summaryrefslogtreecommitdiffstats
path: root/arch/arm/kernel/perf_event.c
diff options
context:
space:
mode:
authorJamie Iles <jamie.iles@picochip.com>2010-02-02 20:25:44 +0100
committerRussell King <rmk+kernel@arm.linux.org.uk>2010-02-12 18:25:54 +0100
commit1b8873a0c6ec511870c106c80b94658f857c47f2 (patch)
tree578c79e82435cf1325619087e283b52f7e511c51 /arch/arm/kernel/perf_event.c
parentARM: 5900/2: arm: enable support for software perf events (diff)
downloadlinux-1b8873a0c6ec511870c106c80b94658f857c47f2.tar.xz
linux-1b8873a0c6ec511870c106c80b94658f857c47f2.zip
ARM: 5902/4: arm/perfevents: implement perf event support for ARMv6
This patch implements support for ARMv6 performance counters in the Linux performance events subsystem. ARMv6 architectures that have the performance counters should enable HW_PERF_EVENTS to get hardware performance events support in addition to the software events. Note: only ARM Ltd ARM cores are supported. This implementation also provides an ARM PMU abstraction layer to allow ARMv7 and others to be supported in the future by adding new a 'struct arm_pmu'. Cc: Jean Pihet <jpihet@mvista.com> Cc: Will Deacon <will.deacon@arm.com> Signed-off-by: Jamie Iles <jamie.iles@picochip.com> Signed-off-by: Russell King <rmk+kernel@arm.linux.org.uk>
Diffstat (limited to 'arch/arm/kernel/perf_event.c')
-rw-r--r--arch/arm/kernel/perf_event.c1348
1 files changed, 1348 insertions, 0 deletions
diff --git a/arch/arm/kernel/perf_event.c b/arch/arm/kernel/perf_event.c
new file mode 100644
index 000000000000..7b1022b9aa52
--- /dev/null
+++ b/arch/arm/kernel/perf_event.c
@@ -0,0 +1,1348 @@
+#undef DEBUG
+
+/*
+ * ARM performance counter support.
+ *
+ * Copyright (C) 2009 picoChip Designs, Ltd., Jamie Iles
+ *
+ * This code is based on the sparc64 perf event code, which is in turn based
+ * on the x86 code. Callchain code is based on the ARM OProfile backtrace
+ * code.
+ */
+#define pr_fmt(fmt) "hw perfevents: " fmt
+
+#include <linux/interrupt.h>
+#include <linux/kernel.h>
+#include <linux/perf_event.h>
+#include <linux/spinlock.h>
+#include <linux/uaccess.h>
+
+#include <asm/cputype.h>
+#include <asm/irq.h>
+#include <asm/irq_regs.h>
+#include <asm/pmu.h>
+#include <asm/stacktrace.h>
+
+static const struct pmu_irqs *pmu_irqs;
+
+/*
+ * Hardware lock to serialize accesses to PMU registers. Needed for the
+ * read/modify/write sequences.
+ */
+DEFINE_SPINLOCK(pmu_lock);
+
+/*
+ * ARMv6 supports a maximum of 3 events, starting from index 1. If we add
+ * another platform that supports more, we need to increase this to be the
+ * largest of all platforms.
+ */
+#define ARMPMU_MAX_HWEVENTS 4
+
+/* The events for a given CPU. */
+struct cpu_hw_events {
+ /*
+ * The events that are active on the CPU for the given index. Index 0
+ * is reserved.
+ */
+ struct perf_event *events[ARMPMU_MAX_HWEVENTS];
+
+ /*
+ * A 1 bit for an index indicates that the counter is being used for
+ * an event. A 0 means that the counter can be used.
+ */
+ unsigned long used_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
+
+ /*
+ * A 1 bit for an index indicates that the counter is actively being
+ * used.
+ */
+ unsigned long active_mask[BITS_TO_LONGS(ARMPMU_MAX_HWEVENTS)];
+};
+DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events);
+
+struct arm_pmu {
+ const char *name;
+ irqreturn_t (*handle_irq)(int irq_num, void *dev);
+ void (*enable)(struct hw_perf_event *evt, int idx);
+ void (*disable)(struct hw_perf_event *evt, int idx);
+ int (*event_map)(int evt);
+ u64 (*raw_event)(u64);
+ int (*get_event_idx)(struct cpu_hw_events *cpuc,
+ struct hw_perf_event *hwc);
+ u32 (*read_counter)(int idx);
+ void (*write_counter)(int idx, u32 val);
+ void (*start)(void);
+ void (*stop)(void);
+ int num_events;
+ u64 max_period;
+};
+
+/* Set at runtime when we know what CPU type we are. */
+static const struct arm_pmu *armpmu;
+
+#define HW_OP_UNSUPPORTED 0xFFFF
+
+#define C(_x) \
+ PERF_COUNT_HW_CACHE_##_x
+
+#define CACHE_OP_UNSUPPORTED 0xFFFF
+
+static unsigned armpmu_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX];
+
+static int
+armpmu_map_cache_event(u64 config)
+{
+ unsigned int cache_type, cache_op, cache_result, ret;
+
+ cache_type = (config >> 0) & 0xff;
+ if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
+ return -EINVAL;
+
+ cache_op = (config >> 8) & 0xff;
+ if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
+ return -EINVAL;
+
+ cache_result = (config >> 16) & 0xff;
+ if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
+ return -EINVAL;
+
+ ret = (int)armpmu_perf_cache_map[cache_type][cache_op][cache_result];
+
+ if (ret == CACHE_OP_UNSUPPORTED)
+ return -ENOENT;
+
+ return ret;
+}
+
+static int
+armpmu_event_set_period(struct perf_event *event,
+ struct hw_perf_event *hwc,
+ int idx)
+{
+ s64 left = atomic64_read(&hwc->period_left);
+ s64 period = hwc->sample_period;
+ int ret = 0;
+
+ if (unlikely(left <= -period)) {
+ left = period;
+ atomic64_set(&hwc->period_left, left);
+ hwc->last_period = period;
+ ret = 1;
+ }
+
+ if (unlikely(left <= 0)) {
+ left += period;
+ atomic64_set(&hwc->period_left, left);
+ hwc->last_period = period;
+ ret = 1;
+ }
+
+ if (left > (s64)armpmu->max_period)
+ left = armpmu->max_period;
+
+ atomic64_set(&hwc->prev_count, (u64)-left);
+
+ armpmu->write_counter(idx, (u64)(-left) & 0xffffffff);
+
+ perf_event_update_userpage(event);
+
+ return ret;
+}
+
+static u64
+armpmu_event_update(struct perf_event *event,
+ struct hw_perf_event *hwc,
+ int idx)
+{
+ int shift = 64 - 32;
+ s64 prev_raw_count, new_raw_count;
+ s64 delta;
+
+again:
+ prev_raw_count = atomic64_read(&hwc->prev_count);
+ new_raw_count = armpmu->read_counter(idx);
+
+ if (atomic64_cmpxchg(&hwc->prev_count, prev_raw_count,
+ new_raw_count) != prev_raw_count)
+ goto again;
+
+ delta = (new_raw_count << shift) - (prev_raw_count << shift);
+ delta >>= shift;
+
+ atomic64_add(delta, &event->count);
+ atomic64_sub(delta, &hwc->period_left);
+
+ return new_raw_count;
+}
+
+static void
+armpmu_disable(struct perf_event *event)
+{
+ struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
+ struct hw_perf_event *hwc = &event->hw;
+ int idx = hwc->idx;
+
+ WARN_ON(idx < 0);
+
+ clear_bit(idx, cpuc->active_mask);
+ armpmu->disable(hwc, idx);
+
+ barrier();
+
+ armpmu_event_update(event, hwc, idx);
+ cpuc->events[idx] = NULL;
+ clear_bit(idx, cpuc->used_mask);
+
+ perf_event_update_userpage(event);
+}
+
+static void
+armpmu_read(struct perf_event *event)
+{
+ struct hw_perf_event *hwc = &event->hw;
+
+ /* Don't read disabled counters! */
+ if (hwc->idx < 0)
+ return;
+
+ armpmu_event_update(event, hwc, hwc->idx);
+}
+
+static void
+armpmu_unthrottle(struct perf_event *event)
+{
+ struct hw_perf_event *hwc = &event->hw;
+
+ /*
+ * Set the period again. Some counters can't be stopped, so when we
+ * were throttled we simply disabled the IRQ source and the counter
+ * may have been left counting. If we don't do this step then we may
+ * get an interrupt too soon or *way* too late if the overflow has
+ * happened since disabling.
+ */
+ armpmu_event_set_period(event, hwc, hwc->idx);
+ armpmu->enable(hwc, hwc->idx);
+}
+
+static int
+armpmu_enable(struct perf_event *event)
+{
+ struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
+ struct hw_perf_event *hwc = &event->hw;
+ int idx;
+ int err = 0;
+
+ /* If we don't have a space for the counter then finish early. */
+ idx = armpmu->get_event_idx(cpuc, hwc);
+ if (idx < 0) {
+ err = idx;
+ goto out;
+ }
+
+ /*
+ * If there is an event in the counter we are going to use then make
+ * sure it is disabled.
+ */
+ event->hw.idx = idx;
+ armpmu->disable(hwc, idx);
+ cpuc->events[idx] = event;
+ set_bit(idx, cpuc->active_mask);
+
+ /* Set the period for the event. */
+ armpmu_event_set_period(event, hwc, idx);
+
+ /* Enable the event. */
+ armpmu->enable(hwc, idx);
+
+ /* Propagate our changes to the userspace mapping. */
+ perf_event_update_userpage(event);
+
+out:
+ return err;
+}
+
+static struct pmu pmu = {
+ .enable = armpmu_enable,
+ .disable = armpmu_disable,
+ .unthrottle = armpmu_unthrottle,
+ .read = armpmu_read,
+};
+
+static int
+validate_event(struct cpu_hw_events *cpuc,
+ struct perf_event *event)
+{
+ struct hw_perf_event fake_event = event->hw;
+
+ if (event->pmu && event->pmu != &pmu)
+ return 0;
+
+ return armpmu->get_event_idx(cpuc, &fake_event) >= 0;
+}
+
+static int
+validate_group(struct perf_event *event)
+{
+ struct perf_event *sibling, *leader = event->group_leader;
+ struct cpu_hw_events fake_pmu;
+
+ memset(&fake_pmu, 0, sizeof(fake_pmu));
+
+ if (!validate_event(&fake_pmu, leader))
+ return -ENOSPC;
+
+ list_for_each_entry(sibling, &leader->sibling_list, group_entry) {
+ if (!validate_event(&fake_pmu, sibling))
+ return -ENOSPC;
+ }
+
+ if (!validate_event(&fake_pmu, event))
+ return -ENOSPC;
+
+ return 0;
+}
+
+static int
+armpmu_reserve_hardware(void)
+{
+ int i;
+ int err;
+
+ pmu_irqs = reserve_pmu();
+ if (IS_ERR(pmu_irqs)) {
+ pr_warning("unable to reserve pmu\n");
+ return PTR_ERR(pmu_irqs);
+ }
+
+ init_pmu();
+
+ if (pmu_irqs->num_irqs < 1) {
+ pr_err("no irqs for PMUs defined\n");
+ return -ENODEV;
+ }
+
+ for (i = 0; i < pmu_irqs->num_irqs; ++i) {
+ err = request_irq(pmu_irqs->irqs[i], armpmu->handle_irq,
+ IRQF_DISABLED, "armpmu", NULL);
+ if (err) {
+ pr_warning("unable to request IRQ%d for ARM "
+ "perf counters\n", pmu_irqs->irqs[i]);
+ break;
+ }
+ }
+
+ if (err) {
+ for (i = i - 1; i >= 0; --i)
+ free_irq(pmu_irqs->irqs[i], NULL);
+ release_pmu(pmu_irqs);
+ pmu_irqs = NULL;
+ }
+
+ return err;
+}
+
+static void
+armpmu_release_hardware(void)
+{
+ int i;
+
+ for (i = pmu_irqs->num_irqs - 1; i >= 0; --i)
+ free_irq(pmu_irqs->irqs[i], NULL);
+ armpmu->stop();
+
+ release_pmu(pmu_irqs);
+ pmu_irqs = NULL;
+}
+
+static atomic_t active_events = ATOMIC_INIT(0);
+static DEFINE_MUTEX(pmu_reserve_mutex);
+
+static void
+hw_perf_event_destroy(struct perf_event *event)
+{
+ if (atomic_dec_and_mutex_lock(&active_events, &pmu_reserve_mutex)) {
+ armpmu_release_hardware();
+ mutex_unlock(&pmu_reserve_mutex);
+ }
+}
+
+static int
+__hw_perf_event_init(struct perf_event *event)
+{
+ struct hw_perf_event *hwc = &event->hw;
+ int mapping, err;
+
+ /* Decode the generic type into an ARM event identifier. */
+ if (PERF_TYPE_HARDWARE == event->attr.type) {
+ mapping = armpmu->event_map(event->attr.config);
+ } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
+ mapping = armpmu_map_cache_event(event->attr.config);
+ } else if (PERF_TYPE_RAW == event->attr.type) {
+ mapping = armpmu->raw_event(event->attr.config);
+ } else {
+ pr_debug("event type %x not supported\n", event->attr.type);
+ return -EOPNOTSUPP;
+ }
+
+ if (mapping < 0) {
+ pr_debug("event %x:%llx not supported\n", event->attr.type,
+ event->attr.config);
+ return mapping;
+ }
+
+ /*
+ * Check whether we need to exclude the counter from certain modes.
+ * The ARM performance counters are on all of the time so if someone
+ * has asked us for some excludes then we have to fail.
+ */
+ if (event->attr.exclude_kernel || event->attr.exclude_user ||
+ event->attr.exclude_hv || event->attr.exclude_idle) {
+ pr_debug("ARM performance counters do not support "
+ "mode exclusion\n");
+ return -EPERM;
+ }
+
+ /*
+ * We don't assign an index until we actually place the event onto
+ * hardware. Use -1 to signify that we haven't decided where to put it
+ * yet. For SMP systems, each core has it's own PMU so we can't do any
+ * clever allocation or constraints checking at this point.
+ */
+ hwc->idx = -1;
+
+ /*
+ * Store the event encoding into the config_base field. config and
+ * event_base are unused as the only 2 things we need to know are
+ * the event mapping and the counter to use. The counter to use is
+ * also the indx and the config_base is the event type.
+ */
+ hwc->config_base = (unsigned long)mapping;
+ hwc->config = 0;
+ hwc->event_base = 0;
+
+ if (!hwc->sample_period) {
+ hwc->sample_period = armpmu->max_period;
+ hwc->last_period = hwc->sample_period;
+ atomic64_set(&hwc->period_left, hwc->sample_period);
+ }
+
+ err = 0;
+ if (event->group_leader != event) {
+ err = validate_group(event);
+ if (err)
+ return -EINVAL;
+ }
+
+ return err;
+}
+
+const struct pmu *
+hw_perf_event_init(struct perf_event *event)
+{
+ int err = 0;
+
+ if (!armpmu)
+ return ERR_PTR(-ENODEV);
+
+ event->destroy = hw_perf_event_destroy;
+
+ if (!atomic_inc_not_zero(&active_events)) {
+ if (atomic_read(&active_events) > perf_max_events) {
+ atomic_dec(&active_events);
+ return ERR_PTR(-ENOSPC);
+ }
+
+ mutex_lock(&pmu_reserve_mutex);
+ if (atomic_read(&active_events) == 0) {
+ err = armpmu_reserve_hardware();
+ }
+
+ if (!err)
+ atomic_inc(&active_events);
+ mutex_unlock(&pmu_reserve_mutex);
+ }
+
+ if (err)
+ return ERR_PTR(err);
+
+ err = __hw_perf_event_init(event);
+ if (err)
+ hw_perf_event_destroy(event);
+
+ return err ? ERR_PTR(err) : &pmu;
+}
+
+void
+hw_perf_enable(void)
+{
+ /* Enable all of the perf events on hardware. */
+ int idx;
+ struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
+
+ if (!armpmu)
+ return;
+
+ for (idx = 0; idx <= armpmu->num_events; ++idx) {
+ struct perf_event *event = cpuc->events[idx];
+
+ if (!event)
+ continue;
+
+ armpmu->enable(&event->hw, idx);
+ }
+
+ armpmu->start();
+}
+
+void
+hw_perf_disable(void)
+{
+ if (armpmu)
+ armpmu->stop();
+}
+
+/*
+ * ARMv6 Performance counter handling code.
+ *
+ * ARMv6 has 2 configurable performance counters and a single cycle counter.
+ * They all share a single reset bit but can be written to zero so we can use
+ * that for a reset.
+ *
+ * The counters can't be individually enabled or disabled so when we remove
+ * one event and replace it with another we could get spurious counts from the
+ * wrong event. However, we can take advantage of the fact that the
+ * performance counters can export events to the event bus, and the event bus
+ * itself can be monitored. This requires that we *don't* export the events to
+ * the event bus. The procedure for disabling a configurable counter is:
+ * - change the counter to count the ETMEXTOUT[0] signal (0x20). This
+ * effectively stops the counter from counting.
+ * - disable the counter's interrupt generation (each counter has it's
+ * own interrupt enable bit).
+ * Once stopped, the counter value can be written as 0 to reset.
+ *
+ * To enable a counter:
+ * - enable the counter's interrupt generation.
+ * - set the new event type.
+ *
+ * Note: the dedicated cycle counter only counts cycles and can't be
+ * enabled/disabled independently of the others. When we want to disable the
+ * cycle counter, we have to just disable the interrupt reporting and start
+ * ignoring that counter. When re-enabling, we have to reset the value and
+ * enable the interrupt.
+ */
+
+enum armv6_perf_types {
+ ARMV6_PERFCTR_ICACHE_MISS = 0x0,
+ ARMV6_PERFCTR_IBUF_STALL = 0x1,
+ ARMV6_PERFCTR_DDEP_STALL = 0x2,
+ ARMV6_PERFCTR_ITLB_MISS = 0x3,
+ ARMV6_PERFCTR_DTLB_MISS = 0x4,
+ ARMV6_PERFCTR_BR_EXEC = 0x5,
+ ARMV6_PERFCTR_BR_MISPREDICT = 0x6,
+ ARMV6_PERFCTR_INSTR_EXEC = 0x7,
+ ARMV6_PERFCTR_DCACHE_HIT = 0x9,
+ ARMV6_PERFCTR_DCACHE_ACCESS = 0xA,
+ ARMV6_PERFCTR_DCACHE_MISS = 0xB,
+ ARMV6_PERFCTR_DCACHE_WBACK = 0xC,
+ ARMV6_PERFCTR_SW_PC_CHANGE = 0xD,
+ ARMV6_PERFCTR_MAIN_TLB_MISS = 0xF,
+ ARMV6_PERFCTR_EXPL_D_ACCESS = 0x10,
+ ARMV6_PERFCTR_LSU_FULL_STALL = 0x11,
+ ARMV6_PERFCTR_WBUF_DRAINED = 0x12,
+ ARMV6_PERFCTR_CPU_CYCLES = 0xFF,
+ ARMV6_PERFCTR_NOP = 0x20,
+};
+
+enum armv6_counters {
+ ARMV6_CYCLE_COUNTER = 1,
+ ARMV6_COUNTER0,
+ ARMV6_COUNTER1,
+};
+
+/*
+ * The hardware events that we support. We do support cache operations but
+ * we have harvard caches and no way to combine instruction and data
+ * accesses/misses in hardware.
+ */
+static const unsigned armv6_perf_map[PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = ARMV6_PERFCTR_CPU_CYCLES,
+ [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6_PERFCTR_INSTR_EXEC,
+ [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
+ [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6_PERFCTR_BR_EXEC,
+ [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6_PERFCTR_BR_MISPREDICT,
+ [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
+};
+
+static const unsigned armv6_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+ [C(L1D)] = {
+ /*
+ * The performance counters don't differentiate between read
+ * and write accesses/misses so this isn't strictly correct,
+ * but it's the best we can do. Writes and reads get
+ * combined.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
+ [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = ARMV6_PERFCTR_DCACHE_ACCESS,
+ [C(RESULT_MISS)] = ARMV6_PERFCTR_DCACHE_MISS,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6_PERFCTR_ICACHE_MISS,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(DTLB)] = {
+ /*
+ * The ARM performance counters can count micro DTLB misses,
+ * micro ITLB misses and main TLB misses. There isn't an event
+ * for TLB misses, so use the micro misses here and if users
+ * want the main TLB misses they can use a raw counter.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6_PERFCTR_DTLB_MISS,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6_PERFCTR_ITLB_MISS,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(BPU)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+};
+
+enum armv6mpcore_perf_types {
+ ARMV6MPCORE_PERFCTR_ICACHE_MISS = 0x0,
+ ARMV6MPCORE_PERFCTR_IBUF_STALL = 0x1,
+ ARMV6MPCORE_PERFCTR_DDEP_STALL = 0x2,
+ ARMV6MPCORE_PERFCTR_ITLB_MISS = 0x3,
+ ARMV6MPCORE_PERFCTR_DTLB_MISS = 0x4,
+ ARMV6MPCORE_PERFCTR_BR_EXEC = 0x5,
+ ARMV6MPCORE_PERFCTR_BR_NOTPREDICT = 0x6,
+ ARMV6MPCORE_PERFCTR_BR_MISPREDICT = 0x7,
+ ARMV6MPCORE_PERFCTR_INSTR_EXEC = 0x8,
+ ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS = 0xA,
+ ARMV6MPCORE_PERFCTR_DCACHE_RDMISS = 0xB,
+ ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS = 0xC,
+ ARMV6MPCORE_PERFCTR_DCACHE_WRMISS = 0xD,
+ ARMV6MPCORE_PERFCTR_DCACHE_EVICTION = 0xE,
+ ARMV6MPCORE_PERFCTR_SW_PC_CHANGE = 0xF,
+ ARMV6MPCORE_PERFCTR_MAIN_TLB_MISS = 0x10,
+ ARMV6MPCORE_PERFCTR_EXPL_MEM_ACCESS = 0x11,
+ ARMV6MPCORE_PERFCTR_LSU_FULL_STALL = 0x12,
+ ARMV6MPCORE_PERFCTR_WBUF_DRAINED = 0x13,
+ ARMV6MPCORE_PERFCTR_CPU_CYCLES = 0xFF,
+};
+
+/*
+ * The hardware events that we support. We do support cache operations but
+ * we have harvard caches and no way to combine instruction and data
+ * accesses/misses in hardware.
+ */
+static const unsigned armv6mpcore_perf_map[PERF_COUNT_HW_MAX] = {
+ [PERF_COUNT_HW_CPU_CYCLES] = ARMV6MPCORE_PERFCTR_CPU_CYCLES,
+ [PERF_COUNT_HW_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_INSTR_EXEC,
+ [PERF_COUNT_HW_CACHE_REFERENCES] = HW_OP_UNSUPPORTED,
+ [PERF_COUNT_HW_CACHE_MISSES] = HW_OP_UNSUPPORTED,
+ [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = ARMV6MPCORE_PERFCTR_BR_EXEC,
+ [PERF_COUNT_HW_BRANCH_MISSES] = ARMV6MPCORE_PERFCTR_BR_MISPREDICT,
+ [PERF_COUNT_HW_BUS_CYCLES] = HW_OP_UNSUPPORTED,
+};
+
+static const unsigned armv6mpcore_perf_cache_map[PERF_COUNT_HW_CACHE_MAX]
+ [PERF_COUNT_HW_CACHE_OP_MAX]
+ [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
+ [C(L1D)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] =
+ ARMV6MPCORE_PERFCTR_DCACHE_RDACCESS,
+ [C(RESULT_MISS)] =
+ ARMV6MPCORE_PERFCTR_DCACHE_RDMISS,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] =
+ ARMV6MPCORE_PERFCTR_DCACHE_WRACCESS,
+ [C(RESULT_MISS)] =
+ ARMV6MPCORE_PERFCTR_DCACHE_WRMISS,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(L1I)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ICACHE_MISS,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(LL)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(DTLB)] = {
+ /*
+ * The ARM performance counters can count micro DTLB misses,
+ * micro ITLB misses and main TLB misses. There isn't an event
+ * for TLB misses, so use the micro misses here and if users
+ * want the main TLB misses they can use a raw counter.
+ */
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_DTLB_MISS,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(ITLB)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = ARMV6MPCORE_PERFCTR_ITLB_MISS,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+ [C(BPU)] = {
+ [C(OP_READ)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ [C(OP_WRITE)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ [C(OP_PREFETCH)] = {
+ [C(RESULT_ACCESS)] = CACHE_OP_UNSUPPORTED,
+ [C(RESULT_MISS)] = CACHE_OP_UNSUPPORTED,
+ },
+ },
+};
+
+static inline unsigned long
+armv6_pmcr_read(void)
+{
+ u32 val;
+ asm volatile("mrc p15, 0, %0, c15, c12, 0" : "=r"(val));
+ return val;
+}
+
+static inline void
+armv6_pmcr_write(unsigned long val)
+{
+ asm volatile("mcr p15, 0, %0, c15, c12, 0" : : "r"(val));
+}
+
+#define ARMV6_PMCR_ENABLE (1 << 0)
+#define ARMV6_PMCR_CTR01_RESET (1 << 1)
+#define ARMV6_PMCR_CCOUNT_RESET (1 << 2)
+#define ARMV6_PMCR_CCOUNT_DIV (1 << 3)
+#define ARMV6_PMCR_COUNT0_IEN (1 << 4)
+#define ARMV6_PMCR_COUNT1_IEN (1 << 5)
+#define ARMV6_PMCR_CCOUNT_IEN (1 << 6)
+#define ARMV6_PMCR_COUNT0_OVERFLOW (1 << 8)
+#define ARMV6_PMCR_COUNT1_OVERFLOW (1 << 9)
+#define ARMV6_PMCR_CCOUNT_OVERFLOW (1 << 10)
+#define ARMV6_PMCR_EVT_COUNT0_SHIFT 20
+#define ARMV6_PMCR_EVT_COUNT0_MASK (0xFF << ARMV6_PMCR_EVT_COUNT0_SHIFT)
+#define ARMV6_PMCR_EVT_COUNT1_SHIFT 12
+#define ARMV6_PMCR_EVT_COUNT1_MASK (0xFF << ARMV6_PMCR_EVT_COUNT1_SHIFT)
+
+#define ARMV6_PMCR_OVERFLOWED_MASK \
+ (ARMV6_PMCR_COUNT0_OVERFLOW | ARMV6_PMCR_COUNT1_OVERFLOW | \
+ ARMV6_PMCR_CCOUNT_OVERFLOW)
+
+static inline int
+armv6_pmcr_has_overflowed(unsigned long pmcr)
+{
+ return (pmcr & ARMV6_PMCR_OVERFLOWED_MASK);
+}
+
+static inline int
+armv6_pmcr_counter_has_overflowed(unsigned long pmcr,
+ enum armv6_counters counter)
+{
+ int ret = 0;
+
+ if (ARMV6_CYCLE_COUNTER == counter)
+ ret = pmcr & ARMV6_PMCR_CCOUNT_OVERFLOW;
+ else if (ARMV6_COUNTER0 == counter)
+ ret = pmcr & ARMV6_PMCR_COUNT0_OVERFLOW;
+ else if (ARMV6_COUNTER1 == counter)
+ ret = pmcr & ARMV6_PMCR_COUNT1_OVERFLOW;
+ else
+ WARN_ONCE(1, "invalid counter number (%d)\n", counter);
+
+ return ret;
+}
+
+static inline u32
+armv6pmu_read_counter(int counter)
+{
+ unsigned long value = 0;
+
+ if (ARMV6_CYCLE_COUNTER == counter)
+ asm volatile("mrc p15, 0, %0, c15, c12, 1" : "=r"(value));
+ else if (ARMV6_COUNTER0 == counter)
+ asm volatile("mrc p15, 0, %0, c15, c12, 2" : "=r"(value));
+ else if (ARMV6_COUNTER1 == counter)
+ asm volatile("mrc p15, 0, %0, c15, c12, 3" : "=r"(value));
+ else
+ WARN_ONCE(1, "invalid counter number (%d)\n", counter);
+
+ return value;
+}
+
+static inline void
+armv6pmu_write_counter(int counter,
+ u32 value)
+{
+ if (ARMV6_CYCLE_COUNTER == counter)
+ asm volatile("mcr p15, 0, %0, c15, c12, 1" : : "r"(value));
+ else if (ARMV6_COUNTER0 == counter)
+ asm volatile("mcr p15, 0, %0, c15, c12, 2" : : "r"(value));
+ else if (ARMV6_COUNTER1 == counter)
+ asm volatile("mcr p15, 0, %0, c15, c12, 3" : : "r"(value));
+ else
+ WARN_ONCE(1, "invalid counter number (%d)\n", counter);
+}
+
+void
+armv6pmu_enable_event(struct hw_perf_event *hwc,
+ int idx)
+{
+ unsigned long val, mask, evt, flags;
+
+ if (ARMV6_CYCLE_COUNTER == idx) {
+ mask = 0;
+ evt = ARMV6_PMCR_CCOUNT_IEN;
+ } else if (ARMV6_COUNTER0 == idx) {
+ mask = ARMV6_PMCR_EVT_COUNT0_MASK;
+ evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT0_SHIFT) |
+ ARMV6_PMCR_COUNT0_IEN;
+ } else if (ARMV6_COUNTER1 == idx) {
+ mask = ARMV6_PMCR_EVT_COUNT1_MASK;
+ evt = (hwc->config_base << ARMV6_PMCR_EVT_COUNT1_SHIFT) |
+ ARMV6_PMCR_COUNT1_IEN;
+ } else {
+ WARN_ONCE(1, "invalid counter number (%d)\n", idx);
+ return;
+ }
+
+ /*
+ * Mask out the current event and set the counter to count the event
+ * that we're interested in.
+ */
+ spin_lock_irqsave(&pmu_lock, flags);
+ val = armv6_pmcr_read();
+ val &= ~mask;
+ val |= evt;
+ armv6_pmcr_write(val);
+ spin_unlock_irqrestore(&pmu_lock, flags);
+}
+
+static irqreturn_t
+armv6pmu_handle_irq(int irq_num,
+ void *dev)
+{
+ unsigned long pmcr = armv6_pmcr_read();
+ struct perf_sample_data data;
+ struct cpu_hw_events *cpuc;
+ struct pt_regs *regs;
+ int idx;
+
+ if (!armv6_pmcr_has_overflowed(pmcr))
+ return IRQ_NONE;
+
+ regs = get_irq_regs();
+
+ /*
+ * The interrupts are cleared by writing the overflow flags back to
+ * the control register. All of the other bits don't have any effect
+ * if they are rewritten, so write the whole value back.
+ */
+ armv6_pmcr_write(pmcr);
+
+ data.addr = 0;
+
+ cpuc = &__get_cpu_var(cpu_hw_events);
+ for (idx = 0; idx <= armpmu->num_events; ++idx) {
+ struct perf_event *event = cpuc->events[idx];
+ struct hw_perf_event *hwc;
+
+ if (!test_bit(idx, cpuc->active_mask))
+ continue;
+
+ /*
+ * We have a single interrupt for all counters. Check that
+ * each counter has overflowed before we process it.
+ */
+ if (!armv6_pmcr_counter_has_overflowed(pmcr, idx))
+ continue;
+
+ hwc = &event->hw;
+ armpmu_event_update(event, hwc, idx);
+ data.period = event->hw.last_period;
+ if (!armpmu_event_set_period(event, hwc, idx))
+ continue;
+
+ if (perf_event_overflow(event, 0, &data, regs))
+ armpmu->disable(hwc, idx);
+ }
+
+ /*
+ * Handle the pending perf events.
+ *
+ * Note: this call *must* be run with interrupts enabled. For
+ * platforms that can have the PMU interrupts raised as a PMI, this
+ * will not work.
+ */
+ perf_event_do_pending();
+
+ return IRQ_HANDLED;
+}
+
+static void
+armv6pmu_start(void)
+{
+ unsigned long flags, val;
+
+ spin_lock_irqsave(&pmu_lock, flags);
+ val = armv6_pmcr_read();
+ val |= ARMV6_PMCR_ENABLE;
+ armv6_pmcr_write(val);
+ spin_unlock_irqrestore(&pmu_lock, flags);
+}
+
+void
+armv6pmu_stop(void)
+{
+ unsigned long flags, val;
+
+ spin_lock_irqsave(&pmu_lock, flags);
+ val = armv6_pmcr_read();
+ val &= ~ARMV6_PMCR_ENABLE;
+ armv6_pmcr_write(val);
+ spin_unlock_irqrestore(&pmu_lock, flags);
+}
+
+static inline int
+armv6pmu_event_map(int config)
+{
+ int mapping = armv6_perf_map[config];
+ if (HW_OP_UNSUPPORTED == mapping)
+ mapping = -EOPNOTSUPP;
+ return mapping;
+}
+
+static inline int
+armv6mpcore_pmu_event_map(int config)
+{
+ int mapping = armv6mpcore_perf_map[config];
+ if (HW_OP_UNSUPPORTED == mapping)
+ mapping = -EOPNOTSUPP;
+ return mapping;
+}
+
+static u64
+armv6pmu_raw_event(u64 config)
+{
+ return config & 0xff;
+}
+
+static int
+armv6pmu_get_event_idx(struct cpu_hw_events *cpuc,
+ struct hw_perf_event *event)
+{
+ /* Always place a cycle counter into the cycle counter. */
+ if (ARMV6_PERFCTR_CPU_CYCLES == event->config_base) {
+ if (test_and_set_bit(ARMV6_CYCLE_COUNTER, cpuc->used_mask))
+ return -EAGAIN;
+
+ return ARMV6_CYCLE_COUNTER;
+ } else {
+ /*
+ * For anything other than a cycle counter, try and use
+ * counter0 and counter1.
+ */
+ if (!test_and_set_bit(ARMV6_COUNTER1, cpuc->used_mask)) {
+ return ARMV6_COUNTER1;
+ }
+
+ if (!test_and_set_bit(ARMV6_COUNTER0, cpuc->used_mask)) {
+ return ARMV6_COUNTER0;
+ }
+
+ /* The counters are all in use. */
+ return -EAGAIN;
+ }
+}
+
+static void
+armv6pmu_disable_event(struct hw_perf_event *hwc,
+ int idx)
+{
+ unsigned long val, mask, evt, flags;
+
+ if (ARMV6_CYCLE_COUNTER == idx) {
+ mask = ARMV6_PMCR_CCOUNT_IEN;
+ evt = 0;
+ } else if (ARMV6_COUNTER0 == idx) {
+ mask = ARMV6_PMCR_COUNT0_IEN | ARMV6_PMCR_EVT_COUNT0_MASK;
+ evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT0_SHIFT;
+ } else if (ARMV6_COUNTER1 == idx) {
+ mask = ARMV6_PMCR_COUNT1_IEN | ARMV6_PMCR_EVT_COUNT1_MASK;
+ evt = ARMV6_PERFCTR_NOP << ARMV6_PMCR_EVT_COUNT1_SHIFT;
+ } else {
+ WARN_ONCE(1, "invalid counter number (%d)\n", idx);
+ return;
+ }
+
+ /*
+ * Mask out the current event and set the counter to count the number
+ * of ETM bus signal assertion cycles. The external reporting should
+ * be disabled and so this should never increment.
+ */
+ spin_lock_irqsave(&pmu_lock, flags);
+ val = armv6_pmcr_read();
+ val &= ~mask;
+ val |= evt;
+ armv6_pmcr_write(val);
+ spin_unlock_irqrestore(&pmu_lock, flags);
+}
+
+static void
+armv6mpcore_pmu_disable_event(struct hw_perf_event *hwc,
+ int idx)
+{
+ unsigned long val, mask, flags, evt = 0;
+
+ if (ARMV6_CYCLE_COUNTER == idx) {
+ mask = ARMV6_PMCR_CCOUNT_IEN;
+ } else if (ARMV6_COUNTER0 == idx) {
+ mask = ARMV6_PMCR_COUNT0_IEN;
+ } else if (ARMV6_COUNTER1 == idx) {
+ mask = ARMV6_PMCR_COUNT1_IEN;
+ } else {
+ WARN_ONCE(1, "invalid counter number (%d)\n", idx);
+ return;
+ }
+
+ /*
+ * Unlike UP ARMv6, we don't have a way of stopping the counters. We
+ * simply disable the interrupt reporting.
+ */
+ spin_lock_irqsave(&pmu_lock, flags);
+ val = armv6_pmcr_read();
+ val &= ~mask;
+ val |= evt;
+ armv6_pmcr_write(val);
+ spin_unlock_irqrestore(&pmu_lock, flags);
+}
+
+static const struct arm_pmu armv6pmu = {
+ .name = "v6",
+ .handle_irq = armv6pmu_handle_irq,
+ .enable = armv6pmu_enable_event,
+ .disable = armv6pmu_disable_event,
+ .event_map = armv6pmu_event_map,
+ .raw_event = armv6pmu_raw_event,
+ .read_counter = armv6pmu_read_counter,
+ .write_counter = armv6pmu_write_counter,
+ .get_event_idx = armv6pmu_get_event_idx,
+ .start = armv6pmu_start,
+ .stop = armv6pmu_stop,
+ .num_events = 3,
+ .max_period = (1LLU << 32) - 1,
+};
+
+/*
+ * ARMv6mpcore is almost identical to single core ARMv6 with the exception
+ * that some of the events have different enumerations and that there is no
+ * *hack* to stop the programmable counters. To stop the counters we simply
+ * disable the interrupt reporting and update the event. When unthrottling we
+ * reset the period and enable the interrupt reporting.
+ */
+static const struct arm_pmu armv6mpcore_pmu = {
+ .name = "v6mpcore",
+ .handle_irq = armv6pmu_handle_irq,
+ .enable = armv6pmu_enable_event,
+ .disable = armv6mpcore_pmu_disable_event,
+ .event_map = armv6mpcore_pmu_event_map,
+ .raw_event = armv6pmu_raw_event,
+ .read_counter = armv6pmu_read_counter,
+ .write_counter = armv6pmu_write_counter,
+ .get_event_idx = armv6pmu_get_event_idx,
+ .start = armv6pmu_start,
+ .stop = armv6pmu_stop,
+ .num_events = 3,
+ .max_period = (1LLU << 32) - 1,
+};
+
+static int __init
+init_hw_perf_events(void)
+{
+ unsigned long cpuid = read_cpuid_id();
+ unsigned long implementor = (cpuid & 0xFF000000) >> 24;
+ unsigned long part_number = (cpuid & 0xFFF0);
+
+ /* We only support ARM CPUs implemented by ARM at the moment. */
+ if (0x41 == implementor) {
+ switch (part_number) {
+ case 0xB360: /* ARM1136 */
+ case 0xB560: /* ARM1156 */
+ case 0xB760: /* ARM1176 */
+ armpmu = &armv6pmu;
+ memcpy(armpmu_perf_cache_map, armv6_perf_cache_map,
+ sizeof(armv6_perf_cache_map));
+ perf_max_events = armv6pmu.num_events;
+ break;
+ case 0xB020: /* ARM11mpcore */
+ armpmu = &armv6mpcore_pmu;
+ memcpy(armpmu_perf_cache_map,
+ armv6mpcore_perf_cache_map,
+ sizeof(armv6mpcore_perf_cache_map));
+ perf_max_events = armv6mpcore_pmu.num_events;
+ break;
+ default:
+ pr_info("no hardware support available\n");
+ perf_max_events = -1;
+ }
+ }
+
+ if (armpmu)
+ pr_info("enabled with %s PMU driver\n",
+ armpmu->name);
+
+ return 0;
+}
+arch_initcall(init_hw_perf_events);
+
+/*
+ * Callchain handling code.
+ */
+static inline void
+callchain_store(struct perf_callchain_entry *entry,
+ u64 ip)
+{
+ if (entry->nr < PERF_MAX_STACK_DEPTH)
+ entry->ip[entry->nr++] = ip;
+}
+
+/*
+ * The registers we're interested in are at the end of the variable
+ * length saved register structure. The fp points at the end of this
+ * structure so the address of this struct is:
+ * (struct frame_tail *)(xxx->fp)-1
+ *
+ * This code has been adapted from the ARM OProfile support.
+ */
+struct frame_tail {
+ struct frame_tail *fp;
+ unsigned long sp;
+ unsigned long lr;
+} __attribute__((packed));
+
+/*
+ * Get the return address for a single stackframe and return a pointer to the
+ * next frame tail.
+ */
+static struct frame_tail *
+user_backtrace(struct frame_tail *tail,
+ struct perf_callchain_entry *entry)
+{
+ struct frame_tail buftail;
+
+ /* Also check accessibility of one struct frame_tail beyond */
+ if (!access_ok(VERIFY_READ, tail, sizeof(buftail)))
+ return NULL;
+ if (__copy_from_user_inatomic(&buftail, tail, sizeof(buftail)))
+ return NULL;
+
+ callchain_store(entry, buftail.lr);
+
+ /*
+ * Frame pointers should strictly progress back up the stack
+ * (towards higher addresses).
+ */
+ if (tail >= buftail.fp)
+ return NULL;
+
+ return buftail.fp - 1;
+}
+
+static void
+perf_callchain_user(struct pt_regs *regs,
+ struct perf_callchain_entry *entry)
+{
+ struct frame_tail *tail;
+
+ callchain_store(entry, PERF_CONTEXT_USER);
+
+ if (!user_mode(regs))
+ regs = task_pt_regs(current);
+
+ tail = (struct frame_tail *)regs->ARM_fp - 1;
+
+ while (tail && !((unsigned long)tail & 0x3))
+ tail = user_backtrace(tail, entry);
+}
+
+/*
+ * Gets called by walk_stackframe() for every stackframe. This will be called
+ * whist unwinding the stackframe and is like a subroutine return so we use
+ * the PC.
+ */
+static int
+callchain_trace(struct stackframe *fr,
+ void *data)
+{
+ struct perf_callchain_entry *entry = data;
+ callchain_store(entry, fr->pc);
+ return 0;
+}
+
+static void
+perf_callchain_kernel(struct pt_regs *regs,
+ struct perf_callchain_entry *entry)
+{
+ struct stackframe fr;
+
+ callchain_store(entry, PERF_CONTEXT_KERNEL);
+ fr.fp = regs->ARM_fp;
+ fr.sp = regs->ARM_sp;
+ fr.lr = regs->ARM_lr;
+ fr.pc = regs->ARM_pc;
+ walk_stackframe(&fr, callchain_trace, entry);
+}
+
+static void
+perf_do_callchain(struct pt_regs *regs,
+ struct perf_callchain_entry *entry)
+{
+ int is_user;
+
+ if (!regs)
+ return;
+
+ is_user = user_mode(regs);
+
+ if (!current || !current->pid)
+ return;
+
+ if (is_user && current->state != TASK_RUNNING)
+ return;
+
+ if (!is_user)
+ perf_callchain_kernel(regs, entry);
+
+ if (current->mm)
+ perf_callchain_user(regs, entry);
+}
+
+static DEFINE_PER_CPU(struct perf_callchain_entry, pmc_irq_entry);
+
+struct perf_callchain_entry *
+perf_callchain(struct pt_regs *regs)
+{
+ struct perf_callchain_entry *entry = &__get_cpu_var(pmc_irq_entry);
+
+ entry->nr = 0;
+ perf_do_callchain(regs, entry);
+ return entry;
+}