE,
                               "record");
    opt_def16.addRecordField("uint8");
    opt_def16.addRecordField("string");

    // Check invalid encapsulated option space name.
    OptionDefinition opt_def17("OPTION_VENDOR_OPTS", D6O_VENDOR_OPTS,
                               "uint32", "invalid%space%name");
    EXPECT_THROW(opt_def17.validate(), MalformedOptionDefinition);
}


// The purpose of this test is to verify that option definition
// that comprises array of IPv6 addresses will return an instance
// of option with a list of IPv6 addresses.
TEST_F(OptionDefinitionTest, ipv6AddressArray) {
    OptionDefinition opt_def("OPTION_NIS_SERVERS", D6O_NIS_SERVERS,
                             "ipv6-address", true);

    // Create a list of some V6 addresses.
    std::vector<asiolink::IOAddress> addrs;
    addrs.push_back(asiolink::IOAddress("2001:0db8::ff00:0042:8329"));
    addrs.push_back(asiolink::IOAddress("2001:0db8::ff00:0042:2319"));
    addrs.push_back(asiolink::IOAddress("::1"));
    addrs.push_back(asiolink::IOAddress("::2"));

    // Write addresses to the buffer.
    OptionBuffer buf(addrs.size() * asiolink::V6ADDRESS_LEN);
    for (size_t i = 0; i < addrs.size(); ++i) {
        const std::vector<uint8_t>& vec = addrs[i].toBytes();
        ASSERT_EQ(asiolink::V6ADDRESS_LEN, vec.size());
        std::copy(vec.begin(), vec.end(),
                  buf.begin() + i * asiolink::V6ADDRESS_LEN);
    }
    // Create DHCPv6 option from this buffer. Once option is created it is
    // supposed to have internal list of addresses that it parses out from
    // the provided buffer.
    OptionPtr option_v6;
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_NIS_SERVERS, buf);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option6AddrLst));
    boost::shared_ptr<Option6AddrLst> option_cast_v6 =
        boost::static_pointer_cast<Option6AddrLst>(option_v6);
    ASSERT_TRUE(option_cast_v6);
    // Get the list of parsed addresses from the option object.
    std::vector<asiolink::IOAddress> addrs_returned =
        option_cast_v6->getAddresses();
    // The list of addresses must exactly match addresses that we
    // stored in the buffer to create the option from it.
    EXPECT_TRUE(std::equal(addrs.begin(), addrs.end(), addrs_returned.begin()));

    // The provided buffer's length must be a multiple of V6 address length.
    // Let's extend the buffer by one byte so as this condition is not
    // fulfilled anymore.
    buf.insert(buf.end(), 1, 1);
    // It should throw exception then.
    EXPECT_THROW(
        opt_def.optionFactory(Option::V6, D6O_NIS_SERVERS, buf),
        InvalidOptionValue
    );
}

// The purpose of this test is to verify that option definition
// that comprises array of IPv6 addresses will return an instance
// of option with a list of IPv6 addresses. Array of IPv6 addresses
// is specified as a vector of strings (each string represents single
// IPv6 address).
TEST_F(OptionDefinitionTest, ipv6AddressArrayTokenized) {
    OptionDefinition opt_def("OPTION_NIS_SERVERS", D6O_NIS_SERVERS,
                             "ipv6-address", true);

    // Create a vector of some V6 addresses.
    std::vector<asiolink::IOAddress> addrs;
    addrs.push_back(asiolink::IOAddress("2001:0db8::ff00:0042:8329"));
    addrs.push_back(asiolink::IOAddress("2001:0db8::ff00:0042:2319"));
    addrs.push_back(asiolink::IOAddress("::1"));
    addrs.push_back(asiolink::IOAddress("::2"));

    // Create a vector of strings representing addresses given above.
    std::vector<std::string> addrs_str;
    for (std::vector<asiolink::IOAddress>::const_iterator it = addrs.begin();
         it != addrs.end(); ++it) {
        addrs_str.push_back(it->toText());
    }

    // Create DHCPv6 option using the list of IPv6 addresses given in the
    // string form.
    OptionPtr option_v6;
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_NIS_SERVERS,
                                          addrs_str);
    );
    // Non-null pointer option is supposed to be returned and it
    // should have Option6AddrLst type.
    ASSERT_TRUE(option_v6);
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option6AddrLst));
    // Cast to the actual option type to get IPv6 addresses from it.
    boost::shared_ptr<Option6AddrLst> option_cast_v6 =
        boost::static_pointer_cast<Option6AddrLst>(option_v6);
    // Check that cast was successful.
    ASSERT_TRUE(option_cast_v6);
    // Get the list of parsed addresses from the option object.
    std::vector<asiolink::IOAddress> addrs_returned =
        option_cast_v6->getAddresses();
    // Returned addresses must match the addresses that have been used to create
    // the option instance.
    EXPECT_TRUE(std::equal(addrs.begin(), addrs.end(), addrs_returned.begin()));
}

// The purpose of this test is to verify that option definition
// that comprises array of IPv4 addresses will return an instance
// of option with a list of IPv4 addresses.
TEST_F(OptionDefinitionTest, ipv4AddressArray) {
    OptionDefinition opt_def("OPTION_NAME_SERVERS", D6O_NIS_SERVERS,
                             "ipv4-address", true);

    // Create a list of some V6 addresses.
    std::vector<asiolink::IOAddress> addrs;
    addrs.push_back(asiolink::IOAddress("192.168.0.1"));
    addrs.push_back(asiolink::IOAddress("172.16.1.1"));
    addrs.push_back(asiolink::IOAddress("127.0.0.1"));
    addrs.push_back(asiolink::IOAddress("213.41.23.12"));

    // Write addresses to the buffer.
    OptionBuffer buf(addrs.size() * asiolink::V4ADDRESS_LEN);
    for (size_t i = 0; i < addrs.size(); ++i) {
        const std::vector<uint8_t> vec = addrs[i].toBytes();
        ASSERT_EQ(asiolink::V4ADDRESS_LEN, vec.size());
        std::copy(vec.begin(), vec.end(),
                  buf.begin() + i * asiolink::V4ADDRESS_LEN);
    }
    // Create DHCPv6 option from this buffer. Once option is created it is
    // supposed to have internal list of addresses that it parses out from
    // the provided buffer.
    OptionPtr option_v4;
    ASSERT_NO_THROW(
        option_v4 = opt_def.optionFactory(Option::V4, DHO_NAME_SERVERS, buf)
    );
    const Option* optptr = option_v4.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option4AddrLst));
    // Get the list of parsed addresses from the option object.
    boost::shared_ptr<Option4AddrLst> option_cast_v4 =
        boost::static_pointer_cast<Option4AddrLst>(option_v4);
    std::vector<asiolink::IOAddress> addrs_returned =
        option_cast_v4->getAddresses();
    // The list of addresses must exactly match addresses that we
    // stored in the buffer to create the option from it.
    EXPECT_TRUE(std::equal(addrs.begin(), addrs.end(), addrs_returned.begin()));

    // The provided buffer's length must be a multiple of V4 address length.
    // Let's extend the buffer by one byte so as this condition is not
    // fulfilled anymore.
    buf.insert(buf.end(), 1, 1);
    // It should throw exception then.
    EXPECT_THROW(opt_def.optionFactory(Option::V4, DHO_NIS_SERVERS, buf),
                 InvalidOptionValue);
}

// The purpose of this test is to verify that option definition
// that comprises array of IPv4 addresses will return an instance
// of option with a list of IPv4 addresses. The array of IPv4 addresses
// is specified as a vector of strings (each string represents single
// IPv4 address).
TEST_F(OptionDefinitionTest, ipv4AddressArrayTokenized) {
    OptionDefinition opt_def("OPTION_NIS_SERVERS", DHO_NIS_SERVERS,
                             "ipv4-address", true);

    // Create a vector of some V6 addresses.
    std::vector<asiolink::IOAddress> addrs;
    addrs.push_back(asiolink::IOAddress("192.168.0.1"));
    addrs.push_back(asiolink::IOAddress("172.16.1.1"));
    addrs.push_back(asiolink::IOAddress("127.0.0.1"));
    addrs.push_back(asiolink::IOAddress("213.41.23.12"));

    // Create a vector of strings representing addresses given above.
    std::vector<std::string> addrs_str;
    for (std::vector<asiolink::IOAddress>::const_iterator it = addrs.begin();
         it != addrs.end(); ++it) {
        addrs_str.push_back(it->toText());
    }

    // Create DHCPv4 option using the list of IPv4 addresses given in the
    // string form.
    OptionPtr option_v4;
    ASSERT_NO_THROW(
        option_v4 = opt_def.optionFactory(Option::V4, DHO_NIS_SERVERS,
                                          addrs_str);
    );
    // Non-null pointer option is supposed to be returned and it
    // should have Option6AddrLst type.
    ASSERT_TRUE(option_v4);
    const Option* optptr = option_v4.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option4AddrLst));
    // Cast to the actual option type to get IPv4 addresses from it.
    boost::shared_ptr<Option4AddrLst> option_cast_v4 =
        boost::static_pointer_cast<Option4AddrLst>(option_v4);
    // Check that cast was successful.
    ASSERT_TRUE(option_cast_v4);
    // Get the list of parsed addresses from the option object.
    std::vector<asiolink::IOAddress> addrs_returned =
        option_cast_v4->getAddresses();
    // Returned addresses must match the addresses that have been used to create
    // the option instance.
    EXPECT_TRUE(std::equal(addrs.begin(), addrs.end(), addrs_returned.begin()));
}

// The purpose of this test is to verify that option definition for
// 'empty' option can be created and that it returns 'empty' option.
TEST_F(OptionDefinitionTest, empty) {
    OptionDefinition opt_def("OPTION_RAPID_COMMIT", D6O_RAPID_COMMIT, "empty");

    // Create option instance and provide empty buffer as expected.
    OptionPtr option_v6;
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_RAPID_COMMIT, OptionBuffer())
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option));
    // Expect 'empty' DHCPv6 option.
    EXPECT_EQ(Option::V6, option_v6->getUniverse());
    EXPECT_EQ(4, option_v6->getHeaderLen());
    EXPECT_EQ(0, option_v6->getData().size());

    // Repeat the same test scenario for DHCPv4 option.
    OptionPtr option_v4;
    ASSERT_NO_THROW(option_v4 = opt_def.optionFactory(Option::V4, 214, OptionBuffer()));
    // Expect 'empty' DHCPv4 option.
    EXPECT_EQ(Option::V4, option_v4->getUniverse());
    EXPECT_EQ(2, option_v4->getHeaderLen());
    EXPECT_EQ(0, option_v4->getData().size());
}

// The purpose of this test is to verify that when the empty option encapsulates
// some option space, an instance of the OptionCustom is returned and its
// suboptions are decoded.
TEST_F(OptionDefinitionTest, emptyWithSuboptions) {
    // Create an instance of the 'empty' option definition. This option
    // encapsulates 'option-foo-space' so when we create a new option
    // with this definition the OptionCustom should be returned. The
    // Option Custom is generic option which support variety of formats
    // and supports decoding suboptions.
    OptionDefinition opt_def("option-foo", 1024, "empty", "option-foo-space");

    // Define a suboption.
    const uint8_t subopt_data[] = {
        0x04, 0x01,  // Option code 1025
        0x00, 0x04,  // Option len = 4
        0x01, 0x02, 0x03, 0x04 // Option data
    };

    // Create an option, having option code 1024 from the definition. Pass
    // the option buffer containing suboption.
    OptionPtr option_v6;
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, 1024,
                                          OptionBuffer(subopt_data,
                                                       subopt_data +
                                                       sizeof(subopt_data)))
    );
    // Returned option should be of the OptionCustom type.
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
    // Sanity-check length, universe etc.
    EXPECT_EQ(Option::V6, option_v6->getUniverse());
    EXPECT_EQ(4, option_v6->getHeaderLen());
    // This option should have one suboption with the code of 1025.
    OptionPtr subopt_v6 = option_v6->getOption(1025);
    EXPECT_TRUE(subopt_v6);
    // Check that this suboption holds valid data.
    EXPECT_EQ(1025, subopt_v6->getType());
    EXPECT_EQ(Option::V6, subopt_v6->getUniverse());
    EXPECT_EQ(0, memcmp(&subopt_v6->getData()[0], subopt_data + 4, 4));

    // @todo consider having a similar test for V4.
}

// The purpose of this test is to verify that definition can be
// creates for the option that holds binary data.
TEST_F(OptionDefinitionTest, binary) {
    // Binary option is the one that is represented by the generic
    // Option class. In fact all options can be represented by this
    // class but for some of them it is just natural. The SERVERID
    // option consists of the option code, length and binary data so
    // this one was picked for this test.
    OptionDefinition opt_def("OPTION_SERVERID", D6O_SERVERID, "binary");

    // Prepare some dummy data (serverid): 0, 1, 2 etc.
    OptionBuffer buf(14);
    for (unsigned i = 0; i < 14; ++i) {
        buf[i] = i;
    }
    // Create option instance with the factory function.
    // If the OptionDefinition code works properly than
    // object of the type Option should be returned.
    OptionPtr option_v6;
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_SERVERID, buf);
    );
    // Expect base option type returned.
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option));
    // Sanity check on universe, length and size. These are
    // the basic parameters identifying any option.
    EXPECT_EQ(Option::V6, option_v6->getUniverse());
    EXPECT_EQ(4, option_v6->getHeaderLen());
    ASSERT_EQ(buf.size(), option_v6->getData().size());

    // Get the server id data from the option and compare
    // against reference buffer. They are expected to match.
    EXPECT_TRUE(std::equal(option_v6->getData().begin(),
                           option_v6->getData().end(),
                           buf.begin()));

    // Repeat the same test scenario for DHCPv4 option.
    OptionPtr option_v4;
    ASSERT_NO_THROW(option_v4 = opt_def.optionFactory(Option::V4, 214, buf));
    // Expect 'empty' DHCPv4 option.
    EXPECT_EQ(Option::V4, option_v4->getUniverse());
    EXPECT_EQ(2, option_v4->getHeaderLen());
    ASSERT_EQ(buf.size(), option_v4->getData().size());

    EXPECT_TRUE(std::equal(option_v6->getData().begin(),
                           option_v6->getData().end(),
                           buf.begin()));
}

// The purpose of this test is to verify that definition can be created
// for option that comprises record of data. In this particular test
// the IA_NA option is used. This option comprises three uint32 fields.
TEST_F(OptionDefinitionTest, recordIA6) {
    // This option consists of IAID, T1 and T2 fields (each 4 bytes long).
    const int option6_ia_len = 12;

    // Get the factory function pointer.
    OptionDefinition opt_def("OPTION_IA_NA", D6O_IA_NA, "record", false);
    // Each data field is uint32.
    for (int i = 0; i < 3; ++i) {
        EXPECT_NO_THROW(opt_def.addRecordField("uint32"));
    }

    // Check the positive scenario.
    OptionBuffer buf(12);
    for (size_t i = 0; i < buf.size(); ++i) {
        buf[i] = i;
    }
    OptionPtr option_v6;
    ASSERT_NO_THROW(option_v6 = opt_def.optionFactory(Option::V6, D6O_IA_NA, buf));
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option6IA));
    boost::shared_ptr<Option6IA> option_cast_v6 =
        boost::static_pointer_cast<Option6IA>(option_v6);
    EXPECT_EQ(0x00010203, option_cast_v6->getIAID());
    EXPECT_EQ(0x04050607, option_cast_v6->getT1());
    EXPECT_EQ(0x08090A0B, option_cast_v6->getT2());

    // The length of the buffer must be at least 12 bytes.
    // Check too short buffer.
    EXPECT_THROW(
        opt_def.optionFactory(Option::V6, D6O_IA_NA, OptionBuffer(option6_ia_len - 1)),
        InvalidOptionValue
     );
}

// The purpose of this test is to verify that definition can be created
// for option that comprises record of data. In this particular test
// the IAADDR option is used.
TEST_F(OptionDefinitionTest, recordIAAddr6) {
    // This option consists of IPV6 Address (16 bytes) and preferred-lifetime and
    // valid-lifetime fields (each 4 bytes long).
    const int option6_iaaddr_len = 24;

    OptionDefinition opt_def("OPTION_IAADDR", D6O_IAADDR, "record");
    ASSERT_NO_THROW(opt_def.addRecordField("ipv6-address"));
    ASSERT_NO_THROW(opt_def.addRecordField("uint32"));
    ASSERT_NO_THROW(opt_def.addRecordField("uint32"));

    // Check the positive scenario.
    OptionPtr option_v6;
    asiolink::IOAddress addr_v6("2001:0db8::ff00:0042:8329");
    OptionBuffer buf(asiolink::V6ADDRESS_LEN);
    ASSERT_TRUE(addr_v6.isV6());
    const std::vector<uint8_t>& vec = addr_v6.toBytes();
    ASSERT_EQ(asiolink::V6ADDRESS_LEN, vec.size());
    std::copy(vec.begin(), vec.end(), buf.begin());

    for (unsigned i = 0;
         i < option6_iaaddr_len - asiolink::V6ADDRESS_LEN;
         ++i) {
        buf.push_back(i);
    }
    ASSERT_NO_THROW(option_v6 = opt_def.optionFactory(Option::V6, D6O_IAADDR, buf));
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option6IAAddr));
    boost::shared_ptr<Option6IAAddr> option_cast_v6 =
        boost::static_pointer_cast<Option6IAAddr>(option_v6);
    EXPECT_EQ(addr_v6, option_cast_v6->getAddress());
    EXPECT_EQ(0x00010203, option_cast_v6->getPreferred());
    EXPECT_EQ(0x04050607, option_cast_v6->getValid());

    // The length of the buffer must be at least 12 bytes.
    // Check too short buffer.
    EXPECT_THROW(
        opt_def.optionFactory(Option::V6, D6O_IAADDR, OptionBuffer(option6_iaaddr_len - 1)),
        InvalidOptionValue
     );
}

// The purpose of this test is to verify that definition can be created
// for option that comprises record of data. In this particular test
// the IAADDR option is used. The data for the option is specified as
// a vector of strings. Each string carries the data for the corresponding
// data field.
TEST_F(OptionDefinitionTest, recordIAAddr6Tokenized) {
    // This option consists of IPV6 Address (16 bytes) and preferred-lifetime and
    // valid-lifetime fields (each 4 bytes long).
    OptionDefinition opt_def("OPTION_IAADDR", D6O_IAADDR, "record");
    ASSERT_NO_THROW(opt_def.addRecordField("ipv6-address"));
    ASSERT_NO_THROW(opt_def.addRecordField("uint32"));
    ASSERT_NO_THROW(opt_def.addRecordField("uint32"));

    // Check the positive scenario.
    std::vector<std::string> data_field_values;
    data_field_values.push_back("2001:0db8::ff00:0042:8329");
    data_field_values.push_back("1234");
    data_field_values.push_back("5678");

    OptionPtr option_v6;
    ASSERT_NO_THROW(option_v6 = opt_def.optionFactory(Option::V6, D6O_IAADDR,
                                                      data_field_values));
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(Option6IAAddr));
    boost::shared_ptr<Option6IAAddr> option_cast_v6 =
        boost::static_pointer_cast<Option6IAAddr>(option_v6);
    EXPECT_EQ("2001:db8::ff00:42:8329", option_cast_v6->getAddress().toText());
    EXPECT_EQ(1234, option_cast_v6->getPreferred());
    EXPECT_EQ(5678, option_cast_v6->getValid());
}

// The purpose of this test is to verify that the definition for option
// that comprises a boolean value can be created and that this definition
// can be used to create and option with a single boolean value.
TEST_F(OptionDefinitionTest, boolValue) {
    // The IP Forwarding option comprises one boolean value.
    OptionDefinition opt_def("ip-forwarding", DHO_IP_FORWARDING,
                             "boolean");

    OptionPtr option_v4;
    // Use an option buffer which holds one value of 1 (true).
    ASSERT_NO_THROW(
        option_v4 = opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING,
                                          OptionBuffer(1, 1));
    );
    const Option* optptr = option_v4.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
    // Validate parsed value in the received option.
    boost::shared_ptr<OptionCustom> option_cast_v4 =
        boost::static_pointer_cast<OptionCustom>(option_v4);
    EXPECT_TRUE(option_cast_v4->readBoolean());

    // Repeat the test above, but set the value to 0 (false).
    ASSERT_NO_THROW(
        option_v4 = opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING,
                                          OptionBuffer(1, 0));
    );
    option_cast_v4 = boost::static_pointer_cast<OptionCustom>(option_v4);
    EXPECT_FALSE(option_cast_v4->readBoolean());

    // Try to provide zero-length buffer. Expect exception.
    EXPECT_THROW(
        opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING, OptionBuffer()),
        InvalidOptionValue
    );

}

// The purpose of this test is to verify that definition for option that
// comprises single boolean value can be created and that this definition
// can be used to create an option holding a single boolean value. The
// boolean value is converted from a string which is expected to hold
// the following values: "true", "false", "1" or "0". For all other
// values exception should be thrown.
TEST_F(OptionDefinitionTest, boolTokenized) {
    OptionDefinition opt_def("ip-forwarding", DHO_IP_FORWARDING, "boolean");

    OptionPtr option_v4;
    std::vector<std::string> values;
    // Specify a value for the option instance being created.
    values.push_back("true");
    ASSERT_NO_THROW(
        option_v4 = opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING,
                                          values);
    );
    const Option* optptr = option_v4.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
    // Validate the value.
    OptionCustomPtr option_cast_v4 =
        boost::static_pointer_cast<OptionCustom>(option_v4);
    EXPECT_TRUE(option_cast_v4->readBoolean());

    // Repeat the test but for "false" value this time.
    values[0] = "false";
    ASSERT_NO_THROW(
        option_v4 = opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING,
                                          values);
    );
    optptr = option_v4.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
    // Validate the value.
    option_cast_v4 = boost::static_pointer_cast<OptionCustom>(option_v4);
    EXPECT_FALSE(option_cast_v4->readBoolean());

    // Check if that will work for numeric values.
    values[0] = "0";
    ASSERT_NO_THROW(
        option_v4 = opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING,
                                          values);
    );
    optptr = option_v4.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
    // Validate the value.
    option_cast_v4 = boost::static_pointer_cast<OptionCustom>(option_v4);
    EXPECT_FALSE(option_cast_v4->readBoolean());

    // Swap numeric values and test if it works for "true" case.
    values[0] = "1";
    ASSERT_NO_THROW(
        option_v4 = opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING,
                                          values);
    );
    optptr = option_v4.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));
    // Validate the value.
    option_cast_v4 = boost::static_pointer_cast<OptionCustom>(option_v4);
    EXPECT_TRUE(option_cast_v4->readBoolean());

    // A conversion of non-numeric value to boolean should fail if
    // this value is neither "true" nor "false".
    values[0] = "garbage";
    EXPECT_THROW(opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING, values),
      isc::dhcp::BadDataTypeCast);

    // A conversion of numeric value to boolean should fail if this value
    // is neither "0" nor "1".
    values[0] = "2";
    EXPECT_THROW(opt_def.optionFactory(Option::V4, DHO_IP_FORWARDING, values),
      isc::dhcp::BadDataTypeCast);

}

// The purpose of this test is to verify that definition for option that
// comprises single uint8 value can be created and that this definition
// can be used to create an option with single uint8 value.
TEST_F(OptionDefinitionTest, uint8) {
    OptionDefinition opt_def("OPTION_PREFERENCE", D6O_PREFERENCE, "uint8");

    OptionPtr option_v6;
    // Try to use correct buffer length = 1 byte.
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_PREFERENCE,
                                          OptionBuffer(1, 1));
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionInt<uint8_t>));
    // Validate the value.
    boost::shared_ptr<OptionInt<uint8_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionInt<uint8_t> >(option_v6);
    EXPECT_EQ(1, option_cast_v6->getValue());

    // Try to provide zero-length buffer. Expect exception.
    EXPECT_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_PREFERENCE, OptionBuffer()),
        InvalidOptionValue
    );

    // @todo Add more cases for DHCPv4
}

// The purpose of this test is to verify that definition for option that
// comprises single uint8 value can be created and that this definition
// can be used to create an option with single uint8 value.
TEST_F(OptionDefinitionTest, uint8Tokenized) {
    OptionDefinition opt_def("OPTION_PREFERENCE", D6O_PREFERENCE, "uint8");

    OptionPtr option_v6;
    std::vector<std::string> values;
    values.push_back("123");
    values.push_back("456");
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_PREFERENCE, values);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionInt<uint8_t>));
    // Validate the value.
    boost::shared_ptr<OptionInt<uint8_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionInt<uint8_t> >(option_v6);
    EXPECT_EQ(123, option_cast_v6->getValue());

    // @todo Add more cases for DHCPv4
}

// The purpose of this test is to verify that definition for option that
// comprises single uint16 value can be created and that this definition
// can be used to create an option with single uint16 value.
TEST_F(OptionDefinitionTest, uint16) {
    OptionDefinition opt_def("OPTION_ELAPSED_TIME", D6O_ELAPSED_TIME, "uint16");

    OptionPtr option_v6;
    // Try to use correct buffer length = 2 bytes.
    OptionBuffer buf;
    buf.push_back(1);
    buf.push_back(2);
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_ELAPSED_TIME, buf);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionInt<uint16_t>));
    // Validate the value.
    boost::shared_ptr<OptionInt<uint16_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionInt<uint16_t> >(option_v6);
    EXPECT_EQ(0x0102, option_cast_v6->getValue());

    // Try to provide zero-length buffer. Expect exception.
    EXPECT_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_ELAPSED_TIME, OptionBuffer(1)),
        InvalidOptionValue
    );

    // @todo Add more cases for DHCPv4
}

// The purpose of this test is to verify that definition for option that
// comprises single uint16 value can be created and that this definition
// can be used to create an option with single uint16 value.
TEST_F(OptionDefinitionTest, uint16Tokenized) {
    OptionDefinition opt_def("OPTION_ELAPSED_TIME", D6O_ELAPSED_TIME, "uint16");

    OptionPtr option_v6;

    std::vector<std::string> values;
    values.push_back("1234");
    values.push_back("5678");
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_ELAPSED_TIME, values);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionInt<uint16_t>));
    // Validate the value.
    boost::shared_ptr<OptionInt<uint16_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionInt<uint16_t> >(option_v6);
    EXPECT_EQ(1234, option_cast_v6->getValue());

    // @todo Add more cases for DHCPv4

}

// The purpose of this test is to verify that definition for option that
// comprises single uint32 value can be created and that this definition
// can be used to create an option with single uint32 value.
TEST_F(OptionDefinitionTest, uint32) {
    OptionDefinition opt_def("OPTION_CLT_TIME", D6O_CLT_TIME, "uint32");

    OptionPtr option_v6;
    OptionBuffer buf;
    buf.push_back(1);
    buf.push_back(2);
    buf.push_back(3);
    buf.push_back(4);
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_CLT_TIME, buf);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionInt<uint32_t>));
    // Validate the value.
    boost::shared_ptr<OptionInt<uint32_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionInt<uint32_t> >(option_v6);
    EXPECT_EQ(0x01020304, option_cast_v6->getValue());

    // Try to provide too short buffer. Expect exception.
    EXPECT_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_CLT_TIME, OptionBuffer(2)),
        InvalidOptionValue
    );

    // @todo Add more cases for DHCPv4
}

// The purpose of this test is to verify that definition for option that
// comprises single uint32 value can be created and that this definition
// can be used to create an option with single uint32 value.
TEST_F(OptionDefinitionTest, uint32Tokenized) {
    OptionDefinition opt_def("OPTION_CLT_TIME", D6O_CLT_TIME, "uint32");

    OptionPtr option_v6;
    std::vector<std::string> values;
    values.push_back("123456");
    values.push_back("789");
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, D6O_CLT_TIME, values);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionInt<uint32_t>));
    // Validate the value.
    boost::shared_ptr<OptionInt<uint32_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionInt<uint32_t> >(option_v6);
    EXPECT_EQ(123456, option_cast_v6->getValue());

    // @todo Add more cases for DHCPv4
}

// The purpose of this test is to verify that definition for option that
// comprises array of uint16 values can be created and that this definition
// can be used to create option with an array of uint16 values.
TEST_F(OptionDefinitionTest, uint16Array) {
    // Let's define some dummy option.
    const uint16_t opt_code = 79;
    OptionDefinition opt_def("OPTION_UINT16_ARRAY", opt_code, "uint16", true);

    OptionPtr option_v6;
    // Positive scenario, initiate the buffer with length being
    // multiple of uint16_t size.
    // buffer elements will be: 0x112233.
    OptionBuffer buf(6);
    for (unsigned i = 0; i < 6; ++i) {
        buf[i] = i / 2;
    }
    // Constructor should succeed because buffer has correct size.
    EXPECT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, buf);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionIntArray<uint16_t>));
    boost::shared_ptr<OptionIntArray<uint16_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionIntArray<uint16_t> >(option_v6);
    // Get the values from the initiated options and validate.
    std::vector<uint16_t> values = option_cast_v6->getValues();
    for (size_t i = 0; i < values.size(); ++i) {
        // Expected value is calculated using on the same pattern
        // as the one we used to initiate buffer:
        // for i=0, expected = 0x00, for i = 1, expected == 0x11 etc.
        uint16_t expected = (i << 8) | i;
        EXPECT_EQ(expected, values[i]);
    }

    // Provided buffer size must be greater than zero. Check if we
    // get exception if we provide zero-length buffer.
    EXPECT_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, OptionBuffer()),
        InvalidOptionValue
    );
    // Buffer length must be multiple of data type size.
    EXPECT_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, OptionBuffer(5)),
        InvalidOptionValue
    );
}

// The purpose of this test is to verify that definition for option that
// comprises array of uint16 values can be created and that this definition
// can be used to create option with an array of uint16 values.
TEST_F(OptionDefinitionTest, uint16ArrayTokenized) {
    // Let's define some dummy option.
    const uint16_t opt_code = 79;
    OptionDefinition opt_def("OPTION_UINT16_ARRAY", opt_code, "uint16", true);

    OptionPtr option_v6;
    std::vector<std::string> str_values;
    str_values.push_back("12345");
    str_values.push_back("5679");
    str_values.push_back("12");
    EXPECT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, str_values);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionIntArray<uint16_t>));
    boost::shared_ptr<OptionIntArray<uint16_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionIntArray<uint16_t> >(option_v6);
    // Get the values from the initiated options and validate.
    std::vector<uint16_t> values = option_cast_v6->getValues();
    EXPECT_EQ(12345, values[0]);
    EXPECT_EQ(5679, values[1]);
    EXPECT_EQ(12, values[2]);
}

// The purpose of this test is to verify that definition for option that
// comprises array of uint32 values can be created and that this definition
// can be used to create option with an array of uint32 values.
TEST_F(OptionDefinitionTest, uint32Array) {
    // Let's define some dummy option.
    const uint16_t opt_code = 80;

    OptionDefinition opt_def("OPTION_UINT32_ARRAY", opt_code, "uint32", true);

    OptionPtr option_v6;
    // Positive scenario, initiate the buffer with length being
    // multiple of uint16_t size.
    // buffer elements will be: 0x111122223333.
    OptionBuffer buf(12);
    for (size_t i = 0; i < buf.size(); ++i) {
        buf[i] = i / 4;
    }
    // Constructor should succeed because buffer has correct size.
    EXPECT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, buf);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionIntArray<uint32_t>));
    boost::shared_ptr<OptionIntArray<uint32_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionIntArray<uint32_t> >(option_v6);
    // Get the values from the initiated options and validate.
    std::vector<uint32_t> values = option_cast_v6->getValues();
    for (size_t i = 0; i < values.size(); ++i) {
        // Expected value is calculated using on the same pattern
        // as the one we used to initiate buffer:
        // for i=0, expected = 0x0000, for i = 1, expected == 0x1111 etc.
        uint32_t expected = 0x01010101 * i;
        EXPECT_EQ(expected, values[i]);
    }

    // Provided buffer size must be greater than zero. Check if we
    // get exception if we provide zero-length buffer.
    EXPECT_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, OptionBuffer()),
        InvalidOptionValue
    );
    // Buffer length must be multiple of data type size.
    EXPECT_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, OptionBuffer(5)),
        InvalidOptionValue
    );
}

// The purpose of this test is to verify that definition for option that
// comprises array of uint32 values can be created and that this definition
// can be used to create option with an array of uint32 values.
TEST_F(OptionDefinitionTest, uint32ArrayTokenized) {
    // Let's define some dummy option.
    const uint16_t opt_code = 80;

    OptionDefinition opt_def("OPTION_UINT32_ARRAY", opt_code, "uint32", true);

    OptionPtr option_v6;
    std::vector<std::string> str_values;
    str_values.push_back("123456");
    // Try with hexadecimal
    str_values.push_back("0x7");
    str_values.push_back("256");
    str_values.push_back("1111");

    EXPECT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, str_values);
    );
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionIntArray<uint32_t>));
    boost::shared_ptr<OptionIntArray<uint32_t> > option_cast_v6 =
        boost::static_pointer_cast<OptionIntArray<uint32_t> >(option_v6);
    // Get the values from the initiated options and validate.
    std::vector<uint32_t> values = option_cast_v6->getValues();
    EXPECT_EQ(123456, values[0]);
    EXPECT_EQ(7, values[1]);
    EXPECT_EQ(256, values[2]);
    EXPECT_EQ(1111, values[3]);
}

// The purpose of this test is to verify that the definition can be created
// for the option that comprises string value in the UTF8 format.
TEST_F(OptionDefinitionTest, utf8StringTokenized) {
    // Let's create some dummy option.
    const uint16_t opt_code = 80;
    OptionDefinition opt_def("OPTION_WITH_STRING", opt_code, "string");

    std::vector<std::string> values;
    values.push_back("Hello World");
    values.push_back("this string should not be included in the option");
    OptionPtr option_v6;
    EXPECT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, opt_code, values);
    );
    ASSERT_TRUE(option_v6);
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionString));
    OptionStringPtr option_v6_string =
        boost::static_pointer_cast<OptionString>(option_v6);
    EXPECT_TRUE(values[0] == option_v6_string->getValue());
}

// The purpose of this test is to check that non-integer data type can't
// be used for factoryInteger function.
TEST_F(OptionDefinitionTest, integerInvalidType) {
    // The template function factoryInteger<> accepts integer values only
    // as template typename. Here we try passing different type and
    // see if it rejects it.
    OptionBuffer buf(1);
    EXPECT_THROW(
        OptionDefinition::factoryInteger<bool>(Option::V6, D6O_PREFERENCE, DHCP6_OPTION_SPACE,
                                               buf.begin(), buf.end()),
        isc::dhcp::InvalidDataType
    );
}

// The purpose of this test is to verify that helper methods
// haveIA6Format and haveIAAddr6Format can be used to determine
// IA_NA  and IAADDR option formats.
TEST_F(OptionDefinitionTest, haveIAFormat) {
    // IA_NA option format.
    OptionDefinition opt_def1("OPTION_IA_NA", D6O_IA_NA, "record");
    for (int i = 0; i < 3; ++i) {
        opt_def1.addRecordField("uint32");
    }
    EXPECT_TRUE(opt_def1.haveIA6Format());
    // Create non-matching format to check that this function does not
    // return 'true' all the time.
    OptionDefinition opt_def2("OPTION_IA_NA", D6O_IA_NA, "uint16");
    EXPECT_FALSE(opt_def2.haveIA6Format());

    // IAADDR option format.
    OptionDefinition opt_def3("OPTION_IAADDR", D6O_IAADDR, "record");
    opt_def3.addRecordField("ipv6-address");
    opt_def3.addRecordField("uint32");
    opt_def3.addRecordField("uint32");
    EXPECT_TRUE(opt_def3.haveIAAddr6Format());
    // Create non-matching format to check that this function does not
    // return 'true' all the time.
    OptionDefinition opt_def4("OPTION_IAADDR", D6O_IAADDR, "uint32", true);
    EXPECT_FALSE(opt_def4.haveIAAddr6Format());
}

// This test verifies that haveClientFqdnFormat function recognizes that option
// definition describes the format of DHCPv6 Client Fqdn Option Format.
TEST_F(OptionDefinitionTest, haveClientFqdnFormat) {
    OptionDefinition opt_def("OPTION_CLIENT_FQDN", D6O_CLIENT_FQDN, "record");
    opt_def.addRecordField("uint8");
    opt_def.addRecordField("fqdn");
    EXPECT_TRUE(opt_def.haveClientFqdnFormat());

    // Create option format which is not matching the Client FQDN option format
    // to verify that tested function does dont always return true.
    OptionDefinition opt_def_invalid("OPTION_CLIENT_FQDN", D6O_CLIENT_FQDN,
                                     "uint8");
    EXPECT_FALSE(opt_def_invalid.haveClientFqdnFormat());
}

// This test verifies that a definition of an option with a single IPv6
// prefix can be created and used to create an instance of the option.
TEST_F(OptionDefinitionTest, prefix) {
    OptionDefinition opt_def("option-prefix", 1000, "ipv6-prefix");

    // Create a buffer holding a prefix.
    OptionBuffer buf;
    buf.push_back(32);
    buf.push_back(0x30);
    buf.push_back(0x00);
    buf.resize(5);

    OptionPtr option_v6;

    // Create an instance of this option from the definition.
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, 1000, buf);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    // Validate the value.
    OptionCustomPtr option_cast_v6 =
        boost::dynamic_pointer_cast<OptionCustom>(option_v6);
    ASSERT_EQ(1, option_cast_v6->getDataFieldsNum());
    PrefixTuple prefix = option_cast_v6->readPrefix();
    EXPECT_EQ(32, prefix.first.asUnsigned());
    EXPECT_EQ("3000::", prefix.second.toText());
}

// This test verifies that a definition of an option with a single IPv6
// prefix can be created and that the instance of this option can be
// created by specifying the prefix in the textual format.
TEST_F(OptionDefinitionTest, prefixTokenized) {
    OptionDefinition opt_def("option-prefix", 1000, "ipv6-prefix");

    OptionPtr option_v6;
    // Specify a single prefix.
    std::vector<std::string> values(1, "2001:db8:1::/64");

    // Create an instance of the option using the definition.
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, 1000, values);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    // Validate the value.
    OptionCustomPtr option_cast_v6 =
        boost::dynamic_pointer_cast<OptionCustom>(option_v6);
    ASSERT_EQ(1, option_cast_v6->getDataFieldsNum());
    PrefixTuple prefix = option_cast_v6->readPrefix();
    EXPECT_EQ(64, prefix.first.asUnsigned());
    EXPECT_EQ("2001:db8:1::", prefix.second.toText());
}

// This test verifies that a definition of an option with an array
// of IPv6 prefixes can be created and that the instance of this
// option can be created by specifying multiple prefixes in the
// textual format.
TEST_F(OptionDefinitionTest, prefixArrayTokenized) {
    OptionDefinition opt_def("option-prefix", 1000, "ipv6-prefix", true);

    OptionPtr option_v6;

    // Specify 3 prefixes
    std::vector<std::string> values;
    values.push_back("2001:db8:1:: /64");
    values.push_back("3000::/ 32");
    values.push_back("3001:1:: /  48");

    // Create an instance of an option using the definition.
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, 1000, values);
    );

    // Make sure that the option class returned is correct.
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    OptionCustomPtr option_cast_v6 =
        boost::dynamic_pointer_cast<OptionCustom>(option_v6);

    // There should be 3 prefixes in this option.
    ASSERT_EQ(3, option_cast_v6->getDataFieldsNum());

    ASSERT_NO_THROW({
        PrefixTuple prefix0 = option_cast_v6->readPrefix(0);
        EXPECT_EQ(64, prefix0.first.asUnsigned());
        EXPECT_EQ("2001:db8:1::", prefix0.second.toText());
    });

    ASSERT_NO_THROW({
        PrefixTuple prefix1 = option_cast_v6->readPrefix(1);
        EXPECT_EQ(32, prefix1.first.asUnsigned());
        EXPECT_EQ("3000::", prefix1.second.toText());
    });

    ASSERT_NO_THROW({
        PrefixTuple prefix2 = option_cast_v6->readPrefix(2);
        EXPECT_EQ(48, prefix2.first.asUnsigned());
        EXPECT_EQ("3001:1::", prefix2.second.toText());
    });
}

// This test verifies that a definition of an option with a single PSID
// value can be created and used to create an instance of the option.
TEST_F(OptionDefinitionTest, psid) {
    OptionDefinition opt_def("option-psid", 1000, "psid");

    OptionPtr option_v6;

    // Create a buffer holding PSID.
    OptionBuffer buf;
    buf.push_back(6);
    buf.push_back(0x4);
    buf.push_back(0x0);

    // Create an instance of this option from the definition.
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, 1000, buf);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    // Validate the value.
    OptionCustomPtr option_cast_v6 =
        boost::dynamic_pointer_cast<OptionCustom>(option_v6);
    ASSERT_EQ(1, option_cast_v6->getDataFieldsNum());
    PSIDTuple psid = option_cast_v6->readPsid();
    EXPECT_EQ(6, psid.first.asUnsigned());
    EXPECT_EQ(1, psid.second.asUint16());
}

// This test verifies that a definition of an option with a single PSID
// value can be created and that the instance of this option can be
// created by specifying PSID length and value in the textual format.
TEST_F(OptionDefinitionTest, psidTokenized) {
    OptionDefinition opt_def("option-psid", 1000, "psid");

    OptionPtr option_v6;
    // Specify a single PSID with a length of 6 and value of 3.
    std::vector<std::string> values(1, "3 / 6");

    // Create an instance of the option using the definition.
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, 1000, values);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    // Validate the value.
    OptionCustomPtr option_cast_v6 =
        boost::dynamic_pointer_cast<OptionCustom>(option_v6);
    ASSERT_EQ(1, option_cast_v6->getDataFieldsNum());
    PSIDTuple psid = option_cast_v6->readPsid();
    EXPECT_EQ(6, psid.first.asUnsigned());
    EXPECT_EQ(3, psid.second.asUint16());
}

// This test verifies that a definition of an option with an array
// of PSIDs can be created and that the instance of this option can be
// created by specifying multiple PSIDs in the textual format.
TEST_F(OptionDefinitionTest, psidArrayTokenized) {
    OptionDefinition opt_def("option-psid", 1000, "psid", true);

    OptionPtr option_v6;

    // Specify 3 PSIDs.
    std::vector<std::string> values;
    values.push_back("3 / 6");
    values.push_back("0/1");
    values.push_back("7     /   3");

    // Create an instance of an option using the definition.
    ASSERT_NO_THROW(
        option_v6 = opt_def.optionFactory(Option::V6, 1000, values);
    );

    // Make sure that the option class returned is correct.
    const Option* optptr = option_v6.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    OptionCustomPtr option_cast_v6 =
        boost::dynamic_pointer_cast<OptionCustom>(option_v6);

    // There should be 3 PSIDs in this option.
    ASSERT_EQ(3, option_cast_v6->getDataFieldsNum());

    // Check their values.
    PSIDTuple psid0;
    PSIDTuple psid1;
    PSIDTuple psid2;

    psid0 = option_cast_v6->readPsid(0);
    EXPECT_EQ(6, psid0.first.asUnsigned());
    EXPECT_EQ(3, psid0.second.asUint16());

    psid1 = option_cast_v6->readPsid(1);
    EXPECT_EQ(1, psid1.first.asUnsigned());
    EXPECT_EQ(0, psid1.second.asUint16());

    psid2 = option_cast_v6->readPsid(2);
    EXPECT_EQ(3, psid2.first.asUnsigned());
    EXPECT_EQ(7, psid2.second.asUint16());
}

// This test verifies that a definition of an option with a single DHCPv4
// tuple can be created and used to create an instance of the option.
TEST_F(OptionDefinitionTest, tuple4) {
    OptionDefinition opt_def("option-tuple", 232, "tuple");

    OptionPtr option;

    // Create a buffer holding tuple
    const char data[] = {
        6, 102, 111, 111, 98, 97, 114 // "foobar"
    };
    OptionBuffer buf(data, data + sizeof(data));

    // Create an instance of this option from the definition.
    ASSERT_NO_THROW(
        option = opt_def.optionFactory(Option::V4, 232, buf);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    // Validate the value.
    OptionCustomPtr option_cast =
        boost::dynamic_pointer_cast<OptionCustom>(option);
    ASSERT_EQ(1, option_cast->getDataFieldsNum());
    OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_1_BYTE);
    ASSERT_NO_THROW(option_cast->readTuple(tuple));
    EXPECT_EQ("foobar", tuple.getText());
}

// This test verifies that a definition of an option with a single DHCPv6
// tuple can be created and used to create an instance of the option.
TEST_F(OptionDefinitionTest, tuple6) {
    OptionDefinition opt_def("option-tuple", 1000, "tuple");

    OptionPtr option;

    // Create a buffer holding tuple
    const char data[] = {
        0, 6, 102, 111, 111, 98, 97, 114 // "foobar"
    };
    OptionBuffer buf(data, data + sizeof(data));

    // Create an instance of this option from the definition.
    ASSERT_NO_THROW(
        option = opt_def.optionFactory(Option::V6, 1000, buf);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    // Validate the value.
    OptionCustomPtr option_cast =
        boost::dynamic_pointer_cast<OptionCustom>(option);
    ASSERT_EQ(1, option_cast->getDataFieldsNum());
    OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_2_BYTES);
    ASSERT_NO_THROW(option_cast->readTuple(tuple));
    EXPECT_EQ("foobar", tuple.getText());
}

// This test verifies that a definition of an option with a single DHCPv4
// tuple can be created and that the instance of this option can be
// created by specifying tuple value in the textual format.
TEST_F(OptionDefinitionTest, tuple4Tokenized) {
    OptionDefinition opt_def("option-tuple", 232, "tuple");

    OptionPtr option;
    // Specify a single tuple with "foobar" content.
    std::vector<std::string> values(1, "foobar");

    // Create an instance of this option using the definition.
    ASSERT_NO_THROW(
        option = opt_def.optionFactory(Option::V4, 232, values);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    // Validate the value.
    OptionCustomPtr option_cast =
        boost::dynamic_pointer_cast<OptionCustom>(option);
    ASSERT_EQ(1, option_cast->getDataFieldsNum());
    OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_1_BYTE);
    ASSERT_NO_THROW(option_cast->readTuple(tuple));
    EXPECT_EQ("foobar", tuple.getText());
}    

// This test verifies that a definition of an option with a single DHCPv6
// tuple can be created and that the instance of this option can be
// created by specifying tuple value in the textual format.
TEST_F(OptionDefinitionTest, tuple6Tokenized) {
    OptionDefinition opt_def("option-tuple", 1000, "tuple");

    OptionPtr option;
    // Specify a single tuple with "foobar" content.
    std::vector<std::string> values(1, "foobar");

    // Create an instance of this option using the definition.
    ASSERT_NO_THROW(
        option = opt_def.optionFactory(Option::V6, 1000, values);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionCustom));

    // Validate the value.
    OptionCustomPtr option_cast =
        boost::dynamic_pointer_cast<OptionCustom>(option);
    ASSERT_EQ(1, option_cast->getDataFieldsNum());
    OpaqueDataTuple tuple(OpaqueDataTuple::LENGTH_2_BYTES);
    ASSERT_NO_THROW(option_cast->readTuple(tuple));
    EXPECT_EQ("foobar", tuple.getText());
}    

// This test verifies that a definition of an option with an array
// of DHCPv4 tuples can be created and that the instance of this option
// can be created by specifying multiple DHCPv4 tuples in the textual format.
TEST_F(OptionDefinitionTest, tuple4ArrayTokenized) {
    OptionDefinition opt_def("option-tuple", 232, "tuple", true);

    OptionPtr option;

    // Specify 3 tuples.
    std::vector<std::string> values;
    values.push_back("hello");
    values.push_back("the");
    values.push_back("world");

    // Create an instance of this option using the definition.
    ASSERT_NO_THROW(
        option = opt_def.optionFactory(Option::V4, 232, values);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionOpaqueDataTuples));

    // Validate the value.
    OptionOpaqueDataTuplesPtr option_cast =
        boost::dynamic_pointer_cast<OptionOpaqueDataTuples>(option);

    // There should be 3 tuples in this option.
    ASSERT_EQ(3, option_cast->getTuplesNum());

    // Check their values.
    OpaqueDataTuple tuple0 = option_cast->getTuple(0);
    EXPECT_EQ("hello", tuple0.getText());

    OpaqueDataTuple tuple1 = option_cast->getTuple(1);
    EXPECT_EQ("the", tuple1.getText());

    OpaqueDataTuple tuple2 = option_cast->getTuple(2);
    EXPECT_EQ("world", tuple2.getText());
}

// This test verifies that a definition of an option with an array
// of DHCPv6 tuples can be created and that the instance of this option
// can be created by specifying multiple DHCPv6 tuples in the textual format.
TEST_F(OptionDefinitionTest, tuple6ArrayTokenized) {
    OptionDefinition opt_def("option-tuple", 1000, "tuple", true);

    OptionPtr option;

    // Specify 3 tuples.
    std::vector<std::string> values;
    values.push_back("hello");
    values.push_back("the");
    values.push_back("world");

    // Create an instance of this option using the definition.
    ASSERT_NO_THROW(
        option = opt_def.optionFactory(Option::V6, 1000, values);
    );

    // Make sure that the returned option class is correct.
    const Option* optptr = option.get();
    ASSERT_TRUE(optptr);
    ASSERT_TRUE(typeid(*optptr) == typeid(OptionOpaqueDataTuples));

    // Validate the value.
    OptionOpaqueDataTuplesPtr option_cast =
        boost::dynamic_pointer_cast<OptionOpaqueDataTuples>(option);

    // There should be 3 tuples in this option.
    ASSERT_EQ(3, option_cast->getTuplesNum());

    // Check their values.
    OpaqueDataTuple tuple0 = option_cast->getTuple(0);
    EXPECT_EQ("hello", tuple0.getText());

    OpaqueDataTuple tuple1 = option_cast->getTuple(1);
    EXPECT_EQ("the", tuple1.getText());

    OpaqueDataTuple tuple2 = option_cast->getTuple(2);
    EXPECT_EQ("world", tuple2.getText());
}

} // anonymous namespace