1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
|
// Copyright (C) 2010-2013 Internet Systems Consortium, Inc. ("ISC")
//
// Permission to use, copy, modify, and/or distribute this software for any
// purpose with or without fee is hereby granted, provided that the above
// copyright notice and this permission notice appear in all copies.
//
// THE SOFTWARE IS PROVIDED "AS IS" AND ISC DISCLAIMS ALL WARRANTIES WITH
// REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
// AND FITNESS. IN NO EVENT SHALL ISC BE LIABLE FOR ANY SPECIAL, DIRECT,
// INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
// LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
// OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
// PERFORMANCE OF THIS SOFTWARE.
#include <string>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <vector>
#include <boost/lexical_cast.hpp>
#include <util/encode/base64.h>
#include <util/buffer.h>
#include <util/time_utilities.h>
#include <dns/messagerenderer.h>
#include <dns/name.h>
#include <dns/rrtype.h>
#include <dns/rdata.h>
#include <dns/rdataclass.h>
#include <dns/rdata/generic/detail/lexer_util.h>
#include <stdio.h>
#include <time.h>
using namespace std;
using namespace isc::util;
using namespace isc::util::encode;
using isc::dns::rdata::generic::detail::createNameFromLexer;
// BEGIN_ISC_NAMESPACE
// BEGIN_RDATA_NAMESPACE
namespace {
// This is the minimum necessary length of all wire-format RRSIG RDATA:
// - two 8-bit fields (algorithm and labels)
// - two 16-bit fields (covered and tag)
// - three 32-bit fields (original TTL, expire and inception)
const size_t RRSIG_MINIMUM_LEN = 2 * sizeof(uint8_t) + 2 * sizeof(uint16_t) +
3 * sizeof(uint32_t);
}
struct RRSIGImpl {
// straightforward representation of RRSIG RDATA fields
RRSIGImpl(const RRType& covered, uint8_t algorithm, uint8_t labels,
uint32_t originalttl, uint32_t timeexpire,
uint32_t timeinception, uint16_t tag, const Name& signer,
const vector<uint8_t>& signature) :
covered_(covered), algorithm_(algorithm), labels_(labels),
originalttl_(originalttl), timeexpire_(timeexpire),
timeinception_(timeinception), tag_(tag), signer_(signer),
signature_(signature)
{}
const RRType covered_;
uint8_t algorithm_;
uint8_t labels_;
uint32_t originalttl_;
uint32_t timeexpire_;
uint32_t timeinception_;
uint16_t tag_;
const Name signer_;
const vector<uint8_t> signature_;
};
// helper function for string and lexer constructors
RRSIGImpl*
RRSIG::constructFromLexer(MasterLexer& lexer, const Name* origin) {
const RRType covered(lexer.getNextToken(MasterToken::STRING).getString());
const uint32_t algorithm =
lexer.getNextToken(MasterToken::NUMBER).getNumber();
if (algorithm > 0xff) {
isc_throw(InvalidRdataText, "RRSIG algorithm out of range");
}
const uint32_t labels =
lexer.getNextToken(MasterToken::NUMBER).getNumber();
if (labels > 0xff) {
isc_throw(InvalidRdataText, "RRSIG labels out of range");
}
const uint32_t originalttl =
lexer.getNextToken(MasterToken::NUMBER).getNumber();
const uint32_t timeexpire =
timeFromText32(lexer.getNextToken(MasterToken::STRING).getString());
const uint32_t timeinception =
timeFromText32(lexer.getNextToken(MasterToken::STRING).getString());
const uint32_t tag =
lexer.getNextToken(MasterToken::NUMBER).getNumber();
if (tag > 0xffff) {
isc_throw(InvalidRdataText, "RRSIG key tag out of range");
}
const Name signer = createNameFromLexer(lexer, origin);
string signature_txt;
string signature_part;
// Whitespace is allowed within base64 text, so read to the end of input.
while (true) {
const MasterToken& token =
lexer.getNextToken(MasterToken::STRING, true);
if ((token.getType() == MasterToken::END_OF_FILE) ||
(token.getType() == MasterToken::END_OF_LINE)) {
break;
}
token.getString(signature_part);
signature_txt.append(signature_part);
}
lexer.ungetToken();
vector<uint8_t> signature;
// missing signature is okay
if (signature_txt.size() > 0) {
decodeBase64(signature_txt, signature);
}
return (new RRSIGImpl(covered, algorithm, labels,
originalttl, timeexpire, timeinception,
static_cast<uint16_t>(tag), signer, signature));
}
/// \brief Constructor from string.
///
/// The given string must represent a valid RRSIG RDATA. There can be extra
/// space characters at the beginning or end of the text (which are simply
/// ignored), but other extra text, including a new line, will make the
/// construction fail with an exception.
///
/// The Signer's Name must be absolute since there's no parameter that
/// specifies the origin name; if this is not absolute, \c MissingNameOrigin
/// exception will be thrown. This must not be represented as a quoted
/// string.
///
/// See the construction that takes \c MasterLexer for other fields.
///
/// \throw Others Exception from the Name constructor.
/// \throw InvalidRdataText Other general syntax errors.
RRSIG::RRSIG(const std::string& rrsig_str) :
impl_(NULL)
{
// We use auto_ptr here because if there is an exception in this
// constructor, the destructor is not called and there could be a
// leak of the RRSIGImpl that constructFromLexer() returns.
std::auto_ptr<RRSIGImpl> impl_ptr(NULL);
try {
std::istringstream iss(rrsig_str);
MasterLexer lexer;
lexer.pushSource(iss);
impl_ptr.reset(constructFromLexer(lexer, NULL));
if (lexer.getNextToken().getType() != MasterToken::END_OF_FILE) {
isc_throw(InvalidRdataText, "extra input text for RRSIG: "
<< rrsig_str);
}
} catch (const MasterLexer::LexerError& ex) {
isc_throw(InvalidRdataText, "Failed to construct RRSIG from '" <<
rrsig_str << "': " << ex.what());
}
impl_ = impl_ptr.release();
}
/// \brief Constructor with a context of MasterLexer.
///
/// The \c lexer should point to the beginning of valid textual representation
/// of an RRSIG RDATA. The Signer's Name fields can be non absolute if \c
/// origin is non NULL, in which case \c origin is used to make it absolute.
/// This must not be represented as a quoted string.
///
/// The Original TTL field is a valid decimal representation of an unsigned
/// 32-bit integer. Note that alternate textual representations of \c RRTTL,
/// such as "1H" for 3600 seconds, are not allowed here.
///
/// \throw MasterLexer::LexerError General parsing error such as missing field.
/// \throw Other Exceptions from the Name constructor if
/// construction of textual fields as these objects fail.
///
/// \param lexer A \c MasterLexer object parsing a master file for the
/// RDATA to be created
/// \param origin If non NULL, specifies the origin of Signer's Name when
/// it is non absolute.
RRSIG::RRSIG(MasterLexer& lexer, const Name* origin,
MasterLoader::Options, MasterLoaderCallbacks&) :
impl_(constructFromLexer(lexer, origin))
{
}
RRSIG::RRSIG(InputBuffer& buffer, size_t rdata_len) {
size_t pos = buffer.getPosition();
if (rdata_len < RRSIG_MINIMUM_LEN) {
isc_throw(InvalidRdataLength, "RRSIG too short");
}
RRType covered(buffer);
uint8_t algorithm = buffer.readUint8();
uint8_t labels = buffer.readUint8();
uint32_t originalttl = buffer.readUint32();
uint32_t timeexpire = buffer.readUint32();
uint32_t timeinception = buffer.readUint32();
uint16_t tag = buffer.readUint16();
Name signer(buffer);
// rdata_len must be sufficiently large to hold non empty signature data.
if (rdata_len <= buffer.getPosition() - pos) {
isc_throw(InvalidRdataLength, "RRSIG too short");
}
rdata_len -= (buffer.getPosition() - pos);
vector<uint8_t> signature(rdata_len);
buffer.readData(&signature[0], rdata_len);
impl_ = new RRSIGImpl(covered, algorithm, labels,
originalttl, timeexpire, timeinception, tag,
signer, signature);
}
RRSIG::RRSIG(const RRSIG& source) :
Rdata(), impl_(new RRSIGImpl(*source.impl_))
{}
RRSIG&
RRSIG::operator=(const RRSIG& source) {
if (impl_ == source.impl_) {
return (*this);
}
RRSIGImpl* newimpl = new RRSIGImpl(*source.impl_);
delete impl_;
impl_ = newimpl;
return (*this);
}
RRSIG::~RRSIG() {
delete impl_;
}
string
RRSIG::toText() const {
return (impl_->covered_.toText() +
" " + boost::lexical_cast<string>(static_cast<int>(impl_->algorithm_))
+ " " + boost::lexical_cast<string>(static_cast<int>(impl_->labels_))
+ " " + boost::lexical_cast<string>(impl_->originalttl_)
+ " " + timeToText32(impl_->timeexpire_)
+ " " + timeToText32(impl_->timeinception_)
+ " " + boost::lexical_cast<string>(impl_->tag_)
+ " " + impl_->signer_.toText()
+ " " + encodeBase64(impl_->signature_));
}
void
RRSIG::toWire(OutputBuffer& buffer) const {
impl_->covered_.toWire(buffer);
buffer.writeUint8(impl_->algorithm_);
buffer.writeUint8(impl_->labels_);
buffer.writeUint32(impl_->originalttl_);
buffer.writeUint32(impl_->timeexpire_);
buffer.writeUint32(impl_->timeinception_);
buffer.writeUint16(impl_->tag_);
impl_->signer_.toWire(buffer);
buffer.writeData(&impl_->signature_[0], impl_->signature_.size());
}
void
RRSIG::toWire(AbstractMessageRenderer& renderer) const {
impl_->covered_.toWire(renderer);
renderer.writeUint8(impl_->algorithm_);
renderer.writeUint8(impl_->labels_);
renderer.writeUint32(impl_->originalttl_);
renderer.writeUint32(impl_->timeexpire_);
renderer.writeUint32(impl_->timeinception_);
renderer.writeUint16(impl_->tag_);
renderer.writeName(impl_->signer_, false);
renderer.writeData(&impl_->signature_[0], impl_->signature_.size());
}
int
RRSIG::compare(const Rdata& other) const {
const RRSIG& other_rrsig = dynamic_cast<const RRSIG&>(other);
if (impl_->covered_.getCode() != other_rrsig.impl_->covered_.getCode()) {
return (impl_->covered_.getCode() <
other_rrsig.impl_->covered_.getCode() ? -1 : 1);
}
if (impl_->algorithm_ != other_rrsig.impl_->algorithm_) {
return (impl_->algorithm_ < other_rrsig.impl_->algorithm_ ? -1 : 1);
}
if (impl_->labels_ != other_rrsig.impl_->labels_) {
return (impl_->labels_ < other_rrsig.impl_->labels_ ? -1 : 1);
}
if (impl_->originalttl_ != other_rrsig.impl_->originalttl_) {
return (impl_->originalttl_ < other_rrsig.impl_->originalttl_ ?
-1 : 1);
}
if (impl_->timeexpire_ != other_rrsig.impl_->timeexpire_) {
return (impl_->timeexpire_ < other_rrsig.impl_->timeexpire_ ?
-1 : 1);
}
if (impl_->timeinception_ != other_rrsig.impl_->timeinception_) {
return (impl_->timeinception_ < other_rrsig.impl_->timeinception_ ?
-1 : 1);
}
if (impl_->tag_ != other_rrsig.impl_->tag_) {
return (impl_->tag_ < other_rrsig.impl_->tag_ ? -1 : 1);
}
int cmp = compareNames(impl_->signer_, other_rrsig.impl_->signer_);
if (cmp != 0) {
return (cmp);
}
size_t this_len = impl_->signature_.size();
size_t other_len = other_rrsig.impl_->signature_.size();
size_t cmplen = min(this_len, other_len);
cmp = memcmp(&impl_->signature_[0], &other_rrsig.impl_->signature_[0],
cmplen);
if (cmp != 0) {
return (cmp);
} else {
return ((this_len == other_len) ? 0 : (this_len < other_len) ? -1 : 1);
}
}
const RRType&
RRSIG::typeCovered() const {
return (impl_->covered_);
}
// END_RDATA_NAMESPACE
// END_ISC_NAMESPACE
|