diff options
author | Mauro Carvalho Chehab <mchehab@redhat.com> | 2012-08-14 04:13:41 +0200 |
---|---|---|
committer | Mauro Carvalho Chehab <mchehab@redhat.com> | 2012-08-14 04:13:41 +0200 |
commit | 9a0bf528b4d66b605f02634236da085595c22101 (patch) | |
tree | e9ff008ff15c3ee5add6d41173ee5e61939480dd /drivers/media/dvb-frontends/dib0090.c | |
parent | [media] dvb: move the dvb core one level up (diff) | |
download | linux-9a0bf528b4d66b605f02634236da085595c22101.tar.xz linux-9a0bf528b4d66b605f02634236da085595c22101.zip |
[media] move the dvb/frontends to drivers/media/dvb-frontends
Raise the DVB frontends one level up, as the intention is to remove
the drivers/media/dvb directory.
Signed-off-by: Mauro Carvalho Chehab <mchehab@redhat.com>
Diffstat (limited to 'drivers/media/dvb-frontends/dib0090.c')
-rw-r--r-- | drivers/media/dvb-frontends/dib0090.c | 2686 |
1 files changed, 2686 insertions, 0 deletions
diff --git a/drivers/media/dvb-frontends/dib0090.c b/drivers/media/dvb-frontends/dib0090.c new file mode 100644 index 000000000000..d9fe60b4be48 --- /dev/null +++ b/drivers/media/dvb-frontends/dib0090.c @@ -0,0 +1,2686 @@ +/* + * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner. + * + * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/) + * + * This program is free software; you can redistribute it and/or + * modify it under the terms of the GNU General Public License as + * published by the Free Software Foundation; either version 2 of the + * License, or (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program; if not, write to the Free Software + * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. + * + * + * This code is more or less generated from another driver, please + * excuse some codingstyle oddities. + * + */ + +#include <linux/kernel.h> +#include <linux/slab.h> +#include <linux/i2c.h> +#include <linux/mutex.h> + +#include "dvb_frontend.h" + +#include "dib0090.h" +#include "dibx000_common.h" + +static int debug; +module_param(debug, int, 0644); +MODULE_PARM_DESC(debug, "turn on debugging (default: 0)"); + +#define dprintk(args...) do { \ + if (debug) { \ + printk(KERN_DEBUG "DiB0090: "); \ + printk(args); \ + printk("\n"); \ + } \ +} while (0) + +#define CONFIG_SYS_DVBT +#define CONFIG_SYS_ISDBT +#define CONFIG_BAND_CBAND +#define CONFIG_BAND_VHF +#define CONFIG_BAND_UHF +#define CONFIG_DIB0090_USE_PWM_AGC + +#define EN_LNA0 0x8000 +#define EN_LNA1 0x4000 +#define EN_LNA2 0x2000 +#define EN_LNA3 0x1000 +#define EN_MIX0 0x0800 +#define EN_MIX1 0x0400 +#define EN_MIX2 0x0200 +#define EN_MIX3 0x0100 +#define EN_IQADC 0x0040 +#define EN_PLL 0x0020 +#define EN_TX 0x0010 +#define EN_BB 0x0008 +#define EN_LO 0x0004 +#define EN_BIAS 0x0001 + +#define EN_IQANA 0x0002 +#define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */ +#define EN_CRYSTAL 0x0002 + +#define EN_UHF 0x22E9 +#define EN_VHF 0x44E9 +#define EN_LBD 0x11E9 +#define EN_SBD 0x44E9 +#define EN_CAB 0x88E9 + +/* Calibration defines */ +#define DC_CAL 0x1 +#define WBD_CAL 0x2 +#define TEMP_CAL 0x4 +#define CAPTRIM_CAL 0x8 + +#define KROSUS_PLL_LOCKED 0x800 +#define KROSUS 0x2 + +/* Use those defines to identify SOC version */ +#define SOC 0x02 +#define SOC_7090_P1G_11R1 0x82 +#define SOC_7090_P1G_21R1 0x8a +#define SOC_8090_P1G_11R1 0x86 +#define SOC_8090_P1G_21R1 0x8e + +/* else use thos ones to check */ +#define P1A_B 0x0 +#define P1C 0x1 +#define P1D_E_F 0x3 +#define P1G 0x7 +#define P1G_21R2 0xf + +#define MP001 0x1 /* Single 9090/8096 */ +#define MP005 0x4 /* Single Sband */ +#define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */ +#define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */ + +#define pgm_read_word(w) (*w) + +struct dc_calibration; + +struct dib0090_tuning { + u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ + u8 switch_trim; + u8 lna_tune; + u16 lna_bias; + u16 v2i; + u16 mix; + u16 load; + u16 tuner_enable; +}; + +struct dib0090_pll { + u32 max_freq; /* for every frequency less than or equal to that field: this information is correct */ + u8 vco_band; + u8 hfdiv_code; + u8 hfdiv; + u8 topresc; +}; + +struct dib0090_identity { + u8 version; + u8 product; + u8 p1g; + u8 in_soc; +}; + +struct dib0090_state { + struct i2c_adapter *i2c; + struct dvb_frontend *fe; + const struct dib0090_config *config; + + u8 current_band; + enum frontend_tune_state tune_state; + u32 current_rf; + + u16 wbd_offset; + s16 wbd_target; /* in dB */ + + s16 rf_gain_limit; /* take-over-point: where to split between bb and rf gain */ + s16 current_gain; /* keeps the currently programmed gain */ + u8 agc_step; /* new binary search */ + + u16 gain[2]; /* for channel monitoring */ + + const u16 *rf_ramp; + const u16 *bb_ramp; + + /* for the software AGC ramps */ + u16 bb_1_def; + u16 rf_lt_def; + u16 gain_reg[4]; + + /* for the captrim/dc-offset search */ + s8 step; + s16 adc_diff; + s16 min_adc_diff; + + s8 captrim; + s8 fcaptrim; + + const struct dc_calibration *dc; + u16 bb6, bb7; + + const struct dib0090_tuning *current_tune_table_index; + const struct dib0090_pll *current_pll_table_index; + + u8 tuner_is_tuned; + u8 agc_freeze; + + struct dib0090_identity identity; + + u32 rf_request; + u8 current_standard; + + u8 calibrate; + u32 rest; + u16 bias; + s16 temperature; + + u8 wbd_calibration_gain; + const struct dib0090_wbd_slope *current_wbd_table; + u16 wbdmux; + + /* for the I2C transfer */ + struct i2c_msg msg[2]; + u8 i2c_write_buffer[3]; + u8 i2c_read_buffer[2]; + struct mutex i2c_buffer_lock; +}; + +struct dib0090_fw_state { + struct i2c_adapter *i2c; + struct dvb_frontend *fe; + struct dib0090_identity identity; + const struct dib0090_config *config; + + /* for the I2C transfer */ + struct i2c_msg msg; + u8 i2c_write_buffer[2]; + u8 i2c_read_buffer[2]; + struct mutex i2c_buffer_lock; +}; + +static u16 dib0090_read_reg(struct dib0090_state *state, u8 reg) +{ + u16 ret; + + if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { + dprintk("could not acquire lock"); + return 0; + } + + state->i2c_write_buffer[0] = reg; + + memset(state->msg, 0, 2 * sizeof(struct i2c_msg)); + state->msg[0].addr = state->config->i2c_address; + state->msg[0].flags = 0; + state->msg[0].buf = state->i2c_write_buffer; + state->msg[0].len = 1; + state->msg[1].addr = state->config->i2c_address; + state->msg[1].flags = I2C_M_RD; + state->msg[1].buf = state->i2c_read_buffer; + state->msg[1].len = 2; + + if (i2c_transfer(state->i2c, state->msg, 2) != 2) { + printk(KERN_WARNING "DiB0090 I2C read failed\n"); + ret = 0; + } else + ret = (state->i2c_read_buffer[0] << 8) + | state->i2c_read_buffer[1]; + + mutex_unlock(&state->i2c_buffer_lock); + return ret; +} + +static int dib0090_write_reg(struct dib0090_state *state, u32 reg, u16 val) +{ + int ret; + + if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { + dprintk("could not acquire lock"); + return -EINVAL; + } + + state->i2c_write_buffer[0] = reg & 0xff; + state->i2c_write_buffer[1] = val >> 8; + state->i2c_write_buffer[2] = val & 0xff; + + memset(state->msg, 0, sizeof(struct i2c_msg)); + state->msg[0].addr = state->config->i2c_address; + state->msg[0].flags = 0; + state->msg[0].buf = state->i2c_write_buffer; + state->msg[0].len = 3; + + if (i2c_transfer(state->i2c, state->msg, 1) != 1) { + printk(KERN_WARNING "DiB0090 I2C write failed\n"); + ret = -EREMOTEIO; + } else + ret = 0; + + mutex_unlock(&state->i2c_buffer_lock); + return ret; +} + +static u16 dib0090_fw_read_reg(struct dib0090_fw_state *state, u8 reg) +{ + u16 ret; + + if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { + dprintk("could not acquire lock"); + return 0; + } + + state->i2c_write_buffer[0] = reg; + + memset(&state->msg, 0, sizeof(struct i2c_msg)); + state->msg.addr = reg; + state->msg.flags = I2C_M_RD; + state->msg.buf = state->i2c_read_buffer; + state->msg.len = 2; + if (i2c_transfer(state->i2c, &state->msg, 1) != 1) { + printk(KERN_WARNING "DiB0090 I2C read failed\n"); + ret = 0; + } else + ret = (state->i2c_read_buffer[0] << 8) + | state->i2c_read_buffer[1]; + + mutex_unlock(&state->i2c_buffer_lock); + return ret; +} + +static int dib0090_fw_write_reg(struct dib0090_fw_state *state, u8 reg, u16 val) +{ + int ret; + + if (mutex_lock_interruptible(&state->i2c_buffer_lock) < 0) { + dprintk("could not acquire lock"); + return -EINVAL; + } + + state->i2c_write_buffer[0] = val >> 8; + state->i2c_write_buffer[1] = val & 0xff; + + memset(&state->msg, 0, sizeof(struct i2c_msg)); + state->msg.addr = reg; + state->msg.flags = 0; + state->msg.buf = state->i2c_write_buffer; + state->msg.len = 2; + if (i2c_transfer(state->i2c, &state->msg, 1) != 1) { + printk(KERN_WARNING "DiB0090 I2C write failed\n"); + ret = -EREMOTEIO; + } else + ret = 0; + + mutex_unlock(&state->i2c_buffer_lock); + return ret; +} + +#define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0) +#define ADC_TARGET -220 +#define GAIN_ALPHA 5 +#define WBD_ALPHA 6 +#define LPF 100 +static void dib0090_write_regs(struct dib0090_state *state, u8 r, const u16 * b, u8 c) +{ + do { + dib0090_write_reg(state, r++, *b++); + } while (--c); +} + +static int dib0090_identify(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + u16 v; + struct dib0090_identity *identity = &state->identity; + + v = dib0090_read_reg(state, 0x1a); + + identity->p1g = 0; + identity->in_soc = 0; + + dprintk("Tuner identification (Version = 0x%04x)", v); + + /* without PLL lock info */ + v &= ~KROSUS_PLL_LOCKED; + + identity->version = v & 0xff; + identity->product = (v >> 8) & 0xf; + + if (identity->product != KROSUS) + goto identification_error; + + if ((identity->version & 0x3) == SOC) { + identity->in_soc = 1; + switch (identity->version) { + case SOC_8090_P1G_11R1: + dprintk("SOC 8090 P1-G11R1 Has been detected"); + identity->p1g = 1; + break; + case SOC_8090_P1G_21R1: + dprintk("SOC 8090 P1-G21R1 Has been detected"); + identity->p1g = 1; + break; + case SOC_7090_P1G_11R1: + dprintk("SOC 7090 P1-G11R1 Has been detected"); + identity->p1g = 1; + break; + case SOC_7090_P1G_21R1: + dprintk("SOC 7090 P1-G21R1 Has been detected"); + identity->p1g = 1; + break; + default: + goto identification_error; + } + } else { + switch ((identity->version >> 5) & 0x7) { + case MP001: + dprintk("MP001 : 9090/8096"); + break; + case MP005: + dprintk("MP005 : Single Sband"); + break; + case MP008: + dprintk("MP008 : diversity VHF-UHF-LBAND"); + break; + case MP009: + dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND"); + break; + default: + goto identification_error; + } + + switch (identity->version & 0x1f) { + case P1G_21R2: + dprintk("P1G_21R2 detected"); + identity->p1g = 1; + break; + case P1G: + dprintk("P1G detected"); + identity->p1g = 1; + break; + case P1D_E_F: + dprintk("P1D/E/F detected"); + break; + case P1C: + dprintk("P1C detected"); + break; + case P1A_B: + dprintk("P1-A/B detected: driver is deactivated - not available"); + goto identification_error; + break; + default: + goto identification_error; + } + } + + return 0; + +identification_error: + return -EIO; +} + +static int dib0090_fw_identify(struct dvb_frontend *fe) +{ + struct dib0090_fw_state *state = fe->tuner_priv; + struct dib0090_identity *identity = &state->identity; + + u16 v = dib0090_fw_read_reg(state, 0x1a); + identity->p1g = 0; + identity->in_soc = 0; + + dprintk("FE: Tuner identification (Version = 0x%04x)", v); + + /* without PLL lock info */ + v &= ~KROSUS_PLL_LOCKED; + + identity->version = v & 0xff; + identity->product = (v >> 8) & 0xf; + + if (identity->product != KROSUS) + goto identification_error; + + if ((identity->version & 0x3) == SOC) { + identity->in_soc = 1; + switch (identity->version) { + case SOC_8090_P1G_11R1: + dprintk("SOC 8090 P1-G11R1 Has been detected"); + identity->p1g = 1; + break; + case SOC_8090_P1G_21R1: + dprintk("SOC 8090 P1-G21R1 Has been detected"); + identity->p1g = 1; + break; + case SOC_7090_P1G_11R1: + dprintk("SOC 7090 P1-G11R1 Has been detected"); + identity->p1g = 1; + break; + case SOC_7090_P1G_21R1: + dprintk("SOC 7090 P1-G21R1 Has been detected"); + identity->p1g = 1; + break; + default: + goto identification_error; + } + } else { + switch ((identity->version >> 5) & 0x7) { + case MP001: + dprintk("MP001 : 9090/8096"); + break; + case MP005: + dprintk("MP005 : Single Sband"); + break; + case MP008: + dprintk("MP008 : diversity VHF-UHF-LBAND"); + break; + case MP009: + dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND"); + break; + default: + goto identification_error; + } + + switch (identity->version & 0x1f) { + case P1G_21R2: + dprintk("P1G_21R2 detected"); + identity->p1g = 1; + break; + case P1G: + dprintk("P1G detected"); + identity->p1g = 1; + break; + case P1D_E_F: + dprintk("P1D/E/F detected"); + break; + case P1C: + dprintk("P1C detected"); + break; + case P1A_B: + dprintk("P1-A/B detected: driver is deactivated - not available"); + goto identification_error; + break; + default: + goto identification_error; + } + } + + return 0; + +identification_error: + return -EIO; +} + +static void dib0090_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) +{ + struct dib0090_state *state = fe->tuner_priv; + u16 PllCfg, i, v; + + HARD_RESET(state); + + dib0090_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL); + dib0090_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ + + if (!cfg->in_soc) { + /* adcClkOutRatio=8->7, release reset */ + dib0090_write_reg(state, 0x20, ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0); + if (cfg->clkoutdrive != 0) + dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8) + | (cfg->clkoutdrive << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0)); + else + dib0090_write_reg(state, 0x23, (0 << 15) | ((!cfg->analog_output) << 14) | (2 << 10) | (1 << 9) | (0 << 8) + | (7 << 5) | (cfg->clkouttobamse << 4) | (0 << 2) | (0)); + } + + /* Read Pll current config * */ + PllCfg = dib0090_read_reg(state, 0x21); + + /** Reconfigure PLL if current setting is different from default setting **/ + if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && (!cfg->in_soc) + && !cfg->io.pll_bypass) { + + /* Set Bypass mode */ + PllCfg |= (1 << 15); + dib0090_write_reg(state, 0x21, PllCfg); + + /* Set Reset Pll */ + PllCfg &= ~(1 << 13); + dib0090_write_reg(state, 0x21, PllCfg); + + /*** Set new Pll configuration in bypass and reset state ***/ + PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv); + dib0090_write_reg(state, 0x21, PllCfg); + + /* Remove Reset Pll */ + PllCfg |= (1 << 13); + dib0090_write_reg(state, 0x21, PllCfg); + + /*** Wait for PLL lock ***/ + i = 100; + do { + v = !!(dib0090_read_reg(state, 0x1a) & 0x800); + if (v) + break; + } while (--i); + + if (i == 0) { + dprintk("Pll: Unable to lock Pll"); + return; + } + + /* Finally Remove Bypass mode */ + PllCfg &= ~(1 << 15); + dib0090_write_reg(state, 0x21, PllCfg); + } + + if (cfg->io.pll_bypass) { + PllCfg |= (cfg->io.pll_bypass << 15); + dib0090_write_reg(state, 0x21, PllCfg); + } +} + +static int dib0090_fw_reset_digital(struct dvb_frontend *fe, const struct dib0090_config *cfg) +{ + struct dib0090_fw_state *state = fe->tuner_priv; + u16 PllCfg; + u16 v; + int i; + + dprintk("fw reset digital"); + HARD_RESET(state); + + dib0090_fw_write_reg(state, 0x24, EN_PLL | EN_CRYSTAL); + dib0090_fw_write_reg(state, 0x1b, EN_DIGCLK | EN_PLL | EN_CRYSTAL); /* PLL, DIG_CLK and CRYSTAL remain */ + + dib0090_fw_write_reg(state, 0x20, + ((cfg->io.adc_clock_ratio - 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg->data_tx_drv << 4) | cfg->ls_cfg_pad_drv); + + v = (0 << 15) | ((!cfg->analog_output) << 14) | (1 << 9) | (0 << 8) | (cfg->clkouttobamse << 4) | (0 << 2) | (0); + if (cfg->clkoutdrive != 0) + v |= cfg->clkoutdrive << 5; + else + v |= 7 << 5; + + v |= 2 << 10; + dib0090_fw_write_reg(state, 0x23, v); + + /* Read Pll current config * */ + PllCfg = dib0090_fw_read_reg(state, 0x21); + + /** Reconfigure PLL if current setting is different from default setting **/ + if ((PllCfg & 0x1FFF) != ((cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv)) && !cfg->io.pll_bypass) { + + /* Set Bypass mode */ + PllCfg |= (1 << 15); + dib0090_fw_write_reg(state, 0x21, PllCfg); + + /* Set Reset Pll */ + PllCfg &= ~(1 << 13); + dib0090_fw_write_reg(state, 0x21, PllCfg); + + /*** Set new Pll configuration in bypass and reset state ***/ + PllCfg = (1 << 15) | (0 << 13) | (cfg->io.pll_range << 12) | (cfg->io.pll_loopdiv << 6) | (cfg->io.pll_prediv); + dib0090_fw_write_reg(state, 0x21, PllCfg); + + /* Remove Reset Pll */ + PllCfg |= (1 << 13); + dib0090_fw_write_reg(state, 0x21, PllCfg); + + /*** Wait for PLL lock ***/ + i = 100; + do { + v = !!(dib0090_fw_read_reg(state, 0x1a) & 0x800); + if (v) + break; + } while (--i); + + if (i == 0) { + dprintk("Pll: Unable to lock Pll"); + return -EIO; + } + + /* Finally Remove Bypass mode */ + PllCfg &= ~(1 << 15); + dib0090_fw_write_reg(state, 0x21, PllCfg); + } + + if (cfg->io.pll_bypass) { + PllCfg |= (cfg->io.pll_bypass << 15); + dib0090_fw_write_reg(state, 0x21, PllCfg); + } + + return dib0090_fw_identify(fe); +} + +static int dib0090_wakeup(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + if (state->config->sleep) + state->config->sleep(fe, 0); + + /* enable dataTX in case we have been restarted in the wrong moment */ + dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); + return 0; +} + +static int dib0090_sleep(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + if (state->config->sleep) + state->config->sleep(fe, 1); + return 0; +} + +void dib0090_dcc_freq(struct dvb_frontend *fe, u8 fast) +{ + struct dib0090_state *state = fe->tuner_priv; + if (fast) + dib0090_write_reg(state, 0x04, 0); + else + dib0090_write_reg(state, 0x04, 1); +} + +EXPORT_SYMBOL(dib0090_dcc_freq); + +static const u16 bb_ramp_pwm_normal_socs[] = { + 550, /* max BB gain in 10th of dB */ + (1 << 9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */ + 440, + (4 << 9) | 0, /* BB_RAMP3 = 26dB */ + (0 << 9) | 208, /* BB_RAMP4 */ + (4 << 9) | 208, /* BB_RAMP5 = 29dB */ + (0 << 9) | 440, /* BB_RAMP6 */ +}; + +static const u16 rf_ramp_pwm_cband_7090[] = { + 280, /* max RF gain in 10th of dB */ + 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ + 504, /* ramp_max = maximum X used on the ramp */ + (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */ + (0 << 10) | 504, /* RF_RAMP6, LNA 1 */ + (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */ + (0 << 10) | 364, /* RF_RAMP8, LNA 2 */ + (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */ + (0 << 10) | 228, /* GAIN_4_2, LNA 3 */ + (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */ + (0 << 10) | 109, /* RF_RAMP4, LNA 4 */ +}; + +static const uint16_t rf_ramp_pwm_cband_7090e_sensitivity[] = { + 186, + 40, + 746, + (10 << 10) | 345, + (0 << 10) | 746, + (0 << 10) | 0, + (0 << 10) | 0, + (28 << 10) | 200, + (0 << 10) | 345, + (20 << 10) | 0, + (0 << 10) | 200, +}; + +static const uint16_t rf_ramp_pwm_cband_7090e_aci[] = { + 86, + 40, + 345, + (0 << 10) | 0, + (0 << 10) | 0, + (0 << 10) | 0, + (0 << 10) | 0, + (28 << 10) | 200, + (0 << 10) | 345, + (20 << 10) | 0, + (0 << 10) | 200, +}; + +static const u16 rf_ramp_pwm_cband_8090[] = { + 345, /* max RF gain in 10th of dB */ + 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ + 1000, /* ramp_max = maximum X used on the ramp */ + (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */ + (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */ + (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */ + (0 << 10) | 772, /* RF_RAMP6, LNA 2 */ + (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */ + (0 << 10) | 496, /* RF_RAMP8, LNA 3 */ + (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */ + (0 << 10) | 200, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 rf_ramp_pwm_uhf_7090[] = { + 407, /* max RF gain in 10th of dB */ + 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ + 529, /* ramp_max = maximum X used on the ramp */ + (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */ + (0 << 10) | 176, /* RF_RAMP4, LNA 1 */ + (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */ + (0 << 10) | 529, /* RF_RAMP6, LNA 2 */ + (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */ + (0 << 10) | 400, /* RF_RAMP8, LNA 3 */ + (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */ + (0 << 10) | 316, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 rf_ramp_pwm_uhf_8090[] = { + 388, /* max RF gain in 10th of dB */ + 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */ + 1008, /* ramp_max = maximum X used on the ramp */ + (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */ + (0 << 10) | 369, /* RF_RAMP4, LNA 1 */ + (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */ + (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */ + (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */ + (0 << 10) | 809, /* RF_RAMP8, LNA 3 */ + (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */ + (0 << 10) | 659, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 rf_ramp_pwm_cband[] = { + 0, /* max RF gain in 10th of dB */ + 0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ + 0, /* ramp_max = maximum X used on the ramp */ + (0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */ + (0 << 10) | 0, /* 0x2d, LNA 1 */ + (0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */ + (0 << 10) | 0, /* 0x2f, LNA 2 */ + (0 << 10) | 0, /* 0x30, LNA 3 = 0dB */ + (0 << 10) | 0, /* 0x31, LNA 3 */ + (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */ + (0 << 10) | 0, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 rf_ramp_vhf[] = { + 412, /* max RF gain in 10th of dB */ + 132, 307, 127, /* LNA1, 13.2dB */ + 105, 412, 255, /* LNA2, 10.5dB */ + 50, 50, 127, /* LNA3, 5dB */ + 125, 175, 127, /* LNA4, 12.5dB */ + 0, 0, 127, /* CBAND, 0dB */ +}; + +static const u16 rf_ramp_uhf[] = { + 412, /* max RF gain in 10th of dB */ + 132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */ + 105, 412, 255, /* LNA2 : 10.5 dB */ + 50, 50, 127, /* LNA3 : 5.0 dB */ + 125, 175, 127, /* LNA4 : 12.5 dB */ + 0, 0, 127, /* CBAND : 0.0 dB */ +}; + +static const u16 rf_ramp_cband_broadmatching[] = /* for p1G only */ +{ + 314, /* Calibrated at 200MHz order has been changed g4-g3-g2-g1 */ + 84, 314, 127, /* LNA1 */ + 80, 230, 255, /* LNA2 */ + 80, 150, 127, /* LNA3 It was measured 12dB, do not lock if 120 */ + 70, 70, 127, /* LNA4 */ + 0, 0, 127, /* CBAND */ +}; + +static const u16 rf_ramp_cband[] = { + 332, /* max RF gain in 10th of dB */ + 132, 252, 127, /* LNA1, dB */ + 80, 332, 255, /* LNA2, dB */ + 0, 0, 127, /* LNA3, dB */ + 0, 0, 127, /* LNA4, dB */ + 120, 120, 127, /* LT1 CBAND */ +}; + +static const u16 rf_ramp_pwm_vhf[] = { + 404, /* max RF gain in 10th of dB */ + 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ + 1011, /* ramp_max = maximum X used on the ramp */ + (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */ + (0 << 10) | 756, /* 0x2d, LNA 1 */ + (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */ + (0 << 10) | 1011, /* 0x2f, LNA 2 */ + (16 << 10) | 290, /* 0x30, LNA 3 = 5dB */ + (0 << 10) | 417, /* 0x31, LNA 3 */ + (7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */ + (0 << 10) | 290, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 rf_ramp_pwm_uhf[] = { + 404, /* max RF gain in 10th of dB */ + 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */ + 1011, /* ramp_max = maximum X used on the ramp */ + (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */ + (0 << 10) | 756, /* 0x2d, LNA 1 */ + (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */ + (0 << 10) | 1011, /* 0x2f, LNA 2 */ + (16 << 10) | 0, /* 0x30, LNA 3 = 5dB */ + (0 << 10) | 127, /* 0x31, LNA 3 */ + (7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */ + (0 << 10) | 417, /* GAIN_4_2, LNA 4 */ +}; + +static const u16 bb_ramp_boost[] = { + 550, /* max BB gain in 10th of dB */ + 260, 260, 26, /* BB1, 26dB */ + 290, 550, 29, /* BB2, 29dB */ +}; + +static const u16 bb_ramp_pwm_normal[] = { + 500, /* max RF gain in 10th of dB */ + 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */ + 400, + (2 << 9) | 0, /* 0x35 = 21dB */ + (0 << 9) | 168, /* 0x36 */ + (2 << 9) | 168, /* 0x37 = 29dB */ + (0 << 9) | 400, /* 0x38 */ +}; + +struct slope { + s16 range; + s16 slope; +}; +static u16 slopes_to_scale(const struct slope *slopes, u8 num, s16 val) +{ + u8 i; + u16 rest; + u16 ret = 0; + for (i = 0; i < num; i++) { + if (val > slopes[i].range) + rest = slopes[i].range; + else + rest = val; + ret += (rest * slopes[i].slope) / slopes[i].range; + val -= rest; + } + return ret; +} + +static const struct slope dib0090_wbd_slopes[3] = { + {66, 120}, /* -64,-52: offset - 65 */ + {600, 170}, /* -52,-35: 65 - 665 */ + {170, 250}, /* -45,-10: 665 - 835 */ +}; + +static s16 dib0090_wbd_to_db(struct dib0090_state *state, u16 wbd) +{ + wbd &= 0x3ff; + if (wbd < state->wbd_offset) + wbd = 0; + else + wbd -= state->wbd_offset; + /* -64dB is the floor */ + return -640 + (s16) slopes_to_scale(dib0090_wbd_slopes, ARRAY_SIZE(dib0090_wbd_slopes), wbd); +} + +static void dib0090_wbd_target(struct dib0090_state *state, u32 rf) +{ + u16 offset = 250; + + /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */ + + if (state->current_band == BAND_VHF) + offset = 650; +#ifndef FIRMWARE_FIREFLY + if (state->current_band == BAND_VHF) + offset = state->config->wbd_vhf_offset; + if (state->current_band == BAND_CBAND) + offset = state->config->wbd_cband_offset; +#endif + + state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + offset); + dprintk("wbd-target: %d dB", (u32) state->wbd_target); +} + +static const int gain_reg_addr[4] = { + 0x08, 0x0a, 0x0f, 0x01 +}; + +static void dib0090_gain_apply(struct dib0090_state *state, s16 gain_delta, s16 top_delta, u8 force) +{ + u16 rf, bb, ref; + u16 i, v, gain_reg[4] = { 0 }, gain; + const u16 *g; + + if (top_delta < -511) + top_delta = -511; + if (top_delta > 511) + top_delta = 511; + + if (force) { + top_delta *= (1 << WBD_ALPHA); + gain_delta *= (1 << GAIN_ALPHA); + } + + if (top_delta >= ((s16) (state->rf_ramp[0] << WBD_ALPHA) - state->rf_gain_limit)) /* overflow */ + state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; + else + state->rf_gain_limit += top_delta; + + if (state->rf_gain_limit < 0) /*underflow */ + state->rf_gain_limit = 0; + + /* use gain as a temporary variable and correct current_gain */ + gain = ((state->rf_gain_limit >> WBD_ALPHA) + state->bb_ramp[0]) << GAIN_ALPHA; + if (gain_delta >= ((s16) gain - state->current_gain)) /* overflow */ + state->current_gain = gain; + else + state->current_gain += gain_delta; + /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */ + if (state->current_gain < 0) + state->current_gain = 0; + + /* now split total gain to rf and bb gain */ + gain = state->current_gain >> GAIN_ALPHA; + + /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */ + if (gain > (state->rf_gain_limit >> WBD_ALPHA)) { + rf = state->rf_gain_limit >> WBD_ALPHA; + bb = gain - rf; + if (bb > state->bb_ramp[0]) + bb = state->bb_ramp[0]; + } else { /* high signal level -> all gains put on RF */ + rf = gain; + bb = 0; + } + + state->gain[0] = rf; + state->gain[1] = bb; + + /* software ramp */ + /* Start with RF gains */ + g = state->rf_ramp + 1; /* point on RF LNA1 max gain */ + ref = rf; + for (i = 0; i < 7; i++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */ + if (g[0] == 0 || ref < (g[1] - g[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */ + v = 0; /* force the gain to write for the current amp to be null */ + else if (ref >= g[1]) /* Gain to set is higher than the high working point of this amp */ + v = g[2]; /* force this amp to be full gain */ + else /* compute the value to set to this amp because we are somewhere in his range */ + v = ((ref - (g[1] - g[0])) * g[2]) / g[0]; + + if (i == 0) /* LNA 1 reg mapping */ + gain_reg[0] = v; + else if (i == 1) /* LNA 2 reg mapping */ + gain_reg[0] |= v << 7; + else if (i == 2) /* LNA 3 reg mapping */ + gain_reg[1] = v; + else if (i == 3) /* LNA 4 reg mapping */ + gain_reg[1] |= v << 7; + else if (i == 4) /* CBAND LNA reg mapping */ + gain_reg[2] = v | state->rf_lt_def; + else if (i == 5) /* BB gain 1 reg mapping */ + gain_reg[3] = v << 3; + else if (i == 6) /* BB gain 2 reg mapping */ + gain_reg[3] |= v << 8; + + g += 3; /* go to next gain bloc */ + + /* When RF is finished, start with BB */ + if (i == 4) { + g = state->bb_ramp + 1; /* point on BB gain 1 max gain */ + ref = bb; + } + } + gain_reg[3] |= state->bb_1_def; + gain_reg[3] |= ((bb % 10) * 100) / 125; + +#ifdef DEBUG_AGC + dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf, bb, rf + bb, + gain_reg[0], gain_reg[1], gain_reg[2], gain_reg[3]); +#endif + + /* Write the amplifier regs */ + for (i = 0; i < 4; i++) { + v = gain_reg[i]; + if (force || state->gain_reg[i] != v) { + state->gain_reg[i] = v; + dib0090_write_reg(state, gain_reg_addr[i], v); + } + } +} + +static void dib0090_set_boost(struct dib0090_state *state, int onoff) +{ + state->bb_1_def &= 0xdfff; + state->bb_1_def |= onoff << 13; +} + +static void dib0090_set_rframp(struct dib0090_state *state, const u16 * cfg) +{ + state->rf_ramp = cfg; +} + +static void dib0090_set_rframp_pwm(struct dib0090_state *state, const u16 * cfg) +{ + state->rf_ramp = cfg; + + dib0090_write_reg(state, 0x2a, 0xffff); + + dprintk("total RF gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x2a)); + + dib0090_write_regs(state, 0x2c, cfg + 3, 6); + dib0090_write_regs(state, 0x3e, cfg + 9, 2); +} + +static void dib0090_set_bbramp(struct dib0090_state *state, const u16 * cfg) +{ + state->bb_ramp = cfg; + dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ +} + +static void dib0090_set_bbramp_pwm(struct dib0090_state *state, const u16 * cfg) +{ + state->bb_ramp = cfg; + + dib0090_set_boost(state, cfg[0] > 500); /* we want the boost if the gain is higher that 50dB */ + + dib0090_write_reg(state, 0x33, 0xffff); + dprintk("total BB gain: %ddB, step: %d", (u32) cfg[0], dib0090_read_reg(state, 0x33)); + dib0090_write_regs(state, 0x35, cfg + 3, 4); +} + +void dib0090_pwm_gain_reset(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + /* reset the AGC */ + + if (state->config->use_pwm_agc) { +#ifdef CONFIG_BAND_SBAND + if (state->current_band == BAND_SBAND) { + dib0090_set_rframp_pwm(state, rf_ramp_pwm_sband); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_boost); + } else +#endif +#ifdef CONFIG_BAND_CBAND + if (state->current_band == BAND_CBAND) { + if (state->identity.in_soc) { + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs); + if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) + dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband_8090); + else if (state->identity.version == SOC_7090_P1G_11R1 + || state->identity.version == SOC_7090_P1G_21R1) { + if (state->config->is_dib7090e) { + if (state->rf_ramp == NULL) + dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband_7090e_sensitivity); + else + dib0090_set_rframp_pwm(state, state->rf_ramp); + } else + dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband_7090); + } + } else { + dib0090_set_rframp_pwm(state, rf_ramp_pwm_cband); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); + } + } else +#endif +#ifdef CONFIG_BAND_VHF + if (state->current_band == BAND_VHF) { + if (state->identity.in_soc) { + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs); + } else { + dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); + } + } else +#endif + { + if (state->identity.in_soc) { + if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) + dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf_8090); + else if (state->identity.version == SOC_7090_P1G_11R1 || state->identity.version == SOC_7090_P1G_21R1) + dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf_7090); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal_socs); + } else { + dib0090_set_rframp_pwm(state, rf_ramp_pwm_uhf); + dib0090_set_bbramp_pwm(state, bb_ramp_pwm_normal); + } + } + + if (state->rf_ramp[0] != 0) + dib0090_write_reg(state, 0x32, (3 << 11)); + else + dib0090_write_reg(state, 0x32, (0 << 11)); + + dib0090_write_reg(state, 0x04, 0x03); + dib0090_write_reg(state, 0x39, (1 << 10)); + } +} + +EXPORT_SYMBOL(dib0090_pwm_gain_reset); + +void dib0090_set_dc_servo(struct dvb_frontend *fe, u8 DC_servo_cutoff) +{ + struct dib0090_state *state = fe->tuner_priv; + if (DC_servo_cutoff < 4) + dib0090_write_reg(state, 0x04, DC_servo_cutoff); +} +EXPORT_SYMBOL(dib0090_set_dc_servo); + +static u32 dib0090_get_slow_adc_val(struct dib0090_state *state) +{ + u16 adc_val = dib0090_read_reg(state, 0x1d); + if (state->identity.in_soc) + adc_val >>= 2; + return adc_val; +} + +int dib0090_gain_control(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + enum frontend_tune_state *tune_state = &state->tune_state; + int ret = 10; + + u16 wbd_val = 0; + u8 apply_gain_immediatly = 1; + s16 wbd_error = 0, adc_error = 0; + + if (*tune_state == CT_AGC_START) { + state->agc_freeze = 0; + dib0090_write_reg(state, 0x04, 0x0); + +#ifdef CONFIG_BAND_SBAND + if (state->current_band == BAND_SBAND) { + dib0090_set_rframp(state, rf_ramp_sband); + dib0090_set_bbramp(state, bb_ramp_boost); + } else +#endif +#ifdef CONFIG_BAND_VHF + if (state->current_band == BAND_VHF && !state->identity.p1g) { + dib0090_set_rframp(state, rf_ramp_vhf); + dib0090_set_bbramp(state, bb_ramp_boost); + } else +#endif +#ifdef CONFIG_BAND_CBAND + if (state->current_band == BAND_CBAND && !state->identity.p1g) { + dib0090_set_rframp(state, rf_ramp_cband); + dib0090_set_bbramp(state, bb_ramp_boost); + } else +#endif + if ((state->current_band == BAND_CBAND || state->current_band == BAND_VHF) && state->identity.p1g) { + dib0090_set_rframp(state, rf_ramp_cband_broadmatching); + dib0090_set_bbramp(state, bb_ramp_boost); + } else { + dib0090_set_rframp(state, rf_ramp_uhf); + dib0090_set_bbramp(state, bb_ramp_boost); + } + + dib0090_write_reg(state, 0x32, 0); + dib0090_write_reg(state, 0x39, 0); + + dib0090_wbd_target(state, state->current_rf); + + state->rf_gain_limit = state->rf_ramp[0] << WBD_ALPHA; + state->current_gain = ((state->rf_ramp[0] + state->bb_ramp[0]) / 2) << GAIN_ALPHA; + + *tune_state = CT_AGC_STEP_0; + } else if (!state->agc_freeze) { + s16 wbd = 0, i, cnt; + + int adc; + wbd_val = dib0090_get_slow_adc_val(state); + + if (*tune_state == CT_AGC_STEP_0) + cnt = 5; + else + cnt = 1; + + for (i = 0; i < cnt; i++) { + wbd_val = dib0090_get_slow_adc_val(state); + wbd += dib0090_wbd_to_db(state, wbd_val); + } + wbd /= cnt; + wbd_error = state->wbd_target - wbd; + + if (*tune_state == CT_AGC_STEP_0) { + if (wbd_error < 0 && state->rf_gain_limit > 0 && !state->identity.p1g) { +#ifdef CONFIG_BAND_CBAND + /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */ + u8 ltg2 = (state->rf_lt_def >> 10) & 0x7; + if (state->current_band == BAND_CBAND && ltg2) { + ltg2 >>= 1; + state->rf_lt_def &= ltg2 << 10; /* reduce in 3 steps from 7 to 0 */ + } +#endif + } else { + state->agc_step = 0; + *tune_state = CT_AGC_STEP_1; + } + } else { + /* calc the adc power */ + adc = state->config->get_adc_power(fe); + adc = (adc * ((s32) 355774) + (((s32) 1) << 20)) >> 21; /* included in [0:-700] */ + + adc_error = (s16) (((s32) ADC_TARGET) - adc); +#ifdef CONFIG_STANDARD_DAB + if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) + adc_error -= 10; +#endif +#ifdef CONFIG_STANDARD_DVBT + if (state->fe->dtv_property_cache.delivery_system == STANDARD_DVBT && + (state->fe->dtv_property_cache.modulation == QAM_64 || state->fe->dtv_property_cache.modulation == QAM_16)) + adc_error += 60; +#endif +#ifdef CONFIG_SYS_ISDBT + if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT) && (((state->fe->dtv_property_cache.layer[0].segment_count > + 0) + && + ((state->fe->dtv_property_cache.layer[0].modulation == + QAM_64) + || (state->fe->dtv_property_cache. + layer[0].modulation == QAM_16))) + || + ((state->fe->dtv_property_cache.layer[1].segment_count > + 0) + && + ((state->fe->dtv_property_cache.layer[1].modulation == + QAM_64) + || (state->fe->dtv_property_cache. + layer[1].modulation == QAM_16))) + || + ((state->fe->dtv_property_cache.layer[2].segment_count > + 0) + && + ((state->fe->dtv_property_cache.layer[2].modulation == + QAM_64) + || (state->fe->dtv_property_cache. + layer[2].modulation == QAM_16))) + ) + ) + adc_error += 60; +#endif + + if (*tune_state == CT_AGC_STEP_1) { /* quickly go to the correct range of the ADC power */ + if (ABS(adc_error) < 50 || state->agc_step++ > 5) { + +#ifdef CONFIG_STANDARD_DAB + if (state->fe->dtv_property_cache.delivery_system == STANDARD_DAB) { + dib0090_write_reg(state, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */ + dib0090_write_reg(state, 0x04, 0x0); + } else +#endif + { + dib0090_write_reg(state, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32)); + dib0090_write_reg(state, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */ + } + + *tune_state = CT_AGC_STOP; + } + } else { + /* everything higher than or equal to CT_AGC_STOP means tracking */ + ret = 100; /* 10ms interval */ + apply_gain_immediatly = 0; + } + } +#ifdef DEBUG_AGC + dprintk + ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm", + (u32) *tune_state, (u32) adc, (u32) adc_error, (u32) wbd, (u32) wbd_error, (u32) wbd_val, + (u32) state->rf_gain_limit >> WBD_ALPHA, (s32) 200 + adc - (state->current_gain >> GAIN_ALPHA)); +#endif + } + + /* apply gain */ + if (!state->agc_freeze) + dib0090_gain_apply(state, adc_error, wbd_error, apply_gain_immediatly); + return ret; +} + +EXPORT_SYMBOL(dib0090_gain_control); + +void dib0090_get_current_gain(struct dvb_frontend *fe, u16 * rf, u16 * bb, u16 * rf_gain_limit, u16 * rflt) +{ + struct dib0090_state *state = fe->tuner_priv; + if (rf) + *rf = state->gain[0]; + if (bb) + *bb = state->gain[1]; + if (rf_gain_limit) + *rf_gain_limit = state->rf_gain_limit; + if (rflt) + *rflt = (state->rf_lt_def >> 10) & 0x7; +} + +EXPORT_SYMBOL(dib0090_get_current_gain); + +u16 dib0090_get_wbd_target(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + u32 f_MHz = state->fe->dtv_property_cache.frequency / 1000000; + s32 current_temp = state->temperature; + s32 wbd_thot, wbd_tcold; + const struct dib0090_wbd_slope *wbd = state->current_wbd_table; + + while (f_MHz > wbd->max_freq) + wbd++; + + dprintk("using wbd-table-entry with max freq %d", wbd->max_freq); + + if (current_temp < 0) + current_temp = 0; + if (current_temp > 128) + current_temp = 128; + + state->wbdmux &= ~(7 << 13); + if (wbd->wbd_gain != 0) + state->wbdmux |= (wbd->wbd_gain << 13); + else + state->wbdmux |= (4 << 13); + + dib0090_write_reg(state, 0x10, state->wbdmux); + + wbd_thot = wbd->offset_hot - (((u32) wbd->slope_hot * f_MHz) >> 6); + wbd_tcold = wbd->offset_cold - (((u32) wbd->slope_cold * f_MHz) >> 6); + + wbd_tcold += ((wbd_thot - wbd_tcold) * current_temp) >> 7; + + state->wbd_target = dib0090_wbd_to_db(state, state->wbd_offset + wbd_tcold); + dprintk("wbd-target: %d dB", (u32) state->wbd_target); + dprintk("wbd offset applied is %d", wbd_tcold); + + return state->wbd_offset + wbd_tcold; +} +EXPORT_SYMBOL(dib0090_get_wbd_target); + +u16 dib0090_get_wbd_offset(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + return state->wbd_offset; +} +EXPORT_SYMBOL(dib0090_get_wbd_offset); + +int dib0090_set_switch(struct dvb_frontend *fe, u8 sw1, u8 sw2, u8 sw3) +{ + struct dib0090_state *state = fe->tuner_priv; + + dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xfff8) + | ((sw3 & 1) << 2) | ((sw2 & 1) << 1) | (sw1 & 1)); + + return 0; +} +EXPORT_SYMBOL(dib0090_set_switch); + +int dib0090_set_vga(struct dvb_frontend *fe, u8 onoff) +{ + struct dib0090_state *state = fe->tuner_priv; + + dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x7fff) + | ((onoff & 1) << 15)); + return 0; +} +EXPORT_SYMBOL(dib0090_set_vga); + +int dib0090_update_rframp_7090(struct dvb_frontend *fe, u8 cfg_sensitivity) +{ + struct dib0090_state *state = fe->tuner_priv; + + if ((!state->identity.p1g) || (!state->identity.in_soc) + || ((state->identity.version != SOC_7090_P1G_21R1) + && (state->identity.version != SOC_7090_P1G_11R1))) { + dprintk("%s() function can only be used for dib7090P", __func__); + return -ENODEV; + } + + if (cfg_sensitivity) + state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_sensitivity; + else + state->rf_ramp = (const u16 *)&rf_ramp_pwm_cband_7090e_aci; + dib0090_pwm_gain_reset(fe); + + return 0; +} +EXPORT_SYMBOL(dib0090_update_rframp_7090); + +static const u16 dib0090_defaults[] = { + + 25, 0x01, + 0x0000, + 0x99a0, + 0x6008, + 0x0000, + 0x8bcb, + 0x0000, + 0x0405, + 0x0000, + 0x0000, + 0x0000, + 0xb802, + 0x0300, + 0x2d12, + 0xbac0, + 0x7c00, + 0xdbb9, + 0x0954, + 0x0743, + 0x8000, + 0x0001, + 0x0040, + 0x0100, + 0x0000, + 0xe910, + 0x149e, + + 1, 0x1c, + 0xff2d, + + 1, 0x39, + 0x0000, + + 2, 0x1e, + 0x07FF, + 0x0007, + + 1, 0x24, + EN_UHF | EN_CRYSTAL, + + 2, 0x3c, + 0x3ff, + 0x111, + 0 +}; + +static const u16 dib0090_p1g_additionnal_defaults[] = { + 1, 0x05, + 0xabcd, + + 1, 0x11, + 0x00b4, + + 1, 0x1c, + 0xfffd, + + 1, 0x40, + 0x108, + 0 +}; + +static void dib0090_set_default_config(struct dib0090_state *state, const u16 * n) +{ + u16 l, r; + + l = pgm_read_word(n++); + while (l) { + r = pgm_read_word(n++); + do { + dib0090_write_reg(state, r, pgm_read_word(n++)); + r++; + } while (--l); + l = pgm_read_word(n++); + } +} + +#define CAP_VALUE_MIN (u8) 9 +#define CAP_VALUE_MAX (u8) 40 +#define HR_MIN (u8) 25 +#define HR_MAX (u8) 40 +#define POLY_MIN (u8) 0 +#define POLY_MAX (u8) 8 + +static void dib0090_set_EFUSE(struct dib0090_state *state) +{ + u8 c, h, n; + u16 e2, e4; + u16 cal; + + e2 = dib0090_read_reg(state, 0x26); + e4 = dib0090_read_reg(state, 0x28); + + if ((state->identity.version == P1D_E_F) || + (state->identity.version == P1G) || (e2 == 0xffff)) { + + dib0090_write_reg(state, 0x22, 0x10); + cal = (dib0090_read_reg(state, 0x22) >> 6) & 0x3ff; + + if ((cal < 670) || (cal == 1023)) + cal = 850; + n = 165 - ((cal * 10)>>6) ; + e2 = e4 = (3<<12) | (34<<6) | (n); + } + + if (e2 != e4) + e2 &= e4; /* Remove the redundancy */ + + if (e2 != 0xffff) { + c = e2 & 0x3f; + n = (e2 >> 12) & 0xf; + h = (e2 >> 6) & 0x3f; + + if ((c >= CAP_VALUE_MAX) || (c <= CAP_VALUE_MIN)) + c = 32; + if ((h >= HR_MAX) || (h <= HR_MIN)) + h = 34; + if ((n >= POLY_MAX) || (n <= POLY_MIN)) + n = 3; + + dib0090_write_reg(state, 0x13, (h << 10)) ; + e2 = (n<<11) | ((h>>2)<<6) | (c); + dib0090_write_reg(state, 0x2, e2) ; /* Load the BB_2 */ + } +} + +static int dib0090_reset(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + + dib0090_reset_digital(fe, state->config); + if (dib0090_identify(fe) < 0) + return -EIO; + +#ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT + if (!(state->identity.version & 0x1)) /* it is P1B - reset is already done */ + return 0; +#endif + + if (!state->identity.in_soc) { + if ((dib0090_read_reg(state, 0x1a) >> 5) & 0x2) + dib0090_write_reg(state, 0x1b, (EN_IQADC | EN_BB | EN_BIAS | EN_DIGCLK | EN_PLL | EN_CRYSTAL)); + else + dib0090_write_reg(state, 0x1b, (EN_DIGCLK | EN_PLL | EN_CRYSTAL)); + } + + dib0090_set_default_config(state, dib0090_defaults); + + if (state->identity.in_soc) + dib0090_write_reg(state, 0x18, 0x2910); /* charge pump current = 0 */ + + if (state->identity.p1g) + dib0090_set_default_config(state, dib0090_p1g_additionnal_defaults); + + /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/ + if (((state->identity.version & 0x1f) >= P1D_E_F) || (state->identity.in_soc)) + dib0090_set_EFUSE(state); + + /* Congigure in function of the crystal */ + if (state->config->force_crystal_mode != 0) + dib0090_write_reg(state, 0x14, + state->config->force_crystal_mode & 3); + else if (state->config->io.clock_khz >= 24000) + dib0090_write_reg(state, 0x14, 1); + else + dib0090_write_reg(state, 0x14, 2); + dprintk("Pll lock : %d", (dib0090_read_reg(state, 0x1a) >> 11) & 0x1); + + state->calibrate = DC_CAL | WBD_CAL | TEMP_CAL; /* enable iq-offset-calibration and wbd-calibration when tuning next time */ + + return 0; +} + +#define steps(u) (((u) > 15) ? ((u)-16) : (u)) +#define INTERN_WAIT 10 +static int dib0090_get_offset(struct dib0090_state *state, enum frontend_tune_state *tune_state) +{ + int ret = INTERN_WAIT * 10; + + switch (*tune_state) { + case CT_TUNER_STEP_2: + /* Turns to positive */ + dib0090_write_reg(state, 0x1f, 0x7); + *tune_state = CT_TUNER_STEP_3; + break; + + case CT_TUNER_STEP_3: + state->adc_diff = dib0090_read_reg(state, 0x1d); + + /* Turns to negative */ + dib0090_write_reg(state, 0x1f, 0x4); + *tune_state = CT_TUNER_STEP_4; + break; + + case CT_TUNER_STEP_4: + state->adc_diff -= dib0090_read_reg(state, 0x1d); + *tune_state = CT_TUNER_STEP_5; + ret = 0; + break; + + default: + break; + } + + return ret; +} + +struct dc_calibration { + u8 addr; + u8 offset; + u8 pga:1; + u16 bb1; + u8 i:1; +}; + +static const struct dc_calibration dc_table[] = { + /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ + {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1}, + {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0}, + /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ + {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1}, + {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0}, + {0}, +}; + +static const struct dc_calibration dc_p1g_table[] = { + /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */ + /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */ + {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1}, + {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0}, + /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */ + {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1}, + {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0}, + {0}, +}; + +static void dib0090_set_trim(struct dib0090_state *state) +{ + u16 *val; + + if (state->dc->addr == 0x07) + val = &state->bb7; + else + val = &state->bb6; + + *val &= ~(0x1f << state->dc->offset); + *val |= state->step << state->dc->offset; + + dib0090_write_reg(state, state->dc->addr, *val); +} + +static int dib0090_dc_offset_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) +{ + int ret = 0; + u16 reg; + + switch (*tune_state) { + case CT_TUNER_START: + dprintk("Start DC offset calibration"); + + /* force vcm2 = 0.8V */ + state->bb6 = 0; + state->bb7 = 0x040d; + + /* the LNA AND LO are off */ + reg = dib0090_read_reg(state, 0x24) & 0x0ffb; /* shutdown lna and lo */ + dib0090_write_reg(state, 0x24, reg); + + state->wbdmux = dib0090_read_reg(state, 0x10); + dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x7 << 3) | 0x3); + dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); + + state->dc = dc_table; + + if (state->identity.p1g) + state->dc = dc_p1g_table; + *tune_state = CT_TUNER_STEP_0; + + /* fall through */ + + case CT_TUNER_STEP_0: + dprintk("Sart/continue DC calibration for %s path", (state->dc->i == 1) ? "I" : "Q"); + dib0090_write_reg(state, 0x01, state->dc->bb1); + dib0090_write_reg(state, 0x07, state->bb7 | (state->dc->i << 7)); + + state->step = 0; + state->min_adc_diff = 1023; + *tune_state = CT_TUNER_STEP_1; + ret = 50; + break; + + case CT_TUNER_STEP_1: + dib0090_set_trim(state); + *tune_state = CT_TUNER_STEP_2; + break; + + case CT_TUNER_STEP_2: + case CT_TUNER_STEP_3: + case CT_TUNER_STEP_4: + ret = dib0090_get_offset(state, tune_state); + break; + + case CT_TUNER_STEP_5: /* found an offset */ + dprintk("adc_diff = %d, current step= %d", (u32) state->adc_diff, state->step); + if (state->step == 0 && state->adc_diff < 0) { + state->min_adc_diff = -1023; + dprintk("Change of sign of the minimum adc diff"); + } + + dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state->adc_diff, state->min_adc_diff, state->step); + + /* first turn for this frequency */ + if (state->step == 0) { + if (state->dc->pga && state->adc_diff < 0) + state->step = 0x10; + if (state->dc->pga == 0 && state->adc_diff > 0) + state->step = 0x10; + } + + /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */ + if ((state->adc_diff & 0x8000) == (state->min_adc_diff & 0x8000) && steps(state->step) < 15) { + /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */ + state->step++; + state->min_adc_diff = state->adc_diff; + *tune_state = CT_TUNER_STEP_1; + } else { + /* the minimum was what we have seen in the step before */ + if (ABS(state->adc_diff) > ABS(state->min_adc_diff)) { + dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step", state->adc_diff, state->min_adc_diff); + state->step--; + } + + dib0090_set_trim(state); + dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state->dc->addr, state->adc_diff, state->step); + + state->dc++; + if (state->dc->addr == 0) /* done */ + *tune_state = CT_TUNER_STEP_6; + else + *tune_state = CT_TUNER_STEP_0; + + } + break; + + case CT_TUNER_STEP_6: + dib0090_write_reg(state, 0x07, state->bb7 & ~0x0008); + dib0090_write_reg(state, 0x1f, 0x7); + *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ + state->calibrate &= ~DC_CAL; + default: + break; + } + return ret; +} + +static int dib0090_wbd_calibration(struct dib0090_state *state, enum frontend_tune_state *tune_state) +{ + u8 wbd_gain; + const struct dib0090_wbd_slope *wbd = state->current_wbd_table; + + switch (*tune_state) { + case CT_TUNER_START: + while (state->current_rf / 1000 > wbd->max_freq) + wbd++; + if (wbd->wbd_gain != 0) + wbd_gain = wbd->wbd_gain; + else { + wbd_gain = 4; +#if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND) + if ((state->current_band == BAND_LBAND) || (state->current_band == BAND_SBAND)) + wbd_gain = 2; +#endif + } + + if (wbd_gain == state->wbd_calibration_gain) { /* the WBD calibration has already been done */ + *tune_state = CT_TUNER_START; + state->calibrate &= ~WBD_CAL; + return 0; + } + + dib0090_write_reg(state, 0x10, 0x1b81 | (1 << 10) | (wbd_gain << 13) | (1 << 3)); + + dib0090_write_reg(state, 0x24, ((EN_UHF & 0x0fff) | (1 << 1))); + *tune_state = CT_TUNER_STEP_0; + state->wbd_calibration_gain = wbd_gain; + return 90; /* wait for the WBDMUX to switch and for the ADC to sample */ + + case CT_TUNER_STEP_0: + state->wbd_offset = dib0090_get_slow_adc_val(state); + dprintk("WBD calibration offset = %d", state->wbd_offset); + *tune_state = CT_TUNER_START; /* reset done -> real tuning can now begin */ + state->calibrate &= ~WBD_CAL; + break; + + default: + break; + } + return 0; +} + +static void dib0090_set_bandwidth(struct dib0090_state *state) +{ + u16 tmp; + + if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 5000) + tmp = (3 << 14); + else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 6000) + tmp = (2 << 14); + else if (state->fe->dtv_property_cache.bandwidth_hz / 1000 <= 7000) + tmp = (1 << 14); + else + tmp = (0 << 14); + + state->bb_1_def &= 0x3fff; + state->bb_1_def |= tmp; + + dib0090_write_reg(state, 0x01, state->bb_1_def); /* be sure that we have the right bb-filter */ + + dib0090_write_reg(state, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */ + dib0090_write_reg(state, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */ + if (state->identity.in_soc) { + dib0090_write_reg(state, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */ + } else { + dib0090_write_reg(state, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */ + dib0090_write_reg(state, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */ + } +} + +static const struct dib0090_pll dib0090_pll_table[] = { +#ifdef CONFIG_BAND_CBAND + {56000, 0, 9, 48, 6}, + {70000, 1, 9, 48, 6}, + {87000, 0, 8, 32, 4}, + {105000, 1, 8, 32, 4}, + {115000, 0, 7, 24, 6}, + {140000, 1, 7, 24, 6}, + {170000, 0, 6, 16, 4}, +#endif +#ifdef CONFIG_BAND_VHF + {200000, 1, 6, 16, 4}, + {230000, 0, 5, 12, 6}, + {280000, 1, 5, 12, 6}, + {340000, 0, 4, 8, 4}, + {380000, 1, 4, 8, 4}, + {450000, 0, 3, 6, 6}, +#endif +#ifdef CONFIG_BAND_UHF + {580000, 1, 3, 6, 6}, + {700000, 0, 2, 4, 4}, + {860000, 1, 2, 4, 4}, +#endif +#ifdef CONFIG_BAND_LBAND + {1800000, 1, 0, 2, 4}, +#endif +#ifdef CONFIG_BAND_SBAND + {2900000, 0, 14, 1, 4}, +#endif +}; + +static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband[] = { + +#ifdef CONFIG_BAND_CBAND + {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, + {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, + {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, +#endif +#ifdef CONFIG_BAND_UHF + {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, +#endif +#ifdef CONFIG_BAND_LBAND + {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, +#endif +#ifdef CONFIG_BAND_SBAND + {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, + {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, +#endif +}; + +static const struct dib0090_tuning dib0090_tuning_table[] = { + +#ifdef CONFIG_BAND_CBAND + {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB}, +#endif +#ifdef CONFIG_BAND_VHF + {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, + {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, + {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, +#endif +#ifdef CONFIG_BAND_UHF + {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, +#endif +#ifdef CONFIG_BAND_LBAND + {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, +#endif +#ifdef CONFIG_BAND_SBAND + {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, + {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, +#endif +}; + +static const struct dib0090_tuning dib0090_p1g_tuning_table[] = { +#ifdef CONFIG_BAND_CBAND + {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB}, +#endif +#ifdef CONFIG_BAND_VHF + {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, + {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, + {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF}, +#endif +#ifdef CONFIG_BAND_UHF + {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, +#endif +#ifdef CONFIG_BAND_LBAND + {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, +#endif +#ifdef CONFIG_BAND_SBAND + {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, + {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, +#endif +}; + +static const struct dib0090_pll dib0090_p1g_pll_table[] = { +#ifdef CONFIG_BAND_CBAND + {57000, 0, 11, 48, 6}, + {70000, 1, 11, 48, 6}, + {86000, 0, 10, 32, 4}, + {105000, 1, 10, 32, 4}, + {115000, 0, 9, 24, 6}, + {140000, 1, 9, 24, 6}, + {170000, 0, 8, 16, 4}, +#endif +#ifdef CONFIG_BAND_VHF + {200000, 1, 8, 16, 4}, + {230000, 0, 7, 12, 6}, + {280000, 1, 7, 12, 6}, + {340000, 0, 6, 8, 4}, + {380000, 1, 6, 8, 4}, + {455000, 0, 5, 6, 6}, +#endif +#ifdef CONFIG_BAND_UHF + {580000, 1, 5, 6, 6}, + {680000, 0, 4, 4, 4}, + {860000, 1, 4, 4, 4}, +#endif +#ifdef CONFIG_BAND_LBAND + {1800000, 1, 2, 2, 4}, +#endif +#ifdef CONFIG_BAND_SBAND + {2900000, 0, 1, 1, 6}, +#endif +}; + +static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband[] = { +#ifdef CONFIG_BAND_CBAND + {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, + {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, + {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB}, +#endif +#ifdef CONFIG_BAND_UHF + {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, + {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF}, +#endif +#ifdef CONFIG_BAND_LBAND + {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, + {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD}, +#endif +#ifdef CONFIG_BAND_SBAND + {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD}, + {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD}, +#endif +}; + +static const struct dib0090_tuning dib0090_tuning_table_cband_7090[] = { +#ifdef CONFIG_BAND_CBAND + {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, + {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, + {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, + {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB}, +#endif +}; + +static const struct dib0090_tuning dib0090_tuning_table_cband_7090e_sensitivity[] = { +#ifdef CONFIG_BAND_CBAND + { 300000, 0 , 3, 0x8105, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, + { 380000, 0 , 10, 0x810F, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, + { 600000, 0 , 10, 0x815E, 0x280, 0x2d12, 0xb84e, EN_CAB }, + { 660000, 0 , 5, 0x85E3, 0x280, 0x2d12, 0xb84e, EN_CAB }, + { 720000, 0 , 5, 0x852E, 0x280, 0x2d12, 0xb84e, EN_CAB }, + { 860000, 0 , 4, 0x85E5, 0x280, 0x2d12, 0xb84e, EN_CAB }, +#endif +}; + +int dib0090_update_tuning_table_7090(struct dvb_frontend *fe, + u8 cfg_sensitivity) +{ + struct dib0090_state *state = fe->tuner_priv; + const struct dib0090_tuning *tune = + dib0090_tuning_table_cband_7090e_sensitivity; + const struct dib0090_tuning dib0090_tuning_table_cband_7090e_aci[] = { + { 300000, 0 , 3, 0x8165, 0x2c0, 0x2d12, 0xb84e, EN_CAB }, + { 650000, 0 , 4, 0x815B, 0x280, 0x2d12, 0xb84e, EN_CAB }, + { 860000, 0 , 5, 0x84EF, 0x280, 0x2d12, 0xb84e, EN_CAB }, + }; + + if ((!state->identity.p1g) || (!state->identity.in_soc) + || ((state->identity.version != SOC_7090_P1G_21R1) + && (state->identity.version != SOC_7090_P1G_11R1))) { + dprintk("%s() function can only be used for dib7090", __func__); + return -ENODEV; + } + + if (cfg_sensitivity) + tune = dib0090_tuning_table_cband_7090e_sensitivity; + else + tune = dib0090_tuning_table_cband_7090e_aci; + + while (state->rf_request > tune->max_freq) + tune++; + + dib0090_write_reg(state, 0x09, (dib0090_read_reg(state, 0x09) & 0x8000) + | (tune->lna_bias & 0x7fff)); + dib0090_write_reg(state, 0x0b, (dib0090_read_reg(state, 0x0b) & 0xf83f) + | ((tune->lna_tune << 6) & 0x07c0)); + return 0; +} +EXPORT_SYMBOL(dib0090_update_tuning_table_7090); + +static int dib0090_captrim_search(struct dib0090_state *state, enum frontend_tune_state *tune_state) +{ + int ret = 0; + u16 lo4 = 0xe900; + + s16 adc_target; + u16 adc; + s8 step_sign; + u8 force_soft_search = 0; + + if (state->identity.version == SOC_8090_P1G_11R1 || state->identity.version == SOC_8090_P1G_21R1) + force_soft_search = 1; + + if (*tune_state == CT_TUNER_START) { + dprintk("Start Captrim search : %s", (force_soft_search == 1) ? "FORCE SOFT SEARCH" : "AUTO"); + dib0090_write_reg(state, 0x10, 0x2B1); + dib0090_write_reg(state, 0x1e, 0x0032); + + if (!state->tuner_is_tuned) { + /* prepare a complete captrim */ + if (!state->identity.p1g || force_soft_search) + state->step = state->captrim = state->fcaptrim = 64; + + state->current_rf = state->rf_request; + } else { /* we are already tuned to this frequency - the configuration is correct */ + if (!state->identity.p1g || force_soft_search) { + /* do a minimal captrim even if the frequency has not changed */ + state->step = 4; + state->captrim = state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7f; + } + } + state->adc_diff = 3000; + *tune_state = CT_TUNER_STEP_0; + + } else if (*tune_state == CT_TUNER_STEP_0) { + if (state->identity.p1g && !force_soft_search) { + u8 ratio = 31; + + dib0090_write_reg(state, 0x40, (3 << 7) | (ratio << 2) | (1 << 1) | 1); + dib0090_read_reg(state, 0x40); + ret = 50; + } else { + state->step /= 2; + dib0090_write_reg(state, 0x18, lo4 | state->captrim); + + if (state->identity.in_soc) + ret = 25; + } + *tune_state = CT_TUNER_STEP_1; + + } else if (*tune_state == CT_TUNER_STEP_1) { + if (state->identity.p1g && !force_soft_search) { + dib0090_write_reg(state, 0x40, 0x18c | (0 << 1) | 0); + dib0090_read_reg(state, 0x40); + + state->fcaptrim = dib0090_read_reg(state, 0x18) & 0x7F; + dprintk("***Final Captrim= 0x%x", state->fcaptrim); + *tune_state = CT_TUNER_STEP_3; + + } else { + /* MERGE for all krosus before P1G */ + adc = dib0090_get_slow_adc_val(state); + dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32) state->captrim, (u32) adc, (u32) (adc) * (u32) 1800 / (u32) 1024); + + if (state->rest == 0 || state->identity.in_soc) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */ + adc_target = 200; + } else + adc_target = 400; + + if (adc >= adc_target) { + adc -= adc_target; + step_sign = -1; + } else { + adc = adc_target - adc; + step_sign = 1; + } + + if (adc < state->adc_diff) { + dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32) state->captrim, (u32) adc, (u32) state->adc_diff); + state->adc_diff = adc; + state->fcaptrim = state->captrim; + } + + state->captrim += step_sign * state->step; + if (state->step >= 1) + *tune_state = CT_TUNER_STEP_0; + else + *tune_state = CT_TUNER_STEP_2; + + ret = 25; + } + } else if (*tune_state == CT_TUNER_STEP_2) { /* this step is only used by krosus < P1G */ + /*write the final cptrim config */ + dib0090_write_reg(state, 0x18, lo4 | state->fcaptrim); + + *tune_state = CT_TUNER_STEP_3; + + } else if (*tune_state == CT_TUNER_STEP_3) { + state->calibrate &= ~CAPTRIM_CAL; + *tune_state = CT_TUNER_STEP_0; + } + + return ret; +} + +static int dib0090_get_temperature(struct dib0090_state *state, enum frontend_tune_state *tune_state) +{ + int ret = 15; + s16 val; + + switch (*tune_state) { + case CT_TUNER_START: + state->wbdmux = dib0090_read_reg(state, 0x10); + dib0090_write_reg(state, 0x10, (state->wbdmux & ~(0xff << 3)) | (0x8 << 3)); + + state->bias = dib0090_read_reg(state, 0x13); + dib0090_write_reg(state, 0x13, state->bias | (0x3 << 8)); + + *tune_state = CT_TUNER_STEP_0; + /* wait for the WBDMUX to switch and for the ADC to sample */ + break; + + case CT_TUNER_STEP_0: + state->adc_diff = dib0090_get_slow_adc_val(state); + dib0090_write_reg(state, 0x13, (state->bias & ~(0x3 << 8)) | (0x2 << 8)); + *tune_state = CT_TUNER_STEP_1; + break; + + case CT_TUNER_STEP_1: + val = dib0090_get_slow_adc_val(state); + state->temperature = ((s16) ((val - state->adc_diff) * 180) >> 8) + 55; + + dprintk("temperature: %d C", state->temperature - 30); + + *tune_state = CT_TUNER_STEP_2; + break; + + case CT_TUNER_STEP_2: + dib0090_write_reg(state, 0x13, state->bias); + dib0090_write_reg(state, 0x10, state->wbdmux); /* write back original WBDMUX */ + + *tune_state = CT_TUNER_START; + state->calibrate &= ~TEMP_CAL; + if (state->config->analog_output == 0) + dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); + + break; + + default: + ret = 0; + break; + } + return ret; +} + +#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ +static int dib0090_tune(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + const struct dib0090_tuning *tune = state->current_tune_table_index; + const struct dib0090_pll *pll = state->current_pll_table_index; + enum frontend_tune_state *tune_state = &state->tune_state; + + u16 lo5, lo6, Den, tmp; + u32 FBDiv, Rest, FREF, VCOF_kHz = 0; + int ret = 10; /* 1ms is the default delay most of the time */ + u8 c, i; + + /************************* VCO ***************************/ + /* Default values for FG */ + /* from these are needed : */ + /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */ + + /* in any case we first need to do a calibration if needed */ + if (*tune_state == CT_TUNER_START) { + /* deactivate DataTX before some calibrations */ + if (state->calibrate & (DC_CAL | TEMP_CAL | WBD_CAL)) + dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) & ~(1 << 14)); + else + /* Activate DataTX in case a calibration has been done before */ + if (state->config->analog_output == 0) + dib0090_write_reg(state, 0x23, dib0090_read_reg(state, 0x23) | (1 << 14)); + } + + if (state->calibrate & DC_CAL) + return dib0090_dc_offset_calibration(state, tune_state); + else if (state->calibrate & WBD_CAL) { + if (state->current_rf == 0) + state->current_rf = state->fe->dtv_property_cache.frequency / 1000; + return dib0090_wbd_calibration(state, tune_state); + } else if (state->calibrate & TEMP_CAL) + return dib0090_get_temperature(state, tune_state); + else if (state->calibrate & CAPTRIM_CAL) + return dib0090_captrim_search(state, tune_state); + + if (*tune_state == CT_TUNER_START) { + /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */ + if (state->config->use_pwm_agc && state->identity.in_soc) { + tmp = dib0090_read_reg(state, 0x39); + if ((tmp >> 10) & 0x1) + dib0090_write_reg(state, 0x39, tmp & ~(1 << 10)); + } + + state->current_band = (u8) BAND_OF_FREQUENCY(state->fe->dtv_property_cache.frequency / 1000); + state->rf_request = + state->fe->dtv_property_cache.frequency / 1000 + (state->current_band == + BAND_UHF ? state->config->freq_offset_khz_uhf : state->config-> + freq_offset_khz_vhf); + + /* in ISDB-T 1seg we shift tuning frequency */ + if ((state->fe->dtv_property_cache.delivery_system == SYS_ISDBT && state->fe->dtv_property_cache.isdbt_sb_mode == 1 + && state->fe->dtv_property_cache.isdbt_partial_reception == 0)) { + const struct dib0090_low_if_offset_table *LUT_offset = state->config->low_if; + u8 found_offset = 0; + u32 margin_khz = 100; + + if (LUT_offset != NULL) { + while (LUT_offset->RF_freq != 0xffff) { + if (((state->rf_request > (LUT_offset->RF_freq - margin_khz)) + && (state->rf_request < (LUT_offset->RF_freq + margin_khz))) + && LUT_offset->std == state->fe->dtv_property_cache.delivery_system) { + state->rf_request += LUT_offset->offset_khz; + found_offset = 1; + break; + } + LUT_offset++; + } + } + + if (found_offset == 0) + state->rf_request += 400; + } + if (state->current_rf != state->rf_request || (state->current_standard != state->fe->dtv_property_cache.delivery_system)) { + state->tuner_is_tuned = 0; + state->current_rf = 0; + state->current_standard = 0; + + tune = dib0090_tuning_table; + if (state->identity.p1g) + tune = dib0090_p1g_tuning_table; + + tmp = (state->identity.version >> 5) & 0x7; + + if (state->identity.in_soc) { + if (state->config->force_cband_input) { /* Use the CBAND input for all band */ + if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF + || state->current_band & BAND_UHF) { + state->current_band = BAND_CBAND; + if (state->config->is_dib7090e) + tune = dib0090_tuning_table_cband_7090e_sensitivity; + else + tune = dib0090_tuning_table_cband_7090; + } + } else { /* Use the CBAND input for all band under UHF */ + if (state->current_band & BAND_CBAND || state->current_band & BAND_FM || state->current_band & BAND_VHF) { + state->current_band = BAND_CBAND; + if (state->config->is_dib7090e) + tune = dib0090_tuning_table_cband_7090e_sensitivity; + else + tune = dib0090_tuning_table_cband_7090; + } + } + } else + if (tmp == 0x4 || tmp == 0x7) { + /* CBAND tuner version for VHF */ + if (state->current_band == BAND_FM || state->current_band == BAND_CBAND || state->current_band == BAND_VHF) { + state->current_band = BAND_CBAND; /* Force CBAND */ + + tune = dib0090_tuning_table_fm_vhf_on_cband; + if (state->identity.p1g) + tune = dib0090_p1g_tuning_table_fm_vhf_on_cband; + } + } + + pll = dib0090_pll_table; + if (state->identity.p1g) + pll = dib0090_p1g_pll_table; + + /* Look for the interval */ + while (state->rf_request > tune->max_freq) + tune++; + while (state->rf_request > pll->max_freq) + pll++; + + state->current_tune_table_index = tune; + state->current_pll_table_index = pll; + + dib0090_write_reg(state, 0x0b, 0xb800 | (tune->switch_trim)); + + VCOF_kHz = (pll->hfdiv * state->rf_request) * 2; + + FREF = state->config->io.clock_khz; + if (state->config->fref_clock_ratio != 0) + FREF /= state->config->fref_clock_ratio; + + FBDiv = (VCOF_kHz / pll->topresc / FREF); + Rest = (VCOF_kHz / pll->topresc) - FBDiv * FREF; + + if (Rest < LPF) + Rest = 0; + else if (Rest < 2 * LPF) + Rest = 2 * LPF; + else if (Rest > (FREF - LPF)) { + Rest = 0; + FBDiv += 1; + } else if (Rest > (FREF - 2 * LPF)) + Rest = FREF - 2 * LPF; + Rest = (Rest * 6528) / (FREF / 10); + state->rest = Rest; + + /* external loop filter, otherwise: + * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4; + * lo6 = 0x0e34 */ + + if (Rest == 0) { + if (pll->vco_band) + lo5 = 0x049f; + else + lo5 = 0x041f; + } else { + if (pll->vco_band) + lo5 = 0x049e; + else if (state->config->analog_output) + lo5 = 0x041d; + else + lo5 = 0x041c; + } + + if (state->identity.p1g) { /* Bias is done automatically in P1G */ + if (state->identity.in_soc) { + if (state->identity.version == SOC_8090_P1G_11R1) + lo5 = 0x46f; + else + lo5 = 0x42f; + } else + lo5 = 0x42c; + } + + lo5 |= (pll->hfdiv_code << 11) | (pll->vco_band << 7); /* bit 15 is the split to the slave, we do not do it here */ + + if (!state->config->io.pll_int_loop_filt) { + if (state->identity.in_soc) + lo6 = 0xff98; + else if (state->identity.p1g || (Rest == 0)) + lo6 = 0xfff8; + else + lo6 = 0xff28; + } else + lo6 = (state->config->io.pll_int_loop_filt << 3); + + Den = 1; + + if (Rest > 0) { + if (state->config->analog_output) + lo6 |= (1 << 2) | 2; + else { + if (state->identity.in_soc) + lo6 |= (1 << 2) | 2; + else + lo6 |= (1 << 2) | 2; + } + Den = 255; + } + dib0090_write_reg(state, 0x15, (u16) FBDiv); + if (state->config->fref_clock_ratio != 0) + dib0090_write_reg(state, 0x16, (Den << 8) | state->config->fref_clock_ratio); + else + dib0090_write_reg(state, 0x16, (Den << 8) | 1); + dib0090_write_reg(state, 0x17, (u16) Rest); + dib0090_write_reg(state, 0x19, lo5); + dib0090_write_reg(state, 0x1c, lo6); + + lo6 = tune->tuner_enable; + if (state->config->analog_output) + lo6 = (lo6 & 0xff9f) | 0x2; + + dib0090_write_reg(state, 0x24, lo6 | EN_LO | state->config->use_pwm_agc * EN_CRYSTAL); + + } + + state->current_rf = state->rf_request; + state->current_standard = state->fe->dtv_property_cache.delivery_system; + + ret = 20; + state->calibrate = CAPTRIM_CAL; /* captrim serach now */ + } + + else if (*tune_state == CT_TUNER_STEP_0) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */ + const struct dib0090_wbd_slope *wbd = state->current_wbd_table; + + while (state->current_rf / 1000 > wbd->max_freq) + wbd++; + + dib0090_write_reg(state, 0x1e, 0x07ff); + dprintk("Final Captrim: %d", (u32) state->fcaptrim); + dprintk("HFDIV code: %d", (u32) pll->hfdiv_code); + dprintk("VCO = %d", (u32) pll->vco_band); + dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32) ((pll->hfdiv * state->rf_request) * 2), (u32) pll->hfdiv, (u32) state->rf_request); + dprintk("REFDIV: %d, FREF: %d", (u32) 1, (u32) state->config->io.clock_khz); + dprintk("FBDIV: %d, Rest: %d", (u32) dib0090_read_reg(state, 0x15), (u32) dib0090_read_reg(state, 0x17)); + dprintk("Num: %d, Den: %d, SD: %d", (u32) dib0090_read_reg(state, 0x17), (u32) (dib0090_read_reg(state, 0x16) >> 8), + (u32) dib0090_read_reg(state, 0x1c) & 0x3); + +#define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */ + c = 4; + i = 3; + + if (wbd->wbd_gain != 0) + c = wbd->wbd_gain; + + state->wbdmux = (c << 13) | (i << 11) | (WBD | (state->config->use_pwm_agc << 1)); + dib0090_write_reg(state, 0x10, state->wbdmux); + + if ((tune->tuner_enable == EN_CAB) && state->identity.p1g) { + dprintk("P1G : The cable band is selected and lna_tune = %d", tune->lna_tune); + dib0090_write_reg(state, 0x09, tune->lna_bias); + dib0090_write_reg(state, 0x0b, 0xb800 | (tune->lna_tune << 6) | (tune->switch_trim)); + } else + dib0090_write_reg(state, 0x09, (tune->lna_tune << 5) | tune->lna_bias); + + dib0090_write_reg(state, 0x0c, tune->v2i); + dib0090_write_reg(state, 0x0d, tune->mix); + dib0090_write_reg(state, 0x0e, tune->load); + *tune_state = CT_TUNER_STEP_1; + + } else if (*tune_state == CT_TUNER_STEP_1) { + /* initialize the lt gain register */ + state->rf_lt_def = 0x7c00; + + dib0090_set_bandwidth(state); + state->tuner_is_tuned = 1; + + state->calibrate |= WBD_CAL; + state->calibrate |= TEMP_CAL; + *tune_state = CT_TUNER_STOP; + } else + ret = FE_CALLBACK_TIME_NEVER; + return ret; +} + +static int dib0090_release(struct dvb_frontend *fe) +{ + kfree(fe->tuner_priv); + fe->tuner_priv = NULL; + return 0; +} + +enum frontend_tune_state dib0090_get_tune_state(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + + return state->tune_state; +} + +EXPORT_SYMBOL(dib0090_get_tune_state); + +int dib0090_set_tune_state(struct dvb_frontend *fe, enum frontend_tune_state tune_state) +{ + struct dib0090_state *state = fe->tuner_priv; + + state->tune_state = tune_state; + return 0; +} + +EXPORT_SYMBOL(dib0090_set_tune_state); + +static int dib0090_get_frequency(struct dvb_frontend *fe, u32 * frequency) +{ + struct dib0090_state *state = fe->tuner_priv; + + *frequency = 1000 * state->current_rf; + return 0; +} + +static int dib0090_set_params(struct dvb_frontend *fe) +{ + struct dib0090_state *state = fe->tuner_priv; + u32 ret; + + state->tune_state = CT_TUNER_START; + + do { + ret = dib0090_tune(fe); + if (ret != FE_CALLBACK_TIME_NEVER) + msleep(ret / 10); + else + break; + } while (state->tune_state != CT_TUNER_STOP); + + return 0; +} + +static const struct dvb_tuner_ops dib0090_ops = { + .info = { + .name = "DiBcom DiB0090", + .frequency_min = 45000000, + .frequency_max = 860000000, + .frequency_step = 1000, + }, + .release = dib0090_release, + + .init = dib0090_wakeup, + .sleep = dib0090_sleep, + .set_params = dib0090_set_params, + .get_frequency = dib0090_get_frequency, +}; + +static const struct dvb_tuner_ops dib0090_fw_ops = { + .info = { + .name = "DiBcom DiB0090", + .frequency_min = 45000000, + .frequency_max = 860000000, + .frequency_step = 1000, + }, + .release = dib0090_release, + + .init = NULL, + .sleep = NULL, + .set_params = NULL, + .get_frequency = NULL, +}; + +static const struct dib0090_wbd_slope dib0090_wbd_table_default[] = { + {470, 0, 250, 0, 100, 4}, + {860, 51, 866, 21, 375, 4}, + {1700, 0, 800, 0, 850, 4}, + {2900, 0, 250, 0, 100, 6}, + {0xFFFF, 0, 0, 0, 0, 0}, +}; + +struct dvb_frontend *dib0090_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) +{ + struct dib0090_state *st = kzalloc(sizeof(struct dib0090_state), GFP_KERNEL); + if (st == NULL) + return NULL; + + st->config = config; + st->i2c = i2c; + st->fe = fe; + mutex_init(&st->i2c_buffer_lock); + fe->tuner_priv = st; + + if (config->wbd == NULL) + st->current_wbd_table = dib0090_wbd_table_default; + else + st->current_wbd_table = config->wbd; + + if (dib0090_reset(fe) != 0) + goto free_mem; + + printk(KERN_INFO "DiB0090: successfully identified\n"); + memcpy(&fe->ops.tuner_ops, &dib0090_ops, sizeof(struct dvb_tuner_ops)); + + return fe; + free_mem: + kfree(st); + fe->tuner_priv = NULL; + return NULL; +} + +EXPORT_SYMBOL(dib0090_register); + +struct dvb_frontend *dib0090_fw_register(struct dvb_frontend *fe, struct i2c_adapter *i2c, const struct dib0090_config *config) +{ + struct dib0090_fw_state *st = kzalloc(sizeof(struct dib0090_fw_state), GFP_KERNEL); + if (st == NULL) + return NULL; + + st->config = config; + st->i2c = i2c; + st->fe = fe; + mutex_init(&st->i2c_buffer_lock); + fe->tuner_priv = st; + + if (dib0090_fw_reset_digital(fe, st->config) != 0) + goto free_mem; + + dprintk("DiB0090 FW: successfully identified"); + memcpy(&fe->ops.tuner_ops, &dib0090_fw_ops, sizeof(struct dvb_tuner_ops)); + + return fe; +free_mem: + kfree(st); + fe->tuner_priv = NULL; + return NULL; +} +EXPORT_SYMBOL(dib0090_fw_register); + +MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>"); +MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>"); +MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner"); +MODULE_LICENSE("GPL"); |