1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
|
// Copyright (C) 2010-2016 Internet Systems Consortium, Inc. ("ISC")
//
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at http://mozilla.org/MPL/2.0/.
#include <config.h>
#include <stdint.h>
#include <sys/time.h>
#include <string>
#include <iomanip>
#include <iostream>
#include <sstream>
#include <stdio.h>
#include <time.h>
#include <exceptions/exceptions.h>
#include <util/time_utilities.h>
using namespace std;
namespace {
int days[12] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
inline bool
isLeap(const int y) {
return ((((y) % 4) == 0 && ((y) % 100) != 0) || ((y) % 400) == 0);
}
unsigned int
yearSecs(const int year) {
return ((isLeap(year) ? 366 : 365 ) * 86400);
}
unsigned int
monthSecs(const int month, const int year) {
return ((days[month] + ((month == 1 && isLeap(year)) ? 1 : 0 )) * 86400);
}
}
namespace isc {
namespace util {
string
timeToText64(uint64_t value) {
struct tm tm;
unsigned int secs;
// We cannot rely on gmtime() because time_t may not be of 64 bit
// integer. The following conversion logic is borrowed from BIND 9.
tm.tm_year = 70;
while ((secs = yearSecs(tm.tm_year + 1900)) <= value) {
value -= secs;
++tm.tm_year;
if (tm.tm_year + 1900 > 9999) {
isc_throw(InvalidTime,
"Time value out of range (year > 9999): " <<
tm.tm_year + 1900);
}
}
tm.tm_mon = 0;
while ((secs = monthSecs(tm.tm_mon, tm.tm_year + 1900)) <= value) {
value -= secs;
tm.tm_mon++;
}
tm.tm_mday = 1;
while (86400 <= value) {
value -= 86400;
++tm.tm_mday;
}
tm.tm_hour = 0;
while (3600 <= value) {
value -= 3600;
++tm.tm_hour;
}
tm.tm_min = 0;
while (60 <= value) {
value -= 60;
++tm.tm_min;
}
tm.tm_sec = value; // now t < 60, so this substitution is safe.
ostringstream oss;
oss << setfill('0')
<< setw(4) << tm.tm_year + 1900
<< setw(2) << tm.tm_mon + 1
<< setw(2) << tm.tm_mday
<< setw(2) << tm.tm_hour
<< setw(2) << tm.tm_min
<< setw(2) << tm.tm_sec;
return (oss.str());
}
// timeToText32() below uses the current system time. To test it with
// unusual current time values we introduce the following function pointer;
// when it's non NULL, we call it to get the (normally faked) current time.
// Otherwise we use the standard gettimeofday(2). This hook is specifically
// intended for testing purposes, so, even if it's visible outside of this
// library, it's not even declared in a header file.
namespace detail {
int64_t (*gettimeFunction)() = NULL;
int64_t
gettimeWrapper() {
if (gettimeFunction != NULL) {
return (gettimeFunction());
}
struct timeval now;
gettimeofday(&now, NULL);
return (static_cast<int64_t>(now.tv_sec));
}
}
string
timeToText32(const uint32_t value) {
// We first adjust the time to the closest epoch based on the current time.
// Note that the following variables must be signed in order to handle
// time until year 2038 correctly.
const int64_t start = detail::gettimeWrapper() - 0x7fffffff;
int64_t base = 0;
int64_t t;
while ((t = (base + value)) < start) {
base += 0x100000000LL;
}
// Then convert it to text.
return (timeToText64(t));
}
namespace {
const size_t DATE_LEN = 14; // YYYYMMDDHHmmSS
inline uint64_t ull(const int c) { return (static_cast<uint64_t>(c)); }
inline void
checkRange(const unsigned min, const unsigned max, const unsigned value,
const string& valname)
{
if ((value >= min) && (value <= max)) {
return;
}
isc_throw(InvalidTime, "Invalid " << valname << " value: " << value);
}
}
uint64_t
timeFromText64(const string& time_txt) {
// Confirm the source only consists digits. sscanf() allows some
// minor exceptions.
for (string::size_type i = 0; i < time_txt.length(); ++i) {
if (!isdigit(time_txt.at(i))) {
isc_throw(InvalidTime, "Couldn't convert non-numeric time value: "
<< time_txt);
}
}
unsigned year, month, day, hour, minute, second;
if (time_txt.length() != DATE_LEN ||
sscanf(time_txt.c_str(), "%4u%2u%2u%2u%2u%2u",
&year, &month, &day, &hour, &minute, &second) != 6)
{
isc_throw(InvalidTime, "Couldn't convert time value: " << time_txt);
}
checkRange(1970, 9999, year, "year");
checkRange(1, 12, month, "month");
checkRange(1, days[month - 1] + ((month == 2 && isLeap(year)) ? 1 : 0),
day, "day");
checkRange(0, 23, hour, "hour");
checkRange(0, 59, minute, "minute");
checkRange(0, 60, second, "second"); // 60 == leap second.
uint64_t timeval = second + (ull(60) * minute) + (ull(3600) * hour) +
((day - 1) * ull(86400));
for (unsigned m = 0; m < (month - 1); ++m) {
timeval += days[m] * ull(86400);
}
if (isLeap(year) && month > 2) {
timeval += ull(86400);
}
for (unsigned y = 1970; y < year; ++y) {
timeval += ((isLeap(y) ? 366 : 365) * ull(86400));
}
return (timeval);
}
uint32_t
timeFromText32(const string& time_txt) {
// The implicit conversion from uint64_t to uint32_t should just work here,
// because we only need to drop higher 32 bits.
return (timeFromText64(time_txt));
}
}
}
|