diff options
author | Linus Torvalds <torvalds@linux-foundation.org> | 2017-02-28 06:41:08 +0100 |
---|---|---|
committer | Linus Torvalds <torvalds@linux-foundation.org> | 2017-02-28 06:41:08 +0100 |
commit | f7878dc3a9d3d900c86a66d9742f7e06681b06cd (patch) | |
tree | caf8dc1b1b668309200159519f0dc5c25c515acd /kernel/cgroup | |
parent | Merge branch 'for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/p... (diff) | |
parent | kernfs: fix locking around kernfs_ops->release() callback (diff) | |
download | linux-f7878dc3a9d3d900c86a66d9742f7e06681b06cd.tar.xz linux-f7878dc3a9d3d900c86a66d9742f7e06681b06cd.zip |
Merge branch 'for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup
Pull cgroup updates from Tejun Heo:
"Several noteworthy changes.
- Parav's rdma controller is finally merged. It is very straight
forward and can limit the abosolute numbers of common rdma
constructs used by different cgroups.
- kernel/cgroup.c got too chubby and disorganized. Created
kernel/cgroup/ subdirectory and moved all cgroup related files
under kernel/ there and reorganized the core code. This hurts for
backporting patches but was long overdue.
- cgroup v2 process listing reimplemented so that it no longer
depends on allocating a buffer large enough to cache the entire
result to sort and uniq the output. v2 has always mangled the sort
order to ensure that users don't depend on the sorted output, so
this shouldn't surprise anybody. This makes the pid listing
functions use the same iterators that are used internally, which
have to have the same iterating capabilities anyway.
- perf cgroup filtering now works automatically on cgroup v2. This
patch was posted a long time ago but somehow fell through the
cracks.
- misc fixes asnd documentation updates"
* 'for-4.11' of git://git.kernel.org/pub/scm/linux/kernel/git/tj/cgroup: (27 commits)
kernfs: fix locking around kernfs_ops->release() callback
cgroup: drop the matching uid requirement on migration for cgroup v2
cgroup, perf_event: make perf_event controller work on cgroup2 hierarchy
cgroup: misc cleanups
cgroup: call subsys->*attach() only for subsystems which are actually affected by migration
cgroup: track migration context in cgroup_mgctx
cgroup: cosmetic update to cgroup_taskset_add()
rdmacg: Fixed uninitialized current resource usage
cgroup: Add missing cgroup-v2 PID controller documentation.
rdmacg: Added documentation for rdmacg
IB/core: added support to use rdma cgroup controller
rdmacg: Added rdma cgroup controller
cgroup: fix a comment typo
cgroup: fix RCU related sparse warnings
cgroup: move namespace code to kernel/cgroup/namespace.c
cgroup: rename functions for consistency
cgroup: move v1 mount functions to kernel/cgroup/cgroup-v1.c
cgroup: separate out cgroup1_kf_syscall_ops
cgroup: refactor mount path and clearly distinguish v1 and v2 paths
cgroup: move cgroup v1 specific code to kernel/cgroup/cgroup-v1.c
...
Diffstat (limited to 'kernel/cgroup')
-rw-r--r-- | kernel/cgroup/Makefile | 6 | ||||
-rw-r--r-- | kernel/cgroup/cgroup-internal.h | 214 | ||||
-rw-r--r-- | kernel/cgroup/cgroup-v1.c | 1395 | ||||
-rw-r--r-- | kernel/cgroup/cgroup.c | 5067 | ||||
-rw-r--r-- | kernel/cgroup/cpuset.c | 2752 | ||||
-rw-r--r-- | kernel/cgroup/freezer.c | 481 | ||||
-rw-r--r-- | kernel/cgroup/namespace.c | 155 | ||||
-rw-r--r-- | kernel/cgroup/pids.c | 348 | ||||
-rw-r--r-- | kernel/cgroup/rdma.c | 619 |
9 files changed, 11037 insertions, 0 deletions
diff --git a/kernel/cgroup/Makefile b/kernel/cgroup/Makefile new file mode 100644 index 000000000000..387348a40c64 --- /dev/null +++ b/kernel/cgroup/Makefile @@ -0,0 +1,6 @@ +obj-y := cgroup.o namespace.o cgroup-v1.o + +obj-$(CONFIG_CGROUP_FREEZER) += freezer.o +obj-$(CONFIG_CGROUP_PIDS) += pids.o +obj-$(CONFIG_CGROUP_RDMA) += rdma.o +obj-$(CONFIG_CPUSETS) += cpuset.o diff --git a/kernel/cgroup/cgroup-internal.h b/kernel/cgroup/cgroup-internal.h new file mode 100644 index 000000000000..9203bfb05603 --- /dev/null +++ b/kernel/cgroup/cgroup-internal.h @@ -0,0 +1,214 @@ +#ifndef __CGROUP_INTERNAL_H +#define __CGROUP_INTERNAL_H + +#include <linux/cgroup.h> +#include <linux/kernfs.h> +#include <linux/workqueue.h> +#include <linux/list.h> + +/* + * A cgroup can be associated with multiple css_sets as different tasks may + * belong to different cgroups on different hierarchies. In the other + * direction, a css_set is naturally associated with multiple cgroups. + * This M:N relationship is represented by the following link structure + * which exists for each association and allows traversing the associations + * from both sides. + */ +struct cgrp_cset_link { + /* the cgroup and css_set this link associates */ + struct cgroup *cgrp; + struct css_set *cset; + + /* list of cgrp_cset_links anchored at cgrp->cset_links */ + struct list_head cset_link; + + /* list of cgrp_cset_links anchored at css_set->cgrp_links */ + struct list_head cgrp_link; +}; + +/* used to track tasks and csets during migration */ +struct cgroup_taskset { + /* the src and dst cset list running through cset->mg_node */ + struct list_head src_csets; + struct list_head dst_csets; + + /* the subsys currently being processed */ + int ssid; + + /* + * Fields for cgroup_taskset_*() iteration. + * + * Before migration is committed, the target migration tasks are on + * ->mg_tasks of the csets on ->src_csets. After, on ->mg_tasks of + * the csets on ->dst_csets. ->csets point to either ->src_csets + * or ->dst_csets depending on whether migration is committed. + * + * ->cur_csets and ->cur_task point to the current task position + * during iteration. + */ + struct list_head *csets; + struct css_set *cur_cset; + struct task_struct *cur_task; +}; + +/* migration context also tracks preloading */ +struct cgroup_mgctx { + /* + * Preloaded source and destination csets. Used to guarantee + * atomic success or failure on actual migration. + */ + struct list_head preloaded_src_csets; + struct list_head preloaded_dst_csets; + + /* tasks and csets to migrate */ + struct cgroup_taskset tset; + + /* subsystems affected by migration */ + u16 ss_mask; +}; + +#define CGROUP_TASKSET_INIT(tset) \ +{ \ + .src_csets = LIST_HEAD_INIT(tset.src_csets), \ + .dst_csets = LIST_HEAD_INIT(tset.dst_csets), \ + .csets = &tset.src_csets, \ +} + +#define CGROUP_MGCTX_INIT(name) \ +{ \ + LIST_HEAD_INIT(name.preloaded_src_csets), \ + LIST_HEAD_INIT(name.preloaded_dst_csets), \ + CGROUP_TASKSET_INIT(name.tset), \ +} + +#define DEFINE_CGROUP_MGCTX(name) \ + struct cgroup_mgctx name = CGROUP_MGCTX_INIT(name) + +struct cgroup_sb_opts { + u16 subsys_mask; + unsigned int flags; + char *release_agent; + bool cpuset_clone_children; + char *name; + /* User explicitly requested empty subsystem */ + bool none; +}; + +extern struct mutex cgroup_mutex; +extern spinlock_t css_set_lock; +extern struct cgroup_subsys *cgroup_subsys[]; +extern struct list_head cgroup_roots; +extern struct file_system_type cgroup_fs_type; + +/* iterate across the hierarchies */ +#define for_each_root(root) \ + list_for_each_entry((root), &cgroup_roots, root_list) + +/** + * for_each_subsys - iterate all enabled cgroup subsystems + * @ss: the iteration cursor + * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end + */ +#define for_each_subsys(ss, ssid) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT && \ + (((ss) = cgroup_subsys[ssid]) || true); (ssid)++) + +static inline bool cgroup_is_dead(const struct cgroup *cgrp) +{ + return !(cgrp->self.flags & CSS_ONLINE); +} + +static inline bool notify_on_release(const struct cgroup *cgrp) +{ + return test_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); +} + +void put_css_set_locked(struct css_set *cset); + +static inline void put_css_set(struct css_set *cset) +{ + unsigned long flags; + + /* + * Ensure that the refcount doesn't hit zero while any readers + * can see it. Similar to atomic_dec_and_lock(), but for an + * rwlock + */ + if (atomic_add_unless(&cset->refcount, -1, 1)) + return; + + spin_lock_irqsave(&css_set_lock, flags); + put_css_set_locked(cset); + spin_unlock_irqrestore(&css_set_lock, flags); +} + +/* + * refcounted get/put for css_set objects + */ +static inline void get_css_set(struct css_set *cset) +{ + atomic_inc(&cset->refcount); +} + +bool cgroup_ssid_enabled(int ssid); +bool cgroup_on_dfl(const struct cgroup *cgrp); + +struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root); +struct cgroup *task_cgroup_from_root(struct task_struct *task, + struct cgroup_root *root); +struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline); +void cgroup_kn_unlock(struct kernfs_node *kn); +int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, + struct cgroup_namespace *ns); + +void cgroup_free_root(struct cgroup_root *root); +void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts); +int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask); +int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask); +struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, + struct cgroup_root *root, unsigned long magic, + struct cgroup_namespace *ns); + +bool cgroup_may_migrate_to(struct cgroup *dst_cgrp); +void cgroup_migrate_finish(struct cgroup_mgctx *mgctx); +void cgroup_migrate_add_src(struct css_set *src_cset, struct cgroup *dst_cgrp, + struct cgroup_mgctx *mgctx); +int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx); +int cgroup_migrate(struct task_struct *leader, bool threadgroup, + struct cgroup_mgctx *mgctx); + +int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, + bool threadgroup); +ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off, bool threadgroup); +ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, + loff_t off); + +void cgroup_lock_and_drain_offline(struct cgroup *cgrp); + +int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode); +int cgroup_rmdir(struct kernfs_node *kn); +int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, + struct kernfs_root *kf_root); + +/* + * namespace.c + */ +extern const struct proc_ns_operations cgroupns_operations; + +/* + * cgroup-v1.c + */ +extern struct cftype cgroup1_base_files[]; +extern const struct file_operations proc_cgroupstats_operations; +extern struct kernfs_syscall_ops cgroup1_kf_syscall_ops; + +bool cgroup1_ssid_disabled(int ssid); +void cgroup1_pidlist_destroy_all(struct cgroup *cgrp); +void cgroup1_release_agent(struct work_struct *work); +void cgroup1_check_for_release(struct cgroup *cgrp); +struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, + void *data, unsigned long magic, + struct cgroup_namespace *ns); + +#endif /* __CGROUP_INTERNAL_H */ diff --git a/kernel/cgroup/cgroup-v1.c b/kernel/cgroup/cgroup-v1.c new file mode 100644 index 000000000000..fc34bcf2329f --- /dev/null +++ b/kernel/cgroup/cgroup-v1.c @@ -0,0 +1,1395 @@ +#include "cgroup-internal.h" + +#include <linux/ctype.h> +#include <linux/kmod.h> +#include <linux/sort.h> +#include <linux/delay.h> +#include <linux/mm.h> +#include <linux/slab.h> +#include <linux/vmalloc.h> +#include <linux/delayacct.h> +#include <linux/pid_namespace.h> +#include <linux/cgroupstats.h> + +#include <trace/events/cgroup.h> + +/* + * pidlists linger the following amount before being destroyed. The goal + * is avoiding frequent destruction in the middle of consecutive read calls + * Expiring in the middle is a performance problem not a correctness one. + * 1 sec should be enough. + */ +#define CGROUP_PIDLIST_DESTROY_DELAY HZ + +/* Controllers blocked by the commandline in v1 */ +static u16 cgroup_no_v1_mask; + +/* + * pidlist destructions need to be flushed on cgroup destruction. Use a + * separate workqueue as flush domain. + */ +static struct workqueue_struct *cgroup_pidlist_destroy_wq; + +/* + * Protects cgroup_subsys->release_agent_path. Modifying it also requires + * cgroup_mutex. Reading requires either cgroup_mutex or this spinlock. + */ +static DEFINE_SPINLOCK(release_agent_path_lock); + +bool cgroup1_ssid_disabled(int ssid) +{ + return cgroup_no_v1_mask & (1 << ssid); +} + +/** + * cgroup_attach_task_all - attach task 'tsk' to all cgroups of task 'from' + * @from: attach to all cgroups of a given task + * @tsk: the task to be attached + */ +int cgroup_attach_task_all(struct task_struct *from, struct task_struct *tsk) +{ + struct cgroup_root *root; + int retval = 0; + + mutex_lock(&cgroup_mutex); + percpu_down_write(&cgroup_threadgroup_rwsem); + for_each_root(root) { + struct cgroup *from_cgrp; + + if (root == &cgrp_dfl_root) + continue; + + spin_lock_irq(&css_set_lock); + from_cgrp = task_cgroup_from_root(from, root); + spin_unlock_irq(&css_set_lock); + + retval = cgroup_attach_task(from_cgrp, tsk, false); + if (retval) + break; + } + percpu_up_write(&cgroup_threadgroup_rwsem); + mutex_unlock(&cgroup_mutex); + + return retval; +} +EXPORT_SYMBOL_GPL(cgroup_attach_task_all); + +/** + * cgroup_trasnsfer_tasks - move tasks from one cgroup to another + * @to: cgroup to which the tasks will be moved + * @from: cgroup in which the tasks currently reside + * + * Locking rules between cgroup_post_fork() and the migration path + * guarantee that, if a task is forking while being migrated, the new child + * is guaranteed to be either visible in the source cgroup after the + * parent's migration is complete or put into the target cgroup. No task + * can slip out of migration through forking. + */ +int cgroup_transfer_tasks(struct cgroup *to, struct cgroup *from) +{ + DEFINE_CGROUP_MGCTX(mgctx); + struct cgrp_cset_link *link; + struct css_task_iter it; + struct task_struct *task; + int ret; + + if (cgroup_on_dfl(to)) + return -EINVAL; + + if (!cgroup_may_migrate_to(to)) + return -EBUSY; + + mutex_lock(&cgroup_mutex); + + percpu_down_write(&cgroup_threadgroup_rwsem); + + /* all tasks in @from are being moved, all csets are source */ + spin_lock_irq(&css_set_lock); + list_for_each_entry(link, &from->cset_links, cset_link) + cgroup_migrate_add_src(link->cset, to, &mgctx); + spin_unlock_irq(&css_set_lock); + + ret = cgroup_migrate_prepare_dst(&mgctx); + if (ret) + goto out_err; + + /* + * Migrate tasks one-by-one until @from is empty. This fails iff + * ->can_attach() fails. + */ + do { + css_task_iter_start(&from->self, &it); + task = css_task_iter_next(&it); + if (task) + get_task_struct(task); + css_task_iter_end(&it); + + if (task) { + ret = cgroup_migrate(task, false, &mgctx); + if (!ret) + trace_cgroup_transfer_tasks(to, task, false); + put_task_struct(task); + } + } while (task && !ret); +out_err: + cgroup_migrate_finish(&mgctx); + percpu_up_write(&cgroup_threadgroup_rwsem); + mutex_unlock(&cgroup_mutex); + return ret; +} + +/* + * Stuff for reading the 'tasks'/'procs' files. + * + * Reading this file can return large amounts of data if a cgroup has + * *lots* of attached tasks. So it may need several calls to read(), + * but we cannot guarantee that the information we produce is correct + * unless we produce it entirely atomically. + * + */ + +/* which pidlist file are we talking about? */ +enum cgroup_filetype { + CGROUP_FILE_PROCS, + CGROUP_FILE_TASKS, +}; + +/* + * A pidlist is a list of pids that virtually represents the contents of one + * of the cgroup files ("procs" or "tasks"). We keep a list of such pidlists, + * a pair (one each for procs, tasks) for each pid namespace that's relevant + * to the cgroup. + */ +struct cgroup_pidlist { + /* + * used to find which pidlist is wanted. doesn't change as long as + * this particular list stays in the list. + */ + struct { enum cgroup_filetype type; struct pid_namespace *ns; } key; + /* array of xids */ + pid_t *list; + /* how many elements the above list has */ + int length; + /* each of these stored in a list by its cgroup */ + struct list_head links; + /* pointer to the cgroup we belong to, for list removal purposes */ + struct cgroup *owner; + /* for delayed destruction */ + struct delayed_work destroy_dwork; +}; + +/* + * The following two functions "fix" the issue where there are more pids + * than kmalloc will give memory for; in such cases, we use vmalloc/vfree. + * TODO: replace with a kernel-wide solution to this problem + */ +#define PIDLIST_TOO_LARGE(c) ((c) * sizeof(pid_t) > (PAGE_SIZE * 2)) +static void *pidlist_allocate(int count) +{ + if (PIDLIST_TOO_LARGE(count)) + return vmalloc(count * sizeof(pid_t)); + else + return kmalloc(count * sizeof(pid_t), GFP_KERNEL); +} + +static void pidlist_free(void *p) +{ + kvfree(p); +} + +/* + * Used to destroy all pidlists lingering waiting for destroy timer. None + * should be left afterwards. + */ +void cgroup1_pidlist_destroy_all(struct cgroup *cgrp) +{ + struct cgroup_pidlist *l, *tmp_l; + + mutex_lock(&cgrp->pidlist_mutex); + list_for_each_entry_safe(l, tmp_l, &cgrp->pidlists, links) + mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, 0); + mutex_unlock(&cgrp->pidlist_mutex); + + flush_workqueue(cgroup_pidlist_destroy_wq); + BUG_ON(!list_empty(&cgrp->pidlists)); +} + +static void cgroup_pidlist_destroy_work_fn(struct work_struct *work) +{ + struct delayed_work *dwork = to_delayed_work(work); + struct cgroup_pidlist *l = container_of(dwork, struct cgroup_pidlist, + destroy_dwork); + struct cgroup_pidlist *tofree = NULL; + + mutex_lock(&l->owner->pidlist_mutex); + + /* + * Destroy iff we didn't get queued again. The state won't change + * as destroy_dwork can only be queued while locked. + */ + if (!delayed_work_pending(dwork)) { + list_del(&l->links); + pidlist_free(l->list); + put_pid_ns(l->key.ns); + tofree = l; + } + + mutex_unlock(&l->owner->pidlist_mutex); + kfree(tofree); +} + +/* + * pidlist_uniq - given a kmalloc()ed list, strip out all duplicate entries + * Returns the number of unique elements. + */ +static int pidlist_uniq(pid_t *list, int length) +{ + int src, dest = 1; + + /* + * we presume the 0th element is unique, so i starts at 1. trivial + * edge cases first; no work needs to be done for either + */ + if (length == 0 || length == 1) + return length; + /* src and dest walk down the list; dest counts unique elements */ + for (src = 1; src < length; src++) { + /* find next unique element */ + while (list[src] == list[src-1]) { + src++; + if (src == length) + goto after; + } + /* dest always points to where the next unique element goes */ + list[dest] = list[src]; + dest++; + } +after: + return dest; +} + +/* + * The two pid files - task and cgroup.procs - guaranteed that the result + * is sorted, which forced this whole pidlist fiasco. As pid order is + * different per namespace, each namespace needs differently sorted list, + * making it impossible to use, for example, single rbtree of member tasks + * sorted by task pointer. As pidlists can be fairly large, allocating one + * per open file is dangerous, so cgroup had to implement shared pool of + * pidlists keyed by cgroup and namespace. + */ +static int cmppid(const void *a, const void *b) +{ + return *(pid_t *)a - *(pid_t *)b; +} + +static struct cgroup_pidlist *cgroup_pidlist_find(struct cgroup *cgrp, + enum cgroup_filetype type) +{ + struct cgroup_pidlist *l; + /* don't need task_nsproxy() if we're looking at ourself */ + struct pid_namespace *ns = task_active_pid_ns(current); + + lockdep_assert_held(&cgrp->pidlist_mutex); + + list_for_each_entry(l, &cgrp->pidlists, links) + if (l->key.type == type && l->key.ns == ns) + return l; + return NULL; +} + +/* + * find the appropriate pidlist for our purpose (given procs vs tasks) + * returns with the lock on that pidlist already held, and takes care + * of the use count, or returns NULL with no locks held if we're out of + * memory. + */ +static struct cgroup_pidlist *cgroup_pidlist_find_create(struct cgroup *cgrp, + enum cgroup_filetype type) +{ + struct cgroup_pidlist *l; + + lockdep_assert_held(&cgrp->pidlist_mutex); + + l = cgroup_pidlist_find(cgrp, type); + if (l) + return l; + + /* entry not found; create a new one */ + l = kzalloc(sizeof(struct cgroup_pidlist), GFP_KERNEL); + if (!l) + return l; + + INIT_DELAYED_WORK(&l->destroy_dwork, cgroup_pidlist_destroy_work_fn); + l->key.type = type; + /* don't need task_nsproxy() if we're looking at ourself */ + l->key.ns = get_pid_ns(task_active_pid_ns(current)); + l->owner = cgrp; + list_add(&l->links, &cgrp->pidlists); + return l; +} + +/** + * cgroup_task_count - count the number of tasks in a cgroup. + * @cgrp: the cgroup in question + * + * Return the number of tasks in the cgroup. The returned number can be + * higher than the actual number of tasks due to css_set references from + * namespace roots and temporary usages. + */ +static int cgroup_task_count(const struct cgroup *cgrp) +{ + int count = 0; + struct cgrp_cset_link *link; + + spin_lock_irq(&css_set_lock); + list_for_each_entry(link, &cgrp->cset_links, cset_link) + count += atomic_read(&link->cset->refcount); + spin_unlock_irq(&css_set_lock); + return count; +} + +/* + * Load a cgroup's pidarray with either procs' tgids or tasks' pids + */ +static int pidlist_array_load(struct cgroup *cgrp, enum cgroup_filetype type, + struct cgroup_pidlist **lp) +{ + pid_t *array; + int length; + int pid, n = 0; /* used for populating the array */ + struct css_task_iter it; + struct task_struct *tsk; + struct cgroup_pidlist *l; + + lockdep_assert_held(&cgrp->pidlist_mutex); + + /* + * If cgroup gets more users after we read count, we won't have + * enough space - tough. This race is indistinguishable to the + * caller from the case that the additional cgroup users didn't + * show up until sometime later on. + */ + length = cgroup_task_count(cgrp); + array = pidlist_allocate(length); + if (!array) + return -ENOMEM; + /* now, populate the array */ + css_task_iter_start(&cgrp->self, &it); + while ((tsk = css_task_iter_next(&it))) { + if (unlikely(n == length)) + break; + /* get tgid or pid for procs or tasks file respectively */ + if (type == CGROUP_FILE_PROCS) + pid = task_tgid_vnr(tsk); + else + pid = task_pid_vnr(tsk); + if (pid > 0) /* make sure to only use valid results */ + array[n++] = pid; + } + css_task_iter_end(&it); + length = n; + /* now sort & (if procs) strip out duplicates */ + sort(array, length, sizeof(pid_t), cmppid, NULL); + if (type == CGROUP_FILE_PROCS) + length = pidlist_uniq(array, length); + + l = cgroup_pidlist_find_create(cgrp, type); + if (!l) { + pidlist_free(array); + return -ENOMEM; + } + + /* store array, freeing old if necessary */ + pidlist_free(l->list); + l->list = array; + l->length = length; + *lp = l; + return 0; +} + +/* + * seq_file methods for the tasks/procs files. The seq_file position is the + * next pid to display; the seq_file iterator is a pointer to the pid + * in the cgroup->l->list array. + */ + +static void *cgroup_pidlist_start(struct seq_file *s, loff_t *pos) +{ + /* + * Initially we receive a position value that corresponds to + * one more than the last pid shown (or 0 on the first call or + * after a seek to the start). Use a binary-search to find the + * next pid to display, if any + */ + struct kernfs_open_file *of = s->private; + struct cgroup *cgrp = seq_css(s)->cgroup; + struct cgroup_pidlist *l; + enum cgroup_filetype type = seq_cft(s)->private; + int index = 0, pid = *pos; + int *iter, ret; + + mutex_lock(&cgrp->pidlist_mutex); + + /* + * !NULL @of->priv indicates that this isn't the first start() + * after open. If the matching pidlist is around, we can use that. + * Look for it. Note that @of->priv can't be used directly. It + * could already have been destroyed. + */ + if (of->priv) + of->priv = cgroup_pidlist_find(cgrp, type); + + /* + * Either this is the first start() after open or the matching + * pidlist has been destroyed inbetween. Create a new one. + */ + if (!of->priv) { + ret = pidlist_array_load(cgrp, type, + (struct cgroup_pidlist **)&of->priv); + if (ret) + return ERR_PTR(ret); + } + l = of->priv; + + if (pid) { + int end = l->length; + + while (index < end) { + int mid = (index + end) / 2; + if (l->list[mid] == pid) { + index = mid; + break; + } else if (l->list[mid] <= pid) + index = mid + 1; + else + end = mid; + } + } + /* If we're off the end of the array, we're done */ + if (index >= l->length) + return NULL; + /* Update the abstract position to be the actual pid that we found */ + iter = l->list + index; + *pos = *iter; + return iter; +} + +static void cgroup_pidlist_stop(struct seq_file *s, void *v) +{ + struct kernfs_open_file *of = s->private; + struct cgroup_pidlist *l = of->priv; + + if (l) + mod_delayed_work(cgroup_pidlist_destroy_wq, &l->destroy_dwork, + CGROUP_PIDLIST_DESTROY_DELAY); + mutex_unlock(&seq_css(s)->cgroup->pidlist_mutex); +} + +static void *cgroup_pidlist_next(struct seq_file *s, void *v, loff_t *pos) +{ + struct kernfs_open_file *of = s->private; + struct cgroup_pidlist *l = of->priv; + pid_t *p = v; + pid_t *end = l->list + l->length; + /* + * Advance to the next pid in the array. If this goes off the + * end, we're done + */ + p++; + if (p >= end) { + return NULL; + } else { + *pos = *p; + return p; + } +} + +static int cgroup_pidlist_show(struct seq_file *s, void *v) +{ + seq_printf(s, "%d\n", *(int *)v); + + return 0; +} + +static ssize_t cgroup_tasks_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + return __cgroup_procs_write(of, buf, nbytes, off, false); +} + +static ssize_t cgroup_release_agent_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cgroup *cgrp; + + BUILD_BUG_ON(sizeof(cgrp->root->release_agent_path) < PATH_MAX); + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENODEV; + spin_lock(&release_agent_path_lock); + strlcpy(cgrp->root->release_agent_path, strstrip(buf), + sizeof(cgrp->root->release_agent_path)); + spin_unlock(&release_agent_path_lock); + cgroup_kn_unlock(of->kn); + return nbytes; +} + +static int cgroup_release_agent_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + spin_lock(&release_agent_path_lock); + seq_puts(seq, cgrp->root->release_agent_path); + spin_unlock(&release_agent_path_lock); + seq_putc(seq, '\n'); + return 0; +} + +static int cgroup_sane_behavior_show(struct seq_file *seq, void *v) +{ + seq_puts(seq, "0\n"); + return 0; +} + +static u64 cgroup_read_notify_on_release(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return notify_on_release(css->cgroup); +} + +static int cgroup_write_notify_on_release(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + if (val) + set_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); + else + clear_bit(CGRP_NOTIFY_ON_RELEASE, &css->cgroup->flags); + return 0; +} + +static u64 cgroup_clone_children_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); +} + +static int cgroup_clone_children_write(struct cgroup_subsys_state *css, + struct cftype *cft, u64 val) +{ + if (val) + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); + else + clear_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags); + return 0; +} + +/* cgroup core interface files for the legacy hierarchies */ +struct cftype cgroup1_base_files[] = { + { + .name = "cgroup.procs", + .seq_start = cgroup_pidlist_start, + .seq_next = cgroup_pidlist_next, + .seq_stop = cgroup_pidlist_stop, + .seq_show = cgroup_pidlist_show, + .private = CGROUP_FILE_PROCS, + .write = cgroup_procs_write, + }, + { + .name = "cgroup.clone_children", + .read_u64 = cgroup_clone_children_read, + .write_u64 = cgroup_clone_children_write, + }, + { + .name = "cgroup.sane_behavior", + .flags = CFTYPE_ONLY_ON_ROOT, + .seq_show = cgroup_sane_behavior_show, + }, + { + .name = "tasks", + .seq_start = cgroup_pidlist_start, + .seq_next = cgroup_pidlist_next, + .seq_stop = cgroup_pidlist_stop, + .seq_show = cgroup_pidlist_show, + .private = CGROUP_FILE_TASKS, + .write = cgroup_tasks_write, + }, + { + .name = "notify_on_release", + .read_u64 = cgroup_read_notify_on_release, + .write_u64 = cgroup_write_notify_on_release, + }, + { + .name = "release_agent", + .flags = CFTYPE_ONLY_ON_ROOT, + .seq_show = cgroup_release_agent_show, + .write = cgroup_release_agent_write, + .max_write_len = PATH_MAX - 1, + }, + { } /* terminate */ +}; + +/* Display information about each subsystem and each hierarchy */ +static int proc_cgroupstats_show(struct seq_file *m, void *v) +{ + struct cgroup_subsys *ss; + int i; + + seq_puts(m, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n"); + /* + * ideally we don't want subsystems moving around while we do this. + * cgroup_mutex is also necessary to guarantee an atomic snapshot of + * subsys/hierarchy state. + */ + mutex_lock(&cgroup_mutex); + + for_each_subsys(ss, i) + seq_printf(m, "%s\t%d\t%d\t%d\n", + ss->legacy_name, ss->root->hierarchy_id, + atomic_read(&ss->root->nr_cgrps), + cgroup_ssid_enabled(i)); + + mutex_unlock(&cgroup_mutex); + return 0; +} + +static int cgroupstats_open(struct inode *inode, struct file *file) +{ + return single_open(file, proc_cgroupstats_show, NULL); +} + +const struct file_operations proc_cgroupstats_operations = { + .open = cgroupstats_open, + .read = seq_read, + .llseek = seq_lseek, + .release = single_release, +}; + +/** + * cgroupstats_build - build and fill cgroupstats + * @stats: cgroupstats to fill information into + * @dentry: A dentry entry belonging to the cgroup for which stats have + * been requested. + * + * Build and fill cgroupstats so that taskstats can export it to user + * space. + */ +int cgroupstats_build(struct cgroupstats *stats, struct dentry *dentry) +{ + struct kernfs_node *kn = kernfs_node_from_dentry(dentry); + struct cgroup *cgrp; + struct css_task_iter it; + struct task_struct *tsk; + + /* it should be kernfs_node belonging to cgroupfs and is a directory */ + if (dentry->d_sb->s_type != &cgroup_fs_type || !kn || + kernfs_type(kn) != KERNFS_DIR) + return -EINVAL; + + mutex_lock(&cgroup_mutex); + + /* + * We aren't being called from kernfs and there's no guarantee on + * @kn->priv's validity. For this and css_tryget_online_from_dir(), + * @kn->priv is RCU safe. Let's do the RCU dancing. + */ + rcu_read_lock(); + cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); + if (!cgrp || cgroup_is_dead(cgrp)) { + rcu_read_unlock(); + mutex_unlock(&cgroup_mutex); + return -ENOENT; + } + rcu_read_unlock(); + + css_task_iter_start(&cgrp->self, &it); + while ((tsk = css_task_iter_next(&it))) { + switch (tsk->state) { + case TASK_RUNNING: + stats->nr_running++; + break; + case TASK_INTERRUPTIBLE: + stats->nr_sleeping++; + break; + case TASK_UNINTERRUPTIBLE: + stats->nr_uninterruptible++; + break; + case TASK_STOPPED: + stats->nr_stopped++; + break; + default: + if (delayacct_is_task_waiting_on_io(tsk)) + stats->nr_io_wait++; + break; + } + } + css_task_iter_end(&it); + + mutex_unlock(&cgroup_mutex); + return 0; +} + +void cgroup1_check_for_release(struct cgroup *cgrp) +{ + if (notify_on_release(cgrp) && !cgroup_is_populated(cgrp) && + !css_has_online_children(&cgrp->self) && !cgroup_is_dead(cgrp)) + schedule_work(&cgrp->release_agent_work); +} + +/* + * Notify userspace when a cgroup is released, by running the + * configured release agent with the name of the cgroup (path + * relative to the root of cgroup file system) as the argument. + * + * Most likely, this user command will try to rmdir this cgroup. + * + * This races with the possibility that some other task will be + * attached to this cgroup before it is removed, or that some other + * user task will 'mkdir' a child cgroup of this cgroup. That's ok. + * The presumed 'rmdir' will fail quietly if this cgroup is no longer + * unused, and this cgroup will be reprieved from its death sentence, + * to continue to serve a useful existence. Next time it's released, + * we will get notified again, if it still has 'notify_on_release' set. + * + * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which + * means only wait until the task is successfully execve()'d. The + * separate release agent task is forked by call_usermodehelper(), + * then control in this thread returns here, without waiting for the + * release agent task. We don't bother to wait because the caller of + * this routine has no use for the exit status of the release agent + * task, so no sense holding our caller up for that. + */ +void cgroup1_release_agent(struct work_struct *work) +{ + struct cgroup *cgrp = + container_of(work, struct cgroup, release_agent_work); + char *pathbuf = NULL, *agentbuf = NULL; + char *argv[3], *envp[3]; + int ret; + + mutex_lock(&cgroup_mutex); + + pathbuf = kmalloc(PATH_MAX, GFP_KERNEL); + agentbuf = kstrdup(cgrp->root->release_agent_path, GFP_KERNEL); + if (!pathbuf || !agentbuf) + goto out; + + spin_lock_irq(&css_set_lock); + ret = cgroup_path_ns_locked(cgrp, pathbuf, PATH_MAX, &init_cgroup_ns); + spin_unlock_irq(&css_set_lock); + if (ret < 0 || ret >= PATH_MAX) + goto out; + + argv[0] = agentbuf; + argv[1] = pathbuf; + argv[2] = NULL; + + /* minimal command environment */ + envp[0] = "HOME=/"; + envp[1] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin"; + envp[2] = NULL; + + mutex_unlock(&cgroup_mutex); + call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC); + goto out_free; +out: + mutex_unlock(&cgroup_mutex); +out_free: + kfree(agentbuf); + kfree(pathbuf); +} + +/* + * cgroup_rename - Only allow simple rename of directories in place. + */ +static int cgroup1_rename(struct kernfs_node *kn, struct kernfs_node *new_parent, + const char *new_name_str) +{ + struct cgroup *cgrp = kn->priv; + int ret; + + if (kernfs_type(kn) != KERNFS_DIR) + return -ENOTDIR; + if (kn->parent != new_parent) + return -EIO; + + /* + * We're gonna grab cgroup_mutex which nests outside kernfs + * active_ref. kernfs_rename() doesn't require active_ref + * protection. Break them before grabbing cgroup_mutex. + */ + kernfs_break_active_protection(new_parent); + kernfs_break_active_protection(kn); + + mutex_lock(&cgroup_mutex); + + ret = kernfs_rename(kn, new_parent, new_name_str); + if (!ret) + trace_cgroup_rename(cgrp); + + mutex_unlock(&cgroup_mutex); + + kernfs_unbreak_active_protection(kn); + kernfs_unbreak_active_protection(new_parent); + return ret; +} + +static int cgroup1_show_options(struct seq_file *seq, struct kernfs_root *kf_root) +{ + struct cgroup_root *root = cgroup_root_from_kf(kf_root); + struct cgroup_subsys *ss; + int ssid; + + for_each_subsys(ss, ssid) + if (root->subsys_mask & (1 << ssid)) + seq_show_option(seq, ss->legacy_name, NULL); + if (root->flags & CGRP_ROOT_NOPREFIX) + seq_puts(seq, ",noprefix"); + if (root->flags & CGRP_ROOT_XATTR) + seq_puts(seq, ",xattr"); + + spin_lock(&release_agent_path_lock); + if (strlen(root->release_agent_path)) + seq_show_option(seq, "release_agent", + root->release_agent_path); + spin_unlock(&release_agent_path_lock); + + if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags)) + seq_puts(seq, ",clone_children"); + if (strlen(root->name)) + seq_show_option(seq, "name", root->name); + return 0; +} + +static int parse_cgroupfs_options(char *data, struct cgroup_sb_opts *opts) +{ + char *token, *o = data; + bool all_ss = false, one_ss = false; + u16 mask = U16_MAX; + struct cgroup_subsys *ss; + int nr_opts = 0; + int i; + +#ifdef CONFIG_CPUSETS + mask = ~((u16)1 << cpuset_cgrp_id); +#endif + + memset(opts, 0, sizeof(*opts)); + + while ((token = strsep(&o, ",")) != NULL) { + nr_opts++; + + if (!*token) + return -EINVAL; + if (!strcmp(token, "none")) { + /* Explicitly have no subsystems */ + opts->none = true; + continue; + } + if (!strcmp(token, "all")) { + /* Mutually exclusive option 'all' + subsystem name */ + if (one_ss) + return -EINVAL; + all_ss = true; + continue; + } + if (!strcmp(token, "noprefix")) { + opts->flags |= CGRP_ROOT_NOPREFIX; + continue; + } + if (!strcmp(token, "clone_children")) { + opts->cpuset_clone_children = true; + continue; + } + if (!strcmp(token, "xattr")) { + opts->flags |= CGRP_ROOT_XATTR; + continue; + } + if (!strncmp(token, "release_agent=", 14)) { + /* Specifying two release agents is forbidden */ + if (opts->release_agent) + return -EINVAL; + opts->release_agent = + kstrndup(token + 14, PATH_MAX - 1, GFP_KERNEL); + if (!opts->release_agent) + return -ENOMEM; + continue; + } + if (!strncmp(token, "name=", 5)) { + const char *name = token + 5; + /* Can't specify an empty name */ + if (!strlen(name)) + return -EINVAL; + /* Must match [\w.-]+ */ + for (i = 0; i < strlen(name); i++) { + char c = name[i]; + if (isalnum(c)) + continue; + if ((c == '.') || (c == '-') || (c == '_')) + continue; + return -EINVAL; + } + /* Specifying two names is forbidden */ + if (opts->name) + return -EINVAL; + opts->name = kstrndup(name, + MAX_CGROUP_ROOT_NAMELEN - 1, + GFP_KERNEL); + if (!opts->name) + return -ENOMEM; + + continue; + } + + for_each_subsys(ss, i) { + if (strcmp(token, ss->legacy_name)) + continue; + if (!cgroup_ssid_enabled(i)) + continue; + if (cgroup1_ssid_disabled(i)) + continue; + + /* Mutually exclusive option 'all' + subsystem name */ + if (all_ss) + return -EINVAL; + opts->subsys_mask |= (1 << i); + one_ss = true; + + break; + } + if (i == CGROUP_SUBSYS_COUNT) + return -ENOENT; + } + + /* + * If the 'all' option was specified select all the subsystems, + * otherwise if 'none', 'name=' and a subsystem name options were + * not specified, let's default to 'all' + */ + if (all_ss || (!one_ss && !opts->none && !opts->name)) + for_each_subsys(ss, i) + if (cgroup_ssid_enabled(i) && !cgroup1_ssid_disabled(i)) + opts->subsys_mask |= (1 << i); + + /* + * We either have to specify by name or by subsystems. (So all + * empty hierarchies must have a name). + */ + if (!opts->subsys_mask && !opts->name) + return -EINVAL; + + /* + * Option noprefix was introduced just for backward compatibility + * with the old cpuset, so we allow noprefix only if mounting just + * the cpuset subsystem. + */ + if ((opts->flags & CGRP_ROOT_NOPREFIX) && (opts->subsys_mask & mask)) + return -EINVAL; + + /* Can't specify "none" and some subsystems */ + if (opts->subsys_mask && opts->none) + return -EINVAL; + + return 0; +} + +static int cgroup1_remount(struct kernfs_root *kf_root, int *flags, char *data) +{ + int ret = 0; + struct cgroup_root *root = cgroup_root_from_kf(kf_root); + struct cgroup_sb_opts opts; + u16 added_mask, removed_mask; + + cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); + + /* See what subsystems are wanted */ + ret = parse_cgroupfs_options(data, &opts); + if (ret) + goto out_unlock; + + if (opts.subsys_mask != root->subsys_mask || opts.release_agent) + pr_warn("option changes via remount are deprecated (pid=%d comm=%s)\n", + task_tgid_nr(current), current->comm); + + added_mask = opts.subsys_mask & ~root->subsys_mask; + removed_mask = root->subsys_mask & ~opts.subsys_mask; + + /* Don't allow flags or name to change at remount */ + if ((opts.flags ^ root->flags) || + (opts.name && strcmp(opts.name, root->name))) { + pr_err("option or name mismatch, new: 0x%x \"%s\", old: 0x%x \"%s\"\n", + opts.flags, opts.name ?: "", root->flags, root->name); + ret = -EINVAL; + goto out_unlock; + } + + /* remounting is not allowed for populated hierarchies */ + if (!list_empty(&root->cgrp.self.children)) { + ret = -EBUSY; + goto out_unlock; + } + + ret = rebind_subsystems(root, added_mask); + if (ret) + goto out_unlock; + + WARN_ON(rebind_subsystems(&cgrp_dfl_root, removed_mask)); + + if (opts.release_agent) { + spin_lock(&release_agent_path_lock); + strcpy(root->release_agent_path, opts.release_agent); + spin_unlock(&release_agent_path_lock); + } + + trace_cgroup_remount(root); + + out_unlock: + kfree(opts.release_agent); + kfree(opts.name); + mutex_unlock(&cgroup_mutex); + return ret; +} + +struct kernfs_syscall_ops cgroup1_kf_syscall_ops = { + .rename = cgroup1_rename, + .show_options = cgroup1_show_options, + .remount_fs = cgroup1_remount, + .mkdir = cgroup_mkdir, + .rmdir = cgroup_rmdir, + .show_path = cgroup_show_path, +}; + +struct dentry *cgroup1_mount(struct file_system_type *fs_type, int flags, + void *data, unsigned long magic, + struct cgroup_namespace *ns) +{ + struct super_block *pinned_sb = NULL; + struct cgroup_sb_opts opts; + struct cgroup_root *root; + struct cgroup_subsys *ss; + struct dentry *dentry; + int i, ret; + + cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); + + /* First find the desired set of subsystems */ + ret = parse_cgroupfs_options(data, &opts); + if (ret) + goto out_unlock; + + /* + * Destruction of cgroup root is asynchronous, so subsystems may + * still be dying after the previous unmount. Let's drain the + * dying subsystems. We just need to ensure that the ones + * unmounted previously finish dying and don't care about new ones + * starting. Testing ref liveliness is good enough. + */ + for_each_subsys(ss, i) { + if (!(opts.subsys_mask & (1 << i)) || + ss->root == &cgrp_dfl_root) + continue; + + if (!percpu_ref_tryget_live(&ss->root->cgrp.self.refcnt)) { + mutex_unlock(&cgroup_mutex); + msleep(10); + ret = restart_syscall(); + goto out_free; + } + cgroup_put(&ss->root->cgrp); + } + + for_each_root(root) { + bool name_match = false; + + if (root == &cgrp_dfl_root) + continue; + + /* + * If we asked for a name then it must match. Also, if + * name matches but sybsys_mask doesn't, we should fail. + * Remember whether name matched. + */ + if (opts.name) { + if (strcmp(opts.name, root->name)) + continue; + name_match = true; + } + + /* + * If we asked for subsystems (or explicitly for no + * subsystems) then they must match. + */ + if ((opts.subsys_mask || opts.none) && + (opts.subsys_mask != root->subsys_mask)) { + if (!name_match) + continue; + ret = -EBUSY; + goto out_unlock; + } + + if (root->flags ^ opts.flags) + pr_warn("new mount options do not match the existing superblock, will be ignored\n"); + + /* + * We want to reuse @root whose lifetime is governed by its + * ->cgrp. Let's check whether @root is alive and keep it + * that way. As cgroup_kill_sb() can happen anytime, we + * want to block it by pinning the sb so that @root doesn't + * get killed before mount is complete. + * + * With the sb pinned, tryget_live can reliably indicate + * whether @root can be reused. If it's being killed, + * drain it. We can use wait_queue for the wait but this + * path is super cold. Let's just sleep a bit and retry. + */ + pinned_sb = kernfs_pin_sb(root->kf_root, NULL); + if (IS_ERR(pinned_sb) || + !percpu_ref_tryget_live(&root->cgrp.self.refcnt)) { + mutex_unlock(&cgroup_mutex); + if (!IS_ERR_OR_NULL(pinned_sb)) + deactivate_super(pinned_sb); + msleep(10); + ret = restart_syscall(); + goto out_free; + } + + ret = 0; + goto out_unlock; + } + + /* + * No such thing, create a new one. name= matching without subsys + * specification is allowed for already existing hierarchies but we + * can't create new one without subsys specification. + */ + if (!opts.subsys_mask && !opts.none) { + ret = -EINVAL; + goto out_unlock; + } + + /* Hierarchies may only be created in the initial cgroup namespace. */ + if (ns != &init_cgroup_ns) { + ret = -EPERM; + goto out_unlock; + } + + root = kzalloc(sizeof(*root), GFP_KERNEL); + if (!root) { + ret = -ENOMEM; + goto out_unlock; + } + + init_cgroup_root(root, &opts); + + ret = cgroup_setup_root(root, opts.subsys_mask); + if (ret) + cgroup_free_root(root); + +out_unlock: + mutex_unlock(&cgroup_mutex); +out_free: + kfree(opts.release_agent); + kfree(opts.name); + + if (ret) + return ERR_PTR(ret); + + dentry = cgroup_do_mount(&cgroup_fs_type, flags, root, + CGROUP_SUPER_MAGIC, ns); + + /* + * If @pinned_sb, we're reusing an existing root and holding an + * extra ref on its sb. Mount is complete. Put the extra ref. + */ + if (pinned_sb) + deactivate_super(pinned_sb); + + return dentry; +} + +static int __init cgroup1_wq_init(void) +{ + /* + * Used to destroy pidlists and separate to serve as flush domain. + * Cap @max_active to 1 too. + */ + cgroup_pidlist_destroy_wq = alloc_workqueue("cgroup_pidlist_destroy", + 0, 1); + BUG_ON(!cgroup_pidlist_destroy_wq); + return 0; +} +core_initcall(cgroup1_wq_init); + +static int __init cgroup_no_v1(char *str) +{ + struct cgroup_subsys *ss; + char *token; + int i; + + while ((token = strsep(&str, ",")) != NULL) { + if (!*token) + continue; + + if (!strcmp(token, "all")) { + cgroup_no_v1_mask = U16_MAX; + break; + } + + for_each_subsys(ss, i) { + if (strcmp(token, ss->name) && + strcmp(token, ss->legacy_name)) + continue; + + cgroup_no_v1_mask |= 1 << i; + } + } + return 1; +} +__setup("cgroup_no_v1=", cgroup_no_v1); + + +#ifdef CONFIG_CGROUP_DEBUG +static struct cgroup_subsys_state * +debug_css_alloc(struct cgroup_subsys_state *parent_css) +{ + struct cgroup_subsys_state *css = kzalloc(sizeof(*css), GFP_KERNEL); + + if (!css) + return ERR_PTR(-ENOMEM); + + return css; +} + +static void debug_css_free(struct cgroup_subsys_state *css) +{ + kfree(css); +} + +static u64 debug_taskcount_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return cgroup_task_count(css->cgroup); +} + +static u64 current_css_set_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + return (u64)(unsigned long)current->cgroups; +} + +static u64 current_css_set_refcount_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + u64 count; + + rcu_read_lock(); + count = atomic_read(&task_css_set(current)->refcount); + rcu_read_unlock(); + return count; +} + +static int current_css_set_cg_links_read(struct seq_file *seq, void *v) +{ + struct cgrp_cset_link *link; + struct css_set *cset; + char *name_buf; + + name_buf = kmalloc(NAME_MAX + 1, GFP_KERNEL); + if (!name_buf) + return -ENOMEM; + + spin_lock_irq(&css_set_lock); + rcu_read_lock(); + cset = rcu_dereference(current->cgroups); + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { + struct cgroup *c = link->cgrp; + + cgroup_name(c, name_buf, NAME_MAX + 1); + seq_printf(seq, "Root %d group %s\n", + c->root->hierarchy_id, name_buf); + } + rcu_read_unlock(); + spin_unlock_irq(&css_set_lock); + kfree(name_buf); + return 0; +} + +#define MAX_TASKS_SHOWN_PER_CSS 25 +static int cgroup_css_links_read(struct seq_file *seq, void *v) +{ + struct cgroup_subsys_state *css = seq_css(seq); + struct cgrp_cset_link *link; + + spin_lock_irq(&css_set_lock); + list_for_each_entry(link, &css->cgroup->cset_links, cset_link) { + struct css_set *cset = link->cset; + struct task_struct *task; + int count = 0; + + seq_printf(seq, "css_set %p\n", cset); + + list_for_each_entry(task, &cset->tasks, cg_list) { + if (count++ > MAX_TASKS_SHOWN_PER_CSS) + goto overflow; + seq_printf(seq, " task %d\n", task_pid_vnr(task)); + } + + list_for_each_entry(task, &cset->mg_tasks, cg_list) { + if (count++ > MAX_TASKS_SHOWN_PER_CSS) + goto overflow; + seq_printf(seq, " task %d\n", task_pid_vnr(task)); + } + continue; + overflow: + seq_puts(seq, " ...\n"); + } + spin_unlock_irq(&css_set_lock); + return 0; +} + +static u64 releasable_read(struct cgroup_subsys_state *css, struct cftype *cft) +{ + return (!cgroup_is_populated(css->cgroup) && + !css_has_online_children(&css->cgroup->self)); +} + +static struct cftype debug_files[] = { + { + .name = "taskcount", + .read_u64 = debug_taskcount_read, + }, + + { + .name = "current_css_set", + .read_u64 = current_css_set_read, + }, + + { + .name = "current_css_set_refcount", + .read_u64 = current_css_set_refcount_read, + }, + + { + .name = "current_css_set_cg_links", + .seq_show = current_css_set_cg_links_read, + }, + + { + .name = "cgroup_css_links", + .seq_show = cgroup_css_links_read, + }, + + { + .name = "releasable", + .read_u64 = releasable_read, + }, + + { } /* terminate */ +}; + +struct cgroup_subsys debug_cgrp_subsys = { + .css_alloc = debug_css_alloc, + .css_free = debug_css_free, + .legacy_cftypes = debug_files, +}; +#endif /* CONFIG_CGROUP_DEBUG */ diff --git a/kernel/cgroup/cgroup.c b/kernel/cgroup/cgroup.c new file mode 100644 index 000000000000..e8f87bf9840c --- /dev/null +++ b/kernel/cgroup/cgroup.c @@ -0,0 +1,5067 @@ +/* + * Generic process-grouping system. + * + * Based originally on the cpuset system, extracted by Paul Menage + * Copyright (C) 2006 Google, Inc + * + * Notifications support + * Copyright (C) 2009 Nokia Corporation + * Author: Kirill A. Shutemov + * + * Copyright notices from the original cpuset code: + * -------------------------------------------------- + * Copyright (C) 2003 BULL SA. + * Copyright (C) 2004-2006 Silicon Graphics, Inc. + * + * Portions derived from Patrick Mochel's sysfs code. + * sysfs is Copyright (c) 2001-3 Patrick Mochel + * + * 2003-10-10 Written by Simon Derr. + * 2003-10-22 Updates by Stephen Hemminger. + * 2004 May-July Rework by Paul Jackson. + * --------------------------------------------------- + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file COPYING in the main directory of the Linux + * distribution for more details. + */ + +#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt + +#include "cgroup-internal.h" + +#include <linux/cred.h> +#include <linux/errno.h> +#include <linux/init_task.h> +#include <linux/kernel.h> +#include <linux/magic.h> +#include <linux/mutex.h> +#include <linux/mount.h> +#include <linux/pagemap.h> +#include <linux/proc_fs.h> +#include <linux/rcupdate.h> +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/percpu-rwsem.h> +#include <linux/string.h> +#include <linux/hashtable.h> +#include <linux/idr.h> +#include <linux/kthread.h> +#include <linux/atomic.h> +#include <linux/cpuset.h> +#include <linux/proc_ns.h> +#include <linux/nsproxy.h> +#include <linux/file.h> +#include <net/sock.h> + +#define CREATE_TRACE_POINTS +#include <trace/events/cgroup.h> + +#define CGROUP_FILE_NAME_MAX (MAX_CGROUP_TYPE_NAMELEN + \ + MAX_CFTYPE_NAME + 2) + +/* + * cgroup_mutex is the master lock. Any modification to cgroup or its + * hierarchy must be performed while holding it. + * + * css_set_lock protects task->cgroups pointer, the list of css_set + * objects, and the chain of tasks off each css_set. + * + * These locks are exported if CONFIG_PROVE_RCU so that accessors in + * cgroup.h can use them for lockdep annotations. + */ +DEFINE_MUTEX(cgroup_mutex); +DEFINE_SPINLOCK(css_set_lock); + +#ifdef CONFIG_PROVE_RCU +EXPORT_SYMBOL_GPL(cgroup_mutex); +EXPORT_SYMBOL_GPL(css_set_lock); +#endif + +/* + * Protects cgroup_idr and css_idr so that IDs can be released without + * grabbing cgroup_mutex. + */ +static DEFINE_SPINLOCK(cgroup_idr_lock); + +/* + * Protects cgroup_file->kn for !self csses. It synchronizes notifications + * against file removal/re-creation across css hiding. + */ +static DEFINE_SPINLOCK(cgroup_file_kn_lock); + +struct percpu_rw_semaphore cgroup_threadgroup_rwsem; + +#define cgroup_assert_mutex_or_rcu_locked() \ + RCU_LOCKDEP_WARN(!rcu_read_lock_held() && \ + !lockdep_is_held(&cgroup_mutex), \ + "cgroup_mutex or RCU read lock required"); + +/* + * cgroup destruction makes heavy use of work items and there can be a lot + * of concurrent destructions. Use a separate workqueue so that cgroup + * destruction work items don't end up filling up max_active of system_wq + * which may lead to deadlock. + */ +static struct workqueue_struct *cgroup_destroy_wq; + +/* generate an array of cgroup subsystem pointers */ +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys, +struct cgroup_subsys *cgroup_subsys[] = { +#include <linux/cgroup_subsys.h> +}; +#undef SUBSYS + +/* array of cgroup subsystem names */ +#define SUBSYS(_x) [_x ## _cgrp_id] = #_x, +static const char *cgroup_subsys_name[] = { +#include <linux/cgroup_subsys.h> +}; +#undef SUBSYS + +/* array of static_keys for cgroup_subsys_enabled() and cgroup_subsys_on_dfl() */ +#define SUBSYS(_x) \ + DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_enabled_key); \ + DEFINE_STATIC_KEY_TRUE(_x ## _cgrp_subsys_on_dfl_key); \ + EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_enabled_key); \ + EXPORT_SYMBOL_GPL(_x ## _cgrp_subsys_on_dfl_key); +#include <linux/cgroup_subsys.h> +#undef SUBSYS + +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_enabled_key, +static struct static_key_true *cgroup_subsys_enabled_key[] = { +#include <linux/cgroup_subsys.h> +}; +#undef SUBSYS + +#define SUBSYS(_x) [_x ## _cgrp_id] = &_x ## _cgrp_subsys_on_dfl_key, +static struct static_key_true *cgroup_subsys_on_dfl_key[] = { +#include <linux/cgroup_subsys.h> +}; +#undef SUBSYS + +/* + * The default hierarchy, reserved for the subsystems that are otherwise + * unattached - it never has more than a single cgroup, and all tasks are + * part of that cgroup. + */ +struct cgroup_root cgrp_dfl_root; +EXPORT_SYMBOL_GPL(cgrp_dfl_root); + +/* + * The default hierarchy always exists but is hidden until mounted for the + * first time. This is for backward compatibility. + */ +static bool cgrp_dfl_visible; + +/* some controllers are not supported in the default hierarchy */ +static u16 cgrp_dfl_inhibit_ss_mask; + +/* some controllers are implicitly enabled on the default hierarchy */ +static u16 cgrp_dfl_implicit_ss_mask; + +/* The list of hierarchy roots */ +LIST_HEAD(cgroup_roots); +static int cgroup_root_count; + +/* hierarchy ID allocation and mapping, protected by cgroup_mutex */ +static DEFINE_IDR(cgroup_hierarchy_idr); + +/* + * Assign a monotonically increasing serial number to csses. It guarantees + * cgroups with bigger numbers are newer than those with smaller numbers. + * Also, as csses are always appended to the parent's ->children list, it + * guarantees that sibling csses are always sorted in the ascending serial + * number order on the list. Protected by cgroup_mutex. + */ +static u64 css_serial_nr_next = 1; + +/* + * These bitmasks identify subsystems with specific features to avoid + * having to do iterative checks repeatedly. + */ +static u16 have_fork_callback __read_mostly; +static u16 have_exit_callback __read_mostly; +static u16 have_free_callback __read_mostly; +static u16 have_canfork_callback __read_mostly; + +/* cgroup namespace for init task */ +struct cgroup_namespace init_cgroup_ns = { + .count = { .counter = 2, }, + .user_ns = &init_user_ns, + .ns.ops = &cgroupns_operations, + .ns.inum = PROC_CGROUP_INIT_INO, + .root_cset = &init_css_set, +}; + +static struct file_system_type cgroup2_fs_type; +static struct cftype cgroup_base_files[]; + +static int cgroup_apply_control(struct cgroup *cgrp); +static void cgroup_finalize_control(struct cgroup *cgrp, int ret); +static void css_task_iter_advance(struct css_task_iter *it); +static int cgroup_destroy_locked(struct cgroup *cgrp); +static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, + struct cgroup_subsys *ss); +static void css_release(struct percpu_ref *ref); +static void kill_css(struct cgroup_subsys_state *css); +static int cgroup_addrm_files(struct cgroup_subsys_state *css, + struct cgroup *cgrp, struct cftype cfts[], + bool is_add); + +/** + * cgroup_ssid_enabled - cgroup subsys enabled test by subsys ID + * @ssid: subsys ID of interest + * + * cgroup_subsys_enabled() can only be used with literal subsys names which + * is fine for individual subsystems but unsuitable for cgroup core. This + * is slower static_key_enabled() based test indexed by @ssid. + */ +bool cgroup_ssid_enabled(int ssid) +{ + if (CGROUP_SUBSYS_COUNT == 0) + return false; + + return static_key_enabled(cgroup_subsys_enabled_key[ssid]); +} + +/** + * cgroup_on_dfl - test whether a cgroup is on the default hierarchy + * @cgrp: the cgroup of interest + * + * The default hierarchy is the v2 interface of cgroup and this function + * can be used to test whether a cgroup is on the default hierarchy for + * cases where a subsystem should behave differnetly depending on the + * interface version. + * + * The set of behaviors which change on the default hierarchy are still + * being determined and the mount option is prefixed with __DEVEL__. + * + * List of changed behaviors: + * + * - Mount options "noprefix", "xattr", "clone_children", "release_agent" + * and "name" are disallowed. + * + * - When mounting an existing superblock, mount options should match. + * + * - Remount is disallowed. + * + * - rename(2) is disallowed. + * + * - "tasks" is removed. Everything should be at process granularity. Use + * "cgroup.procs" instead. + * + * - "cgroup.procs" is not sorted. pids will be unique unless they got + * recycled inbetween reads. + * + * - "release_agent" and "notify_on_release" are removed. Replacement + * notification mechanism will be implemented. + * + * - "cgroup.clone_children" is removed. + * + * - "cgroup.subtree_populated" is available. Its value is 0 if the cgroup + * and its descendants contain no task; otherwise, 1. The file also + * generates kernfs notification which can be monitored through poll and + * [di]notify when the value of the file changes. + * + * - cpuset: tasks will be kept in empty cpusets when hotplug happens and + * take masks of ancestors with non-empty cpus/mems, instead of being + * moved to an ancestor. + * + * - cpuset: a task can be moved into an empty cpuset, and again it takes + * masks of ancestors. + * + * - memcg: use_hierarchy is on by default and the cgroup file for the flag + * is not created. + * + * - blkcg: blk-throttle becomes properly hierarchical. + * + * - debug: disallowed on the default hierarchy. + */ +bool cgroup_on_dfl(const struct cgroup *cgrp) +{ + return cgrp->root == &cgrp_dfl_root; +} + +/* IDR wrappers which synchronize using cgroup_idr_lock */ +static int cgroup_idr_alloc(struct idr *idr, void *ptr, int start, int end, + gfp_t gfp_mask) +{ + int ret; + + idr_preload(gfp_mask); + spin_lock_bh(&cgroup_idr_lock); + ret = idr_alloc(idr, ptr, start, end, gfp_mask & ~__GFP_DIRECT_RECLAIM); + spin_unlock_bh(&cgroup_idr_lock); + idr_preload_end(); + return ret; +} + +static void *cgroup_idr_replace(struct idr *idr, void *ptr, int id) +{ + void *ret; + + spin_lock_bh(&cgroup_idr_lock); + ret = idr_replace(idr, ptr, id); + spin_unlock_bh(&cgroup_idr_lock); + return ret; +} + +static void cgroup_idr_remove(struct idr *idr, int id) +{ + spin_lock_bh(&cgroup_idr_lock); + idr_remove(idr, id); + spin_unlock_bh(&cgroup_idr_lock); +} + +static struct cgroup *cgroup_parent(struct cgroup *cgrp) +{ + struct cgroup_subsys_state *parent_css = cgrp->self.parent; + + if (parent_css) + return container_of(parent_css, struct cgroup, self); + return NULL; +} + +/* subsystems visibly enabled on a cgroup */ +static u16 cgroup_control(struct cgroup *cgrp) +{ + struct cgroup *parent = cgroup_parent(cgrp); + u16 root_ss_mask = cgrp->root->subsys_mask; + + if (parent) + return parent->subtree_control; + + if (cgroup_on_dfl(cgrp)) + root_ss_mask &= ~(cgrp_dfl_inhibit_ss_mask | + cgrp_dfl_implicit_ss_mask); + return root_ss_mask; +} + +/* subsystems enabled on a cgroup */ +static u16 cgroup_ss_mask(struct cgroup *cgrp) +{ + struct cgroup *parent = cgroup_parent(cgrp); + + if (parent) + return parent->subtree_ss_mask; + + return cgrp->root->subsys_mask; +} + +/** + * cgroup_css - obtain a cgroup's css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Return @cgrp's css (cgroup_subsys_state) associated with @ss. This + * function must be called either under cgroup_mutex or rcu_read_lock() and + * the caller is responsible for pinning the returned css if it wants to + * keep accessing it outside the said locks. This function may return + * %NULL if @cgrp doesn't have @subsys_id enabled. + */ +static struct cgroup_subsys_state *cgroup_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + if (ss) + return rcu_dereference_check(cgrp->subsys[ss->id], + lockdep_is_held(&cgroup_mutex)); + else + return &cgrp->self; +} + +/** + * cgroup_e_css - obtain a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest (%NULL returns @cgrp->self) + * + * Similar to cgroup_css() but returns the effective css, which is defined + * as the matching css of the nearest ancestor including self which has @ss + * enabled. If @ss is associated with the hierarchy @cgrp is on, this + * function is guaranteed to return non-NULL css. + */ +static struct cgroup_subsys_state *cgroup_e_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + lockdep_assert_held(&cgroup_mutex); + + if (!ss) + return &cgrp->self; + + /* + * This function is used while updating css associations and thus + * can't test the csses directly. Test ss_mask. + */ + while (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) { + cgrp = cgroup_parent(cgrp); + if (!cgrp) + return NULL; + } + + return cgroup_css(cgrp, ss); +} + +/** + * cgroup_get_e_css - get a cgroup's effective css for the specified subsystem + * @cgrp: the cgroup of interest + * @ss: the subsystem of interest + * + * Find and get the effective css of @cgrp for @ss. The effective css is + * defined as the matching css of the nearest ancestor including self which + * has @ss enabled. If @ss is not mounted on the hierarchy @cgrp is on, + * the root css is returned, so this function always returns a valid css. + * The returned css must be put using css_put(). + */ +struct cgroup_subsys_state *cgroup_get_e_css(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + struct cgroup_subsys_state *css; + + rcu_read_lock(); + + do { + css = cgroup_css(cgrp, ss); + + if (css && css_tryget_online(css)) + goto out_unlock; + cgrp = cgroup_parent(cgrp); + } while (cgrp); + + css = init_css_set.subsys[ss->id]; + css_get(css); +out_unlock: + rcu_read_unlock(); + return css; +} + +static void cgroup_get(struct cgroup *cgrp) +{ + WARN_ON_ONCE(cgroup_is_dead(cgrp)); + css_get(&cgrp->self); +} + +static bool cgroup_tryget(struct cgroup *cgrp) +{ + return css_tryget(&cgrp->self); +} + +struct cgroup_subsys_state *of_css(struct kernfs_open_file *of) +{ + struct cgroup *cgrp = of->kn->parent->priv; + struct cftype *cft = of_cft(of); + + /* + * This is open and unprotected implementation of cgroup_css(). + * seq_css() is only called from a kernfs file operation which has + * an active reference on the file. Because all the subsystem + * files are drained before a css is disassociated with a cgroup, + * the matching css from the cgroup's subsys table is guaranteed to + * be and stay valid until the enclosing operation is complete. + */ + if (cft->ss) + return rcu_dereference_raw(cgrp->subsys[cft->ss->id]); + else + return &cgrp->self; +} +EXPORT_SYMBOL_GPL(of_css); + +/** + * for_each_css - iterate all css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. + */ +#define for_each_css(css, ssid, cgrp) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ + if (!((css) = rcu_dereference_check( \ + (cgrp)->subsys[(ssid)], \ + lockdep_is_held(&cgroup_mutex)))) { } \ + else + +/** + * for_each_e_css - iterate all effective css's of a cgroup + * @css: the iteration cursor + * @ssid: the index of the subsystem, CGROUP_SUBSYS_COUNT after reaching the end + * @cgrp: the target cgroup to iterate css's of + * + * Should be called under cgroup_[tree_]mutex. + */ +#define for_each_e_css(css, ssid, cgrp) \ + for ((ssid) = 0; (ssid) < CGROUP_SUBSYS_COUNT; (ssid)++) \ + if (!((css) = cgroup_e_css(cgrp, cgroup_subsys[(ssid)]))) \ + ; \ + else + +/** + * do_each_subsys_mask - filter for_each_subsys with a bitmask + * @ss: the iteration cursor + * @ssid: the index of @ss, CGROUP_SUBSYS_COUNT after reaching the end + * @ss_mask: the bitmask + * + * The block will only run for cases where the ssid-th bit (1 << ssid) of + * @ss_mask is set. + */ +#define do_each_subsys_mask(ss, ssid, ss_mask) do { \ + unsigned long __ss_mask = (ss_mask); \ + if (!CGROUP_SUBSYS_COUNT) { /* to avoid spurious gcc warning */ \ + (ssid) = 0; \ + break; \ + } \ + for_each_set_bit(ssid, &__ss_mask, CGROUP_SUBSYS_COUNT) { \ + (ss) = cgroup_subsys[ssid]; \ + { + +#define while_each_subsys_mask() \ + } \ + } \ +} while (false) + +/* iterate over child cgrps, lock should be held throughout iteration */ +#define cgroup_for_each_live_child(child, cgrp) \ + list_for_each_entry((child), &(cgrp)->self.children, self.sibling) \ + if (({ lockdep_assert_held(&cgroup_mutex); \ + cgroup_is_dead(child); })) \ + ; \ + else + +/* walk live descendants in preorder */ +#define cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) \ + css_for_each_descendant_pre((d_css), cgroup_css((cgrp), NULL)) \ + if (({ lockdep_assert_held(&cgroup_mutex); \ + (dsct) = (d_css)->cgroup; \ + cgroup_is_dead(dsct); })) \ + ; \ + else + +/* walk live descendants in postorder */ +#define cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) \ + css_for_each_descendant_post((d_css), cgroup_css((cgrp), NULL)) \ + if (({ lockdep_assert_held(&cgroup_mutex); \ + (dsct) = (d_css)->cgroup; \ + cgroup_is_dead(dsct); })) \ + ; \ + else + +/* + * The default css_set - used by init and its children prior to any + * hierarchies being mounted. It contains a pointer to the root state + * for each subsystem. Also used to anchor the list of css_sets. Not + * reference-counted, to improve performance when child cgroups + * haven't been created. + */ +struct css_set init_css_set = { + .refcount = ATOMIC_INIT(1), + .tasks = LIST_HEAD_INIT(init_css_set.tasks), + .mg_tasks = LIST_HEAD_INIT(init_css_set.mg_tasks), + .task_iters = LIST_HEAD_INIT(init_css_set.task_iters), + .cgrp_links = LIST_HEAD_INIT(init_css_set.cgrp_links), + .mg_preload_node = LIST_HEAD_INIT(init_css_set.mg_preload_node), + .mg_node = LIST_HEAD_INIT(init_css_set.mg_node), +}; + +static int css_set_count = 1; /* 1 for init_css_set */ + +/** + * css_set_populated - does a css_set contain any tasks? + * @cset: target css_set + */ +static bool css_set_populated(struct css_set *cset) +{ + lockdep_assert_held(&css_set_lock); + + return !list_empty(&cset->tasks) || !list_empty(&cset->mg_tasks); +} + +/** + * cgroup_update_populated - updated populated count of a cgroup + * @cgrp: the target cgroup + * @populated: inc or dec populated count + * + * One of the css_sets associated with @cgrp is either getting its first + * task or losing the last. Update @cgrp->populated_cnt accordingly. The + * count is propagated towards root so that a given cgroup's populated_cnt + * is zero iff the cgroup and all its descendants don't contain any tasks. + * + * @cgrp's interface file "cgroup.populated" is zero if + * @cgrp->populated_cnt is zero and 1 otherwise. When @cgrp->populated_cnt + * changes from or to zero, userland is notified that the content of the + * interface file has changed. This can be used to detect when @cgrp and + * its descendants become populated or empty. + */ +static void cgroup_update_populated(struct cgroup *cgrp, bool populated) +{ + lockdep_assert_held(&css_set_lock); + + do { + bool trigger; + + if (populated) + trigger = !cgrp->populated_cnt++; + else + trigger = !--cgrp->populated_cnt; + + if (!trigger) + break; + + cgroup1_check_for_release(cgrp); + cgroup_file_notify(&cgrp->events_file); + + cgrp = cgroup_parent(cgrp); + } while (cgrp); +} + +/** + * css_set_update_populated - update populated state of a css_set + * @cset: target css_set + * @populated: whether @cset is populated or depopulated + * + * @cset is either getting the first task or losing the last. Update the + * ->populated_cnt of all associated cgroups accordingly. + */ +static void css_set_update_populated(struct css_set *cset, bool populated) +{ + struct cgrp_cset_link *link; + + lockdep_assert_held(&css_set_lock); + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) + cgroup_update_populated(link->cgrp, populated); +} + +/** + * css_set_move_task - move a task from one css_set to another + * @task: task being moved + * @from_cset: css_set @task currently belongs to (may be NULL) + * @to_cset: new css_set @task is being moved to (may be NULL) + * @use_mg_tasks: move to @to_cset->mg_tasks instead of ->tasks + * + * Move @task from @from_cset to @to_cset. If @task didn't belong to any + * css_set, @from_cset can be NULL. If @task is being disassociated + * instead of moved, @to_cset can be NULL. + * + * This function automatically handles populated_cnt updates and + * css_task_iter adjustments but the caller is responsible for managing + * @from_cset and @to_cset's reference counts. + */ +static void css_set_move_task(struct task_struct *task, + struct css_set *from_cset, struct css_set *to_cset, + bool use_mg_tasks) +{ + lockdep_assert_held(&css_set_lock); + + if (to_cset && !css_set_populated(to_cset)) + css_set_update_populated(to_cset, true); + + if (from_cset) { + struct css_task_iter *it, *pos; + + WARN_ON_ONCE(list_empty(&task->cg_list)); + + /* + * @task is leaving, advance task iterators which are + * pointing to it so that they can resume at the next + * position. Advancing an iterator might remove it from + * the list, use safe walk. See css_task_iter_advance*() + * for details. + */ + list_for_each_entry_safe(it, pos, &from_cset->task_iters, + iters_node) + if (it->task_pos == &task->cg_list) + css_task_iter_advance(it); + + list_del_init(&task->cg_list); + if (!css_set_populated(from_cset)) + css_set_update_populated(from_cset, false); + } else { + WARN_ON_ONCE(!list_empty(&task->cg_list)); + } + + if (to_cset) { + /* + * We are synchronized through cgroup_threadgroup_rwsem + * against PF_EXITING setting such that we can't race + * against cgroup_exit() changing the css_set to + * init_css_set and dropping the old one. + */ + WARN_ON_ONCE(task->flags & PF_EXITING); + + rcu_assign_pointer(task->cgroups, to_cset); + list_add_tail(&task->cg_list, use_mg_tasks ? &to_cset->mg_tasks : + &to_cset->tasks); + } +} + +/* + * hash table for cgroup groups. This improves the performance to find + * an existing css_set. This hash doesn't (currently) take into + * account cgroups in empty hierarchies. + */ +#define CSS_SET_HASH_BITS 7 +static DEFINE_HASHTABLE(css_set_table, CSS_SET_HASH_BITS); + +static unsigned long css_set_hash(struct cgroup_subsys_state *css[]) +{ + unsigned long key = 0UL; + struct cgroup_subsys *ss; + int i; + + for_each_subsys(ss, i) + key += (unsigned long)css[i]; + key = (key >> 16) ^ key; + + return key; +} + +void put_css_set_locked(struct css_set *cset) +{ + struct cgrp_cset_link *link, *tmp_link; + struct cgroup_subsys *ss; + int ssid; + + lockdep_assert_held(&css_set_lock); + + if (!atomic_dec_and_test(&cset->refcount)) + return; + + /* This css_set is dead. unlink it and release cgroup and css refs */ + for_each_subsys(ss, ssid) { + list_del(&cset->e_cset_node[ssid]); + css_put(cset->subsys[ssid]); + } + hash_del(&cset->hlist); + css_set_count--; + + list_for_each_entry_safe(link, tmp_link, &cset->cgrp_links, cgrp_link) { + list_del(&link->cset_link); + list_del(&link->cgrp_link); + if (cgroup_parent(link->cgrp)) + cgroup_put(link->cgrp); + kfree(link); + } + + kfree_rcu(cset, rcu_head); +} + +/** + * compare_css_sets - helper function for find_existing_css_set(). + * @cset: candidate css_set being tested + * @old_cset: existing css_set for a task + * @new_cgrp: cgroup that's being entered by the task + * @template: desired set of css pointers in css_set (pre-calculated) + * + * Returns true if "cset" matches "old_cset" except for the hierarchy + * which "new_cgrp" belongs to, for which it should match "new_cgrp". + */ +static bool compare_css_sets(struct css_set *cset, + struct css_set *old_cset, + struct cgroup *new_cgrp, + struct cgroup_subsys_state *template[]) +{ + struct list_head *l1, *l2; + + /* + * On the default hierarchy, there can be csets which are + * associated with the same set of cgroups but different csses. + * Let's first ensure that csses match. + */ + if (memcmp(template, cset->subsys, sizeof(cset->subsys))) + return false; + + /* + * Compare cgroup pointers in order to distinguish between + * different cgroups in hierarchies. As different cgroups may + * share the same effective css, this comparison is always + * necessary. + */ + l1 = &cset->cgrp_links; + l2 = &old_cset->cgrp_links; + while (1) { + struct cgrp_cset_link *link1, *link2; + struct cgroup *cgrp1, *cgrp2; + + l1 = l1->next; + l2 = l2->next; + /* See if we reached the end - both lists are equal length. */ + if (l1 == &cset->cgrp_links) { + BUG_ON(l2 != &old_cset->cgrp_links); + break; + } else { + BUG_ON(l2 == &old_cset->cgrp_links); + } + /* Locate the cgroups associated with these links. */ + link1 = list_entry(l1, struct cgrp_cset_link, cgrp_link); + link2 = list_entry(l2, struct cgrp_cset_link, cgrp_link); + cgrp1 = link1->cgrp; + cgrp2 = link2->cgrp; + /* Hierarchies should be linked in the same order. */ + BUG_ON(cgrp1->root != cgrp2->root); + + /* + * If this hierarchy is the hierarchy of the cgroup + * that's changing, then we need to check that this + * css_set points to the new cgroup; if it's any other + * hierarchy, then this css_set should point to the + * same cgroup as the old css_set. + */ + if (cgrp1->root == new_cgrp->root) { + if (cgrp1 != new_cgrp) + return false; + } else { + if (cgrp1 != cgrp2) + return false; + } + } + return true; +} + +/** + * find_existing_css_set - init css array and find the matching css_set + * @old_cset: the css_set that we're using before the cgroup transition + * @cgrp: the cgroup that we're moving into + * @template: out param for the new set of csses, should be clear on entry + */ +static struct css_set *find_existing_css_set(struct css_set *old_cset, + struct cgroup *cgrp, + struct cgroup_subsys_state *template[]) +{ + struct cgroup_root *root = cgrp->root; + struct cgroup_subsys *ss; + struct css_set *cset; + unsigned long key; + int i; + + /* + * Build the set of subsystem state objects that we want to see in the + * new css_set. while subsystems can change globally, the entries here + * won't change, so no need for locking. + */ + for_each_subsys(ss, i) { + if (root->subsys_mask & (1UL << i)) { + /* + * @ss is in this hierarchy, so we want the + * effective css from @cgrp. + */ + template[i] = cgroup_e_css(cgrp, ss); + } else { + /* + * @ss is not in this hierarchy, so we don't want + * to change the css. + */ + template[i] = old_cset->subsys[i]; + } + } + + key = css_set_hash(template); + hash_for_each_possible(css_set_table, cset, hlist, key) { + if (!compare_css_sets(cset, old_cset, cgrp, template)) + continue; + + /* This css_set matches what we need */ + return cset; + } + + /* No existing cgroup group matched */ + return NULL; +} + +static void free_cgrp_cset_links(struct list_head *links_to_free) +{ + struct cgrp_cset_link *link, *tmp_link; + + list_for_each_entry_safe(link, tmp_link, links_to_free, cset_link) { + list_del(&link->cset_link); + kfree(link); + } +} + +/** + * allocate_cgrp_cset_links - allocate cgrp_cset_links + * @count: the number of links to allocate + * @tmp_links: list_head the allocated links are put on + * + * Allocate @count cgrp_cset_link structures and chain them on @tmp_links + * through ->cset_link. Returns 0 on success or -errno. + */ +static int allocate_cgrp_cset_links(int count, struct list_head *tmp_links) +{ + struct cgrp_cset_link *link; + int i; + + INIT_LIST_HEAD(tmp_links); + + for (i = 0; i < count; i++) { + link = kzalloc(sizeof(*link), GFP_KERNEL); + if (!link) { + free_cgrp_cset_links(tmp_links); + return -ENOMEM; + } + list_add(&link->cset_link, tmp_links); + } + return 0; +} + +/** + * link_css_set - a helper function to link a css_set to a cgroup + * @tmp_links: cgrp_cset_link objects allocated by allocate_cgrp_cset_links() + * @cset: the css_set to be linked + * @cgrp: the destination cgroup + */ +static void link_css_set(struct list_head *tmp_links, struct css_set *cset, + struct cgroup *cgrp) +{ + struct cgrp_cset_link *link; + + BUG_ON(list_empty(tmp_links)); + + if (cgroup_on_dfl(cgrp)) + cset->dfl_cgrp = cgrp; + + link = list_first_entry(tmp_links, struct cgrp_cset_link, cset_link); + link->cset = cset; + link->cgrp = cgrp; + + /* + * Always add links to the tail of the lists so that the lists are + * in choronological order. + */ + list_move_tail(&link->cset_link, &cgrp->cset_links); + list_add_tail(&link->cgrp_link, &cset->cgrp_links); + + if (cgroup_parent(cgrp)) + cgroup_get(cgrp); +} + +/** + * find_css_set - return a new css_set with one cgroup updated + * @old_cset: the baseline css_set + * @cgrp: the cgroup to be updated + * + * Return a new css_set that's equivalent to @old_cset, but with @cgrp + * substituted into the appropriate hierarchy. + */ +static struct css_set *find_css_set(struct css_set *old_cset, + struct cgroup *cgrp) +{ + struct cgroup_subsys_state *template[CGROUP_SUBSYS_COUNT] = { }; + struct css_set *cset; + struct list_head tmp_links; + struct cgrp_cset_link *link; + struct cgroup_subsys *ss; + unsigned long key; + int ssid; + + lockdep_assert_held(&cgroup_mutex); + + /* First see if we already have a cgroup group that matches + * the desired set */ + spin_lock_irq(&css_set_lock); + cset = find_existing_css_set(old_cset, cgrp, template); + if (cset) + get_css_set(cset); + spin_unlock_irq(&css_set_lock); + + if (cset) + return cset; + + cset = kzalloc(sizeof(*cset), GFP_KERNEL); + if (!cset) + return NULL; + + /* Allocate all the cgrp_cset_link objects that we'll need */ + if (allocate_cgrp_cset_links(cgroup_root_count, &tmp_links) < 0) { + kfree(cset); + return NULL; + } + + atomic_set(&cset->refcount, 1); + INIT_LIST_HEAD(&cset->tasks); + INIT_LIST_HEAD(&cset->mg_tasks); + INIT_LIST_HEAD(&cset->task_iters); + INIT_HLIST_NODE(&cset->hlist); + INIT_LIST_HEAD(&cset->cgrp_links); + INIT_LIST_HEAD(&cset->mg_preload_node); + INIT_LIST_HEAD(&cset->mg_node); + + /* Copy the set of subsystem state objects generated in + * find_existing_css_set() */ + memcpy(cset->subsys, template, sizeof(cset->subsys)); + + spin_lock_irq(&css_set_lock); + /* Add reference counts and links from the new css_set. */ + list_for_each_entry(link, &old_cset->cgrp_links, cgrp_link) { + struct cgroup *c = link->cgrp; + + if (c->root == cgrp->root) + c = cgrp; + link_css_set(&tmp_links, cset, c); + } + + BUG_ON(!list_empty(&tmp_links)); + + css_set_count++; + + /* Add @cset to the hash table */ + key = css_set_hash(cset->subsys); + hash_add(css_set_table, &cset->hlist, key); + + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cset->subsys[ssid]; + + list_add_tail(&cset->e_cset_node[ssid], + &css->cgroup->e_csets[ssid]); + css_get(css); + } + + spin_unlock_irq(&css_set_lock); + + return cset; +} + +struct cgroup_root *cgroup_root_from_kf(struct kernfs_root *kf_root) +{ + struct cgroup *root_cgrp = kf_root->kn->priv; + + return root_cgrp->root; +} + +static int cgroup_init_root_id(struct cgroup_root *root) +{ + int id; + + lockdep_assert_held(&cgroup_mutex); + + id = idr_alloc_cyclic(&cgroup_hierarchy_idr, root, 0, 0, GFP_KERNEL); + if (id < 0) + return id; + + root->hierarchy_id = id; + return 0; +} + +static void cgroup_exit_root_id(struct cgroup_root *root) +{ + lockdep_assert_held(&cgroup_mutex); + + idr_remove(&cgroup_hierarchy_idr, root->hierarchy_id); +} + +void cgroup_free_root(struct cgroup_root *root) +{ + if (root) { + idr_destroy(&root->cgroup_idr); + kfree(root); + } +} + +static void cgroup_destroy_root(struct cgroup_root *root) +{ + struct cgroup *cgrp = &root->cgrp; + struct cgrp_cset_link *link, *tmp_link; + + trace_cgroup_destroy_root(root); + + cgroup_lock_and_drain_offline(&cgrp_dfl_root.cgrp); + + BUG_ON(atomic_read(&root->nr_cgrps)); + BUG_ON(!list_empty(&cgrp->self.children)); + + /* Rebind all subsystems back to the default hierarchy */ + WARN_ON(rebind_subsystems(&cgrp_dfl_root, root->subsys_mask)); + + /* + * Release all the links from cset_links to this hierarchy's + * root cgroup + */ + spin_lock_irq(&css_set_lock); + + list_for_each_entry_safe(link, tmp_link, &cgrp->cset_links, cset_link) { + list_del(&link->cset_link); + list_del(&link->cgrp_link); + kfree(link); + } + + spin_unlock_irq(&css_set_lock); + + if (!list_empty(&root->root_list)) { + list_del(&root->root_list); + cgroup_root_count--; + } + + cgroup_exit_root_id(root); + + mutex_unlock(&cgroup_mutex); + + kernfs_destroy_root(root->kf_root); + cgroup_free_root(root); +} + +/* + * look up cgroup associated with current task's cgroup namespace on the + * specified hierarchy + */ +static struct cgroup * +current_cgns_cgroup_from_root(struct cgroup_root *root) +{ + struct cgroup *res = NULL; + struct css_set *cset; + + lockdep_assert_held(&css_set_lock); + + rcu_read_lock(); + + cset = current->nsproxy->cgroup_ns->root_cset; + if (cset == &init_css_set) { + res = &root->cgrp; + } else { + struct cgrp_cset_link *link; + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { + struct cgroup *c = link->cgrp; + + if (c->root == root) { + res = c; + break; + } + } + } + rcu_read_unlock(); + + BUG_ON(!res); + return res; +} + +/* look up cgroup associated with given css_set on the specified hierarchy */ +static struct cgroup *cset_cgroup_from_root(struct css_set *cset, + struct cgroup_root *root) +{ + struct cgroup *res = NULL; + + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_lock); + + if (cset == &init_css_set) { + res = &root->cgrp; + } else { + struct cgrp_cset_link *link; + + list_for_each_entry(link, &cset->cgrp_links, cgrp_link) { + struct cgroup *c = link->cgrp; + + if (c->root == root) { + res = c; + break; + } + } + } + + BUG_ON(!res); + return res; +} + +/* + * Return the cgroup for "task" from the given hierarchy. Must be + * called with cgroup_mutex and css_set_lock held. + */ +struct cgroup *task_cgroup_from_root(struct task_struct *task, + struct cgroup_root *root) +{ + /* + * No need to lock the task - since we hold cgroup_mutex the + * task can't change groups, so the only thing that can happen + * is that it exits and its css is set back to init_css_set. + */ + return cset_cgroup_from_root(task_css_set(task), root); +} + +/* + * A task must hold cgroup_mutex to modify cgroups. + * + * Any task can increment and decrement the count field without lock. + * So in general, code holding cgroup_mutex can't rely on the count + * field not changing. However, if the count goes to zero, then only + * cgroup_attach_task() can increment it again. Because a count of zero + * means that no tasks are currently attached, therefore there is no + * way a task attached to that cgroup can fork (the other way to + * increment the count). So code holding cgroup_mutex can safely + * assume that if the count is zero, it will stay zero. Similarly, if + * a task holds cgroup_mutex on a cgroup with zero count, it + * knows that the cgroup won't be removed, as cgroup_rmdir() + * needs that mutex. + * + * A cgroup can only be deleted if both its 'count' of using tasks + * is zero, and its list of 'children' cgroups is empty. Since all + * tasks in the system use _some_ cgroup, and since there is always at + * least one task in the system (init, pid == 1), therefore, root cgroup + * always has either children cgroups and/or using tasks. So we don't + * need a special hack to ensure that root cgroup cannot be deleted. + * + * P.S. One more locking exception. RCU is used to guard the + * update of a tasks cgroup pointer by cgroup_attach_task() + */ + +static struct kernfs_syscall_ops cgroup_kf_syscall_ops; + +static char *cgroup_file_name(struct cgroup *cgrp, const struct cftype *cft, + char *buf) +{ + struct cgroup_subsys *ss = cft->ss; + + if (cft->ss && !(cft->flags & CFTYPE_NO_PREFIX) && + !(cgrp->root->flags & CGRP_ROOT_NOPREFIX)) + snprintf(buf, CGROUP_FILE_NAME_MAX, "%s.%s", + cgroup_on_dfl(cgrp) ? ss->name : ss->legacy_name, + cft->name); + else + strncpy(buf, cft->name, CGROUP_FILE_NAME_MAX); + return buf; +} + +/** + * cgroup_file_mode - deduce file mode of a control file + * @cft: the control file in question + * + * S_IRUGO for read, S_IWUSR for write. + */ +static umode_t cgroup_file_mode(const struct cftype *cft) +{ + umode_t mode = 0; + + if (cft->read_u64 || cft->read_s64 || cft->seq_show) + mode |= S_IRUGO; + + if (cft->write_u64 || cft->write_s64 || cft->write) { + if (cft->flags & CFTYPE_WORLD_WRITABLE) + mode |= S_IWUGO; + else + mode |= S_IWUSR; + } + + return mode; +} + +/** + * cgroup_calc_subtree_ss_mask - calculate subtree_ss_mask + * @subtree_control: the new subtree_control mask to consider + * @this_ss_mask: available subsystems + * + * On the default hierarchy, a subsystem may request other subsystems to be + * enabled together through its ->depends_on mask. In such cases, more + * subsystems than specified in "cgroup.subtree_control" may be enabled. + * + * This function calculates which subsystems need to be enabled if + * @subtree_control is to be applied while restricted to @this_ss_mask. + */ +static u16 cgroup_calc_subtree_ss_mask(u16 subtree_control, u16 this_ss_mask) +{ + u16 cur_ss_mask = subtree_control; + struct cgroup_subsys *ss; + int ssid; + + lockdep_assert_held(&cgroup_mutex); + + cur_ss_mask |= cgrp_dfl_implicit_ss_mask; + + while (true) { + u16 new_ss_mask = cur_ss_mask; + + do_each_subsys_mask(ss, ssid, cur_ss_mask) { + new_ss_mask |= ss->depends_on; + } while_each_subsys_mask(); + + /* + * Mask out subsystems which aren't available. This can + * happen only if some depended-upon subsystems were bound + * to non-default hierarchies. + */ + new_ss_mask &= this_ss_mask; + + if (new_ss_mask == cur_ss_mask) + break; + cur_ss_mask = new_ss_mask; + } + + return cur_ss_mask; +} + +/** + * cgroup_kn_unlock - unlocking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * + * This helper undoes cgroup_kn_lock_live() and should be invoked before + * the method finishes if locking succeeded. Note that once this function + * returns the cgroup returned by cgroup_kn_lock_live() may become + * inaccessible any time. If the caller intends to continue to access the + * cgroup, it should pin it before invoking this function. + */ +void cgroup_kn_unlock(struct kernfs_node *kn) +{ + struct cgroup *cgrp; + + if (kernfs_type(kn) == KERNFS_DIR) + cgrp = kn->priv; + else + cgrp = kn->parent->priv; + + mutex_unlock(&cgroup_mutex); + + kernfs_unbreak_active_protection(kn); + cgroup_put(cgrp); +} + +/** + * cgroup_kn_lock_live - locking helper for cgroup kernfs methods + * @kn: the kernfs_node being serviced + * @drain_offline: perform offline draining on the cgroup + * + * This helper is to be used by a cgroup kernfs method currently servicing + * @kn. It breaks the active protection, performs cgroup locking and + * verifies that the associated cgroup is alive. Returns the cgroup if + * alive; otherwise, %NULL. A successful return should be undone by a + * matching cgroup_kn_unlock() invocation. If @drain_offline is %true, the + * cgroup is drained of offlining csses before return. + * + * Any cgroup kernfs method implementation which requires locking the + * associated cgroup should use this helper. It avoids nesting cgroup + * locking under kernfs active protection and allows all kernfs operations + * including self-removal. + */ +struct cgroup *cgroup_kn_lock_live(struct kernfs_node *kn, bool drain_offline) +{ + struct cgroup *cgrp; + + if (kernfs_type(kn) == KERNFS_DIR) + cgrp = kn->priv; + else + cgrp = kn->parent->priv; + + /* + * We're gonna grab cgroup_mutex which nests outside kernfs + * active_ref. cgroup liveliness check alone provides enough + * protection against removal. Ensure @cgrp stays accessible and + * break the active_ref protection. + */ + if (!cgroup_tryget(cgrp)) + return NULL; + kernfs_break_active_protection(kn); + + if (drain_offline) + cgroup_lock_and_drain_offline(cgrp); + else + mutex_lock(&cgroup_mutex); + + if (!cgroup_is_dead(cgrp)) + return cgrp; + + cgroup_kn_unlock(kn); + return NULL; +} + +static void cgroup_rm_file(struct cgroup *cgrp, const struct cftype *cft) +{ + char name[CGROUP_FILE_NAME_MAX]; + + lockdep_assert_held(&cgroup_mutex); + + if (cft->file_offset) { + struct cgroup_subsys_state *css = cgroup_css(cgrp, cft->ss); + struct cgroup_file *cfile = (void *)css + cft->file_offset; + + spin_lock_irq(&cgroup_file_kn_lock); + cfile->kn = NULL; + spin_unlock_irq(&cgroup_file_kn_lock); + } + + kernfs_remove_by_name(cgrp->kn, cgroup_file_name(cgrp, cft, name)); +} + +/** + * css_clear_dir - remove subsys files in a cgroup directory + * @css: taget css + */ +static void css_clear_dir(struct cgroup_subsys_state *css) +{ + struct cgroup *cgrp = css->cgroup; + struct cftype *cfts; + + if (!(css->flags & CSS_VISIBLE)) + return; + + css->flags &= ~CSS_VISIBLE; + + list_for_each_entry(cfts, &css->ss->cfts, node) + cgroup_addrm_files(css, cgrp, cfts, false); +} + +/** + * css_populate_dir - create subsys files in a cgroup directory + * @css: target css + * + * On failure, no file is added. + */ +static int css_populate_dir(struct cgroup_subsys_state *css) +{ + struct cgroup *cgrp = css->cgroup; + struct cftype *cfts, *failed_cfts; + int ret; + + if ((css->flags & CSS_VISIBLE) || !cgrp->kn) + return 0; + + if (!css->ss) { + if (cgroup_on_dfl(cgrp)) + cfts = cgroup_base_files; + else + cfts = cgroup1_base_files; + + return cgroup_addrm_files(&cgrp->self, cgrp, cfts, true); + } + + list_for_each_entry(cfts, &css->ss->cfts, node) { + ret = cgroup_addrm_files(css, cgrp, cfts, true); + if (ret < 0) { + failed_cfts = cfts; + goto err; + } + } + + css->flags |= CSS_VISIBLE; + + return 0; +err: + list_for_each_entry(cfts, &css->ss->cfts, node) { + if (cfts == failed_cfts) + break; + cgroup_addrm_files(css, cgrp, cfts, false); + } + return ret; +} + +int rebind_subsystems(struct cgroup_root *dst_root, u16 ss_mask) +{ + struct cgroup *dcgrp = &dst_root->cgrp; + struct cgroup_subsys *ss; + int ssid, i, ret; + + lockdep_assert_held(&cgroup_mutex); + + do_each_subsys_mask(ss, ssid, ss_mask) { + /* + * If @ss has non-root csses attached to it, can't move. + * If @ss is an implicit controller, it is exempt from this + * rule and can be stolen. + */ + if (css_next_child(NULL, cgroup_css(&ss->root->cgrp, ss)) && + !ss->implicit_on_dfl) + return -EBUSY; + + /* can't move between two non-dummy roots either */ + if (ss->root != &cgrp_dfl_root && dst_root != &cgrp_dfl_root) + return -EBUSY; + } while_each_subsys_mask(); + + do_each_subsys_mask(ss, ssid, ss_mask) { + struct cgroup_root *src_root = ss->root; + struct cgroup *scgrp = &src_root->cgrp; + struct cgroup_subsys_state *css = cgroup_css(scgrp, ss); + struct css_set *cset; + + WARN_ON(!css || cgroup_css(dcgrp, ss)); + + /* disable from the source */ + src_root->subsys_mask &= ~(1 << ssid); + WARN_ON(cgroup_apply_control(scgrp)); + cgroup_finalize_control(scgrp, 0); + + /* rebind */ + RCU_INIT_POINTER(scgrp->subsys[ssid], NULL); + rcu_assign_pointer(dcgrp->subsys[ssid], css); + ss->root = dst_root; + css->cgroup = dcgrp; + + spin_lock_irq(&css_set_lock); + hash_for_each(css_set_table, i, cset, hlist) + list_move_tail(&cset->e_cset_node[ss->id], + &dcgrp->e_csets[ss->id]); + spin_unlock_irq(&css_set_lock); + + /* default hierarchy doesn't enable controllers by default */ + dst_root->subsys_mask |= 1 << ssid; + if (dst_root == &cgrp_dfl_root) { + static_branch_enable(cgroup_subsys_on_dfl_key[ssid]); + } else { + dcgrp->subtree_control |= 1 << ssid; + static_branch_disable(cgroup_subsys_on_dfl_key[ssid]); + } + + ret = cgroup_apply_control(dcgrp); + if (ret) + pr_warn("partial failure to rebind %s controller (err=%d)\n", + ss->name, ret); + + if (ss->bind) + ss->bind(css); + } while_each_subsys_mask(); + + kernfs_activate(dcgrp->kn); + return 0; +} + +int cgroup_show_path(struct seq_file *sf, struct kernfs_node *kf_node, + struct kernfs_root *kf_root) +{ + int len = 0; + char *buf = NULL; + struct cgroup_root *kf_cgroot = cgroup_root_from_kf(kf_root); + struct cgroup *ns_cgroup; + + buf = kmalloc(PATH_MAX, GFP_KERNEL); + if (!buf) + return -ENOMEM; + + spin_lock_irq(&css_set_lock); + ns_cgroup = current_cgns_cgroup_from_root(kf_cgroot); + len = kernfs_path_from_node(kf_node, ns_cgroup->kn, buf, PATH_MAX); + spin_unlock_irq(&css_set_lock); + + if (len >= PATH_MAX) + len = -ERANGE; + else if (len > 0) { + seq_escape(sf, buf, " \t\n\\"); + len = 0; + } + kfree(buf); + return len; +} + +static int cgroup_remount(struct kernfs_root *kf_root, int *flags, char *data) +{ + pr_err("remount is not allowed\n"); + return -EINVAL; +} + +/* + * To reduce the fork() overhead for systems that are not actually using + * their cgroups capability, we don't maintain the lists running through + * each css_set to its tasks until we see the list actually used - in other + * words after the first mount. + */ +static bool use_task_css_set_links __read_mostly; + +static void cgroup_enable_task_cg_lists(void) +{ + struct task_struct *p, *g; + + spin_lock_irq(&css_set_lock); + + if (use_task_css_set_links) + goto out_unlock; + + use_task_css_set_links = true; + + /* + * We need tasklist_lock because RCU is not safe against + * while_each_thread(). Besides, a forking task that has passed + * cgroup_post_fork() without seeing use_task_css_set_links = 1 + * is not guaranteed to have its child immediately visible in the + * tasklist if we walk through it with RCU. + */ + read_lock(&tasklist_lock); + do_each_thread(g, p) { + WARN_ON_ONCE(!list_empty(&p->cg_list) || + task_css_set(p) != &init_css_set); + + /* + * We should check if the process is exiting, otherwise + * it will race with cgroup_exit() in that the list + * entry won't be deleted though the process has exited. + * Do it while holding siglock so that we don't end up + * racing against cgroup_exit(). + * + * Interrupts were already disabled while acquiring + * the css_set_lock, so we do not need to disable it + * again when acquiring the sighand->siglock here. + */ + spin_lock(&p->sighand->siglock); + if (!(p->flags & PF_EXITING)) { + struct css_set *cset = task_css_set(p); + + if (!css_set_populated(cset)) + css_set_update_populated(cset, true); + list_add_tail(&p->cg_list, &cset->tasks); + get_css_set(cset); + } + spin_unlock(&p->sighand->siglock); + } while_each_thread(g, p); + read_unlock(&tasklist_lock); +out_unlock: + spin_unlock_irq(&css_set_lock); +} + +static void init_cgroup_housekeeping(struct cgroup *cgrp) +{ + struct cgroup_subsys *ss; + int ssid; + + INIT_LIST_HEAD(&cgrp->self.sibling); + INIT_LIST_HEAD(&cgrp->self.children); + INIT_LIST_HEAD(&cgrp->cset_links); + INIT_LIST_HEAD(&cgrp->pidlists); + mutex_init(&cgrp->pidlist_mutex); + cgrp->self.cgroup = cgrp; + cgrp->self.flags |= CSS_ONLINE; + + for_each_subsys(ss, ssid) + INIT_LIST_HEAD(&cgrp->e_csets[ssid]); + + init_waitqueue_head(&cgrp->offline_waitq); + INIT_WORK(&cgrp->release_agent_work, cgroup1_release_agent); +} + +void init_cgroup_root(struct cgroup_root *root, struct cgroup_sb_opts *opts) +{ + struct cgroup *cgrp = &root->cgrp; + + INIT_LIST_HEAD(&root->root_list); + atomic_set(&root->nr_cgrps, 1); + cgrp->root = root; + init_cgroup_housekeeping(cgrp); + idr_init(&root->cgroup_idr); + + root->flags = opts->flags; + if (opts->release_agent) + strcpy(root->release_agent_path, opts->release_agent); + if (opts->name) + strcpy(root->name, opts->name); + if (opts->cpuset_clone_children) + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &root->cgrp.flags); +} + +int cgroup_setup_root(struct cgroup_root *root, u16 ss_mask) +{ + LIST_HEAD(tmp_links); + struct cgroup *root_cgrp = &root->cgrp; + struct kernfs_syscall_ops *kf_sops; + struct css_set *cset; + int i, ret; + + lockdep_assert_held(&cgroup_mutex); + + ret = cgroup_idr_alloc(&root->cgroup_idr, root_cgrp, 1, 2, GFP_KERNEL); + if (ret < 0) + goto out; + root_cgrp->id = ret; + root_cgrp->ancestor_ids[0] = ret; + + ret = percpu_ref_init(&root_cgrp->self.refcnt, css_release, 0, + GFP_KERNEL); + if (ret) + goto out; + + /* + * We're accessing css_set_count without locking css_set_lock here, + * but that's OK - it can only be increased by someone holding + * cgroup_lock, and that's us. Later rebinding may disable + * controllers on the default hierarchy and thus create new csets, + * which can't be more than the existing ones. Allocate 2x. + */ + ret = allocate_cgrp_cset_links(2 * css_set_count, &tmp_links); + if (ret) + goto cancel_ref; + + ret = cgroup_init_root_id(root); + if (ret) + goto cancel_ref; + + kf_sops = root == &cgrp_dfl_root ? + &cgroup_kf_syscall_ops : &cgroup1_kf_syscall_ops; + + root->kf_root = kernfs_create_root(kf_sops, + KERNFS_ROOT_CREATE_DEACTIVATED, + root_cgrp); + if (IS_ERR(root->kf_root)) { + ret = PTR_ERR(root->kf_root); + goto exit_root_id; + } + root_cgrp->kn = root->kf_root->kn; + + ret = css_populate_dir(&root_cgrp->self); + if (ret) + goto destroy_root; + + ret = rebind_subsystems(root, ss_mask); + if (ret) + goto destroy_root; + + trace_cgroup_setup_root(root); + + /* + * There must be no failure case after here, since rebinding takes + * care of subsystems' refcounts, which are explicitly dropped in + * the failure exit path. + */ + list_add(&root->root_list, &cgroup_roots); + cgroup_root_count++; + + /* + * Link the root cgroup in this hierarchy into all the css_set + * objects. + */ + spin_lock_irq(&css_set_lock); + hash_for_each(css_set_table, i, cset, hlist) { + link_css_set(&tmp_links, cset, root_cgrp); + if (css_set_populated(cset)) + cgroup_update_populated(root_cgrp, true); + } + spin_unlock_irq(&css_set_lock); + + BUG_ON(!list_empty(&root_cgrp->self.children)); + BUG_ON(atomic_read(&root->nr_cgrps) != 1); + + kernfs_activate(root_cgrp->kn); + ret = 0; + goto out; + +destroy_root: + kernfs_destroy_root(root->kf_root); + root->kf_root = NULL; +exit_root_id: + cgroup_exit_root_id(root); +cancel_ref: + percpu_ref_exit(&root_cgrp->self.refcnt); +out: + free_cgrp_cset_links(&tmp_links); + return ret; +} + +struct dentry *cgroup_do_mount(struct file_system_type *fs_type, int flags, + struct cgroup_root *root, unsigned long magic, + struct cgroup_namespace *ns) +{ + struct dentry *dentry; + bool new_sb; + + dentry = kernfs_mount(fs_type, flags, root->kf_root, magic, &new_sb); + + /* + * In non-init cgroup namespace, instead of root cgroup's dentry, + * we return the dentry corresponding to the cgroupns->root_cgrp. + */ + if (!IS_ERR(dentry) && ns != &init_cgroup_ns) { + struct dentry *nsdentry; + struct cgroup *cgrp; + + mutex_lock(&cgroup_mutex); + spin_lock_irq(&css_set_lock); + + cgrp = cset_cgroup_from_root(ns->root_cset, root); + + spin_unlock_irq(&css_set_lock); + mutex_unlock(&cgroup_mutex); + + nsdentry = kernfs_node_dentry(cgrp->kn, dentry->d_sb); + dput(dentry); + dentry = nsdentry; + } + + if (IS_ERR(dentry) || !new_sb) + cgroup_put(&root->cgrp); + + return dentry; +} + +static struct dentry *cgroup_mount(struct file_system_type *fs_type, + int flags, const char *unused_dev_name, + void *data) +{ + struct cgroup_namespace *ns = current->nsproxy->cgroup_ns; + struct dentry *dentry; + + get_cgroup_ns(ns); + + /* Check if the caller has permission to mount. */ + if (!ns_capable(ns->user_ns, CAP_SYS_ADMIN)) { + put_cgroup_ns(ns); + return ERR_PTR(-EPERM); + } + + /* + * The first time anyone tries to mount a cgroup, enable the list + * linking each css_set to its tasks and fix up all existing tasks. + */ + if (!use_task_css_set_links) + cgroup_enable_task_cg_lists(); + + if (fs_type == &cgroup2_fs_type) { + if (data) { + pr_err("cgroup2: unknown option \"%s\"\n", (char *)data); + put_cgroup_ns(ns); + return ERR_PTR(-EINVAL); + } + cgrp_dfl_visible = true; + cgroup_get(&cgrp_dfl_root.cgrp); + + dentry = cgroup_do_mount(&cgroup2_fs_type, flags, &cgrp_dfl_root, + CGROUP2_SUPER_MAGIC, ns); + } else { + dentry = cgroup1_mount(&cgroup_fs_type, flags, data, + CGROUP_SUPER_MAGIC, ns); + } + + put_cgroup_ns(ns); + return dentry; +} + +static void cgroup_kill_sb(struct super_block *sb) +{ + struct kernfs_root *kf_root = kernfs_root_from_sb(sb); + struct cgroup_root *root = cgroup_root_from_kf(kf_root); + + /* + * If @root doesn't have any mounts or children, start killing it. + * This prevents new mounts by disabling percpu_ref_tryget_live(). + * cgroup_mount() may wait for @root's release. + * + * And don't kill the default root. + */ + if (!list_empty(&root->cgrp.self.children) || + root == &cgrp_dfl_root) + cgroup_put(&root->cgrp); + else + percpu_ref_kill(&root->cgrp.self.refcnt); + + kernfs_kill_sb(sb); +} + +struct file_system_type cgroup_fs_type = { + .name = "cgroup", + .mount = cgroup_mount, + .kill_sb = cgroup_kill_sb, + .fs_flags = FS_USERNS_MOUNT, +}; + +static struct file_system_type cgroup2_fs_type = { + .name = "cgroup2", + .mount = cgroup_mount, + .kill_sb = cgroup_kill_sb, + .fs_flags = FS_USERNS_MOUNT, +}; + +int cgroup_path_ns_locked(struct cgroup *cgrp, char *buf, size_t buflen, + struct cgroup_namespace *ns) +{ + struct cgroup *root = cset_cgroup_from_root(ns->root_cset, cgrp->root); + + return kernfs_path_from_node(cgrp->kn, root->kn, buf, buflen); +} + +int cgroup_path_ns(struct cgroup *cgrp, char *buf, size_t buflen, + struct cgroup_namespace *ns) +{ + int ret; + + mutex_lock(&cgroup_mutex); + spin_lock_irq(&css_set_lock); + + ret = cgroup_path_ns_locked(cgrp, buf, buflen, ns); + + spin_unlock_irq(&css_set_lock); + mutex_unlock(&cgroup_mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(cgroup_path_ns); + +/** + * task_cgroup_path - cgroup path of a task in the first cgroup hierarchy + * @task: target task + * @buf: the buffer to write the path into + * @buflen: the length of the buffer + * + * Determine @task's cgroup on the first (the one with the lowest non-zero + * hierarchy_id) cgroup hierarchy and copy its path into @buf. This + * function grabs cgroup_mutex and shouldn't be used inside locks used by + * cgroup controller callbacks. + * + * Return value is the same as kernfs_path(). + */ +int task_cgroup_path(struct task_struct *task, char *buf, size_t buflen) +{ + struct cgroup_root *root; + struct cgroup *cgrp; + int hierarchy_id = 1; + int ret; + + mutex_lock(&cgroup_mutex); + spin_lock_irq(&css_set_lock); + + root = idr_get_next(&cgroup_hierarchy_idr, &hierarchy_id); + + if (root) { + cgrp = task_cgroup_from_root(task, root); + ret = cgroup_path_ns_locked(cgrp, buf, buflen, &init_cgroup_ns); + } else { + /* if no hierarchy exists, everyone is in "/" */ + ret = strlcpy(buf, "/", buflen); + } + + spin_unlock_irq(&css_set_lock); + mutex_unlock(&cgroup_mutex); + return ret; +} +EXPORT_SYMBOL_GPL(task_cgroup_path); + +/** + * cgroup_migrate_add_task - add a migration target task to a migration context + * @task: target task + * @mgctx: target migration context + * + * Add @task, which is a migration target, to @mgctx->tset. This function + * becomes noop if @task doesn't need to be migrated. @task's css_set + * should have been added as a migration source and @task->cg_list will be + * moved from the css_set's tasks list to mg_tasks one. + */ +static void cgroup_migrate_add_task(struct task_struct *task, + struct cgroup_mgctx *mgctx) +{ + struct css_set *cset; + + lockdep_assert_held(&css_set_lock); + + /* @task either already exited or can't exit until the end */ + if (task->flags & PF_EXITING) + return; + + /* leave @task alone if post_fork() hasn't linked it yet */ + if (list_empty(&task->cg_list)) + return; + + cset = task_css_set(task); + if (!cset->mg_src_cgrp) + return; + + list_move_tail(&task->cg_list, &cset->mg_tasks); + if (list_empty(&cset->mg_node)) + list_add_tail(&cset->mg_node, + &mgctx->tset.src_csets); + if (list_empty(&cset->mg_dst_cset->mg_node)) + list_add_tail(&cset->mg_dst_cset->mg_node, + &mgctx->tset.dst_csets); +} + +/** + * cgroup_taskset_first - reset taskset and return the first task + * @tset: taskset of interest + * @dst_cssp: output variable for the destination css + * + * @tset iteration is initialized and the first task is returned. + */ +struct task_struct *cgroup_taskset_first(struct cgroup_taskset *tset, + struct cgroup_subsys_state **dst_cssp) +{ + tset->cur_cset = list_first_entry(tset->csets, struct css_set, mg_node); + tset->cur_task = NULL; + + return cgroup_taskset_next(tset, dst_cssp); +} + +/** + * cgroup_taskset_next - iterate to the next task in taskset + * @tset: taskset of interest + * @dst_cssp: output variable for the destination css + * + * Return the next task in @tset. Iteration must have been initialized + * with cgroup_taskset_first(). + */ +struct task_struct *cgroup_taskset_next(struct cgroup_taskset *tset, + struct cgroup_subsys_state **dst_cssp) +{ + struct css_set *cset = tset->cur_cset; + struct task_struct *task = tset->cur_task; + + while (&cset->mg_node != tset->csets) { + if (!task) + task = list_first_entry(&cset->mg_tasks, + struct task_struct, cg_list); + else + task = list_next_entry(task, cg_list); + + if (&task->cg_list != &cset->mg_tasks) { + tset->cur_cset = cset; + tset->cur_task = task; + + /* + * This function may be called both before and + * after cgroup_taskset_migrate(). The two cases + * can be distinguished by looking at whether @cset + * has its ->mg_dst_cset set. + */ + if (cset->mg_dst_cset) + *dst_cssp = cset->mg_dst_cset->subsys[tset->ssid]; + else + *dst_cssp = cset->subsys[tset->ssid]; + + return task; + } + + cset = list_next_entry(cset, mg_node); + task = NULL; + } + + return NULL; +} + +/** + * cgroup_taskset_migrate - migrate a taskset + * @mgctx: migration context + * + * Migrate tasks in @mgctx as setup by migration preparation functions. + * This function fails iff one of the ->can_attach callbacks fails and + * guarantees that either all or none of the tasks in @mgctx are migrated. + * @mgctx is consumed regardless of success. + */ +static int cgroup_migrate_execute(struct cgroup_mgctx *mgctx) +{ + struct cgroup_taskset *tset = &mgctx->tset; + struct cgroup_subsys *ss; + struct task_struct *task, *tmp_task; + struct css_set *cset, *tmp_cset; + int ssid, failed_ssid, ret; + + /* methods shouldn't be called if no task is actually migrating */ + if (list_empty(&tset->src_csets)) + return 0; + + /* check that we can legitimately attach to the cgroup */ + do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { + if (ss->can_attach) { + tset->ssid = ssid; + ret = ss->can_attach(tset); + if (ret) { + failed_ssid = ssid; + goto out_cancel_attach; + } + } + } while_each_subsys_mask(); + + /* + * Now that we're guaranteed success, proceed to move all tasks to + * the new cgroup. There are no failure cases after here, so this + * is the commit point. + */ + spin_lock_irq(&css_set_lock); + list_for_each_entry(cset, &tset->src_csets, mg_node) { + list_for_each_entry_safe(task, tmp_task, &cset->mg_tasks, cg_list) { + struct css_set *from_cset = task_css_set(task); + struct css_set *to_cset = cset->mg_dst_cset; + + get_css_set(to_cset); + css_set_move_task(task, from_cset, to_cset, true); + put_css_set_locked(from_cset); + } + } + spin_unlock_irq(&css_set_lock); + + /* + * Migration is committed, all target tasks are now on dst_csets. + * Nothing is sensitive to fork() after this point. Notify + * controllers that migration is complete. + */ + tset->csets = &tset->dst_csets; + + do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { + if (ss->attach) { + tset->ssid = ssid; + ss->attach(tset); + } + } while_each_subsys_mask(); + + ret = 0; + goto out_release_tset; + +out_cancel_attach: + do_each_subsys_mask(ss, ssid, mgctx->ss_mask) { + if (ssid == failed_ssid) + break; + if (ss->cancel_attach) { + tset->ssid = ssid; + ss->cancel_attach(tset); + } + } while_each_subsys_mask(); +out_release_tset: + spin_lock_irq(&css_set_lock); + list_splice_init(&tset->dst_csets, &tset->src_csets); + list_for_each_entry_safe(cset, tmp_cset, &tset->src_csets, mg_node) { + list_splice_tail_init(&cset->mg_tasks, &cset->tasks); + list_del_init(&cset->mg_node); + } + spin_unlock_irq(&css_set_lock); + return ret; +} + +/** + * cgroup_may_migrate_to - verify whether a cgroup can be migration destination + * @dst_cgrp: destination cgroup to test + * + * On the default hierarchy, except for the root, subtree_control must be + * zero for migration destination cgroups with tasks so that child cgroups + * don't compete against tasks. + */ +bool cgroup_may_migrate_to(struct cgroup *dst_cgrp) +{ + return !cgroup_on_dfl(dst_cgrp) || !cgroup_parent(dst_cgrp) || + !dst_cgrp->subtree_control; +} + +/** + * cgroup_migrate_finish - cleanup after attach + * @mgctx: migration context + * + * Undo cgroup_migrate_add_src() and cgroup_migrate_prepare_dst(). See + * those functions for details. + */ +void cgroup_migrate_finish(struct cgroup_mgctx *mgctx) +{ + LIST_HEAD(preloaded); + struct css_set *cset, *tmp_cset; + + lockdep_assert_held(&cgroup_mutex); + + spin_lock_irq(&css_set_lock); + + list_splice_tail_init(&mgctx->preloaded_src_csets, &preloaded); + list_splice_tail_init(&mgctx->preloaded_dst_csets, &preloaded); + + list_for_each_entry_safe(cset, tmp_cset, &preloaded, mg_preload_node) { + cset->mg_src_cgrp = NULL; + cset->mg_dst_cgrp = NULL; + cset->mg_dst_cset = NULL; + list_del_init(&cset->mg_preload_node); + put_css_set_locked(cset); + } + + spin_unlock_irq(&css_set_lock); +} + +/** + * cgroup_migrate_add_src - add a migration source css_set + * @src_cset: the source css_set to add + * @dst_cgrp: the destination cgroup + * @mgctx: migration context + * + * Tasks belonging to @src_cset are about to be migrated to @dst_cgrp. Pin + * @src_cset and add it to @mgctx->src_csets, which should later be cleaned + * up by cgroup_migrate_finish(). + * + * This function may be called without holding cgroup_threadgroup_rwsem + * even if the target is a process. Threads may be created and destroyed + * but as long as cgroup_mutex is not dropped, no new css_set can be put + * into play and the preloaded css_sets are guaranteed to cover all + * migrations. + */ +void cgroup_migrate_add_src(struct css_set *src_cset, + struct cgroup *dst_cgrp, + struct cgroup_mgctx *mgctx) +{ + struct cgroup *src_cgrp; + + lockdep_assert_held(&cgroup_mutex); + lockdep_assert_held(&css_set_lock); + + /* + * If ->dead, @src_set is associated with one or more dead cgroups + * and doesn't contain any migratable tasks. Ignore it early so + * that the rest of migration path doesn't get confused by it. + */ + if (src_cset->dead) + return; + + src_cgrp = cset_cgroup_from_root(src_cset, dst_cgrp->root); + + if (!list_empty(&src_cset->mg_preload_node)) + return; + + WARN_ON(src_cset->mg_src_cgrp); + WARN_ON(src_cset->mg_dst_cgrp); + WARN_ON(!list_empty(&src_cset->mg_tasks)); + WARN_ON(!list_empty(&src_cset->mg_node)); + + src_cset->mg_src_cgrp = src_cgrp; + src_cset->mg_dst_cgrp = dst_cgrp; + get_css_set(src_cset); + list_add_tail(&src_cset->mg_preload_node, &mgctx->preloaded_src_csets); +} + +/** + * cgroup_migrate_prepare_dst - prepare destination css_sets for migration + * @mgctx: migration context + * + * Tasks are about to be moved and all the source css_sets have been + * preloaded to @mgctx->preloaded_src_csets. This function looks up and + * pins all destination css_sets, links each to its source, and append them + * to @mgctx->preloaded_dst_csets. + * + * This function must be called after cgroup_migrate_add_src() has been + * called on each migration source css_set. After migration is performed + * using cgroup_migrate(), cgroup_migrate_finish() must be called on + * @mgctx. + */ +int cgroup_migrate_prepare_dst(struct cgroup_mgctx *mgctx) +{ + struct css_set *src_cset, *tmp_cset; + + lockdep_assert_held(&cgroup_mutex); + + /* look up the dst cset for each src cset and link it to src */ + list_for_each_entry_safe(src_cset, tmp_cset, &mgctx->preloaded_src_csets, + mg_preload_node) { + struct css_set *dst_cset; + struct cgroup_subsys *ss; + int ssid; + + dst_cset = find_css_set(src_cset, src_cset->mg_dst_cgrp); + if (!dst_cset) + goto err; + + WARN_ON_ONCE(src_cset->mg_dst_cset || dst_cset->mg_dst_cset); + + /* + * If src cset equals dst, it's noop. Drop the src. + * cgroup_migrate() will skip the cset too. Note that we + * can't handle src == dst as some nodes are used by both. + */ + if (src_cset == dst_cset) { + src_cset->mg_src_cgrp = NULL; + src_cset->mg_dst_cgrp = NULL; + list_del_init(&src_cset->mg_preload_node); + put_css_set(src_cset); + put_css_set(dst_cset); + continue; + } + + src_cset->mg_dst_cset = dst_cset; + + if (list_empty(&dst_cset->mg_preload_node)) + list_add_tail(&dst_cset->mg_preload_node, + &mgctx->preloaded_dst_csets); + else + put_css_set(dst_cset); + + for_each_subsys(ss, ssid) + if (src_cset->subsys[ssid] != dst_cset->subsys[ssid]) + mgctx->ss_mask |= 1 << ssid; + } + + return 0; +err: + cgroup_migrate_finish(mgctx); + return -ENOMEM; +} + +/** + * cgroup_migrate - migrate a process or task to a cgroup + * @leader: the leader of the process or the task to migrate + * @threadgroup: whether @leader points to the whole process or a single task + * @mgctx: migration context + * + * Migrate a process or task denoted by @leader. If migrating a process, + * the caller must be holding cgroup_threadgroup_rwsem. The caller is also + * responsible for invoking cgroup_migrate_add_src() and + * cgroup_migrate_prepare_dst() on the targets before invoking this + * function and following up with cgroup_migrate_finish(). + * + * As long as a controller's ->can_attach() doesn't fail, this function is + * guaranteed to succeed. This means that, excluding ->can_attach() + * failure, when migrating multiple targets, the success or failure can be + * decided for all targets by invoking group_migrate_prepare_dst() before + * actually starting migrating. + */ +int cgroup_migrate(struct task_struct *leader, bool threadgroup, + struct cgroup_mgctx *mgctx) +{ + struct task_struct *task; + + /* + * Prevent freeing of tasks while we take a snapshot. Tasks that are + * already PF_EXITING could be freed from underneath us unless we + * take an rcu_read_lock. + */ + spin_lock_irq(&css_set_lock); + rcu_read_lock(); + task = leader; + do { + cgroup_migrate_add_task(task, mgctx); + if (!threadgroup) + break; + } while_each_thread(leader, task); + rcu_read_unlock(); + spin_unlock_irq(&css_set_lock); + + return cgroup_migrate_execute(mgctx); +} + +/** + * cgroup_attach_task - attach a task or a whole threadgroup to a cgroup + * @dst_cgrp: the cgroup to attach to + * @leader: the task or the leader of the threadgroup to be attached + * @threadgroup: attach the whole threadgroup? + * + * Call holding cgroup_mutex and cgroup_threadgroup_rwsem. + */ +int cgroup_attach_task(struct cgroup *dst_cgrp, struct task_struct *leader, + bool threadgroup) +{ + DEFINE_CGROUP_MGCTX(mgctx); + struct task_struct *task; + int ret; + + if (!cgroup_may_migrate_to(dst_cgrp)) + return -EBUSY; + + /* look up all src csets */ + spin_lock_irq(&css_set_lock); + rcu_read_lock(); + task = leader; + do { + cgroup_migrate_add_src(task_css_set(task), dst_cgrp, &mgctx); + if (!threadgroup) + break; + } while_each_thread(leader, task); + rcu_read_unlock(); + spin_unlock_irq(&css_set_lock); + + /* prepare dst csets and commit */ + ret = cgroup_migrate_prepare_dst(&mgctx); + if (!ret) + ret = cgroup_migrate(leader, threadgroup, &mgctx); + + cgroup_migrate_finish(&mgctx); + + if (!ret) + trace_cgroup_attach_task(dst_cgrp, leader, threadgroup); + + return ret; +} + +static int cgroup_procs_write_permission(struct task_struct *task, + struct cgroup *dst_cgrp, + struct kernfs_open_file *of) +{ + int ret = 0; + + if (cgroup_on_dfl(dst_cgrp)) { + struct super_block *sb = of->file->f_path.dentry->d_sb; + struct cgroup *cgrp; + struct inode *inode; + + spin_lock_irq(&css_set_lock); + cgrp = task_cgroup_from_root(task, &cgrp_dfl_root); + spin_unlock_irq(&css_set_lock); + + while (!cgroup_is_descendant(dst_cgrp, cgrp)) + cgrp = cgroup_parent(cgrp); + + ret = -ENOMEM; + inode = kernfs_get_inode(sb, cgrp->procs_file.kn); + if (inode) { + ret = inode_permission(inode, MAY_WRITE); + iput(inode); + } + } else { + const struct cred *cred = current_cred(); + const struct cred *tcred = get_task_cred(task); + + /* + * even if we're attaching all tasks in the thread group, + * we only need to check permissions on one of them. + */ + if (!uid_eq(cred->euid, GLOBAL_ROOT_UID) && + !uid_eq(cred->euid, tcred->uid) && + !uid_eq(cred->euid, tcred->suid)) + ret = -EACCES; + put_cred(tcred); + } + + return ret; +} + +/* + * Find the task_struct of the task to attach by vpid and pass it along to the + * function to attach either it or all tasks in its threadgroup. Will lock + * cgroup_mutex and threadgroup. + */ +ssize_t __cgroup_procs_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off, bool threadgroup) +{ + struct task_struct *tsk; + struct cgroup_subsys *ss; + struct cgroup *cgrp; + pid_t pid; + int ssid, ret; + + if (kstrtoint(strstrip(buf), 0, &pid) || pid < 0) + return -EINVAL; + + cgrp = cgroup_kn_lock_live(of->kn, false); + if (!cgrp) + return -ENODEV; + + percpu_down_write(&cgroup_threadgroup_rwsem); + rcu_read_lock(); + if (pid) { + tsk = find_task_by_vpid(pid); + if (!tsk) { + ret = -ESRCH; + goto out_unlock_rcu; + } + } else { + tsk = current; + } + + if (threadgroup) + tsk = tsk->group_leader; + + /* + * Workqueue threads may acquire PF_NO_SETAFFINITY and become + * trapped in a cpuset, or RT worker may be born in a cgroup + * with no rt_runtime allocated. Just say no. + */ + if (tsk == kthreadd_task || (tsk->flags & PF_NO_SETAFFINITY)) { + ret = -EINVAL; + goto out_unlock_rcu; + } + + get_task_struct(tsk); + rcu_read_unlock(); + + ret = cgroup_procs_write_permission(tsk, cgrp, of); + if (!ret) + ret = cgroup_attach_task(cgrp, tsk, threadgroup); + + put_task_struct(tsk); + goto out_unlock_threadgroup; + +out_unlock_rcu: + rcu_read_unlock(); +out_unlock_threadgroup: + percpu_up_write(&cgroup_threadgroup_rwsem); + for_each_subsys(ss, ssid) + if (ss->post_attach) + ss->post_attach(); + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; +} + +ssize_t cgroup_procs_write(struct kernfs_open_file *of, char *buf, size_t nbytes, + loff_t off) +{ + return __cgroup_procs_write(of, buf, nbytes, off, true); +} + +static void cgroup_print_ss_mask(struct seq_file *seq, u16 ss_mask) +{ + struct cgroup_subsys *ss; + bool printed = false; + int ssid; + + do_each_subsys_mask(ss, ssid, ss_mask) { + if (printed) + seq_putc(seq, ' '); + seq_printf(seq, "%s", ss->name); + printed = true; + } while_each_subsys_mask(); + if (printed) + seq_putc(seq, '\n'); +} + +/* show controllers which are enabled from the parent */ +static int cgroup_controllers_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + cgroup_print_ss_mask(seq, cgroup_control(cgrp)); + return 0; +} + +/* show controllers which are enabled for a given cgroup's children */ +static int cgroup_subtree_control_show(struct seq_file *seq, void *v) +{ + struct cgroup *cgrp = seq_css(seq)->cgroup; + + cgroup_print_ss_mask(seq, cgrp->subtree_control); + return 0; +} + +/** + * cgroup_update_dfl_csses - update css assoc of a subtree in default hierarchy + * @cgrp: root of the subtree to update csses for + * + * @cgrp's control masks have changed and its subtree's css associations + * need to be updated accordingly. This function looks up all css_sets + * which are attached to the subtree, creates the matching updated css_sets + * and migrates the tasks to the new ones. + */ +static int cgroup_update_dfl_csses(struct cgroup *cgrp) +{ + DEFINE_CGROUP_MGCTX(mgctx); + struct cgroup_subsys_state *d_css; + struct cgroup *dsct; + struct css_set *src_cset; + int ret; + + lockdep_assert_held(&cgroup_mutex); + + percpu_down_write(&cgroup_threadgroup_rwsem); + + /* look up all csses currently attached to @cgrp's subtree */ + spin_lock_irq(&css_set_lock); + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { + struct cgrp_cset_link *link; + + list_for_each_entry(link, &dsct->cset_links, cset_link) + cgroup_migrate_add_src(link->cset, dsct, &mgctx); + } + spin_unlock_irq(&css_set_lock); + + /* NULL dst indicates self on default hierarchy */ + ret = cgroup_migrate_prepare_dst(&mgctx); + if (ret) + goto out_finish; + + spin_lock_irq(&css_set_lock); + list_for_each_entry(src_cset, &mgctx.preloaded_src_csets, mg_preload_node) { + struct task_struct *task, *ntask; + + /* all tasks in src_csets need to be migrated */ + list_for_each_entry_safe(task, ntask, &src_cset->tasks, cg_list) + cgroup_migrate_add_task(task, &mgctx); + } + spin_unlock_irq(&css_set_lock); + + ret = cgroup_migrate_execute(&mgctx); +out_finish: + cgroup_migrate_finish(&mgctx); + percpu_up_write(&cgroup_threadgroup_rwsem); + return ret; +} + +/** + * cgroup_lock_and_drain_offline - lock cgroup_mutex and drain offlined csses + * @cgrp: root of the target subtree + * + * Because css offlining is asynchronous, userland may try to re-enable a + * controller while the previous css is still around. This function grabs + * cgroup_mutex and drains the previous css instances of @cgrp's subtree. + */ +void cgroup_lock_and_drain_offline(struct cgroup *cgrp) + __acquires(&cgroup_mutex) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + struct cgroup_subsys *ss; + int ssid; + +restart: + mutex_lock(&cgroup_mutex); + + cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cgroup_css(dsct, ss); + DEFINE_WAIT(wait); + + if (!css || !percpu_ref_is_dying(&css->refcnt)) + continue; + + cgroup_get(dsct); + prepare_to_wait(&dsct->offline_waitq, &wait, + TASK_UNINTERRUPTIBLE); + + mutex_unlock(&cgroup_mutex); + schedule(); + finish_wait(&dsct->offline_waitq, &wait); + + cgroup_put(dsct); + goto restart; + } + } +} + +/** + * cgroup_save_control - save control masks of a subtree + * @cgrp: root of the target subtree + * + * Save ->subtree_control and ->subtree_ss_mask to the respective old_ + * prefixed fields for @cgrp's subtree including @cgrp itself. + */ +static void cgroup_save_control(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { + dsct->old_subtree_control = dsct->subtree_control; + dsct->old_subtree_ss_mask = dsct->subtree_ss_mask; + } +} + +/** + * cgroup_propagate_control - refresh control masks of a subtree + * @cgrp: root of the target subtree + * + * For @cgrp and its subtree, ensure ->subtree_ss_mask matches + * ->subtree_control and propagate controller availability through the + * subtree so that descendants don't have unavailable controllers enabled. + */ +static void cgroup_propagate_control(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { + dsct->subtree_control &= cgroup_control(dsct); + dsct->subtree_ss_mask = + cgroup_calc_subtree_ss_mask(dsct->subtree_control, + cgroup_ss_mask(dsct)); + } +} + +/** + * cgroup_restore_control - restore control masks of a subtree + * @cgrp: root of the target subtree + * + * Restore ->subtree_control and ->subtree_ss_mask from the respective old_ + * prefixed fields for @cgrp's subtree including @cgrp itself. + */ +static void cgroup_restore_control(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + + cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { + dsct->subtree_control = dsct->old_subtree_control; + dsct->subtree_ss_mask = dsct->old_subtree_ss_mask; + } +} + +static bool css_visible(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + + if (cgroup_control(cgrp) & (1 << ss->id)) + return true; + if (!(cgroup_ss_mask(cgrp) & (1 << ss->id))) + return false; + return cgroup_on_dfl(cgrp) && ss->implicit_on_dfl; +} + +/** + * cgroup_apply_control_enable - enable or show csses according to control + * @cgrp: root of the target subtree + * + * Walk @cgrp's subtree and create new csses or make the existing ones + * visible. A css is created invisible if it's being implicitly enabled + * through dependency. An invisible css is made visible when the userland + * explicitly enables it. + * + * Returns 0 on success, -errno on failure. On failure, csses which have + * been processed already aren't cleaned up. The caller is responsible for + * cleaning up with cgroup_apply_control_disble(). + */ +static int cgroup_apply_control_enable(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + struct cgroup_subsys *ss; + int ssid, ret; + + cgroup_for_each_live_descendant_pre(dsct, d_css, cgrp) { + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cgroup_css(dsct, ss); + + WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); + + if (!(cgroup_ss_mask(dsct) & (1 << ss->id))) + continue; + + if (!css) { + css = css_create(dsct, ss); + if (IS_ERR(css)) + return PTR_ERR(css); + } + + if (css_visible(css)) { + ret = css_populate_dir(css); + if (ret) + return ret; + } + } + } + + return 0; +} + +/** + * cgroup_apply_control_disable - kill or hide csses according to control + * @cgrp: root of the target subtree + * + * Walk @cgrp's subtree and kill and hide csses so that they match + * cgroup_ss_mask() and cgroup_visible_mask(). + * + * A css is hidden when the userland requests it to be disabled while other + * subsystems are still depending on it. The css must not actively control + * resources and be in the vanilla state if it's made visible again later. + * Controllers which may be depended upon should provide ->css_reset() for + * this purpose. + */ +static void cgroup_apply_control_disable(struct cgroup *cgrp) +{ + struct cgroup *dsct; + struct cgroup_subsys_state *d_css; + struct cgroup_subsys *ss; + int ssid; + + cgroup_for_each_live_descendant_post(dsct, d_css, cgrp) { + for_each_subsys(ss, ssid) { + struct cgroup_subsys_state *css = cgroup_css(dsct, ss); + + WARN_ON_ONCE(css && percpu_ref_is_dying(&css->refcnt)); + + if (!css) + continue; + + if (css->parent && + !(cgroup_ss_mask(dsct) & (1 << ss->id))) { + kill_css(css); + } else if (!css_visible(css)) { + css_clear_dir(css); + if (ss->css_reset) + ss->css_reset(css); + } + } + } +} + +/** + * cgroup_apply_control - apply control mask updates to the subtree + * @cgrp: root of the target subtree + * + * subsystems can be enabled and disabled in a subtree using the following + * steps. + * + * 1. Call cgroup_save_control() to stash the current state. + * 2. Update ->subtree_control masks in the subtree as desired. + * 3. Call cgroup_apply_control() to apply the changes. + * 4. Optionally perform other related operations. + * 5. Call cgroup_finalize_control() to finish up. + * + * This function implements step 3 and propagates the mask changes + * throughout @cgrp's subtree, updates csses accordingly and perform + * process migrations. + */ +static int cgroup_apply_control(struct cgroup *cgrp) +{ + int ret; + + cgroup_propagate_control(cgrp); + + ret = cgroup_apply_control_enable(cgrp); + if (ret) + return ret; + + /* + * At this point, cgroup_e_css() results reflect the new csses + * making the following cgroup_update_dfl_csses() properly update + * css associations of all tasks in the subtree. + */ + ret = cgroup_update_dfl_csses(cgrp); + if (ret) + return ret; + + return 0; +} + +/** + * cgroup_finalize_control - finalize control mask update + * @cgrp: root of the target subtree + * @ret: the result of the update + * + * Finalize control mask update. See cgroup_apply_control() for more info. + */ +static void cgroup_finalize_control(struct cgroup *cgrp, int ret) +{ + if (ret) { + cgroup_restore_control(cgrp); + cgroup_propagate_control(cgrp); + } + + cgroup_apply_control_disable(cgrp); +} + +/* change the enabled child controllers for a cgroup in the default hierarchy */ +static ssize_t cgroup_subtree_control_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, + loff_t off) +{ + u16 enable = 0, disable = 0; + struct cgroup *cgrp, *child; + struct cgroup_subsys *ss; + char *tok; + int ssid, ret; + + /* + * Parse input - space separated list of subsystem names prefixed + * with either + or -. + */ + buf = strstrip(buf); + while ((tok = strsep(&buf, " "))) { + if (tok[0] == '\0') + continue; + do_each_subsys_mask(ss, ssid, ~cgrp_dfl_inhibit_ss_mask) { + if (!cgroup_ssid_enabled(ssid) || + strcmp(tok + 1, ss->name)) + continue; + + if (*tok == '+') { + enable |= 1 << ssid; + disable &= ~(1 << ssid); + } else if (*tok == '-') { + disable |= 1 << ssid; + enable &= ~(1 << ssid); + } else { + return -EINVAL; + } + break; + } while_each_subsys_mask(); + if (ssid == CGROUP_SUBSYS_COUNT) + return -EINVAL; + } + + cgrp = cgroup_kn_lock_live(of->kn, true); + if (!cgrp) + return -ENODEV; + + for_each_subsys(ss, ssid) { + if (enable & (1 << ssid)) { + if (cgrp->subtree_control & (1 << ssid)) { + enable &= ~(1 << ssid); + continue; + } + + if (!(cgroup_control(cgrp) & (1 << ssid))) { + ret = -ENOENT; + goto out_unlock; + } + } else if (disable & (1 << ssid)) { + if (!(cgrp->subtree_control & (1 << ssid))) { + disable &= ~(1 << ssid); + continue; + } + + /* a child has it enabled? */ + cgroup_for_each_live_child(child, cgrp) { + if (child->subtree_control & (1 << ssid)) { + ret = -EBUSY; + goto out_unlock; + } + } + } + } + + if (!enable && !disable) { + ret = 0; + goto out_unlock; + } + + /* + * Except for the root, subtree_control must be zero for a cgroup + * with tasks so that child cgroups don't compete against tasks. + */ + if (enable && cgroup_parent(cgrp)) { + struct cgrp_cset_link *link; + + /* + * Because namespaces pin csets too, @cgrp->cset_links + * might not be empty even when @cgrp is empty. Walk and + * verify each cset. + */ + spin_lock_irq(&css_set_lock); + + ret = 0; + list_for_each_entry(link, &cgrp->cset_links, cset_link) { + if (css_set_populated(link->cset)) { + ret = -EBUSY; + break; + } + } + + spin_unlock_irq(&css_set_lock); + + if (ret) + goto out_unlock; + } + + /* save and update control masks and prepare csses */ + cgroup_save_control(cgrp); + + cgrp->subtree_control |= enable; + cgrp->subtree_control &= ~disable; + + ret = cgroup_apply_control(cgrp); + + cgroup_finalize_control(cgrp, ret); + + kernfs_activate(cgrp->kn); + ret = 0; +out_unlock: + cgroup_kn_unlock(of->kn); + return ret ?: nbytes; +} + +static int cgroup_events_show(struct seq_file *seq, void *v) +{ + seq_printf(seq, "populated %d\n", + cgroup_is_populated(seq_css(seq)->cgroup)); + return 0; +} + +static int cgroup_file_open(struct kernfs_open_file *of) +{ + struct cftype *cft = of->kn->priv; + + if (cft->open) + return cft->open(of); + return 0; +} + +static void cgroup_file_release(struct kernfs_open_file *of) +{ + struct cftype *cft = of->kn->priv; + + if (cft->release) + cft->release(of); +} + +static ssize_t cgroup_file_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct cgroup *cgrp = of->kn->parent->priv; + struct cftype *cft = of->kn->priv; + struct cgroup_subsys_state *css; + int ret; + + if (cft->write) + return cft->write(of, buf, nbytes, off); + + /* + * kernfs guarantees that a file isn't deleted with operations in + * flight, which means that the matching css is and stays alive and + * doesn't need to be pinned. The RCU locking is not necessary + * either. It's just for the convenience of using cgroup_css(). + */ + rcu_read_lock(); + css = cgroup_css(cgrp, cft->ss); + rcu_read_unlock(); + + if (cft->write_u64) { + unsigned long long v; + ret = kstrtoull(buf, 0, &v); + if (!ret) + ret = cft->write_u64(css, cft, v); + } else if (cft->write_s64) { + long long v; + ret = kstrtoll(buf, 0, &v); + if (!ret) + ret = cft->write_s64(css, cft, v); + } else { + ret = -EINVAL; + } + + return ret ?: nbytes; +} + +static void *cgroup_seqfile_start(struct seq_file *seq, loff_t *ppos) +{ + return seq_cft(seq)->seq_start(seq, ppos); +} + +static void *cgroup_seqfile_next(struct seq_file *seq, void *v, loff_t *ppos) +{ + return seq_cft(seq)->seq_next(seq, v, ppos); +} + +static void cgroup_seqfile_stop(struct seq_file *seq, void *v) +{ + if (seq_cft(seq)->seq_stop) + seq_cft(seq)->seq_stop(seq, v); +} + +static int cgroup_seqfile_show(struct seq_file *m, void *arg) +{ + struct cftype *cft = seq_cft(m); + struct cgroup_subsys_state *css = seq_css(m); + + if (cft->seq_show) + return cft->seq_show(m, arg); + + if (cft->read_u64) + seq_printf(m, "%llu\n", cft->read_u64(css, cft)); + else if (cft->read_s64) + seq_printf(m, "%lld\n", cft->read_s64(css, cft)); + else + return -EINVAL; + return 0; +} + +static struct kernfs_ops cgroup_kf_single_ops = { + .atomic_write_len = PAGE_SIZE, + .open = cgroup_file_open, + .release = cgroup_file_release, + .write = cgroup_file_write, + .seq_show = cgroup_seqfile_show, +}; + +static struct kernfs_ops cgroup_kf_ops = { + .atomic_write_len = PAGE_SIZE, + .open = cgroup_file_open, + .release = cgroup_file_release, + .write = cgroup_file_write, + .seq_start = cgroup_seqfile_start, + .seq_next = cgroup_seqfile_next, + .seq_stop = cgroup_seqfile_stop, + .seq_show = cgroup_seqfile_show, +}; + +/* set uid and gid of cgroup dirs and files to that of the creator */ +static int cgroup_kn_set_ugid(struct kernfs_node *kn) +{ + struct iattr iattr = { .ia_valid = ATTR_UID | ATTR_GID, + .ia_uid = current_fsuid(), + .ia_gid = current_fsgid(), }; + + if (uid_eq(iattr.ia_uid, GLOBAL_ROOT_UID) && + gid_eq(iattr.ia_gid, GLOBAL_ROOT_GID)) + return 0; + + return kernfs_setattr(kn, &iattr); +} + +static int cgroup_add_file(struct cgroup_subsys_state *css, struct cgroup *cgrp, + struct cftype *cft) +{ + char name[CGROUP_FILE_NAME_MAX]; + struct kernfs_node *kn; + struct lock_class_key *key = NULL; + int ret; + +#ifdef CONFIG_DEBUG_LOCK_ALLOC + key = &cft->lockdep_key; +#endif + kn = __kernfs_create_file(cgrp->kn, cgroup_file_name(cgrp, cft, name), + cgroup_file_mode(cft), 0, cft->kf_ops, cft, + NULL, key); + if (IS_ERR(kn)) + return PTR_ERR(kn); + + ret = cgroup_kn_set_ugid(kn); + if (ret) { + kernfs_remove(kn); + return ret; + } + + if (cft->file_offset) { + struct cgroup_file *cfile = (void *)css + cft->file_offset; + + spin_lock_irq(&cgroup_file_kn_lock); + cfile->kn = kn; + spin_unlock_irq(&cgroup_file_kn_lock); + } + + return 0; +} + +/** + * cgroup_addrm_files - add or remove files to a cgroup directory + * @css: the target css + * @cgrp: the target cgroup (usually css->cgroup) + * @cfts: array of cftypes to be added + * @is_add: whether to add or remove + * + * Depending on @is_add, add or remove files defined by @cfts on @cgrp. + * For removals, this function never fails. + */ +static int cgroup_addrm_files(struct cgroup_subsys_state *css, + struct cgroup *cgrp, struct cftype cfts[], + bool is_add) +{ + struct cftype *cft, *cft_end = NULL; + int ret = 0; + + lockdep_assert_held(&cgroup_mutex); + +restart: + for (cft = cfts; cft != cft_end && cft->name[0] != '\0'; cft++) { + /* does cft->flags tell us to skip this file on @cgrp? */ + if ((cft->flags & __CFTYPE_ONLY_ON_DFL) && !cgroup_on_dfl(cgrp)) + continue; + if ((cft->flags & __CFTYPE_NOT_ON_DFL) && cgroup_on_dfl(cgrp)) + continue; + if ((cft->flags & CFTYPE_NOT_ON_ROOT) && !cgroup_parent(cgrp)) + continue; + if ((cft->flags & CFTYPE_ONLY_ON_ROOT) && cgroup_parent(cgrp)) + continue; + + if (is_add) { + ret = cgroup_add_file(css, cgrp, cft); + if (ret) { + pr_warn("%s: failed to add %s, err=%d\n", + __func__, cft->name, ret); + cft_end = cft; + is_add = false; + goto restart; + } + } else { + cgroup_rm_file(cgrp, cft); + } + } + return ret; +} + +static int cgroup_apply_cftypes(struct cftype *cfts, bool is_add) +{ + LIST_HEAD(pending); + struct cgroup_subsys *ss = cfts[0].ss; + struct cgroup *root = &ss->root->cgrp; + struct cgroup_subsys_state *css; + int ret = 0; + + lockdep_assert_held(&cgroup_mutex); + + /* add/rm files for all cgroups created before */ + css_for_each_descendant_pre(css, cgroup_css(root, ss)) { + struct cgroup *cgrp = css->cgroup; + + if (!(css->flags & CSS_VISIBLE)) + continue; + + ret = cgroup_addrm_files(css, cgrp, cfts, is_add); + if (ret) + break; + } + + if (is_add && !ret) + kernfs_activate(root->kn); + return ret; +} + +static void cgroup_exit_cftypes(struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft->name[0] != '\0'; cft++) { + /* free copy for custom atomic_write_len, see init_cftypes() */ + if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) + kfree(cft->kf_ops); + cft->kf_ops = NULL; + cft->ss = NULL; + + /* revert flags set by cgroup core while adding @cfts */ + cft->flags &= ~(__CFTYPE_ONLY_ON_DFL | __CFTYPE_NOT_ON_DFL); + } +} + +static int cgroup_init_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft->name[0] != '\0'; cft++) { + struct kernfs_ops *kf_ops; + + WARN_ON(cft->ss || cft->kf_ops); + + if (cft->seq_start) + kf_ops = &cgroup_kf_ops; + else + kf_ops = &cgroup_kf_single_ops; + + /* + * Ugh... if @cft wants a custom max_write_len, we need to + * make a copy of kf_ops to set its atomic_write_len. + */ + if (cft->max_write_len && cft->max_write_len != PAGE_SIZE) { + kf_ops = kmemdup(kf_ops, sizeof(*kf_ops), GFP_KERNEL); + if (!kf_ops) { + cgroup_exit_cftypes(cfts); + return -ENOMEM; + } + kf_ops->atomic_write_len = cft->max_write_len; + } + + cft->kf_ops = kf_ops; + cft->ss = ss; + } + + return 0; +} + +static int cgroup_rm_cftypes_locked(struct cftype *cfts) +{ + lockdep_assert_held(&cgroup_mutex); + + if (!cfts || !cfts[0].ss) + return -ENOENT; + + list_del(&cfts->node); + cgroup_apply_cftypes(cfts, false); + cgroup_exit_cftypes(cfts); + return 0; +} + +/** + * cgroup_rm_cftypes - remove an array of cftypes from a subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Unregister @cfts. Files described by @cfts are removed from all + * existing cgroups and all future cgroups won't have them either. This + * function can be called anytime whether @cfts' subsys is attached or not. + * + * Returns 0 on successful unregistration, -ENOENT if @cfts is not + * registered. + */ +int cgroup_rm_cftypes(struct cftype *cfts) +{ + int ret; + + mutex_lock(&cgroup_mutex); + ret = cgroup_rm_cftypes_locked(cfts); + mutex_unlock(&cgroup_mutex); + return ret; +} + +/** + * cgroup_add_cftypes - add an array of cftypes to a subsystem + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Register @cfts to @ss. Files described by @cfts are created for all + * existing cgroups to which @ss is attached and all future cgroups will + * have them too. This function can be called anytime whether @ss is + * attached or not. + * + * Returns 0 on successful registration, -errno on failure. Note that this + * function currently returns 0 as long as @cfts registration is successful + * even if some file creation attempts on existing cgroups fail. + */ +static int cgroup_add_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + int ret; + + if (!cgroup_ssid_enabled(ss->id)) + return 0; + + if (!cfts || cfts[0].name[0] == '\0') + return 0; + + ret = cgroup_init_cftypes(ss, cfts); + if (ret) + return ret; + + mutex_lock(&cgroup_mutex); + + list_add_tail(&cfts->node, &ss->cfts); + ret = cgroup_apply_cftypes(cfts, true); + if (ret) + cgroup_rm_cftypes_locked(cfts); + + mutex_unlock(&cgroup_mutex); + return ret; +} + +/** + * cgroup_add_dfl_cftypes - add an array of cftypes for default hierarchy + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Similar to cgroup_add_cftypes() but the added files are only used for + * the default hierarchy. + */ +int cgroup_add_dfl_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft && cft->name[0] != '\0'; cft++) + cft->flags |= __CFTYPE_ONLY_ON_DFL; + return cgroup_add_cftypes(ss, cfts); +} + +/** + * cgroup_add_legacy_cftypes - add an array of cftypes for legacy hierarchies + * @ss: target cgroup subsystem + * @cfts: zero-length name terminated array of cftypes + * + * Similar to cgroup_add_cftypes() but the added files are only used for + * the legacy hierarchies. + */ +int cgroup_add_legacy_cftypes(struct cgroup_subsys *ss, struct cftype *cfts) +{ + struct cftype *cft; + + for (cft = cfts; cft && cft->name[0] != '\0'; cft++) + cft->flags |= __CFTYPE_NOT_ON_DFL; + return cgroup_add_cftypes(ss, cfts); +} + +/** + * cgroup_file_notify - generate a file modified event for a cgroup_file + * @cfile: target cgroup_file + * + * @cfile must have been obtained by setting cftype->file_offset. + */ +void cgroup_file_notify(struct cgroup_file *cfile) +{ + unsigned long flags; + + spin_lock_irqsave(&cgroup_file_kn_lock, flags); + if (cfile->kn) + kernfs_notify(cfile->kn); + spin_unlock_irqrestore(&cgroup_file_kn_lock, flags); +} + +/** + * css_next_child - find the next child of a given css + * @pos: the current position (%NULL to initiate traversal) + * @parent: css whose children to walk + * + * This function returns the next child of @parent and should be called + * under either cgroup_mutex or RCU read lock. The only requirement is + * that @parent and @pos are accessible. The next sibling is guaranteed to + * be returned regardless of their states. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state *css_next_child(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *parent) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* + * @pos could already have been unlinked from the sibling list. + * Once a cgroup is removed, its ->sibling.next is no longer + * updated when its next sibling changes. CSS_RELEASED is set when + * @pos is taken off list, at which time its next pointer is valid, + * and, as releases are serialized, the one pointed to by the next + * pointer is guaranteed to not have started release yet. This + * implies that if we observe !CSS_RELEASED on @pos in this RCU + * critical section, the one pointed to by its next pointer is + * guaranteed to not have finished its RCU grace period even if we + * have dropped rcu_read_lock() inbetween iterations. + * + * If @pos has CSS_RELEASED set, its next pointer can't be + * dereferenced; however, as each css is given a monotonically + * increasing unique serial number and always appended to the + * sibling list, the next one can be found by walking the parent's + * children until the first css with higher serial number than + * @pos's. While this path can be slower, it happens iff iteration + * races against release and the race window is very small. + */ + if (!pos) { + next = list_entry_rcu(parent->children.next, struct cgroup_subsys_state, sibling); + } else if (likely(!(pos->flags & CSS_RELEASED))) { + next = list_entry_rcu(pos->sibling.next, struct cgroup_subsys_state, sibling); + } else { + list_for_each_entry_rcu(next, &parent->children, sibling) + if (next->serial_nr > pos->serial_nr) + break; + } + + /* + * @next, if not pointing to the head, can be dereferenced and is + * the next sibling. + */ + if (&next->sibling != &parent->children) + return next; + return NULL; +} + +/** + * css_next_descendant_pre - find the next descendant for pre-order walk + * @pos: the current position (%NULL to initiate traversal) + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_pre(). Find the next descendant + * to visit for pre-order traversal of @root's descendants. @root is + * included in the iteration and the first node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct next descendant as long + * as both @pos and @root are accessible and @pos is a descendant of @root. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_pre(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *root) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* if first iteration, visit @root */ + if (!pos) + return root; + + /* visit the first child if exists */ + next = css_next_child(NULL, pos); + if (next) + return next; + + /* no child, visit my or the closest ancestor's next sibling */ + while (pos != root) { + next = css_next_child(pos, pos->parent); + if (next) + return next; + pos = pos->parent; + } + + return NULL; +} + +/** + * css_rightmost_descendant - return the rightmost descendant of a css + * @pos: css of interest + * + * Return the rightmost descendant of @pos. If there's no descendant, @pos + * is returned. This can be used during pre-order traversal to skip + * subtree of @pos. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct rightmost descendant as + * long as @pos is accessible. + */ +struct cgroup_subsys_state * +css_rightmost_descendant(struct cgroup_subsys_state *pos) +{ + struct cgroup_subsys_state *last, *tmp; + + cgroup_assert_mutex_or_rcu_locked(); + + do { + last = pos; + /* ->prev isn't RCU safe, walk ->next till the end */ + pos = NULL; + css_for_each_child(tmp, last) + pos = tmp; + } while (pos); + + return last; +} + +static struct cgroup_subsys_state * +css_leftmost_descendant(struct cgroup_subsys_state *pos) +{ + struct cgroup_subsys_state *last; + + do { + last = pos; + pos = css_next_child(NULL, pos); + } while (pos); + + return last; +} + +/** + * css_next_descendant_post - find the next descendant for post-order walk + * @pos: the current position (%NULL to initiate traversal) + * @root: css whose descendants to walk + * + * To be used by css_for_each_descendant_post(). Find the next descendant + * to visit for post-order traversal of @root's descendants. @root is + * included in the iteration and the last node to be visited. + * + * While this function requires cgroup_mutex or RCU read locking, it + * doesn't require the whole traversal to be contained in a single critical + * section. This function will return the correct next descendant as long + * as both @pos and @cgroup are accessible and @pos is a descendant of + * @cgroup. + * + * If a subsystem synchronizes ->css_online() and the start of iteration, a + * css which finished ->css_online() is guaranteed to be visible in the + * future iterations and will stay visible until the last reference is put. + * A css which hasn't finished ->css_online() or already finished + * ->css_offline() may show up during traversal. It's each subsystem's + * responsibility to synchronize against on/offlining. + */ +struct cgroup_subsys_state * +css_next_descendant_post(struct cgroup_subsys_state *pos, + struct cgroup_subsys_state *root) +{ + struct cgroup_subsys_state *next; + + cgroup_assert_mutex_or_rcu_locked(); + + /* if first iteration, visit leftmost descendant which may be @root */ + if (!pos) + return css_leftmost_descendant(root); + + /* if we visited @root, we're done */ + if (pos == root) + return NULL; + + /* if there's an unvisited sibling, visit its leftmost descendant */ + next = css_next_child(pos, pos->parent); + if (next) + return css_leftmost_descendant(next); + + /* no sibling left, visit parent */ + return pos->parent; +} + +/** + * css_has_online_children - does a css have online children + * @css: the target css + * + * Returns %true if @css has any online children; otherwise, %false. This + * function can be called from any context but the caller is responsible + * for synchronizing against on/offlining as necessary. + */ +bool css_has_online_children(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys_state *child; + bool ret = false; + + rcu_read_lock(); + css_for_each_child(child, css) { + if (child->flags & CSS_ONLINE) { + ret = true; + break; + } + } + rcu_read_unlock(); + return ret; +} + +/** + * css_task_iter_advance_css_set - advance a task itererator to the next css_set + * @it: the iterator to advance + * + * Advance @it to the next css_set to walk. + */ +static void css_task_iter_advance_css_set(struct css_task_iter *it) +{ + struct list_head *l = it->cset_pos; + struct cgrp_cset_link *link; + struct css_set *cset; + + lockdep_assert_held(&css_set_lock); + + /* Advance to the next non-empty css_set */ + do { + l = l->next; + if (l == it->cset_head) { + it->cset_pos = NULL; + it->task_pos = NULL; + return; + } + + if (it->ss) { + cset = container_of(l, struct css_set, + e_cset_node[it->ss->id]); + } else { + link = list_entry(l, struct cgrp_cset_link, cset_link); + cset = link->cset; + } + } while (!css_set_populated(cset)); + + it->cset_pos = l; + + if (!list_empty(&cset->tasks)) + it->task_pos = cset->tasks.next; + else + it->task_pos = cset->mg_tasks.next; + + it->tasks_head = &cset->tasks; + it->mg_tasks_head = &cset->mg_tasks; + + /* + * We don't keep css_sets locked across iteration steps and thus + * need to take steps to ensure that iteration can be resumed after + * the lock is re-acquired. Iteration is performed at two levels - + * css_sets and tasks in them. + * + * Once created, a css_set never leaves its cgroup lists, so a + * pinned css_set is guaranteed to stay put and we can resume + * iteration afterwards. + * + * Tasks may leave @cset across iteration steps. This is resolved + * by registering each iterator with the css_set currently being + * walked and making css_set_move_task() advance iterators whose + * next task is leaving. + */ + if (it->cur_cset) { + list_del(&it->iters_node); + put_css_set_locked(it->cur_cset); + } + get_css_set(cset); + it->cur_cset = cset; + list_add(&it->iters_node, &cset->task_iters); +} + +static void css_task_iter_advance(struct css_task_iter *it) +{ + struct list_head *l = it->task_pos; + + lockdep_assert_held(&css_set_lock); + WARN_ON_ONCE(!l); + + /* + * Advance iterator to find next entry. cset->tasks is consumed + * first and then ->mg_tasks. After ->mg_tasks, we move onto the + * next cset. + */ + l = l->next; + + if (l == it->tasks_head) + l = it->mg_tasks_head->next; + + if (l == it->mg_tasks_head) + css_task_iter_advance_css_set(it); + else + it->task_pos = l; +} + +/** + * css_task_iter_start - initiate task iteration + * @css: the css to walk tasks of + * @it: the task iterator to use + * + * Initiate iteration through the tasks of @css. The caller can call + * css_task_iter_next() to walk through the tasks until the function + * returns NULL. On completion of iteration, css_task_iter_end() must be + * called. + */ +void css_task_iter_start(struct cgroup_subsys_state *css, + struct css_task_iter *it) +{ + /* no one should try to iterate before mounting cgroups */ + WARN_ON_ONCE(!use_task_css_set_links); + + memset(it, 0, sizeof(*it)); + + spin_lock_irq(&css_set_lock); + + it->ss = css->ss; + + if (it->ss) + it->cset_pos = &css->cgroup->e_csets[css->ss->id]; + else + it->cset_pos = &css->cgroup->cset_links; + + it->cset_head = it->cset_pos; + + css_task_iter_advance_css_set(it); + + spin_unlock_irq(&css_set_lock); +} + +/** + * css_task_iter_next - return the next task for the iterator + * @it: the task iterator being iterated + * + * The "next" function for task iteration. @it should have been + * initialized via css_task_iter_start(). Returns NULL when the iteration + * reaches the end. + */ +struct task_struct *css_task_iter_next(struct css_task_iter *it) +{ + if (it->cur_task) { + put_task_struct(it->cur_task); + it->cur_task = NULL; + } + + spin_lock_irq(&css_set_lock); + + if (it->task_pos) { + it->cur_task = list_entry(it->task_pos, struct task_struct, + cg_list); + get_task_struct(it->cur_task); + css_task_iter_advance(it); + } + + spin_unlock_irq(&css_set_lock); + + return it->cur_task; +} + +/** + * css_task_iter_end - finish task iteration + * @it: the task iterator to finish + * + * Finish task iteration started by css_task_iter_start(). + */ +void css_task_iter_end(struct css_task_iter *it) +{ + if (it->cur_cset) { + spin_lock_irq(&css_set_lock); + list_del(&it->iters_node); + put_css_set_locked(it->cur_cset); + spin_unlock_irq(&css_set_lock); + } + + if (it->cur_task) + put_task_struct(it->cur_task); +} + +static void cgroup_procs_release(struct kernfs_open_file *of) +{ + if (of->priv) { + css_task_iter_end(of->priv); + kfree(of->priv); + } +} + +static void *cgroup_procs_next(struct seq_file *s, void *v, loff_t *pos) +{ + struct kernfs_open_file *of = s->private; + struct css_task_iter *it = of->priv; + struct task_struct *task; + + do { + task = css_task_iter_next(it); + } while (task && !thread_group_leader(task)); + + return task; +} + +static void *cgroup_procs_start(struct seq_file *s, loff_t *pos) +{ + struct kernfs_open_file *of = s->private; + struct cgroup *cgrp = seq_css(s)->cgroup; + struct css_task_iter *it = of->priv; + + /* + * When a seq_file is seeked, it's always traversed sequentially + * from position 0, so we can simply keep iterating on !0 *pos. + */ + if (!it) { + if (WARN_ON_ONCE((*pos)++)) + return ERR_PTR(-EINVAL); + + it = kzalloc(sizeof(*it), GFP_KERNEL); + if (!it) + return ERR_PTR(-ENOMEM); + of->priv = it; + css_task_iter_start(&cgrp->self, it); + } else if (!(*pos)++) { + css_task_iter_end(it); + css_task_iter_start(&cgrp->self, it); + } + + return cgroup_procs_next(s, NULL, NULL); +} + +static int cgroup_procs_show(struct seq_file *s, void *v) +{ + seq_printf(s, "%d\n", task_tgid_vnr(v)); + return 0; +} + +/* cgroup core interface files for the default hierarchy */ +static struct cftype cgroup_base_files[] = { + { + .name = "cgroup.procs", + .file_offset = offsetof(struct cgroup, procs_file), + .release = cgroup_procs_release, + .seq_start = cgroup_procs_start, + .seq_next = cgroup_procs_next, + .seq_show = cgroup_procs_show, + .write = cgroup_procs_write, + }, + { + .name = "cgroup.controllers", + .seq_show = cgroup_controllers_show, + }, + { + .name = "cgroup.subtree_control", + .seq_show = cgroup_subtree_control_show, + .write = cgroup_subtree_control_write, + }, + { + .name = "cgroup.events", + .flags = CFTYPE_NOT_ON_ROOT, + .file_offset = offsetof(struct cgroup, events_file), + .seq_show = cgroup_events_show, + }, + { } /* terminate */ +}; + +/* + * css destruction is four-stage process. + * + * 1. Destruction starts. Killing of the percpu_ref is initiated. + * Implemented in kill_css(). + * + * 2. When the percpu_ref is confirmed to be visible as killed on all CPUs + * and thus css_tryget_online() is guaranteed to fail, the css can be + * offlined by invoking offline_css(). After offlining, the base ref is + * put. Implemented in css_killed_work_fn(). + * + * 3. When the percpu_ref reaches zero, the only possible remaining + * accessors are inside RCU read sections. css_release() schedules the + * RCU callback. + * + * 4. After the grace period, the css can be freed. Implemented in + * css_free_work_fn(). + * + * It is actually hairier because both step 2 and 4 require process context + * and thus involve punting to css->destroy_work adding two additional + * steps to the already complex sequence. + */ +static void css_free_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + + percpu_ref_exit(&css->refcnt); + + if (ss) { + /* css free path */ + struct cgroup_subsys_state *parent = css->parent; + int id = css->id; + + ss->css_free(css); + cgroup_idr_remove(&ss->css_idr, id); + cgroup_put(cgrp); + + if (parent) + css_put(parent); + } else { + /* cgroup free path */ + atomic_dec(&cgrp->root->nr_cgrps); + cgroup1_pidlist_destroy_all(cgrp); + cancel_work_sync(&cgrp->release_agent_work); + + if (cgroup_parent(cgrp)) { + /* + * We get a ref to the parent, and put the ref when + * this cgroup is being freed, so it's guaranteed + * that the parent won't be destroyed before its + * children. + */ + cgroup_put(cgroup_parent(cgrp)); + kernfs_put(cgrp->kn); + kfree(cgrp); + } else { + /* + * This is root cgroup's refcnt reaching zero, + * which indicates that the root should be + * released. + */ + cgroup_destroy_root(cgrp->root); + } + } +} + +static void css_free_rcu_fn(struct rcu_head *rcu_head) +{ + struct cgroup_subsys_state *css = + container_of(rcu_head, struct cgroup_subsys_state, rcu_head); + + INIT_WORK(&css->destroy_work, css_free_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); +} + +static void css_release_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + struct cgroup_subsys *ss = css->ss; + struct cgroup *cgrp = css->cgroup; + + mutex_lock(&cgroup_mutex); + + css->flags |= CSS_RELEASED; + list_del_rcu(&css->sibling); + + if (ss) { + /* css release path */ + cgroup_idr_replace(&ss->css_idr, NULL, css->id); + if (ss->css_released) + ss->css_released(css); + } else { + /* cgroup release path */ + trace_cgroup_release(cgrp); + + cgroup_idr_remove(&cgrp->root->cgroup_idr, cgrp->id); + cgrp->id = -1; + + /* + * There are two control paths which try to determine + * cgroup from dentry without going through kernfs - + * cgroupstats_build() and css_tryget_online_from_dir(). + * Those are supported by RCU protecting clearing of + * cgrp->kn->priv backpointer. + */ + if (cgrp->kn) + RCU_INIT_POINTER(*(void __rcu __force **)&cgrp->kn->priv, + NULL); + + cgroup_bpf_put(cgrp); + } + + mutex_unlock(&cgroup_mutex); + + call_rcu(&css->rcu_head, css_free_rcu_fn); +} + +static void css_release(struct percpu_ref *ref) +{ + struct cgroup_subsys_state *css = + container_of(ref, struct cgroup_subsys_state, refcnt); + + INIT_WORK(&css->destroy_work, css_release_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); +} + +static void init_and_link_css(struct cgroup_subsys_state *css, + struct cgroup_subsys *ss, struct cgroup *cgrp) +{ + lockdep_assert_held(&cgroup_mutex); + + cgroup_get(cgrp); + + memset(css, 0, sizeof(*css)); + css->cgroup = cgrp; + css->ss = ss; + css->id = -1; + INIT_LIST_HEAD(&css->sibling); + INIT_LIST_HEAD(&css->children); + css->serial_nr = css_serial_nr_next++; + atomic_set(&css->online_cnt, 0); + + if (cgroup_parent(cgrp)) { + css->parent = cgroup_css(cgroup_parent(cgrp), ss); + css_get(css->parent); + } + + BUG_ON(cgroup_css(cgrp, ss)); +} + +/* invoke ->css_online() on a new CSS and mark it online if successful */ +static int online_css(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys *ss = css->ss; + int ret = 0; + + lockdep_assert_held(&cgroup_mutex); + + if (ss->css_online) + ret = ss->css_online(css); + if (!ret) { + css->flags |= CSS_ONLINE; + rcu_assign_pointer(css->cgroup->subsys[ss->id], css); + + atomic_inc(&css->online_cnt); + if (css->parent) + atomic_inc(&css->parent->online_cnt); + } + return ret; +} + +/* if the CSS is online, invoke ->css_offline() on it and mark it offline */ +static void offline_css(struct cgroup_subsys_state *css) +{ + struct cgroup_subsys *ss = css->ss; + + lockdep_assert_held(&cgroup_mutex); + + if (!(css->flags & CSS_ONLINE)) + return; + + if (ss->css_reset) + ss->css_reset(css); + + if (ss->css_offline) + ss->css_offline(css); + + css->flags &= ~CSS_ONLINE; + RCU_INIT_POINTER(css->cgroup->subsys[ss->id], NULL); + + wake_up_all(&css->cgroup->offline_waitq); +} + +/** + * css_create - create a cgroup_subsys_state + * @cgrp: the cgroup new css will be associated with + * @ss: the subsys of new css + * + * Create a new css associated with @cgrp - @ss pair. On success, the new + * css is online and installed in @cgrp. This function doesn't create the + * interface files. Returns 0 on success, -errno on failure. + */ +static struct cgroup_subsys_state *css_create(struct cgroup *cgrp, + struct cgroup_subsys *ss) +{ + struct cgroup *parent = cgroup_parent(cgrp); + struct cgroup_subsys_state *parent_css = cgroup_css(parent, ss); + struct cgroup_subsys_state *css; + int err; + + lockdep_assert_held(&cgroup_mutex); + + css = ss->css_alloc(parent_css); + if (!css) + css = ERR_PTR(-ENOMEM); + if (IS_ERR(css)) + return css; + + init_and_link_css(css, ss, cgrp); + + err = percpu_ref_init(&css->refcnt, css_release, 0, GFP_KERNEL); + if (err) + goto err_free_css; + + err = cgroup_idr_alloc(&ss->css_idr, NULL, 2, 0, GFP_KERNEL); + if (err < 0) + goto err_free_css; + css->id = err; + + /* @css is ready to be brought online now, make it visible */ + list_add_tail_rcu(&css->sibling, &parent_css->children); + cgroup_idr_replace(&ss->css_idr, css, css->id); + + err = online_css(css); + if (err) + goto err_list_del; + + if (ss->broken_hierarchy && !ss->warned_broken_hierarchy && + cgroup_parent(parent)) { + pr_warn("%s (%d) created nested cgroup for controller \"%s\" which has incomplete hierarchy support. Nested cgroups may change behavior in the future.\n", + current->comm, current->pid, ss->name); + if (!strcmp(ss->name, "memory")) + pr_warn("\"memory\" requires setting use_hierarchy to 1 on the root\n"); + ss->warned_broken_hierarchy = true; + } + + return css; + +err_list_del: + list_del_rcu(&css->sibling); +err_free_css: + call_rcu(&css->rcu_head, css_free_rcu_fn); + return ERR_PTR(err); +} + +/* + * The returned cgroup is fully initialized including its control mask, but + * it isn't associated with its kernfs_node and doesn't have the control + * mask applied. + */ +static struct cgroup *cgroup_create(struct cgroup *parent) +{ + struct cgroup_root *root = parent->root; + struct cgroup *cgrp, *tcgrp; + int level = parent->level + 1; + int ret; + + /* allocate the cgroup and its ID, 0 is reserved for the root */ + cgrp = kzalloc(sizeof(*cgrp) + + sizeof(cgrp->ancestor_ids[0]) * (level + 1), GFP_KERNEL); + if (!cgrp) + return ERR_PTR(-ENOMEM); + + ret = percpu_ref_init(&cgrp->self.refcnt, css_release, 0, GFP_KERNEL); + if (ret) + goto out_free_cgrp; + + /* + * Temporarily set the pointer to NULL, so idr_find() won't return + * a half-baked cgroup. + */ + cgrp->id = cgroup_idr_alloc(&root->cgroup_idr, NULL, 2, 0, GFP_KERNEL); + if (cgrp->id < 0) { + ret = -ENOMEM; + goto out_cancel_ref; + } + + init_cgroup_housekeeping(cgrp); + + cgrp->self.parent = &parent->self; + cgrp->root = root; + cgrp->level = level; + + for (tcgrp = cgrp; tcgrp; tcgrp = cgroup_parent(tcgrp)) + cgrp->ancestor_ids[tcgrp->level] = tcgrp->id; + + if (notify_on_release(parent)) + set_bit(CGRP_NOTIFY_ON_RELEASE, &cgrp->flags); + + if (test_bit(CGRP_CPUSET_CLONE_CHILDREN, &parent->flags)) + set_bit(CGRP_CPUSET_CLONE_CHILDREN, &cgrp->flags); + + cgrp->self.serial_nr = css_serial_nr_next++; + + /* allocation complete, commit to creation */ + list_add_tail_rcu(&cgrp->self.sibling, &cgroup_parent(cgrp)->self.children); + atomic_inc(&root->nr_cgrps); + cgroup_get(parent); + + /* + * @cgrp is now fully operational. If something fails after this + * point, it'll be released via the normal destruction path. + */ + cgroup_idr_replace(&root->cgroup_idr, cgrp, cgrp->id); + + /* + * On the default hierarchy, a child doesn't automatically inherit + * subtree_control from the parent. Each is configured manually. + */ + if (!cgroup_on_dfl(cgrp)) + cgrp->subtree_control = cgroup_control(cgrp); + + if (parent) + cgroup_bpf_inherit(cgrp, parent); + + cgroup_propagate_control(cgrp); + + return cgrp; + +out_cancel_ref: + percpu_ref_exit(&cgrp->self.refcnt); +out_free_cgrp: + kfree(cgrp); + return ERR_PTR(ret); +} + +int cgroup_mkdir(struct kernfs_node *parent_kn, const char *name, umode_t mode) +{ + struct cgroup *parent, *cgrp; + struct kernfs_node *kn; + int ret; + + /* do not accept '\n' to prevent making /proc/<pid>/cgroup unparsable */ + if (strchr(name, '\n')) + return -EINVAL; + + parent = cgroup_kn_lock_live(parent_kn, false); + if (!parent) + return -ENODEV; + + cgrp = cgroup_create(parent); + if (IS_ERR(cgrp)) { + ret = PTR_ERR(cgrp); + goto out_unlock; + } + + /* create the directory */ + kn = kernfs_create_dir(parent->kn, name, mode, cgrp); + if (IS_ERR(kn)) { + ret = PTR_ERR(kn); + goto out_destroy; + } + cgrp->kn = kn; + + /* + * This extra ref will be put in cgroup_free_fn() and guarantees + * that @cgrp->kn is always accessible. + */ + kernfs_get(kn); + + ret = cgroup_kn_set_ugid(kn); + if (ret) + goto out_destroy; + + ret = css_populate_dir(&cgrp->self); + if (ret) + goto out_destroy; + + ret = cgroup_apply_control_enable(cgrp); + if (ret) + goto out_destroy; + + trace_cgroup_mkdir(cgrp); + + /* let's create and online css's */ + kernfs_activate(kn); + + ret = 0; + goto out_unlock; + +out_destroy: + cgroup_destroy_locked(cgrp); +out_unlock: + cgroup_kn_unlock(parent_kn); + return ret; +} + +/* + * This is called when the refcnt of a css is confirmed to be killed. + * css_tryget_online() is now guaranteed to fail. Tell the subsystem to + * initate destruction and put the css ref from kill_css(). + */ +static void css_killed_work_fn(struct work_struct *work) +{ + struct cgroup_subsys_state *css = + container_of(work, struct cgroup_subsys_state, destroy_work); + + mutex_lock(&cgroup_mutex); + + do { + offline_css(css); + css_put(css); + /* @css can't go away while we're holding cgroup_mutex */ + css = css->parent; + } while (css && atomic_dec_and_test(&css->online_cnt)); + + mutex_unlock(&cgroup_mutex); +} + +/* css kill confirmation processing requires process context, bounce */ +static void css_killed_ref_fn(struct percpu_ref *ref) +{ + struct cgroup_subsys_state *css = + container_of(ref, struct cgroup_subsys_state, refcnt); + + if (atomic_dec_and_test(&css->online_cnt)) { + INIT_WORK(&css->destroy_work, css_killed_work_fn); + queue_work(cgroup_destroy_wq, &css->destroy_work); + } +} + +/** + * kill_css - destroy a css + * @css: css to destroy + * + * This function initiates destruction of @css by removing cgroup interface + * files and putting its base reference. ->css_offline() will be invoked + * asynchronously once css_tryget_online() is guaranteed to fail and when + * the reference count reaches zero, @css will be released. + */ +static void kill_css(struct cgroup_subsys_state *css) +{ + lockdep_assert_held(&cgroup_mutex); + + /* + * This must happen before css is disassociated with its cgroup. + * See seq_css() for details. + */ + css_clear_dir(css); + + /* + * Killing would put the base ref, but we need to keep it alive + * until after ->css_offline(). + */ + css_get(css); + + /* + * cgroup core guarantees that, by the time ->css_offline() is + * invoked, no new css reference will be given out via + * css_tryget_online(). We can't simply call percpu_ref_kill() and + * proceed to offlining css's because percpu_ref_kill() doesn't + * guarantee that the ref is seen as killed on all CPUs on return. + * + * Use percpu_ref_kill_and_confirm() to get notifications as each + * css is confirmed to be seen as killed on all CPUs. + */ + percpu_ref_kill_and_confirm(&css->refcnt, css_killed_ref_fn); +} + +/** + * cgroup_destroy_locked - the first stage of cgroup destruction + * @cgrp: cgroup to be destroyed + * + * css's make use of percpu refcnts whose killing latency shouldn't be + * exposed to userland and are RCU protected. Also, cgroup core needs to + * guarantee that css_tryget_online() won't succeed by the time + * ->css_offline() is invoked. To satisfy all the requirements, + * destruction is implemented in the following two steps. + * + * s1. Verify @cgrp can be destroyed and mark it dying. Remove all + * userland visible parts and start killing the percpu refcnts of + * css's. Set up so that the next stage will be kicked off once all + * the percpu refcnts are confirmed to be killed. + * + * s2. Invoke ->css_offline(), mark the cgroup dead and proceed with the + * rest of destruction. Once all cgroup references are gone, the + * cgroup is RCU-freed. + * + * This function implements s1. After this step, @cgrp is gone as far as + * the userland is concerned and a new cgroup with the same name may be + * created. As cgroup doesn't care about the names internally, this + * doesn't cause any problem. + */ +static int cgroup_destroy_locked(struct cgroup *cgrp) + __releases(&cgroup_mutex) __acquires(&cgroup_mutex) +{ + struct cgroup_subsys_state *css; + struct cgrp_cset_link *link; + int ssid; + + lockdep_assert_held(&cgroup_mutex); + + /* + * Only migration can raise populated from zero and we're already + * holding cgroup_mutex. + */ + if (cgroup_is_populated(cgrp)) + return -EBUSY; + + /* + * Make sure there's no live children. We can't test emptiness of + * ->self.children as dead children linger on it while being + * drained; otherwise, "rmdir parent/child parent" may fail. + */ + if (css_has_online_children(&cgrp->self)) + return -EBUSY; + + /* + * Mark @cgrp and the associated csets dead. The former prevents + * further task migration and child creation by disabling + * cgroup_lock_live_group(). The latter makes the csets ignored by + * the migration path. + */ + cgrp->self.flags &= ~CSS_ONLINE; + + spin_lock_irq(&css_set_lock); + list_for_each_entry(link, &cgrp->cset_links, cset_link) + link->cset->dead = true; + spin_unlock_irq(&css_set_lock); + + /* initiate massacre of all css's */ + for_each_css(css, ssid, cgrp) + kill_css(css); + + /* + * Remove @cgrp directory along with the base files. @cgrp has an + * extra ref on its kn. + */ + kernfs_remove(cgrp->kn); + + cgroup1_check_for_release(cgroup_parent(cgrp)); + + /* put the base reference */ + percpu_ref_kill(&cgrp->self.refcnt); + + return 0; +}; + +int cgroup_rmdir(struct kernfs_node *kn) +{ + struct cgroup *cgrp; + int ret = 0; + + cgrp = cgroup_kn_lock_live(kn, false); + if (!cgrp) + return 0; + + ret = cgroup_destroy_locked(cgrp); + + if (!ret) + trace_cgroup_rmdir(cgrp); + + cgroup_kn_unlock(kn); + return ret; +} + +static struct kernfs_syscall_ops cgroup_kf_syscall_ops = { + .remount_fs = cgroup_remount, + .mkdir = cgroup_mkdir, + .rmdir = cgroup_rmdir, + .show_path = cgroup_show_path, +}; + +static void __init cgroup_init_subsys(struct cgroup_subsys *ss, bool early) +{ + struct cgroup_subsys_state *css; + + pr_debug("Initializing cgroup subsys %s\n", ss->name); + + mutex_lock(&cgroup_mutex); + + idr_init(&ss->css_idr); + INIT_LIST_HEAD(&ss->cfts); + + /* Create the root cgroup state for this subsystem */ + ss->root = &cgrp_dfl_root; + css = ss->css_alloc(cgroup_css(&cgrp_dfl_root.cgrp, ss)); + /* We don't handle early failures gracefully */ + BUG_ON(IS_ERR(css)); + init_and_link_css(css, ss, &cgrp_dfl_root.cgrp); + + /* + * Root csses are never destroyed and we can't initialize + * percpu_ref during early init. Disable refcnting. + */ + css->flags |= CSS_NO_REF; + + if (early) { + /* allocation can't be done safely during early init */ + css->id = 1; + } else { + css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, GFP_KERNEL); + BUG_ON(css->id < 0); + } + + /* Update the init_css_set to contain a subsys + * pointer to this state - since the subsystem is + * newly registered, all tasks and hence the + * init_css_set is in the subsystem's root cgroup. */ + init_css_set.subsys[ss->id] = css; + + have_fork_callback |= (bool)ss->fork << ss->id; + have_exit_callback |= (bool)ss->exit << ss->id; + have_free_callback |= (bool)ss->free << ss->id; + have_canfork_callback |= (bool)ss->can_fork << ss->id; + + /* At system boot, before all subsystems have been + * registered, no tasks have been forked, so we don't + * need to invoke fork callbacks here. */ + BUG_ON(!list_empty(&init_task.tasks)); + + BUG_ON(online_css(css)); + + mutex_unlock(&cgroup_mutex); +} + +/** + * cgroup_init_early - cgroup initialization at system boot + * + * Initialize cgroups at system boot, and initialize any + * subsystems that request early init. + */ +int __init cgroup_init_early(void) +{ + static struct cgroup_sb_opts __initdata opts; + struct cgroup_subsys *ss; + int i; + + init_cgroup_root(&cgrp_dfl_root, &opts); + cgrp_dfl_root.cgrp.self.flags |= CSS_NO_REF; + + RCU_INIT_POINTER(init_task.cgroups, &init_css_set); + + for_each_subsys(ss, i) { + WARN(!ss->css_alloc || !ss->css_free || ss->name || ss->id, + "invalid cgroup_subsys %d:%s css_alloc=%p css_free=%p id:name=%d:%s\n", + i, cgroup_subsys_name[i], ss->css_alloc, ss->css_free, + ss->id, ss->name); + WARN(strlen(cgroup_subsys_name[i]) > MAX_CGROUP_TYPE_NAMELEN, + "cgroup_subsys_name %s too long\n", cgroup_subsys_name[i]); + + ss->id = i; + ss->name = cgroup_subsys_name[i]; + if (!ss->legacy_name) + ss->legacy_name = cgroup_subsys_name[i]; + + if (ss->early_init) + cgroup_init_subsys(ss, true); + } + return 0; +} + +static u16 cgroup_disable_mask __initdata; + +/** + * cgroup_init - cgroup initialization + * + * Register cgroup filesystem and /proc file, and initialize + * any subsystems that didn't request early init. + */ +int __init cgroup_init(void) +{ + struct cgroup_subsys *ss; + int ssid; + + BUILD_BUG_ON(CGROUP_SUBSYS_COUNT > 16); + BUG_ON(percpu_init_rwsem(&cgroup_threadgroup_rwsem)); + BUG_ON(cgroup_init_cftypes(NULL, cgroup_base_files)); + BUG_ON(cgroup_init_cftypes(NULL, cgroup1_base_files)); + + /* + * The latency of the synchronize_sched() is too high for cgroups, + * avoid it at the cost of forcing all readers into the slow path. + */ + rcu_sync_enter_start(&cgroup_threadgroup_rwsem.rss); + + get_user_ns(init_cgroup_ns.user_ns); + + mutex_lock(&cgroup_mutex); + + /* + * Add init_css_set to the hash table so that dfl_root can link to + * it during init. + */ + hash_add(css_set_table, &init_css_set.hlist, + css_set_hash(init_css_set.subsys)); + + BUG_ON(cgroup_setup_root(&cgrp_dfl_root, 0)); + + mutex_unlock(&cgroup_mutex); + + for_each_subsys(ss, ssid) { + if (ss->early_init) { + struct cgroup_subsys_state *css = + init_css_set.subsys[ss->id]; + + css->id = cgroup_idr_alloc(&ss->css_idr, css, 1, 2, + GFP_KERNEL); + BUG_ON(css->id < 0); + } else { + cgroup_init_subsys(ss, false); + } + + list_add_tail(&init_css_set.e_cset_node[ssid], + &cgrp_dfl_root.cgrp.e_csets[ssid]); + + /* + * Setting dfl_root subsys_mask needs to consider the + * disabled flag and cftype registration needs kmalloc, + * both of which aren't available during early_init. + */ + if (cgroup_disable_mask & (1 << ssid)) { + static_branch_disable(cgroup_subsys_enabled_key[ssid]); + printk(KERN_INFO "Disabling %s control group subsystem\n", + ss->name); + continue; + } + + if (cgroup1_ssid_disabled(ssid)) + printk(KERN_INFO "Disabling %s control group subsystem in v1 mounts\n", + ss->name); + + cgrp_dfl_root.subsys_mask |= 1 << ss->id; + + if (ss->implicit_on_dfl) + cgrp_dfl_implicit_ss_mask |= 1 << ss->id; + else if (!ss->dfl_cftypes) + cgrp_dfl_inhibit_ss_mask |= 1 << ss->id; + + if (ss->dfl_cftypes == ss->legacy_cftypes) { + WARN_ON(cgroup_add_cftypes(ss, ss->dfl_cftypes)); + } else { + WARN_ON(cgroup_add_dfl_cftypes(ss, ss->dfl_cftypes)); + WARN_ON(cgroup_add_legacy_cftypes(ss, ss->legacy_cftypes)); + } + + if (ss->bind) + ss->bind(init_css_set.subsys[ssid]); + } + + /* init_css_set.subsys[] has been updated, re-hash */ + hash_del(&init_css_set.hlist); + hash_add(css_set_table, &init_css_set.hlist, + css_set_hash(init_css_set.subsys)); + + WARN_ON(sysfs_create_mount_point(fs_kobj, "cgroup")); + WARN_ON(register_filesystem(&cgroup_fs_type)); + WARN_ON(register_filesystem(&cgroup2_fs_type)); + WARN_ON(!proc_create("cgroups", 0, NULL, &proc_cgroupstats_operations)); + + return 0; +} + +static int __init cgroup_wq_init(void) +{ + /* + * There isn't much point in executing destruction path in + * parallel. Good chunk is serialized with cgroup_mutex anyway. + * Use 1 for @max_active. + * + * We would prefer to do this in cgroup_init() above, but that + * is called before init_workqueues(): so leave this until after. + */ + cgroup_destroy_wq = alloc_workqueue("cgroup_destroy", 0, 1); + BUG_ON(!cgroup_destroy_wq); + return 0; +} +core_initcall(cgroup_wq_init); + +/* + * proc_cgroup_show() + * - Print task's cgroup paths into seq_file, one line for each hierarchy + * - Used for /proc/<pid>/cgroup. + */ +int proc_cgroup_show(struct seq_file *m, struct pid_namespace *ns, + struct pid *pid, struct task_struct *tsk) +{ + char *buf; + int retval; + struct cgroup_root *root; + + retval = -ENOMEM; + buf = kmalloc(PATH_MAX, GFP_KERNEL); + if (!buf) + goto out; + + mutex_lock(&cgroup_mutex); + spin_lock_irq(&css_set_lock); + + for_each_root(root) { + struct cgroup_subsys *ss; + struct cgroup *cgrp; + int ssid, count = 0; + + if (root == &cgrp_dfl_root && !cgrp_dfl_visible) + continue; + + seq_printf(m, "%d:", root->hierarchy_id); + if (root != &cgrp_dfl_root) + for_each_subsys(ss, ssid) + if (root->subsys_mask & (1 << ssid)) + seq_printf(m, "%s%s", count++ ? "," : "", + ss->legacy_name); + if (strlen(root->name)) + seq_printf(m, "%sname=%s", count ? "," : "", + root->name); + seq_putc(m, ':'); + + cgrp = task_cgroup_from_root(tsk, root); + + /* + * On traditional hierarchies, all zombie tasks show up as + * belonging to the root cgroup. On the default hierarchy, + * while a zombie doesn't show up in "cgroup.procs" and + * thus can't be migrated, its /proc/PID/cgroup keeps + * reporting the cgroup it belonged to before exiting. If + * the cgroup is removed before the zombie is reaped, + * " (deleted)" is appended to the cgroup path. + */ + if (cgroup_on_dfl(cgrp) || !(tsk->flags & PF_EXITING)) { + retval = cgroup_path_ns_locked(cgrp, buf, PATH_MAX, + current->nsproxy->cgroup_ns); + if (retval >= PATH_MAX) + retval = -ENAMETOOLONG; + if (retval < 0) + goto out_unlock; + + seq_puts(m, buf); + } else { + seq_puts(m, "/"); + } + + if (cgroup_on_dfl(cgrp) && cgroup_is_dead(cgrp)) + seq_puts(m, " (deleted)\n"); + else + seq_putc(m, '\n'); + } + + retval = 0; +out_unlock: + spin_unlock_irq(&css_set_lock); + mutex_unlock(&cgroup_mutex); + kfree(buf); +out: + return retval; +} + +/** + * cgroup_fork - initialize cgroup related fields during copy_process() + * @child: pointer to task_struct of forking parent process. + * + * A task is associated with the init_css_set until cgroup_post_fork() + * attaches it to the parent's css_set. Empty cg_list indicates that + * @child isn't holding reference to its css_set. + */ +void cgroup_fork(struct task_struct *child) +{ + RCU_INIT_POINTER(child->cgroups, &init_css_set); + INIT_LIST_HEAD(&child->cg_list); +} + +/** + * cgroup_can_fork - called on a new task before the process is exposed + * @child: the task in question. + * + * This calls the subsystem can_fork() callbacks. If the can_fork() callback + * returns an error, the fork aborts with that error code. This allows for + * a cgroup subsystem to conditionally allow or deny new forks. + */ +int cgroup_can_fork(struct task_struct *child) +{ + struct cgroup_subsys *ss; + int i, j, ret; + + do_each_subsys_mask(ss, i, have_canfork_callback) { + ret = ss->can_fork(child); + if (ret) + goto out_revert; + } while_each_subsys_mask(); + + return 0; + +out_revert: + for_each_subsys(ss, j) { + if (j >= i) + break; + if (ss->cancel_fork) + ss->cancel_fork(child); + } + + return ret; +} + +/** + * cgroup_cancel_fork - called if a fork failed after cgroup_can_fork() + * @child: the task in question + * + * This calls the cancel_fork() callbacks if a fork failed *after* + * cgroup_can_fork() succeded. + */ +void cgroup_cancel_fork(struct task_struct *child) +{ + struct cgroup_subsys *ss; + int i; + + for_each_subsys(ss, i) + if (ss->cancel_fork) + ss->cancel_fork(child); +} + +/** + * cgroup_post_fork - called on a new task after adding it to the task list + * @child: the task in question + * + * Adds the task to the list running through its css_set if necessary and + * call the subsystem fork() callbacks. Has to be after the task is + * visible on the task list in case we race with the first call to + * cgroup_task_iter_start() - to guarantee that the new task ends up on its + * list. + */ +void cgroup_post_fork(struct task_struct *child) +{ + struct cgroup_subsys *ss; + int i; + + /* + * This may race against cgroup_enable_task_cg_lists(). As that + * function sets use_task_css_set_links before grabbing + * tasklist_lock and we just went through tasklist_lock to add + * @child, it's guaranteed that either we see the set + * use_task_css_set_links or cgroup_enable_task_cg_lists() sees + * @child during its iteration. + * + * If we won the race, @child is associated with %current's + * css_set. Grabbing css_set_lock guarantees both that the + * association is stable, and, on completion of the parent's + * migration, @child is visible in the source of migration or + * already in the destination cgroup. This guarantee is necessary + * when implementing operations which need to migrate all tasks of + * a cgroup to another. + * + * Note that if we lose to cgroup_enable_task_cg_lists(), @child + * will remain in init_css_set. This is safe because all tasks are + * in the init_css_set before cg_links is enabled and there's no + * operation which transfers all tasks out of init_css_set. + */ + if (use_task_css_set_links) { + struct css_set *cset; + + spin_lock_irq(&css_set_lock); + cset = task_css_set(current); + if (list_empty(&child->cg_list)) { + get_css_set(cset); + css_set_move_task(child, NULL, cset, false); + } + spin_unlock_irq(&css_set_lock); + } + + /* + * Call ss->fork(). This must happen after @child is linked on + * css_set; otherwise, @child might change state between ->fork() + * and addition to css_set. + */ + do_each_subsys_mask(ss, i, have_fork_callback) { + ss->fork(child); + } while_each_subsys_mask(); +} + +/** + * cgroup_exit - detach cgroup from exiting task + * @tsk: pointer to task_struct of exiting process + * + * Description: Detach cgroup from @tsk and release it. + * + * Note that cgroups marked notify_on_release force every task in + * them to take the global cgroup_mutex mutex when exiting. + * This could impact scaling on very large systems. Be reluctant to + * use notify_on_release cgroups where very high task exit scaling + * is required on large systems. + * + * We set the exiting tasks cgroup to the root cgroup (top_cgroup). We + * call cgroup_exit() while the task is still competent to handle + * notify_on_release(), then leave the task attached to the root cgroup in + * each hierarchy for the remainder of its exit. No need to bother with + * init_css_set refcnting. init_css_set never goes away and we can't race + * with migration path - PF_EXITING is visible to migration path. + */ +void cgroup_exit(struct task_struct *tsk) +{ + struct cgroup_subsys *ss; + struct css_set *cset; + int i; + + /* + * Unlink from @tsk from its css_set. As migration path can't race + * with us, we can check css_set and cg_list without synchronization. + */ + cset = task_css_set(tsk); + + if (!list_empty(&tsk->cg_list)) { + spin_lock_irq(&css_set_lock); + css_set_move_task(tsk, cset, NULL, false); + spin_unlock_irq(&css_set_lock); + } else { + get_css_set(cset); + } + + /* see cgroup_post_fork() for details */ + do_each_subsys_mask(ss, i, have_exit_callback) { + ss->exit(tsk); + } while_each_subsys_mask(); +} + +void cgroup_free(struct task_struct *task) +{ + struct css_set *cset = task_css_set(task); + struct cgroup_subsys *ss; + int ssid; + + do_each_subsys_mask(ss, ssid, have_free_callback) { + ss->free(task); + } while_each_subsys_mask(); + + put_css_set(cset); +} + +static int __init cgroup_disable(char *str) +{ + struct cgroup_subsys *ss; + char *token; + int i; + + while ((token = strsep(&str, ",")) != NULL) { + if (!*token) + continue; + + for_each_subsys(ss, i) { + if (strcmp(token, ss->name) && + strcmp(token, ss->legacy_name)) + continue; + cgroup_disable_mask |= 1 << i; + } + } + return 1; +} +__setup("cgroup_disable=", cgroup_disable); + +/** + * css_tryget_online_from_dir - get corresponding css from a cgroup dentry + * @dentry: directory dentry of interest + * @ss: subsystem of interest + * + * If @dentry is a directory for a cgroup which has @ss enabled on it, try + * to get the corresponding css and return it. If such css doesn't exist + * or can't be pinned, an ERR_PTR value is returned. + */ +struct cgroup_subsys_state *css_tryget_online_from_dir(struct dentry *dentry, + struct cgroup_subsys *ss) +{ + struct kernfs_node *kn = kernfs_node_from_dentry(dentry); + struct file_system_type *s_type = dentry->d_sb->s_type; + struct cgroup_subsys_state *css = NULL; + struct cgroup *cgrp; + + /* is @dentry a cgroup dir? */ + if ((s_type != &cgroup_fs_type && s_type != &cgroup2_fs_type) || + !kn || kernfs_type(kn) != KERNFS_DIR) + return ERR_PTR(-EBADF); + + rcu_read_lock(); + + /* + * This path doesn't originate from kernfs and @kn could already + * have been or be removed at any point. @kn->priv is RCU + * protected for this access. See css_release_work_fn() for details. + */ + cgrp = rcu_dereference(*(void __rcu __force **)&kn->priv); + if (cgrp) + css = cgroup_css(cgrp, ss); + + if (!css || !css_tryget_online(css)) + css = ERR_PTR(-ENOENT); + + rcu_read_unlock(); + return css; +} + +/** + * css_from_id - lookup css by id + * @id: the cgroup id + * @ss: cgroup subsys to be looked into + * + * Returns the css if there's valid one with @id, otherwise returns NULL. + * Should be called under rcu_read_lock(). + */ +struct cgroup_subsys_state *css_from_id(int id, struct cgroup_subsys *ss) +{ + WARN_ON_ONCE(!rcu_read_lock_held()); + return idr_find(&ss->css_idr, id); +} + +/** + * cgroup_get_from_path - lookup and get a cgroup from its default hierarchy path + * @path: path on the default hierarchy + * + * Find the cgroup at @path on the default hierarchy, increment its + * reference count and return it. Returns pointer to the found cgroup on + * success, ERR_PTR(-ENOENT) if @path doens't exist and ERR_PTR(-ENOTDIR) + * if @path points to a non-directory. + */ +struct cgroup *cgroup_get_from_path(const char *path) +{ + struct kernfs_node *kn; + struct cgroup *cgrp; + + mutex_lock(&cgroup_mutex); + + kn = kernfs_walk_and_get(cgrp_dfl_root.cgrp.kn, path); + if (kn) { + if (kernfs_type(kn) == KERNFS_DIR) { + cgrp = kn->priv; + cgroup_get(cgrp); + } else { + cgrp = ERR_PTR(-ENOTDIR); + } + kernfs_put(kn); + } else { + cgrp = ERR_PTR(-ENOENT); + } + + mutex_unlock(&cgroup_mutex); + return cgrp; +} +EXPORT_SYMBOL_GPL(cgroup_get_from_path); + +/** + * cgroup_get_from_fd - get a cgroup pointer from a fd + * @fd: fd obtained by open(cgroup2_dir) + * + * Find the cgroup from a fd which should be obtained + * by opening a cgroup directory. Returns a pointer to the + * cgroup on success. ERR_PTR is returned if the cgroup + * cannot be found. + */ +struct cgroup *cgroup_get_from_fd(int fd) +{ + struct cgroup_subsys_state *css; + struct cgroup *cgrp; + struct file *f; + + f = fget_raw(fd); + if (!f) + return ERR_PTR(-EBADF); + + css = css_tryget_online_from_dir(f->f_path.dentry, NULL); + fput(f); + if (IS_ERR(css)) + return ERR_CAST(css); + + cgrp = css->cgroup; + if (!cgroup_on_dfl(cgrp)) { + cgroup_put(cgrp); + return ERR_PTR(-EBADF); + } + + return cgrp; +} +EXPORT_SYMBOL_GPL(cgroup_get_from_fd); + +/* + * sock->sk_cgrp_data handling. For more info, see sock_cgroup_data + * definition in cgroup-defs.h. + */ +#ifdef CONFIG_SOCK_CGROUP_DATA + +#if defined(CONFIG_CGROUP_NET_PRIO) || defined(CONFIG_CGROUP_NET_CLASSID) + +DEFINE_SPINLOCK(cgroup_sk_update_lock); +static bool cgroup_sk_alloc_disabled __read_mostly; + +void cgroup_sk_alloc_disable(void) +{ + if (cgroup_sk_alloc_disabled) + return; + pr_info("cgroup: disabling cgroup2 socket matching due to net_prio or net_cls activation\n"); + cgroup_sk_alloc_disabled = true; +} + +#else + +#define cgroup_sk_alloc_disabled false + +#endif + +void cgroup_sk_alloc(struct sock_cgroup_data *skcd) +{ + if (cgroup_sk_alloc_disabled) + return; + + /* Socket clone path */ + if (skcd->val) { + cgroup_get(sock_cgroup_ptr(skcd)); + return; + } + + rcu_read_lock(); + + while (true) { + struct css_set *cset; + + cset = task_css_set(current); + if (likely(cgroup_tryget(cset->dfl_cgrp))) { + skcd->val = (unsigned long)cset->dfl_cgrp; + break; + } + cpu_relax(); + } + + rcu_read_unlock(); +} + +void cgroup_sk_free(struct sock_cgroup_data *skcd) +{ + cgroup_put(sock_cgroup_ptr(skcd)); +} + +#endif /* CONFIG_SOCK_CGROUP_DATA */ + +#ifdef CONFIG_CGROUP_BPF +int cgroup_bpf_update(struct cgroup *cgrp, struct bpf_prog *prog, + enum bpf_attach_type type, bool overridable) +{ + struct cgroup *parent = cgroup_parent(cgrp); + int ret; + + mutex_lock(&cgroup_mutex); + ret = __cgroup_bpf_update(cgrp, parent, prog, type, overridable); + mutex_unlock(&cgroup_mutex); + return ret; +} +#endif /* CONFIG_CGROUP_BPF */ diff --git a/kernel/cgroup/cpuset.c b/kernel/cgroup/cpuset.c new file mode 100644 index 000000000000..b3088886cd37 --- /dev/null +++ b/kernel/cgroup/cpuset.c @@ -0,0 +1,2752 @@ +/* + * kernel/cpuset.c + * + * Processor and Memory placement constraints for sets of tasks. + * + * Copyright (C) 2003 BULL SA. + * Copyright (C) 2004-2007 Silicon Graphics, Inc. + * Copyright (C) 2006 Google, Inc + * + * Portions derived from Patrick Mochel's sysfs code. + * sysfs is Copyright (c) 2001-3 Patrick Mochel + * + * 2003-10-10 Written by Simon Derr. + * 2003-10-22 Updates by Stephen Hemminger. + * 2004 May-July Rework by Paul Jackson. + * 2006 Rework by Paul Menage to use generic cgroups + * 2008 Rework of the scheduler domains and CPU hotplug handling + * by Max Krasnyansky + * + * This file is subject to the terms and conditions of the GNU General Public + * License. See the file COPYING in the main directory of the Linux + * distribution for more details. + */ + +#include <linux/cpu.h> +#include <linux/cpumask.h> +#include <linux/cpuset.h> +#include <linux/err.h> +#include <linux/errno.h> +#include <linux/file.h> +#include <linux/fs.h> +#include <linux/init.h> +#include <linux/interrupt.h> +#include <linux/kernel.h> +#include <linux/kmod.h> +#include <linux/list.h> +#include <linux/mempolicy.h> +#include <linux/mm.h> +#include <linux/memory.h> +#include <linux/export.h> +#include <linux/mount.h> +#include <linux/namei.h> +#include <linux/pagemap.h> +#include <linux/proc_fs.h> +#include <linux/rcupdate.h> +#include <linux/sched.h> +#include <linux/seq_file.h> +#include <linux/security.h> +#include <linux/slab.h> +#include <linux/spinlock.h> +#include <linux/stat.h> +#include <linux/string.h> +#include <linux/time.h> +#include <linux/time64.h> +#include <linux/backing-dev.h> +#include <linux/sort.h> + +#include <linux/uaccess.h> +#include <linux/atomic.h> +#include <linux/mutex.h> +#include <linux/cgroup.h> +#include <linux/wait.h> + +DEFINE_STATIC_KEY_FALSE(cpusets_enabled_key); + +/* See "Frequency meter" comments, below. */ + +struct fmeter { + int cnt; /* unprocessed events count */ + int val; /* most recent output value */ + time64_t time; /* clock (secs) when val computed */ + spinlock_t lock; /* guards read or write of above */ +}; + +struct cpuset { + struct cgroup_subsys_state css; + + unsigned long flags; /* "unsigned long" so bitops work */ + + /* + * On default hierarchy: + * + * The user-configured masks can only be changed by writing to + * cpuset.cpus and cpuset.mems, and won't be limited by the + * parent masks. + * + * The effective masks is the real masks that apply to the tasks + * in the cpuset. They may be changed if the configured masks are + * changed or hotplug happens. + * + * effective_mask == configured_mask & parent's effective_mask, + * and if it ends up empty, it will inherit the parent's mask. + * + * + * On legacy hierachy: + * + * The user-configured masks are always the same with effective masks. + */ + + /* user-configured CPUs and Memory Nodes allow to tasks */ + cpumask_var_t cpus_allowed; + nodemask_t mems_allowed; + + /* effective CPUs and Memory Nodes allow to tasks */ + cpumask_var_t effective_cpus; + nodemask_t effective_mems; + + /* + * This is old Memory Nodes tasks took on. + * + * - top_cpuset.old_mems_allowed is initialized to mems_allowed. + * - A new cpuset's old_mems_allowed is initialized when some + * task is moved into it. + * - old_mems_allowed is used in cpuset_migrate_mm() when we change + * cpuset.mems_allowed and have tasks' nodemask updated, and + * then old_mems_allowed is updated to mems_allowed. + */ + nodemask_t old_mems_allowed; + + struct fmeter fmeter; /* memory_pressure filter */ + + /* + * Tasks are being attached to this cpuset. Used to prevent + * zeroing cpus/mems_allowed between ->can_attach() and ->attach(). + */ + int attach_in_progress; + + /* partition number for rebuild_sched_domains() */ + int pn; + + /* for custom sched domain */ + int relax_domain_level; +}; + +static inline struct cpuset *css_cs(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct cpuset, css) : NULL; +} + +/* Retrieve the cpuset for a task */ +static inline struct cpuset *task_cs(struct task_struct *task) +{ + return css_cs(task_css(task, cpuset_cgrp_id)); +} + +static inline struct cpuset *parent_cs(struct cpuset *cs) +{ + return css_cs(cs->css.parent); +} + +#ifdef CONFIG_NUMA +static inline bool task_has_mempolicy(struct task_struct *task) +{ + return task->mempolicy; +} +#else +static inline bool task_has_mempolicy(struct task_struct *task) +{ + return false; +} +#endif + + +/* bits in struct cpuset flags field */ +typedef enum { + CS_ONLINE, + CS_CPU_EXCLUSIVE, + CS_MEM_EXCLUSIVE, + CS_MEM_HARDWALL, + CS_MEMORY_MIGRATE, + CS_SCHED_LOAD_BALANCE, + CS_SPREAD_PAGE, + CS_SPREAD_SLAB, +} cpuset_flagbits_t; + +/* convenient tests for these bits */ +static inline bool is_cpuset_online(const struct cpuset *cs) +{ + return test_bit(CS_ONLINE, &cs->flags); +} + +static inline int is_cpu_exclusive(const struct cpuset *cs) +{ + return test_bit(CS_CPU_EXCLUSIVE, &cs->flags); +} + +static inline int is_mem_exclusive(const struct cpuset *cs) +{ + return test_bit(CS_MEM_EXCLUSIVE, &cs->flags); +} + +static inline int is_mem_hardwall(const struct cpuset *cs) +{ + return test_bit(CS_MEM_HARDWALL, &cs->flags); +} + +static inline int is_sched_load_balance(const struct cpuset *cs) +{ + return test_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); +} + +static inline int is_memory_migrate(const struct cpuset *cs) +{ + return test_bit(CS_MEMORY_MIGRATE, &cs->flags); +} + +static inline int is_spread_page(const struct cpuset *cs) +{ + return test_bit(CS_SPREAD_PAGE, &cs->flags); +} + +static inline int is_spread_slab(const struct cpuset *cs) +{ + return test_bit(CS_SPREAD_SLAB, &cs->flags); +} + +static struct cpuset top_cpuset = { + .flags = ((1 << CS_ONLINE) | (1 << CS_CPU_EXCLUSIVE) | + (1 << CS_MEM_EXCLUSIVE)), +}; + +/** + * cpuset_for_each_child - traverse online children of a cpuset + * @child_cs: loop cursor pointing to the current child + * @pos_css: used for iteration + * @parent_cs: target cpuset to walk children of + * + * Walk @child_cs through the online children of @parent_cs. Must be used + * with RCU read locked. + */ +#define cpuset_for_each_child(child_cs, pos_css, parent_cs) \ + css_for_each_child((pos_css), &(parent_cs)->css) \ + if (is_cpuset_online(((child_cs) = css_cs((pos_css))))) + +/** + * cpuset_for_each_descendant_pre - pre-order walk of a cpuset's descendants + * @des_cs: loop cursor pointing to the current descendant + * @pos_css: used for iteration + * @root_cs: target cpuset to walk ancestor of + * + * Walk @des_cs through the online descendants of @root_cs. Must be used + * with RCU read locked. The caller may modify @pos_css by calling + * css_rightmost_descendant() to skip subtree. @root_cs is included in the + * iteration and the first node to be visited. + */ +#define cpuset_for_each_descendant_pre(des_cs, pos_css, root_cs) \ + css_for_each_descendant_pre((pos_css), &(root_cs)->css) \ + if (is_cpuset_online(((des_cs) = css_cs((pos_css))))) + +/* + * There are two global locks guarding cpuset structures - cpuset_mutex and + * callback_lock. We also require taking task_lock() when dereferencing a + * task's cpuset pointer. See "The task_lock() exception", at the end of this + * comment. + * + * A task must hold both locks to modify cpusets. If a task holds + * cpuset_mutex, then it blocks others wanting that mutex, ensuring that it + * is the only task able to also acquire callback_lock and be able to + * modify cpusets. It can perform various checks on the cpuset structure + * first, knowing nothing will change. It can also allocate memory while + * just holding cpuset_mutex. While it is performing these checks, various + * callback routines can briefly acquire callback_lock to query cpusets. + * Once it is ready to make the changes, it takes callback_lock, blocking + * everyone else. + * + * Calls to the kernel memory allocator can not be made while holding + * callback_lock, as that would risk double tripping on callback_lock + * from one of the callbacks into the cpuset code from within + * __alloc_pages(). + * + * If a task is only holding callback_lock, then it has read-only + * access to cpusets. + * + * Now, the task_struct fields mems_allowed and mempolicy may be changed + * by other task, we use alloc_lock in the task_struct fields to protect + * them. + * + * The cpuset_common_file_read() handlers only hold callback_lock across + * small pieces of code, such as when reading out possibly multi-word + * cpumasks and nodemasks. + * + * Accessing a task's cpuset should be done in accordance with the + * guidelines for accessing subsystem state in kernel/cgroup.c + */ + +static DEFINE_MUTEX(cpuset_mutex); +static DEFINE_SPINLOCK(callback_lock); + +static struct workqueue_struct *cpuset_migrate_mm_wq; + +/* + * CPU / memory hotplug is handled asynchronously. + */ +static void cpuset_hotplug_workfn(struct work_struct *work); +static DECLARE_WORK(cpuset_hotplug_work, cpuset_hotplug_workfn); + +static DECLARE_WAIT_QUEUE_HEAD(cpuset_attach_wq); + +/* + * This is ugly, but preserves the userspace API for existing cpuset + * users. If someone tries to mount the "cpuset" filesystem, we + * silently switch it to mount "cgroup" instead + */ +static struct dentry *cpuset_mount(struct file_system_type *fs_type, + int flags, const char *unused_dev_name, void *data) +{ + struct file_system_type *cgroup_fs = get_fs_type("cgroup"); + struct dentry *ret = ERR_PTR(-ENODEV); + if (cgroup_fs) { + char mountopts[] = + "cpuset,noprefix," + "release_agent=/sbin/cpuset_release_agent"; + ret = cgroup_fs->mount(cgroup_fs, flags, + unused_dev_name, mountopts); + put_filesystem(cgroup_fs); + } + return ret; +} + +static struct file_system_type cpuset_fs_type = { + .name = "cpuset", + .mount = cpuset_mount, +}; + +/* + * Return in pmask the portion of a cpusets's cpus_allowed that + * are online. If none are online, walk up the cpuset hierarchy + * until we find one that does have some online cpus. + * + * One way or another, we guarantee to return some non-empty subset + * of cpu_online_mask. + * + * Call with callback_lock or cpuset_mutex held. + */ +static void guarantee_online_cpus(struct cpuset *cs, struct cpumask *pmask) +{ + while (!cpumask_intersects(cs->effective_cpus, cpu_online_mask)) { + cs = parent_cs(cs); + if (unlikely(!cs)) { + /* + * The top cpuset doesn't have any online cpu as a + * consequence of a race between cpuset_hotplug_work + * and cpu hotplug notifier. But we know the top + * cpuset's effective_cpus is on its way to to be + * identical to cpu_online_mask. + */ + cpumask_copy(pmask, cpu_online_mask); + return; + } + } + cpumask_and(pmask, cs->effective_cpus, cpu_online_mask); +} + +/* + * Return in *pmask the portion of a cpusets's mems_allowed that + * are online, with memory. If none are online with memory, walk + * up the cpuset hierarchy until we find one that does have some + * online mems. The top cpuset always has some mems online. + * + * One way or another, we guarantee to return some non-empty subset + * of node_states[N_MEMORY]. + * + * Call with callback_lock or cpuset_mutex held. + */ +static void guarantee_online_mems(struct cpuset *cs, nodemask_t *pmask) +{ + while (!nodes_intersects(cs->effective_mems, node_states[N_MEMORY])) + cs = parent_cs(cs); + nodes_and(*pmask, cs->effective_mems, node_states[N_MEMORY]); +} + +/* + * update task's spread flag if cpuset's page/slab spread flag is set + * + * Call with callback_lock or cpuset_mutex held. + */ +static void cpuset_update_task_spread_flag(struct cpuset *cs, + struct task_struct *tsk) +{ + if (is_spread_page(cs)) + task_set_spread_page(tsk); + else + task_clear_spread_page(tsk); + + if (is_spread_slab(cs)) + task_set_spread_slab(tsk); + else + task_clear_spread_slab(tsk); +} + +/* + * is_cpuset_subset(p, q) - Is cpuset p a subset of cpuset q? + * + * One cpuset is a subset of another if all its allowed CPUs and + * Memory Nodes are a subset of the other, and its exclusive flags + * are only set if the other's are set. Call holding cpuset_mutex. + */ + +static int is_cpuset_subset(const struct cpuset *p, const struct cpuset *q) +{ + return cpumask_subset(p->cpus_allowed, q->cpus_allowed) && + nodes_subset(p->mems_allowed, q->mems_allowed) && + is_cpu_exclusive(p) <= is_cpu_exclusive(q) && + is_mem_exclusive(p) <= is_mem_exclusive(q); +} + +/** + * alloc_trial_cpuset - allocate a trial cpuset + * @cs: the cpuset that the trial cpuset duplicates + */ +static struct cpuset *alloc_trial_cpuset(struct cpuset *cs) +{ + struct cpuset *trial; + + trial = kmemdup(cs, sizeof(*cs), GFP_KERNEL); + if (!trial) + return NULL; + + if (!alloc_cpumask_var(&trial->cpus_allowed, GFP_KERNEL)) + goto free_cs; + if (!alloc_cpumask_var(&trial->effective_cpus, GFP_KERNEL)) + goto free_cpus; + + cpumask_copy(trial->cpus_allowed, cs->cpus_allowed); + cpumask_copy(trial->effective_cpus, cs->effective_cpus); + return trial; + +free_cpus: + free_cpumask_var(trial->cpus_allowed); +free_cs: + kfree(trial); + return NULL; +} + +/** + * free_trial_cpuset - free the trial cpuset + * @trial: the trial cpuset to be freed + */ +static void free_trial_cpuset(struct cpuset *trial) +{ + free_cpumask_var(trial->effective_cpus); + free_cpumask_var(trial->cpus_allowed); + kfree(trial); +} + +/* + * validate_change() - Used to validate that any proposed cpuset change + * follows the structural rules for cpusets. + * + * If we replaced the flag and mask values of the current cpuset + * (cur) with those values in the trial cpuset (trial), would + * our various subset and exclusive rules still be valid? Presumes + * cpuset_mutex held. + * + * 'cur' is the address of an actual, in-use cpuset. Operations + * such as list traversal that depend on the actual address of the + * cpuset in the list must use cur below, not trial. + * + * 'trial' is the address of bulk structure copy of cur, with + * perhaps one or more of the fields cpus_allowed, mems_allowed, + * or flags changed to new, trial values. + * + * Return 0 if valid, -errno if not. + */ + +static int validate_change(struct cpuset *cur, struct cpuset *trial) +{ + struct cgroup_subsys_state *css; + struct cpuset *c, *par; + int ret; + + rcu_read_lock(); + + /* Each of our child cpusets must be a subset of us */ + ret = -EBUSY; + cpuset_for_each_child(c, css, cur) + if (!is_cpuset_subset(c, trial)) + goto out; + + /* Remaining checks don't apply to root cpuset */ + ret = 0; + if (cur == &top_cpuset) + goto out; + + par = parent_cs(cur); + + /* On legacy hiearchy, we must be a subset of our parent cpuset. */ + ret = -EACCES; + if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + !is_cpuset_subset(trial, par)) + goto out; + + /* + * If either I or some sibling (!= me) is exclusive, we can't + * overlap + */ + ret = -EINVAL; + cpuset_for_each_child(c, css, par) { + if ((is_cpu_exclusive(trial) || is_cpu_exclusive(c)) && + c != cur && + cpumask_intersects(trial->cpus_allowed, c->cpus_allowed)) + goto out; + if ((is_mem_exclusive(trial) || is_mem_exclusive(c)) && + c != cur && + nodes_intersects(trial->mems_allowed, c->mems_allowed)) + goto out; + } + + /* + * Cpusets with tasks - existing or newly being attached - can't + * be changed to have empty cpus_allowed or mems_allowed. + */ + ret = -ENOSPC; + if ((cgroup_is_populated(cur->css.cgroup) || cur->attach_in_progress)) { + if (!cpumask_empty(cur->cpus_allowed) && + cpumask_empty(trial->cpus_allowed)) + goto out; + if (!nodes_empty(cur->mems_allowed) && + nodes_empty(trial->mems_allowed)) + goto out; + } + + /* + * We can't shrink if we won't have enough room for SCHED_DEADLINE + * tasks. + */ + ret = -EBUSY; + if (is_cpu_exclusive(cur) && + !cpuset_cpumask_can_shrink(cur->cpus_allowed, + trial->cpus_allowed)) + goto out; + + ret = 0; +out: + rcu_read_unlock(); + return ret; +} + +#ifdef CONFIG_SMP +/* + * Helper routine for generate_sched_domains(). + * Do cpusets a, b have overlapping effective cpus_allowed masks? + */ +static int cpusets_overlap(struct cpuset *a, struct cpuset *b) +{ + return cpumask_intersects(a->effective_cpus, b->effective_cpus); +} + +static void +update_domain_attr(struct sched_domain_attr *dattr, struct cpuset *c) +{ + if (dattr->relax_domain_level < c->relax_domain_level) + dattr->relax_domain_level = c->relax_domain_level; + return; +} + +static void update_domain_attr_tree(struct sched_domain_attr *dattr, + struct cpuset *root_cs) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, root_cs) { + /* skip the whole subtree if @cp doesn't have any CPU */ + if (cpumask_empty(cp->cpus_allowed)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + if (is_sched_load_balance(cp)) + update_domain_attr(dattr, cp); + } + rcu_read_unlock(); +} + +/* + * generate_sched_domains() + * + * This function builds a partial partition of the systems CPUs + * A 'partial partition' is a set of non-overlapping subsets whose + * union is a subset of that set. + * The output of this function needs to be passed to kernel/sched/core.c + * partition_sched_domains() routine, which will rebuild the scheduler's + * load balancing domains (sched domains) as specified by that partial + * partition. + * + * See "What is sched_load_balance" in Documentation/cgroups/cpusets.txt + * for a background explanation of this. + * + * Does not return errors, on the theory that the callers of this + * routine would rather not worry about failures to rebuild sched + * domains when operating in the severe memory shortage situations + * that could cause allocation failures below. + * + * Must be called with cpuset_mutex held. + * + * The three key local variables below are: + * q - a linked-list queue of cpuset pointers, used to implement a + * top-down scan of all cpusets. This scan loads a pointer + * to each cpuset marked is_sched_load_balance into the + * array 'csa'. For our purposes, rebuilding the schedulers + * sched domains, we can ignore !is_sched_load_balance cpusets. + * csa - (for CpuSet Array) Array of pointers to all the cpusets + * that need to be load balanced, for convenient iterative + * access by the subsequent code that finds the best partition, + * i.e the set of domains (subsets) of CPUs such that the + * cpus_allowed of every cpuset marked is_sched_load_balance + * is a subset of one of these domains, while there are as + * many such domains as possible, each as small as possible. + * doms - Conversion of 'csa' to an array of cpumasks, for passing to + * the kernel/sched/core.c routine partition_sched_domains() in a + * convenient format, that can be easily compared to the prior + * value to determine what partition elements (sched domains) + * were changed (added or removed.) + * + * Finding the best partition (set of domains): + * The triple nested loops below over i, j, k scan over the + * load balanced cpusets (using the array of cpuset pointers in + * csa[]) looking for pairs of cpusets that have overlapping + * cpus_allowed, but which don't have the same 'pn' partition + * number and gives them in the same partition number. It keeps + * looping on the 'restart' label until it can no longer find + * any such pairs. + * + * The union of the cpus_allowed masks from the set of + * all cpusets having the same 'pn' value then form the one + * element of the partition (one sched domain) to be passed to + * partition_sched_domains(). + */ +static int generate_sched_domains(cpumask_var_t **domains, + struct sched_domain_attr **attributes) +{ + struct cpuset *cp; /* scans q */ + struct cpuset **csa; /* array of all cpuset ptrs */ + int csn; /* how many cpuset ptrs in csa so far */ + int i, j, k; /* indices for partition finding loops */ + cpumask_var_t *doms; /* resulting partition; i.e. sched domains */ + cpumask_var_t non_isolated_cpus; /* load balanced CPUs */ + struct sched_domain_attr *dattr; /* attributes for custom domains */ + int ndoms = 0; /* number of sched domains in result */ + int nslot; /* next empty doms[] struct cpumask slot */ + struct cgroup_subsys_state *pos_css; + + doms = NULL; + dattr = NULL; + csa = NULL; + + if (!alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL)) + goto done; + cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map); + + /* Special case for the 99% of systems with one, full, sched domain */ + if (is_sched_load_balance(&top_cpuset)) { + ndoms = 1; + doms = alloc_sched_domains(ndoms); + if (!doms) + goto done; + + dattr = kmalloc(sizeof(struct sched_domain_attr), GFP_KERNEL); + if (dattr) { + *dattr = SD_ATTR_INIT; + update_domain_attr_tree(dattr, &top_cpuset); + } + cpumask_and(doms[0], top_cpuset.effective_cpus, + non_isolated_cpus); + + goto done; + } + + csa = kmalloc(nr_cpusets() * sizeof(cp), GFP_KERNEL); + if (!csa) + goto done; + csn = 0; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, &top_cpuset) { + if (cp == &top_cpuset) + continue; + /* + * Continue traversing beyond @cp iff @cp has some CPUs and + * isn't load balancing. The former is obvious. The + * latter: All child cpusets contain a subset of the + * parent's cpus, so just skip them, and then we call + * update_domain_attr_tree() to calc relax_domain_level of + * the corresponding sched domain. + */ + if (!cpumask_empty(cp->cpus_allowed) && + !(is_sched_load_balance(cp) && + cpumask_intersects(cp->cpus_allowed, non_isolated_cpus))) + continue; + + if (is_sched_load_balance(cp)) + csa[csn++] = cp; + + /* skip @cp's subtree */ + pos_css = css_rightmost_descendant(pos_css); + } + rcu_read_unlock(); + + for (i = 0; i < csn; i++) + csa[i]->pn = i; + ndoms = csn; + +restart: + /* Find the best partition (set of sched domains) */ + for (i = 0; i < csn; i++) { + struct cpuset *a = csa[i]; + int apn = a->pn; + + for (j = 0; j < csn; j++) { + struct cpuset *b = csa[j]; + int bpn = b->pn; + + if (apn != bpn && cpusets_overlap(a, b)) { + for (k = 0; k < csn; k++) { + struct cpuset *c = csa[k]; + + if (c->pn == bpn) + c->pn = apn; + } + ndoms--; /* one less element */ + goto restart; + } + } + } + + /* + * Now we know how many domains to create. + * Convert <csn, csa> to <ndoms, doms> and populate cpu masks. + */ + doms = alloc_sched_domains(ndoms); + if (!doms) + goto done; + + /* + * The rest of the code, including the scheduler, can deal with + * dattr==NULL case. No need to abort if alloc fails. + */ + dattr = kmalloc(ndoms * sizeof(struct sched_domain_attr), GFP_KERNEL); + + for (nslot = 0, i = 0; i < csn; i++) { + struct cpuset *a = csa[i]; + struct cpumask *dp; + int apn = a->pn; + + if (apn < 0) { + /* Skip completed partitions */ + continue; + } + + dp = doms[nslot]; + + if (nslot == ndoms) { + static int warnings = 10; + if (warnings) { + pr_warn("rebuild_sched_domains confused: nslot %d, ndoms %d, csn %d, i %d, apn %d\n", + nslot, ndoms, csn, i, apn); + warnings--; + } + continue; + } + + cpumask_clear(dp); + if (dattr) + *(dattr + nslot) = SD_ATTR_INIT; + for (j = i; j < csn; j++) { + struct cpuset *b = csa[j]; + + if (apn == b->pn) { + cpumask_or(dp, dp, b->effective_cpus); + cpumask_and(dp, dp, non_isolated_cpus); + if (dattr) + update_domain_attr_tree(dattr + nslot, b); + + /* Done with this partition */ + b->pn = -1; + } + } + nslot++; + } + BUG_ON(nslot != ndoms); + +done: + free_cpumask_var(non_isolated_cpus); + kfree(csa); + + /* + * Fallback to the default domain if kmalloc() failed. + * See comments in partition_sched_domains(). + */ + if (doms == NULL) + ndoms = 1; + + *domains = doms; + *attributes = dattr; + return ndoms; +} + +/* + * Rebuild scheduler domains. + * + * If the flag 'sched_load_balance' of any cpuset with non-empty + * 'cpus' changes, or if the 'cpus' allowed changes in any cpuset + * which has that flag enabled, or if any cpuset with a non-empty + * 'cpus' is removed, then call this routine to rebuild the + * scheduler's dynamic sched domains. + * + * Call with cpuset_mutex held. Takes get_online_cpus(). + */ +static void rebuild_sched_domains_locked(void) +{ + struct sched_domain_attr *attr; + cpumask_var_t *doms; + int ndoms; + + lockdep_assert_held(&cpuset_mutex); + get_online_cpus(); + + /* + * We have raced with CPU hotplug. Don't do anything to avoid + * passing doms with offlined cpu to partition_sched_domains(). + * Anyways, hotplug work item will rebuild sched domains. + */ + if (!cpumask_equal(top_cpuset.effective_cpus, cpu_active_mask)) + goto out; + + /* Generate domain masks and attrs */ + ndoms = generate_sched_domains(&doms, &attr); + + /* Have scheduler rebuild the domains */ + partition_sched_domains(ndoms, doms, attr); +out: + put_online_cpus(); +} +#else /* !CONFIG_SMP */ +static void rebuild_sched_domains_locked(void) +{ +} +#endif /* CONFIG_SMP */ + +void rebuild_sched_domains(void) +{ + mutex_lock(&cpuset_mutex); + rebuild_sched_domains_locked(); + mutex_unlock(&cpuset_mutex); +} + +/** + * update_tasks_cpumask - Update the cpumasks of tasks in the cpuset. + * @cs: the cpuset in which each task's cpus_allowed mask needs to be changed + * + * Iterate through each task of @cs updating its cpus_allowed to the + * effective cpuset's. As this function is called with cpuset_mutex held, + * cpuset membership stays stable. + */ +static void update_tasks_cpumask(struct cpuset *cs) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&cs->css, &it); + while ((task = css_task_iter_next(&it))) + set_cpus_allowed_ptr(task, cs->effective_cpus); + css_task_iter_end(&it); +} + +/* + * update_cpumasks_hier - Update effective cpumasks and tasks in the subtree + * @cs: the cpuset to consider + * @new_cpus: temp variable for calculating new effective_cpus + * + * When congifured cpumask is changed, the effective cpumasks of this cpuset + * and all its descendants need to be updated. + * + * On legacy hierachy, effective_cpus will be the same with cpu_allowed. + * + * Called with cpuset_mutex held + */ +static void update_cpumasks_hier(struct cpuset *cs, struct cpumask *new_cpus) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + bool need_rebuild_sched_domains = false; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, cs) { + struct cpuset *parent = parent_cs(cp); + + cpumask_and(new_cpus, cp->cpus_allowed, parent->effective_cpus); + + /* + * If it becomes empty, inherit the effective mask of the + * parent, which is guaranteed to have some CPUs. + */ + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + cpumask_empty(new_cpus)) + cpumask_copy(new_cpus, parent->effective_cpus); + + /* Skip the whole subtree if the cpumask remains the same. */ + if (cpumask_equal(new_cpus, cp->effective_cpus)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + if (!css_tryget_online(&cp->css)) + continue; + rcu_read_unlock(); + + spin_lock_irq(&callback_lock); + cpumask_copy(cp->effective_cpus, new_cpus); + spin_unlock_irq(&callback_lock); + + WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + !cpumask_equal(cp->cpus_allowed, cp->effective_cpus)); + + update_tasks_cpumask(cp); + + /* + * If the effective cpumask of any non-empty cpuset is changed, + * we need to rebuild sched domains. + */ + if (!cpumask_empty(cp->cpus_allowed) && + is_sched_load_balance(cp)) + need_rebuild_sched_domains = true; + + rcu_read_lock(); + css_put(&cp->css); + } + rcu_read_unlock(); + + if (need_rebuild_sched_domains) + rebuild_sched_domains_locked(); +} + +/** + * update_cpumask - update the cpus_allowed mask of a cpuset and all tasks in it + * @cs: the cpuset to consider + * @trialcs: trial cpuset + * @buf: buffer of cpu numbers written to this cpuset + */ +static int update_cpumask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) +{ + int retval; + + /* top_cpuset.cpus_allowed tracks cpu_online_mask; it's read-only */ + if (cs == &top_cpuset) + return -EACCES; + + /* + * An empty cpus_allowed is ok only if the cpuset has no tasks. + * Since cpulist_parse() fails on an empty mask, we special case + * that parsing. The validate_change() call ensures that cpusets + * with tasks have cpus. + */ + if (!*buf) { + cpumask_clear(trialcs->cpus_allowed); + } else { + retval = cpulist_parse(buf, trialcs->cpus_allowed); + if (retval < 0) + return retval; + + if (!cpumask_subset(trialcs->cpus_allowed, + top_cpuset.cpus_allowed)) + return -EINVAL; + } + + /* Nothing to do if the cpus didn't change */ + if (cpumask_equal(cs->cpus_allowed, trialcs->cpus_allowed)) + return 0; + + retval = validate_change(cs, trialcs); + if (retval < 0) + return retval; + + spin_lock_irq(&callback_lock); + cpumask_copy(cs->cpus_allowed, trialcs->cpus_allowed); + spin_unlock_irq(&callback_lock); + + /* use trialcs->cpus_allowed as a temp variable */ + update_cpumasks_hier(cs, trialcs->cpus_allowed); + return 0; +} + +/* + * Migrate memory region from one set of nodes to another. This is + * performed asynchronously as it can be called from process migration path + * holding locks involved in process management. All mm migrations are + * performed in the queued order and can be waited for by flushing + * cpuset_migrate_mm_wq. + */ + +struct cpuset_migrate_mm_work { + struct work_struct work; + struct mm_struct *mm; + nodemask_t from; + nodemask_t to; +}; + +static void cpuset_migrate_mm_workfn(struct work_struct *work) +{ + struct cpuset_migrate_mm_work *mwork = + container_of(work, struct cpuset_migrate_mm_work, work); + + /* on a wq worker, no need to worry about %current's mems_allowed */ + do_migrate_pages(mwork->mm, &mwork->from, &mwork->to, MPOL_MF_MOVE_ALL); + mmput(mwork->mm); + kfree(mwork); +} + +static void cpuset_migrate_mm(struct mm_struct *mm, const nodemask_t *from, + const nodemask_t *to) +{ + struct cpuset_migrate_mm_work *mwork; + + mwork = kzalloc(sizeof(*mwork), GFP_KERNEL); + if (mwork) { + mwork->mm = mm; + mwork->from = *from; + mwork->to = *to; + INIT_WORK(&mwork->work, cpuset_migrate_mm_workfn); + queue_work(cpuset_migrate_mm_wq, &mwork->work); + } else { + mmput(mm); + } +} + +static void cpuset_post_attach(void) +{ + flush_workqueue(cpuset_migrate_mm_wq); +} + +/* + * cpuset_change_task_nodemask - change task's mems_allowed and mempolicy + * @tsk: the task to change + * @newmems: new nodes that the task will be set + * + * In order to avoid seeing no nodes if the old and new nodes are disjoint, + * we structure updates as setting all new allowed nodes, then clearing newly + * disallowed ones. + */ +static void cpuset_change_task_nodemask(struct task_struct *tsk, + nodemask_t *newmems) +{ + bool need_loop; + + task_lock(tsk); + /* + * Determine if a loop is necessary if another thread is doing + * read_mems_allowed_begin(). If at least one node remains unchanged and + * tsk does not have a mempolicy, then an empty nodemask will not be + * possible when mems_allowed is larger than a word. + */ + need_loop = task_has_mempolicy(tsk) || + !nodes_intersects(*newmems, tsk->mems_allowed); + + if (need_loop) { + local_irq_disable(); + write_seqcount_begin(&tsk->mems_allowed_seq); + } + + nodes_or(tsk->mems_allowed, tsk->mems_allowed, *newmems); + mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP1); + + mpol_rebind_task(tsk, newmems, MPOL_REBIND_STEP2); + tsk->mems_allowed = *newmems; + + if (need_loop) { + write_seqcount_end(&tsk->mems_allowed_seq); + local_irq_enable(); + } + + task_unlock(tsk); +} + +static void *cpuset_being_rebound; + +/** + * update_tasks_nodemask - Update the nodemasks of tasks in the cpuset. + * @cs: the cpuset in which each task's mems_allowed mask needs to be changed + * + * Iterate through each task of @cs updating its mems_allowed to the + * effective cpuset's. As this function is called with cpuset_mutex held, + * cpuset membership stays stable. + */ +static void update_tasks_nodemask(struct cpuset *cs) +{ + static nodemask_t newmems; /* protected by cpuset_mutex */ + struct css_task_iter it; + struct task_struct *task; + + cpuset_being_rebound = cs; /* causes mpol_dup() rebind */ + + guarantee_online_mems(cs, &newmems); + + /* + * The mpol_rebind_mm() call takes mmap_sem, which we couldn't + * take while holding tasklist_lock. Forks can happen - the + * mpol_dup() cpuset_being_rebound check will catch such forks, + * and rebind their vma mempolicies too. Because we still hold + * the global cpuset_mutex, we know that no other rebind effort + * will be contending for the global variable cpuset_being_rebound. + * It's ok if we rebind the same mm twice; mpol_rebind_mm() + * is idempotent. Also migrate pages in each mm to new nodes. + */ + css_task_iter_start(&cs->css, &it); + while ((task = css_task_iter_next(&it))) { + struct mm_struct *mm; + bool migrate; + + cpuset_change_task_nodemask(task, &newmems); + + mm = get_task_mm(task); + if (!mm) + continue; + + migrate = is_memory_migrate(cs); + + mpol_rebind_mm(mm, &cs->mems_allowed); + if (migrate) + cpuset_migrate_mm(mm, &cs->old_mems_allowed, &newmems); + else + mmput(mm); + } + css_task_iter_end(&it); + + /* + * All the tasks' nodemasks have been updated, update + * cs->old_mems_allowed. + */ + cs->old_mems_allowed = newmems; + + /* We're done rebinding vmas to this cpuset's new mems_allowed. */ + cpuset_being_rebound = NULL; +} + +/* + * update_nodemasks_hier - Update effective nodemasks and tasks in the subtree + * @cs: the cpuset to consider + * @new_mems: a temp variable for calculating new effective_mems + * + * When configured nodemask is changed, the effective nodemasks of this cpuset + * and all its descendants need to be updated. + * + * On legacy hiearchy, effective_mems will be the same with mems_allowed. + * + * Called with cpuset_mutex held + */ +static void update_nodemasks_hier(struct cpuset *cs, nodemask_t *new_mems) +{ + struct cpuset *cp; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cp, pos_css, cs) { + struct cpuset *parent = parent_cs(cp); + + nodes_and(*new_mems, cp->mems_allowed, parent->effective_mems); + + /* + * If it becomes empty, inherit the effective mask of the + * parent, which is guaranteed to have some MEMs. + */ + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + nodes_empty(*new_mems)) + *new_mems = parent->effective_mems; + + /* Skip the whole subtree if the nodemask remains the same. */ + if (nodes_equal(*new_mems, cp->effective_mems)) { + pos_css = css_rightmost_descendant(pos_css); + continue; + } + + if (!css_tryget_online(&cp->css)) + continue; + rcu_read_unlock(); + + spin_lock_irq(&callback_lock); + cp->effective_mems = *new_mems; + spin_unlock_irq(&callback_lock); + + WARN_ON(!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + !nodes_equal(cp->mems_allowed, cp->effective_mems)); + + update_tasks_nodemask(cp); + + rcu_read_lock(); + css_put(&cp->css); + } + rcu_read_unlock(); +} + +/* + * Handle user request to change the 'mems' memory placement + * of a cpuset. Needs to validate the request, update the + * cpusets mems_allowed, and for each task in the cpuset, + * update mems_allowed and rebind task's mempolicy and any vma + * mempolicies and if the cpuset is marked 'memory_migrate', + * migrate the tasks pages to the new memory. + * + * Call with cpuset_mutex held. May take callback_lock during call. + * Will take tasklist_lock, scan tasklist for tasks in cpuset cs, + * lock each such tasks mm->mmap_sem, scan its vma's and rebind + * their mempolicies to the cpusets new mems_allowed. + */ +static int update_nodemask(struct cpuset *cs, struct cpuset *trialcs, + const char *buf) +{ + int retval; + + /* + * top_cpuset.mems_allowed tracks node_stats[N_MEMORY]; + * it's read-only + */ + if (cs == &top_cpuset) { + retval = -EACCES; + goto done; + } + + /* + * An empty mems_allowed is ok iff there are no tasks in the cpuset. + * Since nodelist_parse() fails on an empty mask, we special case + * that parsing. The validate_change() call ensures that cpusets + * with tasks have memory. + */ + if (!*buf) { + nodes_clear(trialcs->mems_allowed); + } else { + retval = nodelist_parse(buf, trialcs->mems_allowed); + if (retval < 0) + goto done; + + if (!nodes_subset(trialcs->mems_allowed, + top_cpuset.mems_allowed)) { + retval = -EINVAL; + goto done; + } + } + + if (nodes_equal(cs->mems_allowed, trialcs->mems_allowed)) { + retval = 0; /* Too easy - nothing to do */ + goto done; + } + retval = validate_change(cs, trialcs); + if (retval < 0) + goto done; + + spin_lock_irq(&callback_lock); + cs->mems_allowed = trialcs->mems_allowed; + spin_unlock_irq(&callback_lock); + + /* use trialcs->mems_allowed as a temp variable */ + update_nodemasks_hier(cs, &trialcs->mems_allowed); +done: + return retval; +} + +int current_cpuset_is_being_rebound(void) +{ + int ret; + + rcu_read_lock(); + ret = task_cs(current) == cpuset_being_rebound; + rcu_read_unlock(); + + return ret; +} + +static int update_relax_domain_level(struct cpuset *cs, s64 val) +{ +#ifdef CONFIG_SMP + if (val < -1 || val >= sched_domain_level_max) + return -EINVAL; +#endif + + if (val != cs->relax_domain_level) { + cs->relax_domain_level = val; + if (!cpumask_empty(cs->cpus_allowed) && + is_sched_load_balance(cs)) + rebuild_sched_domains_locked(); + } + + return 0; +} + +/** + * update_tasks_flags - update the spread flags of tasks in the cpuset. + * @cs: the cpuset in which each task's spread flags needs to be changed + * + * Iterate through each task of @cs updating its spread flags. As this + * function is called with cpuset_mutex held, cpuset membership stays + * stable. + */ +static void update_tasks_flags(struct cpuset *cs) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&cs->css, &it); + while ((task = css_task_iter_next(&it))) + cpuset_update_task_spread_flag(cs, task); + css_task_iter_end(&it); +} + +/* + * update_flag - read a 0 or a 1 in a file and update associated flag + * bit: the bit to update (see cpuset_flagbits_t) + * cs: the cpuset to update + * turning_on: whether the flag is being set or cleared + * + * Call with cpuset_mutex held. + */ + +static int update_flag(cpuset_flagbits_t bit, struct cpuset *cs, + int turning_on) +{ + struct cpuset *trialcs; + int balance_flag_changed; + int spread_flag_changed; + int err; + + trialcs = alloc_trial_cpuset(cs); + if (!trialcs) + return -ENOMEM; + + if (turning_on) + set_bit(bit, &trialcs->flags); + else + clear_bit(bit, &trialcs->flags); + + err = validate_change(cs, trialcs); + if (err < 0) + goto out; + + balance_flag_changed = (is_sched_load_balance(cs) != + is_sched_load_balance(trialcs)); + + spread_flag_changed = ((is_spread_slab(cs) != is_spread_slab(trialcs)) + || (is_spread_page(cs) != is_spread_page(trialcs))); + + spin_lock_irq(&callback_lock); + cs->flags = trialcs->flags; + spin_unlock_irq(&callback_lock); + + if (!cpumask_empty(trialcs->cpus_allowed) && balance_flag_changed) + rebuild_sched_domains_locked(); + + if (spread_flag_changed) + update_tasks_flags(cs); +out: + free_trial_cpuset(trialcs); + return err; +} + +/* + * Frequency meter - How fast is some event occurring? + * + * These routines manage a digitally filtered, constant time based, + * event frequency meter. There are four routines: + * fmeter_init() - initialize a frequency meter. + * fmeter_markevent() - called each time the event happens. + * fmeter_getrate() - returns the recent rate of such events. + * fmeter_update() - internal routine used to update fmeter. + * + * A common data structure is passed to each of these routines, + * which is used to keep track of the state required to manage the + * frequency meter and its digital filter. + * + * The filter works on the number of events marked per unit time. + * The filter is single-pole low-pass recursive (IIR). The time unit + * is 1 second. Arithmetic is done using 32-bit integers scaled to + * simulate 3 decimal digits of precision (multiplied by 1000). + * + * With an FM_COEF of 933, and a time base of 1 second, the filter + * has a half-life of 10 seconds, meaning that if the events quit + * happening, then the rate returned from the fmeter_getrate() + * will be cut in half each 10 seconds, until it converges to zero. + * + * It is not worth doing a real infinitely recursive filter. If more + * than FM_MAXTICKS ticks have elapsed since the last filter event, + * just compute FM_MAXTICKS ticks worth, by which point the level + * will be stable. + * + * Limit the count of unprocessed events to FM_MAXCNT, so as to avoid + * arithmetic overflow in the fmeter_update() routine. + * + * Given the simple 32 bit integer arithmetic used, this meter works + * best for reporting rates between one per millisecond (msec) and + * one per 32 (approx) seconds. At constant rates faster than one + * per msec it maxes out at values just under 1,000,000. At constant + * rates between one per msec, and one per second it will stabilize + * to a value N*1000, where N is the rate of events per second. + * At constant rates between one per second and one per 32 seconds, + * it will be choppy, moving up on the seconds that have an event, + * and then decaying until the next event. At rates slower than + * about one in 32 seconds, it decays all the way back to zero between + * each event. + */ + +#define FM_COEF 933 /* coefficient for half-life of 10 secs */ +#define FM_MAXTICKS ((u32)99) /* useless computing more ticks than this */ +#define FM_MAXCNT 1000000 /* limit cnt to avoid overflow */ +#define FM_SCALE 1000 /* faux fixed point scale */ + +/* Initialize a frequency meter */ +static void fmeter_init(struct fmeter *fmp) +{ + fmp->cnt = 0; + fmp->val = 0; + fmp->time = 0; + spin_lock_init(&fmp->lock); +} + +/* Internal meter update - process cnt events and update value */ +static void fmeter_update(struct fmeter *fmp) +{ + time64_t now; + u32 ticks; + + now = ktime_get_seconds(); + ticks = now - fmp->time; + + if (ticks == 0) + return; + + ticks = min(FM_MAXTICKS, ticks); + while (ticks-- > 0) + fmp->val = (FM_COEF * fmp->val) / FM_SCALE; + fmp->time = now; + + fmp->val += ((FM_SCALE - FM_COEF) * fmp->cnt) / FM_SCALE; + fmp->cnt = 0; +} + +/* Process any previous ticks, then bump cnt by one (times scale). */ +static void fmeter_markevent(struct fmeter *fmp) +{ + spin_lock(&fmp->lock); + fmeter_update(fmp); + fmp->cnt = min(FM_MAXCNT, fmp->cnt + FM_SCALE); + spin_unlock(&fmp->lock); +} + +/* Process any previous ticks, then return current value. */ +static int fmeter_getrate(struct fmeter *fmp) +{ + int val; + + spin_lock(&fmp->lock); + fmeter_update(fmp); + val = fmp->val; + spin_unlock(&fmp->lock); + return val; +} + +static struct cpuset *cpuset_attach_old_cs; + +/* Called by cgroups to determine if a cpuset is usable; cpuset_mutex held */ +static int cpuset_can_attach(struct cgroup_taskset *tset) +{ + struct cgroup_subsys_state *css; + struct cpuset *cs; + struct task_struct *task; + int ret; + + /* used later by cpuset_attach() */ + cpuset_attach_old_cs = task_cs(cgroup_taskset_first(tset, &css)); + cs = css_cs(css); + + mutex_lock(&cpuset_mutex); + + /* allow moving tasks into an empty cpuset if on default hierarchy */ + ret = -ENOSPC; + if (!cgroup_subsys_on_dfl(cpuset_cgrp_subsys) && + (cpumask_empty(cs->cpus_allowed) || nodes_empty(cs->mems_allowed))) + goto out_unlock; + + cgroup_taskset_for_each(task, css, tset) { + ret = task_can_attach(task, cs->cpus_allowed); + if (ret) + goto out_unlock; + ret = security_task_setscheduler(task); + if (ret) + goto out_unlock; + } + + /* + * Mark attach is in progress. This makes validate_change() fail + * changes which zero cpus/mems_allowed. + */ + cs->attach_in_progress++; + ret = 0; +out_unlock: + mutex_unlock(&cpuset_mutex); + return ret; +} + +static void cpuset_cancel_attach(struct cgroup_taskset *tset) +{ + struct cgroup_subsys_state *css; + struct cpuset *cs; + + cgroup_taskset_first(tset, &css); + cs = css_cs(css); + + mutex_lock(&cpuset_mutex); + css_cs(css)->attach_in_progress--; + mutex_unlock(&cpuset_mutex); +} + +/* + * Protected by cpuset_mutex. cpus_attach is used only by cpuset_attach() + * but we can't allocate it dynamically there. Define it global and + * allocate from cpuset_init(). + */ +static cpumask_var_t cpus_attach; + +static void cpuset_attach(struct cgroup_taskset *tset) +{ + /* static buf protected by cpuset_mutex */ + static nodemask_t cpuset_attach_nodemask_to; + struct task_struct *task; + struct task_struct *leader; + struct cgroup_subsys_state *css; + struct cpuset *cs; + struct cpuset *oldcs = cpuset_attach_old_cs; + + cgroup_taskset_first(tset, &css); + cs = css_cs(css); + + mutex_lock(&cpuset_mutex); + + /* prepare for attach */ + if (cs == &top_cpuset) + cpumask_copy(cpus_attach, cpu_possible_mask); + else + guarantee_online_cpus(cs, cpus_attach); + + guarantee_online_mems(cs, &cpuset_attach_nodemask_to); + + cgroup_taskset_for_each(task, css, tset) { + /* + * can_attach beforehand should guarantee that this doesn't + * fail. TODO: have a better way to handle failure here + */ + WARN_ON_ONCE(set_cpus_allowed_ptr(task, cpus_attach)); + + cpuset_change_task_nodemask(task, &cpuset_attach_nodemask_to); + cpuset_update_task_spread_flag(cs, task); + } + + /* + * Change mm for all threadgroup leaders. This is expensive and may + * sleep and should be moved outside migration path proper. + */ + cpuset_attach_nodemask_to = cs->effective_mems; + cgroup_taskset_for_each_leader(leader, css, tset) { + struct mm_struct *mm = get_task_mm(leader); + + if (mm) { + mpol_rebind_mm(mm, &cpuset_attach_nodemask_to); + + /* + * old_mems_allowed is the same with mems_allowed + * here, except if this task is being moved + * automatically due to hotplug. In that case + * @mems_allowed has been updated and is empty, so + * @old_mems_allowed is the right nodesets that we + * migrate mm from. + */ + if (is_memory_migrate(cs)) + cpuset_migrate_mm(mm, &oldcs->old_mems_allowed, + &cpuset_attach_nodemask_to); + else + mmput(mm); + } + } + + cs->old_mems_allowed = cpuset_attach_nodemask_to; + + cs->attach_in_progress--; + if (!cs->attach_in_progress) + wake_up(&cpuset_attach_wq); + + mutex_unlock(&cpuset_mutex); +} + +/* The various types of files and directories in a cpuset file system */ + +typedef enum { + FILE_MEMORY_MIGRATE, + FILE_CPULIST, + FILE_MEMLIST, + FILE_EFFECTIVE_CPULIST, + FILE_EFFECTIVE_MEMLIST, + FILE_CPU_EXCLUSIVE, + FILE_MEM_EXCLUSIVE, + FILE_MEM_HARDWALL, + FILE_SCHED_LOAD_BALANCE, + FILE_SCHED_RELAX_DOMAIN_LEVEL, + FILE_MEMORY_PRESSURE_ENABLED, + FILE_MEMORY_PRESSURE, + FILE_SPREAD_PAGE, + FILE_SPREAD_SLAB, +} cpuset_filetype_t; + +static int cpuset_write_u64(struct cgroup_subsys_state *css, struct cftype *cft, + u64 val) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + int retval = 0; + + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) { + retval = -ENODEV; + goto out_unlock; + } + + switch (type) { + case FILE_CPU_EXCLUSIVE: + retval = update_flag(CS_CPU_EXCLUSIVE, cs, val); + break; + case FILE_MEM_EXCLUSIVE: + retval = update_flag(CS_MEM_EXCLUSIVE, cs, val); + break; + case FILE_MEM_HARDWALL: + retval = update_flag(CS_MEM_HARDWALL, cs, val); + break; + case FILE_SCHED_LOAD_BALANCE: + retval = update_flag(CS_SCHED_LOAD_BALANCE, cs, val); + break; + case FILE_MEMORY_MIGRATE: + retval = update_flag(CS_MEMORY_MIGRATE, cs, val); + break; + case FILE_MEMORY_PRESSURE_ENABLED: + cpuset_memory_pressure_enabled = !!val; + break; + case FILE_SPREAD_PAGE: + retval = update_flag(CS_SPREAD_PAGE, cs, val); + break; + case FILE_SPREAD_SLAB: + retval = update_flag(CS_SPREAD_SLAB, cs, val); + break; + default: + retval = -EINVAL; + break; + } +out_unlock: + mutex_unlock(&cpuset_mutex); + return retval; +} + +static int cpuset_write_s64(struct cgroup_subsys_state *css, struct cftype *cft, + s64 val) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + int retval = -ENODEV; + + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) + goto out_unlock; + + switch (type) { + case FILE_SCHED_RELAX_DOMAIN_LEVEL: + retval = update_relax_domain_level(cs, val); + break; + default: + retval = -EINVAL; + break; + } +out_unlock: + mutex_unlock(&cpuset_mutex); + return retval; +} + +/* + * Common handling for a write to a "cpus" or "mems" file. + */ +static ssize_t cpuset_write_resmask(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct cpuset *cs = css_cs(of_css(of)); + struct cpuset *trialcs; + int retval = -ENODEV; + + buf = strstrip(buf); + + /* + * CPU or memory hotunplug may leave @cs w/o any execution + * resources, in which case the hotplug code asynchronously updates + * configuration and transfers all tasks to the nearest ancestor + * which can execute. + * + * As writes to "cpus" or "mems" may restore @cs's execution + * resources, wait for the previously scheduled operations before + * proceeding, so that we don't end up keep removing tasks added + * after execution capability is restored. + * + * cpuset_hotplug_work calls back into cgroup core via + * cgroup_transfer_tasks() and waiting for it from a cgroupfs + * operation like this one can lead to a deadlock through kernfs + * active_ref protection. Let's break the protection. Losing the + * protection is okay as we check whether @cs is online after + * grabbing cpuset_mutex anyway. This only happens on the legacy + * hierarchies. + */ + css_get(&cs->css); + kernfs_break_active_protection(of->kn); + flush_work(&cpuset_hotplug_work); + + mutex_lock(&cpuset_mutex); + if (!is_cpuset_online(cs)) + goto out_unlock; + + trialcs = alloc_trial_cpuset(cs); + if (!trialcs) { + retval = -ENOMEM; + goto out_unlock; + } + + switch (of_cft(of)->private) { + case FILE_CPULIST: + retval = update_cpumask(cs, trialcs, buf); + break; + case FILE_MEMLIST: + retval = update_nodemask(cs, trialcs, buf); + break; + default: + retval = -EINVAL; + break; + } + + free_trial_cpuset(trialcs); +out_unlock: + mutex_unlock(&cpuset_mutex); + kernfs_unbreak_active_protection(of->kn); + css_put(&cs->css); + flush_workqueue(cpuset_migrate_mm_wq); + return retval ?: nbytes; +} + +/* + * These ascii lists should be read in a single call, by using a user + * buffer large enough to hold the entire map. If read in smaller + * chunks, there is no guarantee of atomicity. Since the display format + * used, list of ranges of sequential numbers, is variable length, + * and since these maps can change value dynamically, one could read + * gibberish by doing partial reads while a list was changing. + */ +static int cpuset_common_seq_show(struct seq_file *sf, void *v) +{ + struct cpuset *cs = css_cs(seq_css(sf)); + cpuset_filetype_t type = seq_cft(sf)->private; + int ret = 0; + + spin_lock_irq(&callback_lock); + + switch (type) { + case FILE_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->cpus_allowed)); + break; + case FILE_MEMLIST: + seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->mems_allowed)); + break; + case FILE_EFFECTIVE_CPULIST: + seq_printf(sf, "%*pbl\n", cpumask_pr_args(cs->effective_cpus)); + break; + case FILE_EFFECTIVE_MEMLIST: + seq_printf(sf, "%*pbl\n", nodemask_pr_args(&cs->effective_mems)); + break; + default: + ret = -EINVAL; + } + + spin_unlock_irq(&callback_lock); + return ret; +} + +static u64 cpuset_read_u64(struct cgroup_subsys_state *css, struct cftype *cft) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + switch (type) { + case FILE_CPU_EXCLUSIVE: + return is_cpu_exclusive(cs); + case FILE_MEM_EXCLUSIVE: + return is_mem_exclusive(cs); + case FILE_MEM_HARDWALL: + return is_mem_hardwall(cs); + case FILE_SCHED_LOAD_BALANCE: + return is_sched_load_balance(cs); + case FILE_MEMORY_MIGRATE: + return is_memory_migrate(cs); + case FILE_MEMORY_PRESSURE_ENABLED: + return cpuset_memory_pressure_enabled; + case FILE_MEMORY_PRESSURE: + return fmeter_getrate(&cs->fmeter); + case FILE_SPREAD_PAGE: + return is_spread_page(cs); + case FILE_SPREAD_SLAB: + return is_spread_slab(cs); + default: + BUG(); + } + + /* Unreachable but makes gcc happy */ + return 0; +} + +static s64 cpuset_read_s64(struct cgroup_subsys_state *css, struct cftype *cft) +{ + struct cpuset *cs = css_cs(css); + cpuset_filetype_t type = cft->private; + switch (type) { + case FILE_SCHED_RELAX_DOMAIN_LEVEL: + return cs->relax_domain_level; + default: + BUG(); + } + + /* Unrechable but makes gcc happy */ + return 0; +} + + +/* + * for the common functions, 'private' gives the type of file + */ + +static struct cftype files[] = { + { + .name = "cpus", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * NR_CPUS), + .private = FILE_CPULIST, + }, + + { + .name = "mems", + .seq_show = cpuset_common_seq_show, + .write = cpuset_write_resmask, + .max_write_len = (100U + 6 * MAX_NUMNODES), + .private = FILE_MEMLIST, + }, + + { + .name = "effective_cpus", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_CPULIST, + }, + + { + .name = "effective_mems", + .seq_show = cpuset_common_seq_show, + .private = FILE_EFFECTIVE_MEMLIST, + }, + + { + .name = "cpu_exclusive", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_CPU_EXCLUSIVE, + }, + + { + .name = "mem_exclusive", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEM_EXCLUSIVE, + }, + + { + .name = "mem_hardwall", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEM_HARDWALL, + }, + + { + .name = "sched_load_balance", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SCHED_LOAD_BALANCE, + }, + + { + .name = "sched_relax_domain_level", + .read_s64 = cpuset_read_s64, + .write_s64 = cpuset_write_s64, + .private = FILE_SCHED_RELAX_DOMAIN_LEVEL, + }, + + { + .name = "memory_migrate", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEMORY_MIGRATE, + }, + + { + .name = "memory_pressure", + .read_u64 = cpuset_read_u64, + }, + + { + .name = "memory_spread_page", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SPREAD_PAGE, + }, + + { + .name = "memory_spread_slab", + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_SPREAD_SLAB, + }, + + { + .name = "memory_pressure_enabled", + .flags = CFTYPE_ONLY_ON_ROOT, + .read_u64 = cpuset_read_u64, + .write_u64 = cpuset_write_u64, + .private = FILE_MEMORY_PRESSURE_ENABLED, + }, + + { } /* terminate */ +}; + +/* + * cpuset_css_alloc - allocate a cpuset css + * cgrp: control group that the new cpuset will be part of + */ + +static struct cgroup_subsys_state * +cpuset_css_alloc(struct cgroup_subsys_state *parent_css) +{ + struct cpuset *cs; + + if (!parent_css) + return &top_cpuset.css; + + cs = kzalloc(sizeof(*cs), GFP_KERNEL); + if (!cs) + return ERR_PTR(-ENOMEM); + if (!alloc_cpumask_var(&cs->cpus_allowed, GFP_KERNEL)) + goto free_cs; + if (!alloc_cpumask_var(&cs->effective_cpus, GFP_KERNEL)) + goto free_cpus; + + set_bit(CS_SCHED_LOAD_BALANCE, &cs->flags); + cpumask_clear(cs->cpus_allowed); + nodes_clear(cs->mems_allowed); + cpumask_clear(cs->effective_cpus); + nodes_clear(cs->effective_mems); + fmeter_init(&cs->fmeter); + cs->relax_domain_level = -1; + + return &cs->css; + +free_cpus: + free_cpumask_var(cs->cpus_allowed); +free_cs: + kfree(cs); + return ERR_PTR(-ENOMEM); +} + +static int cpuset_css_online(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + struct cpuset *parent = parent_cs(cs); + struct cpuset *tmp_cs; + struct cgroup_subsys_state *pos_css; + + if (!parent) + return 0; + + mutex_lock(&cpuset_mutex); + + set_bit(CS_ONLINE, &cs->flags); + if (is_spread_page(parent)) + set_bit(CS_SPREAD_PAGE, &cs->flags); + if (is_spread_slab(parent)) + set_bit(CS_SPREAD_SLAB, &cs->flags); + + cpuset_inc(); + + spin_lock_irq(&callback_lock); + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { + cpumask_copy(cs->effective_cpus, parent->effective_cpus); + cs->effective_mems = parent->effective_mems; + } + spin_unlock_irq(&callback_lock); + + if (!test_bit(CGRP_CPUSET_CLONE_CHILDREN, &css->cgroup->flags)) + goto out_unlock; + + /* + * Clone @parent's configuration if CGRP_CPUSET_CLONE_CHILDREN is + * set. This flag handling is implemented in cgroup core for + * histrical reasons - the flag may be specified during mount. + * + * Currently, if any sibling cpusets have exclusive cpus or mem, we + * refuse to clone the configuration - thereby refusing the task to + * be entered, and as a result refusing the sys_unshare() or + * clone() which initiated it. If this becomes a problem for some + * users who wish to allow that scenario, then this could be + * changed to grant parent->cpus_allowed-sibling_cpus_exclusive + * (and likewise for mems) to the new cgroup. + */ + rcu_read_lock(); + cpuset_for_each_child(tmp_cs, pos_css, parent) { + if (is_mem_exclusive(tmp_cs) || is_cpu_exclusive(tmp_cs)) { + rcu_read_unlock(); + goto out_unlock; + } + } + rcu_read_unlock(); + + spin_lock_irq(&callback_lock); + cs->mems_allowed = parent->mems_allowed; + cs->effective_mems = parent->mems_allowed; + cpumask_copy(cs->cpus_allowed, parent->cpus_allowed); + cpumask_copy(cs->effective_cpus, parent->cpus_allowed); + spin_unlock_irq(&callback_lock); +out_unlock: + mutex_unlock(&cpuset_mutex); + return 0; +} + +/* + * If the cpuset being removed has its flag 'sched_load_balance' + * enabled, then simulate turning sched_load_balance off, which + * will call rebuild_sched_domains_locked(). + */ + +static void cpuset_css_offline(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + + mutex_lock(&cpuset_mutex); + + if (is_sched_load_balance(cs)) + update_flag(CS_SCHED_LOAD_BALANCE, cs, 0); + + cpuset_dec(); + clear_bit(CS_ONLINE, &cs->flags); + + mutex_unlock(&cpuset_mutex); +} + +static void cpuset_css_free(struct cgroup_subsys_state *css) +{ + struct cpuset *cs = css_cs(css); + + free_cpumask_var(cs->effective_cpus); + free_cpumask_var(cs->cpus_allowed); + kfree(cs); +} + +static void cpuset_bind(struct cgroup_subsys_state *root_css) +{ + mutex_lock(&cpuset_mutex); + spin_lock_irq(&callback_lock); + + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) { + cpumask_copy(top_cpuset.cpus_allowed, cpu_possible_mask); + top_cpuset.mems_allowed = node_possible_map; + } else { + cpumask_copy(top_cpuset.cpus_allowed, + top_cpuset.effective_cpus); + top_cpuset.mems_allowed = top_cpuset.effective_mems; + } + + spin_unlock_irq(&callback_lock); + mutex_unlock(&cpuset_mutex); +} + +/* + * Make sure the new task conform to the current state of its parent, + * which could have been changed by cpuset just after it inherits the + * state from the parent and before it sits on the cgroup's task list. + */ +static void cpuset_fork(struct task_struct *task) +{ + if (task_css_is_root(task, cpuset_cgrp_id)) + return; + + set_cpus_allowed_ptr(task, ¤t->cpus_allowed); + task->mems_allowed = current->mems_allowed; +} + +struct cgroup_subsys cpuset_cgrp_subsys = { + .css_alloc = cpuset_css_alloc, + .css_online = cpuset_css_online, + .css_offline = cpuset_css_offline, + .css_free = cpuset_css_free, + .can_attach = cpuset_can_attach, + .cancel_attach = cpuset_cancel_attach, + .attach = cpuset_attach, + .post_attach = cpuset_post_attach, + .bind = cpuset_bind, + .fork = cpuset_fork, + .legacy_cftypes = files, + .early_init = true, +}; + +/** + * cpuset_init - initialize cpusets at system boot + * + * Description: Initialize top_cpuset and the cpuset internal file system, + **/ + +int __init cpuset_init(void) +{ + int err = 0; + + if (!alloc_cpumask_var(&top_cpuset.cpus_allowed, GFP_KERNEL)) + BUG(); + if (!alloc_cpumask_var(&top_cpuset.effective_cpus, GFP_KERNEL)) + BUG(); + + cpumask_setall(top_cpuset.cpus_allowed); + nodes_setall(top_cpuset.mems_allowed); + cpumask_setall(top_cpuset.effective_cpus); + nodes_setall(top_cpuset.effective_mems); + + fmeter_init(&top_cpuset.fmeter); + set_bit(CS_SCHED_LOAD_BALANCE, &top_cpuset.flags); + top_cpuset.relax_domain_level = -1; + + err = register_filesystem(&cpuset_fs_type); + if (err < 0) + return err; + + if (!alloc_cpumask_var(&cpus_attach, GFP_KERNEL)) + BUG(); + + return 0; +} + +/* + * If CPU and/or memory hotplug handlers, below, unplug any CPUs + * or memory nodes, we need to walk over the cpuset hierarchy, + * removing that CPU or node from all cpusets. If this removes the + * last CPU or node from a cpuset, then move the tasks in the empty + * cpuset to its next-highest non-empty parent. + */ +static void remove_tasks_in_empty_cpuset(struct cpuset *cs) +{ + struct cpuset *parent; + + /* + * Find its next-highest non-empty parent, (top cpuset + * has online cpus, so can't be empty). + */ + parent = parent_cs(cs); + while (cpumask_empty(parent->cpus_allowed) || + nodes_empty(parent->mems_allowed)) + parent = parent_cs(parent); + + if (cgroup_transfer_tasks(parent->css.cgroup, cs->css.cgroup)) { + pr_err("cpuset: failed to transfer tasks out of empty cpuset "); + pr_cont_cgroup_name(cs->css.cgroup); + pr_cont("\n"); + } +} + +static void +hotplug_update_tasks_legacy(struct cpuset *cs, + struct cpumask *new_cpus, nodemask_t *new_mems, + bool cpus_updated, bool mems_updated) +{ + bool is_empty; + + spin_lock_irq(&callback_lock); + cpumask_copy(cs->cpus_allowed, new_cpus); + cpumask_copy(cs->effective_cpus, new_cpus); + cs->mems_allowed = *new_mems; + cs->effective_mems = *new_mems; + spin_unlock_irq(&callback_lock); + + /* + * Don't call update_tasks_cpumask() if the cpuset becomes empty, + * as the tasks will be migratecd to an ancestor. + */ + if (cpus_updated && !cpumask_empty(cs->cpus_allowed)) + update_tasks_cpumask(cs); + if (mems_updated && !nodes_empty(cs->mems_allowed)) + update_tasks_nodemask(cs); + + is_empty = cpumask_empty(cs->cpus_allowed) || + nodes_empty(cs->mems_allowed); + + mutex_unlock(&cpuset_mutex); + + /* + * Move tasks to the nearest ancestor with execution resources, + * This is full cgroup operation which will also call back into + * cpuset. Should be done outside any lock. + */ + if (is_empty) + remove_tasks_in_empty_cpuset(cs); + + mutex_lock(&cpuset_mutex); +} + +static void +hotplug_update_tasks(struct cpuset *cs, + struct cpumask *new_cpus, nodemask_t *new_mems, + bool cpus_updated, bool mems_updated) +{ + if (cpumask_empty(new_cpus)) + cpumask_copy(new_cpus, parent_cs(cs)->effective_cpus); + if (nodes_empty(*new_mems)) + *new_mems = parent_cs(cs)->effective_mems; + + spin_lock_irq(&callback_lock); + cpumask_copy(cs->effective_cpus, new_cpus); + cs->effective_mems = *new_mems; + spin_unlock_irq(&callback_lock); + + if (cpus_updated) + update_tasks_cpumask(cs); + if (mems_updated) + update_tasks_nodemask(cs); +} + +/** + * cpuset_hotplug_update_tasks - update tasks in a cpuset for hotunplug + * @cs: cpuset in interest + * + * Compare @cs's cpu and mem masks against top_cpuset and if some have gone + * offline, update @cs accordingly. If @cs ends up with no CPU or memory, + * all its tasks are moved to the nearest ancestor with both resources. + */ +static void cpuset_hotplug_update_tasks(struct cpuset *cs) +{ + static cpumask_t new_cpus; + static nodemask_t new_mems; + bool cpus_updated; + bool mems_updated; +retry: + wait_event(cpuset_attach_wq, cs->attach_in_progress == 0); + + mutex_lock(&cpuset_mutex); + + /* + * We have raced with task attaching. We wait until attaching + * is finished, so we won't attach a task to an empty cpuset. + */ + if (cs->attach_in_progress) { + mutex_unlock(&cpuset_mutex); + goto retry; + } + + cpumask_and(&new_cpus, cs->cpus_allowed, parent_cs(cs)->effective_cpus); + nodes_and(new_mems, cs->mems_allowed, parent_cs(cs)->effective_mems); + + cpus_updated = !cpumask_equal(&new_cpus, cs->effective_cpus); + mems_updated = !nodes_equal(new_mems, cs->effective_mems); + + if (cgroup_subsys_on_dfl(cpuset_cgrp_subsys)) + hotplug_update_tasks(cs, &new_cpus, &new_mems, + cpus_updated, mems_updated); + else + hotplug_update_tasks_legacy(cs, &new_cpus, &new_mems, + cpus_updated, mems_updated); + + mutex_unlock(&cpuset_mutex); +} + +/** + * cpuset_hotplug_workfn - handle CPU/memory hotunplug for a cpuset + * + * This function is called after either CPU or memory configuration has + * changed and updates cpuset accordingly. The top_cpuset is always + * synchronized to cpu_active_mask and N_MEMORY, which is necessary in + * order to make cpusets transparent (of no affect) on systems that are + * actively using CPU hotplug but making no active use of cpusets. + * + * Non-root cpusets are only affected by offlining. If any CPUs or memory + * nodes have been taken down, cpuset_hotplug_update_tasks() is invoked on + * all descendants. + * + * Note that CPU offlining during suspend is ignored. We don't modify + * cpusets across suspend/resume cycles at all. + */ +static void cpuset_hotplug_workfn(struct work_struct *work) +{ + static cpumask_t new_cpus; + static nodemask_t new_mems; + bool cpus_updated, mems_updated; + bool on_dfl = cgroup_subsys_on_dfl(cpuset_cgrp_subsys); + + mutex_lock(&cpuset_mutex); + + /* fetch the available cpus/mems and find out which changed how */ + cpumask_copy(&new_cpus, cpu_active_mask); + new_mems = node_states[N_MEMORY]; + + cpus_updated = !cpumask_equal(top_cpuset.effective_cpus, &new_cpus); + mems_updated = !nodes_equal(top_cpuset.effective_mems, new_mems); + + /* synchronize cpus_allowed to cpu_active_mask */ + if (cpus_updated) { + spin_lock_irq(&callback_lock); + if (!on_dfl) + cpumask_copy(top_cpuset.cpus_allowed, &new_cpus); + cpumask_copy(top_cpuset.effective_cpus, &new_cpus); + spin_unlock_irq(&callback_lock); + /* we don't mess with cpumasks of tasks in top_cpuset */ + } + + /* synchronize mems_allowed to N_MEMORY */ + if (mems_updated) { + spin_lock_irq(&callback_lock); + if (!on_dfl) + top_cpuset.mems_allowed = new_mems; + top_cpuset.effective_mems = new_mems; + spin_unlock_irq(&callback_lock); + update_tasks_nodemask(&top_cpuset); + } + + mutex_unlock(&cpuset_mutex); + + /* if cpus or mems changed, we need to propagate to descendants */ + if (cpus_updated || mems_updated) { + struct cpuset *cs; + struct cgroup_subsys_state *pos_css; + + rcu_read_lock(); + cpuset_for_each_descendant_pre(cs, pos_css, &top_cpuset) { + if (cs == &top_cpuset || !css_tryget_online(&cs->css)) + continue; + rcu_read_unlock(); + + cpuset_hotplug_update_tasks(cs); + + rcu_read_lock(); + css_put(&cs->css); + } + rcu_read_unlock(); + } + + /* rebuild sched domains if cpus_allowed has changed */ + if (cpus_updated) + rebuild_sched_domains(); +} + +void cpuset_update_active_cpus(bool cpu_online) +{ + /* + * We're inside cpu hotplug critical region which usually nests + * inside cgroup synchronization. Bounce actual hotplug processing + * to a work item to avoid reverse locking order. + * + * We still need to do partition_sched_domains() synchronously; + * otherwise, the scheduler will get confused and put tasks to the + * dead CPU. Fall back to the default single domain. + * cpuset_hotplug_workfn() will rebuild it as necessary. + */ + partition_sched_domains(1, NULL, NULL); + schedule_work(&cpuset_hotplug_work); +} + +/* + * Keep top_cpuset.mems_allowed tracking node_states[N_MEMORY]. + * Call this routine anytime after node_states[N_MEMORY] changes. + * See cpuset_update_active_cpus() for CPU hotplug handling. + */ +static int cpuset_track_online_nodes(struct notifier_block *self, + unsigned long action, void *arg) +{ + schedule_work(&cpuset_hotplug_work); + return NOTIFY_OK; +} + +static struct notifier_block cpuset_track_online_nodes_nb = { + .notifier_call = cpuset_track_online_nodes, + .priority = 10, /* ??! */ +}; + +/** + * cpuset_init_smp - initialize cpus_allowed + * + * Description: Finish top cpuset after cpu, node maps are initialized + */ +void __init cpuset_init_smp(void) +{ + cpumask_copy(top_cpuset.cpus_allowed, cpu_active_mask); + top_cpuset.mems_allowed = node_states[N_MEMORY]; + top_cpuset.old_mems_allowed = top_cpuset.mems_allowed; + + cpumask_copy(top_cpuset.effective_cpus, cpu_active_mask); + top_cpuset.effective_mems = node_states[N_MEMORY]; + + register_hotmemory_notifier(&cpuset_track_online_nodes_nb); + + cpuset_migrate_mm_wq = alloc_ordered_workqueue("cpuset_migrate_mm", 0); + BUG_ON(!cpuset_migrate_mm_wq); +} + +/** + * cpuset_cpus_allowed - return cpus_allowed mask from a tasks cpuset. + * @tsk: pointer to task_struct from which to obtain cpuset->cpus_allowed. + * @pmask: pointer to struct cpumask variable to receive cpus_allowed set. + * + * Description: Returns the cpumask_var_t cpus_allowed of the cpuset + * attached to the specified @tsk. Guaranteed to return some non-empty + * subset of cpu_online_mask, even if this means going outside the + * tasks cpuset. + **/ + +void cpuset_cpus_allowed(struct task_struct *tsk, struct cpumask *pmask) +{ + unsigned long flags; + + spin_lock_irqsave(&callback_lock, flags); + rcu_read_lock(); + guarantee_online_cpus(task_cs(tsk), pmask); + rcu_read_unlock(); + spin_unlock_irqrestore(&callback_lock, flags); +} + +void cpuset_cpus_allowed_fallback(struct task_struct *tsk) +{ + rcu_read_lock(); + do_set_cpus_allowed(tsk, task_cs(tsk)->effective_cpus); + rcu_read_unlock(); + + /* + * We own tsk->cpus_allowed, nobody can change it under us. + * + * But we used cs && cs->cpus_allowed lockless and thus can + * race with cgroup_attach_task() or update_cpumask() and get + * the wrong tsk->cpus_allowed. However, both cases imply the + * subsequent cpuset_change_cpumask()->set_cpus_allowed_ptr() + * which takes task_rq_lock(). + * + * If we are called after it dropped the lock we must see all + * changes in tsk_cs()->cpus_allowed. Otherwise we can temporary + * set any mask even if it is not right from task_cs() pov, + * the pending set_cpus_allowed_ptr() will fix things. + * + * select_fallback_rq() will fix things ups and set cpu_possible_mask + * if required. + */ +} + +void __init cpuset_init_current_mems_allowed(void) +{ + nodes_setall(current->mems_allowed); +} + +/** + * cpuset_mems_allowed - return mems_allowed mask from a tasks cpuset. + * @tsk: pointer to task_struct from which to obtain cpuset->mems_allowed. + * + * Description: Returns the nodemask_t mems_allowed of the cpuset + * attached to the specified @tsk. Guaranteed to return some non-empty + * subset of node_states[N_MEMORY], even if this means going outside the + * tasks cpuset. + **/ + +nodemask_t cpuset_mems_allowed(struct task_struct *tsk) +{ + nodemask_t mask; + unsigned long flags; + + spin_lock_irqsave(&callback_lock, flags); + rcu_read_lock(); + guarantee_online_mems(task_cs(tsk), &mask); + rcu_read_unlock(); + spin_unlock_irqrestore(&callback_lock, flags); + + return mask; +} + +/** + * cpuset_nodemask_valid_mems_allowed - check nodemask vs. curremt mems_allowed + * @nodemask: the nodemask to be checked + * + * Are any of the nodes in the nodemask allowed in current->mems_allowed? + */ +int cpuset_nodemask_valid_mems_allowed(nodemask_t *nodemask) +{ + return nodes_intersects(*nodemask, current->mems_allowed); +} + +/* + * nearest_hardwall_ancestor() - Returns the nearest mem_exclusive or + * mem_hardwall ancestor to the specified cpuset. Call holding + * callback_lock. If no ancestor is mem_exclusive or mem_hardwall + * (an unusual configuration), then returns the root cpuset. + */ +static struct cpuset *nearest_hardwall_ancestor(struct cpuset *cs) +{ + while (!(is_mem_exclusive(cs) || is_mem_hardwall(cs)) && parent_cs(cs)) + cs = parent_cs(cs); + return cs; +} + +/** + * cpuset_node_allowed - Can we allocate on a memory node? + * @node: is this an allowed node? + * @gfp_mask: memory allocation flags + * + * If we're in interrupt, yes, we can always allocate. If @node is set in + * current's mems_allowed, yes. If it's not a __GFP_HARDWALL request and this + * node is set in the nearest hardwalled cpuset ancestor to current's cpuset, + * yes. If current has access to memory reserves due to TIF_MEMDIE, yes. + * Otherwise, no. + * + * GFP_USER allocations are marked with the __GFP_HARDWALL bit, + * and do not allow allocations outside the current tasks cpuset + * unless the task has been OOM killed as is marked TIF_MEMDIE. + * GFP_KERNEL allocations are not so marked, so can escape to the + * nearest enclosing hardwalled ancestor cpuset. + * + * Scanning up parent cpusets requires callback_lock. The + * __alloc_pages() routine only calls here with __GFP_HARDWALL bit + * _not_ set if it's a GFP_KERNEL allocation, and all nodes in the + * current tasks mems_allowed came up empty on the first pass over + * the zonelist. So only GFP_KERNEL allocations, if all nodes in the + * cpuset are short of memory, might require taking the callback_lock. + * + * The first call here from mm/page_alloc:get_page_from_freelist() + * has __GFP_HARDWALL set in gfp_mask, enforcing hardwall cpusets, + * so no allocation on a node outside the cpuset is allowed (unless + * in interrupt, of course). + * + * The second pass through get_page_from_freelist() doesn't even call + * here for GFP_ATOMIC calls. For those calls, the __alloc_pages() + * variable 'wait' is not set, and the bit ALLOC_CPUSET is not set + * in alloc_flags. That logic and the checks below have the combined + * affect that: + * in_interrupt - any node ok (current task context irrelevant) + * GFP_ATOMIC - any node ok + * TIF_MEMDIE - any node ok + * GFP_KERNEL - any node in enclosing hardwalled cpuset ok + * GFP_USER - only nodes in current tasks mems allowed ok. + */ +bool __cpuset_node_allowed(int node, gfp_t gfp_mask) +{ + struct cpuset *cs; /* current cpuset ancestors */ + int allowed; /* is allocation in zone z allowed? */ + unsigned long flags; + + if (in_interrupt()) + return true; + if (node_isset(node, current->mems_allowed)) + return true; + /* + * Allow tasks that have access to memory reserves because they have + * been OOM killed to get memory anywhere. + */ + if (unlikely(test_thread_flag(TIF_MEMDIE))) + return true; + if (gfp_mask & __GFP_HARDWALL) /* If hardwall request, stop here */ + return false; + + if (current->flags & PF_EXITING) /* Let dying task have memory */ + return true; + + /* Not hardwall and node outside mems_allowed: scan up cpusets */ + spin_lock_irqsave(&callback_lock, flags); + + rcu_read_lock(); + cs = nearest_hardwall_ancestor(task_cs(current)); + allowed = node_isset(node, cs->mems_allowed); + rcu_read_unlock(); + + spin_unlock_irqrestore(&callback_lock, flags); + return allowed; +} + +/** + * cpuset_mem_spread_node() - On which node to begin search for a file page + * cpuset_slab_spread_node() - On which node to begin search for a slab page + * + * If a task is marked PF_SPREAD_PAGE or PF_SPREAD_SLAB (as for + * tasks in a cpuset with is_spread_page or is_spread_slab set), + * and if the memory allocation used cpuset_mem_spread_node() + * to determine on which node to start looking, as it will for + * certain page cache or slab cache pages such as used for file + * system buffers and inode caches, then instead of starting on the + * local node to look for a free page, rather spread the starting + * node around the tasks mems_allowed nodes. + * + * We don't have to worry about the returned node being offline + * because "it can't happen", and even if it did, it would be ok. + * + * The routines calling guarantee_online_mems() are careful to + * only set nodes in task->mems_allowed that are online. So it + * should not be possible for the following code to return an + * offline node. But if it did, that would be ok, as this routine + * is not returning the node where the allocation must be, only + * the node where the search should start. The zonelist passed to + * __alloc_pages() will include all nodes. If the slab allocator + * is passed an offline node, it will fall back to the local node. + * See kmem_cache_alloc_node(). + */ + +static int cpuset_spread_node(int *rotor) +{ + return *rotor = next_node_in(*rotor, current->mems_allowed); +} + +int cpuset_mem_spread_node(void) +{ + if (current->cpuset_mem_spread_rotor == NUMA_NO_NODE) + current->cpuset_mem_spread_rotor = + node_random(¤t->mems_allowed); + + return cpuset_spread_node(¤t->cpuset_mem_spread_rotor); +} + +int cpuset_slab_spread_node(void) +{ + if (current->cpuset_slab_spread_rotor == NUMA_NO_NODE) + current->cpuset_slab_spread_rotor = + node_random(¤t->mems_allowed); + + return cpuset_spread_node(¤t->cpuset_slab_spread_rotor); +} + +EXPORT_SYMBOL_GPL(cpuset_mem_spread_node); + +/** + * cpuset_mems_allowed_intersects - Does @tsk1's mems_allowed intersect @tsk2's? + * @tsk1: pointer to task_struct of some task. + * @tsk2: pointer to task_struct of some other task. + * + * Description: Return true if @tsk1's mems_allowed intersects the + * mems_allowed of @tsk2. Used by the OOM killer to determine if + * one of the task's memory usage might impact the memory available + * to the other. + **/ + +int cpuset_mems_allowed_intersects(const struct task_struct *tsk1, + const struct task_struct *tsk2) +{ + return nodes_intersects(tsk1->mems_allowed, tsk2->mems_allowed); +} + +/** + * cpuset_print_current_mems_allowed - prints current's cpuset and mems_allowed + * + * Description: Prints current's name, cpuset name, and cached copy of its + * mems_allowed to the kernel log. + */ +void cpuset_print_current_mems_allowed(void) +{ + struct cgroup *cgrp; + + rcu_read_lock(); + + cgrp = task_cs(current)->css.cgroup; + pr_info("%s cpuset=", current->comm); + pr_cont_cgroup_name(cgrp); + pr_cont(" mems_allowed=%*pbl\n", + nodemask_pr_args(¤t->mems_allowed)); + + rcu_read_unlock(); +} + +/* + * Collection of memory_pressure is suppressed unless + * this flag is enabled by writing "1" to the special + * cpuset file 'memory_pressure_enabled' in the root cpuset. + */ + +int cpuset_memory_pressure_enabled __read_mostly; + +/** + * cpuset_memory_pressure_bump - keep stats of per-cpuset reclaims. + * + * Keep a running average of the rate of synchronous (direct) + * page reclaim efforts initiated by tasks in each cpuset. + * + * This represents the rate at which some task in the cpuset + * ran low on memory on all nodes it was allowed to use, and + * had to enter the kernels page reclaim code in an effort to + * create more free memory by tossing clean pages or swapping + * or writing dirty pages. + * + * Display to user space in the per-cpuset read-only file + * "memory_pressure". Value displayed is an integer + * representing the recent rate of entry into the synchronous + * (direct) page reclaim by any task attached to the cpuset. + **/ + +void __cpuset_memory_pressure_bump(void) +{ + rcu_read_lock(); + fmeter_markevent(&task_cs(current)->fmeter); + rcu_read_unlock(); +} + +#ifdef CONFIG_PROC_PID_CPUSET +/* + * proc_cpuset_show() + * - Print tasks cpuset path into seq_file. + * - Used for /proc/<pid>/cpuset. + * - No need to task_lock(tsk) on this tsk->cpuset reference, as it + * doesn't really matter if tsk->cpuset changes after we read it, + * and we take cpuset_mutex, keeping cpuset_attach() from changing it + * anyway. + */ +int proc_cpuset_show(struct seq_file *m, struct pid_namespace *ns, + struct pid *pid, struct task_struct *tsk) +{ + char *buf; + struct cgroup_subsys_state *css; + int retval; + + retval = -ENOMEM; + buf = kmalloc(PATH_MAX, GFP_KERNEL); + if (!buf) + goto out; + + css = task_get_css(tsk, cpuset_cgrp_id); + retval = cgroup_path_ns(css->cgroup, buf, PATH_MAX, + current->nsproxy->cgroup_ns); + css_put(css); + if (retval >= PATH_MAX) + retval = -ENAMETOOLONG; + if (retval < 0) + goto out_free; + seq_puts(m, buf); + seq_putc(m, '\n'); + retval = 0; +out_free: + kfree(buf); +out: + return retval; +} +#endif /* CONFIG_PROC_PID_CPUSET */ + +/* Display task mems_allowed in /proc/<pid>/status file. */ +void cpuset_task_status_allowed(struct seq_file *m, struct task_struct *task) +{ + seq_printf(m, "Mems_allowed:\t%*pb\n", + nodemask_pr_args(&task->mems_allowed)); + seq_printf(m, "Mems_allowed_list:\t%*pbl\n", + nodemask_pr_args(&task->mems_allowed)); +} diff --git a/kernel/cgroup/freezer.c b/kernel/cgroup/freezer.c new file mode 100644 index 000000000000..1b72d56edce5 --- /dev/null +++ b/kernel/cgroup/freezer.c @@ -0,0 +1,481 @@ +/* + * cgroup_freezer.c - control group freezer subsystem + * + * Copyright IBM Corporation, 2007 + * + * Author : Cedric Le Goater <clg@fr.ibm.com> + * + * This program is free software; you can redistribute it and/or modify it + * under the terms of version 2.1 of the GNU Lesser General Public License + * as published by the Free Software Foundation. + * + * This program is distributed in the hope that it would be useful, but + * WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. + */ + +#include <linux/export.h> +#include <linux/slab.h> +#include <linux/cgroup.h> +#include <linux/fs.h> +#include <linux/uaccess.h> +#include <linux/freezer.h> +#include <linux/seq_file.h> +#include <linux/mutex.h> + +/* + * A cgroup is freezing if any FREEZING flags are set. FREEZING_SELF is + * set if "FROZEN" is written to freezer.state cgroupfs file, and cleared + * for "THAWED". FREEZING_PARENT is set if the parent freezer is FREEZING + * for whatever reason. IOW, a cgroup has FREEZING_PARENT set if one of + * its ancestors has FREEZING_SELF set. + */ +enum freezer_state_flags { + CGROUP_FREEZER_ONLINE = (1 << 0), /* freezer is fully online */ + CGROUP_FREEZING_SELF = (1 << 1), /* this freezer is freezing */ + CGROUP_FREEZING_PARENT = (1 << 2), /* the parent freezer is freezing */ + CGROUP_FROZEN = (1 << 3), /* this and its descendants frozen */ + + /* mask for all FREEZING flags */ + CGROUP_FREEZING = CGROUP_FREEZING_SELF | CGROUP_FREEZING_PARENT, +}; + +struct freezer { + struct cgroup_subsys_state css; + unsigned int state; +}; + +static DEFINE_MUTEX(freezer_mutex); + +static inline struct freezer *css_freezer(struct cgroup_subsys_state *css) +{ + return css ? container_of(css, struct freezer, css) : NULL; +} + +static inline struct freezer *task_freezer(struct task_struct *task) +{ + return css_freezer(task_css(task, freezer_cgrp_id)); +} + +static struct freezer *parent_freezer(struct freezer *freezer) +{ + return css_freezer(freezer->css.parent); +} + +bool cgroup_freezing(struct task_struct *task) +{ + bool ret; + + rcu_read_lock(); + ret = task_freezer(task)->state & CGROUP_FREEZING; + rcu_read_unlock(); + + return ret; +} + +static const char *freezer_state_strs(unsigned int state) +{ + if (state & CGROUP_FROZEN) + return "FROZEN"; + if (state & CGROUP_FREEZING) + return "FREEZING"; + return "THAWED"; +}; + +static struct cgroup_subsys_state * +freezer_css_alloc(struct cgroup_subsys_state *parent_css) +{ + struct freezer *freezer; + + freezer = kzalloc(sizeof(struct freezer), GFP_KERNEL); + if (!freezer) + return ERR_PTR(-ENOMEM); + + return &freezer->css; +} + +/** + * freezer_css_online - commit creation of a freezer css + * @css: css being created + * + * We're committing to creation of @css. Mark it online and inherit + * parent's freezing state while holding both parent's and our + * freezer->lock. + */ +static int freezer_css_online(struct cgroup_subsys_state *css) +{ + struct freezer *freezer = css_freezer(css); + struct freezer *parent = parent_freezer(freezer); + + mutex_lock(&freezer_mutex); + + freezer->state |= CGROUP_FREEZER_ONLINE; + + if (parent && (parent->state & CGROUP_FREEZING)) { + freezer->state |= CGROUP_FREEZING_PARENT | CGROUP_FROZEN; + atomic_inc(&system_freezing_cnt); + } + + mutex_unlock(&freezer_mutex); + return 0; +} + +/** + * freezer_css_offline - initiate destruction of a freezer css + * @css: css being destroyed + * + * @css is going away. Mark it dead and decrement system_freezing_count if + * it was holding one. + */ +static void freezer_css_offline(struct cgroup_subsys_state *css) +{ + struct freezer *freezer = css_freezer(css); + + mutex_lock(&freezer_mutex); + + if (freezer->state & CGROUP_FREEZING) + atomic_dec(&system_freezing_cnt); + + freezer->state = 0; + + mutex_unlock(&freezer_mutex); +} + +static void freezer_css_free(struct cgroup_subsys_state *css) +{ + kfree(css_freezer(css)); +} + +/* + * Tasks can be migrated into a different freezer anytime regardless of its + * current state. freezer_attach() is responsible for making new tasks + * conform to the current state. + * + * Freezer state changes and task migration are synchronized via + * @freezer->lock. freezer_attach() makes the new tasks conform to the + * current state and all following state changes can see the new tasks. + */ +static void freezer_attach(struct cgroup_taskset *tset) +{ + struct task_struct *task; + struct cgroup_subsys_state *new_css; + + mutex_lock(&freezer_mutex); + + /* + * Make the new tasks conform to the current state of @new_css. + * For simplicity, when migrating any task to a FROZEN cgroup, we + * revert it to FREEZING and let update_if_frozen() determine the + * correct state later. + * + * Tasks in @tset are on @new_css but may not conform to its + * current state before executing the following - !frozen tasks may + * be visible in a FROZEN cgroup and frozen tasks in a THAWED one. + */ + cgroup_taskset_for_each(task, new_css, tset) { + struct freezer *freezer = css_freezer(new_css); + + if (!(freezer->state & CGROUP_FREEZING)) { + __thaw_task(task); + } else { + freeze_task(task); + /* clear FROZEN and propagate upwards */ + while (freezer && (freezer->state & CGROUP_FROZEN)) { + freezer->state &= ~CGROUP_FROZEN; + freezer = parent_freezer(freezer); + } + } + } + + mutex_unlock(&freezer_mutex); +} + +/** + * freezer_fork - cgroup post fork callback + * @task: a task which has just been forked + * + * @task has just been created and should conform to the current state of + * the cgroup_freezer it belongs to. This function may race against + * freezer_attach(). Losing to freezer_attach() means that we don't have + * to do anything as freezer_attach() will put @task into the appropriate + * state. + */ +static void freezer_fork(struct task_struct *task) +{ + struct freezer *freezer; + + /* + * The root cgroup is non-freezable, so we can skip locking the + * freezer. This is safe regardless of race with task migration. + * If we didn't race or won, skipping is obviously the right thing + * to do. If we lost and root is the new cgroup, noop is still the + * right thing to do. + */ + if (task_css_is_root(task, freezer_cgrp_id)) + return; + + mutex_lock(&freezer_mutex); + rcu_read_lock(); + + freezer = task_freezer(task); + if (freezer->state & CGROUP_FREEZING) + freeze_task(task); + + rcu_read_unlock(); + mutex_unlock(&freezer_mutex); +} + +/** + * update_if_frozen - update whether a cgroup finished freezing + * @css: css of interest + * + * Once FREEZING is initiated, transition to FROZEN is lazily updated by + * calling this function. If the current state is FREEZING but not FROZEN, + * this function checks whether all tasks of this cgroup and the descendant + * cgroups finished freezing and, if so, sets FROZEN. + * + * The caller is responsible for grabbing RCU read lock and calling + * update_if_frozen() on all descendants prior to invoking this function. + * + * Task states and freezer state might disagree while tasks are being + * migrated into or out of @css, so we can't verify task states against + * @freezer state here. See freezer_attach() for details. + */ +static void update_if_frozen(struct cgroup_subsys_state *css) +{ + struct freezer *freezer = css_freezer(css); + struct cgroup_subsys_state *pos; + struct css_task_iter it; + struct task_struct *task; + + lockdep_assert_held(&freezer_mutex); + + if (!(freezer->state & CGROUP_FREEZING) || + (freezer->state & CGROUP_FROZEN)) + return; + + /* are all (live) children frozen? */ + rcu_read_lock(); + css_for_each_child(pos, css) { + struct freezer *child = css_freezer(pos); + + if ((child->state & CGROUP_FREEZER_ONLINE) && + !(child->state & CGROUP_FROZEN)) { + rcu_read_unlock(); + return; + } + } + rcu_read_unlock(); + + /* are all tasks frozen? */ + css_task_iter_start(css, &it); + + while ((task = css_task_iter_next(&it))) { + if (freezing(task)) { + /* + * freezer_should_skip() indicates that the task + * should be skipped when determining freezing + * completion. Consider it frozen in addition to + * the usual frozen condition. + */ + if (!frozen(task) && !freezer_should_skip(task)) + goto out_iter_end; + } + } + + freezer->state |= CGROUP_FROZEN; +out_iter_end: + css_task_iter_end(&it); +} + +static int freezer_read(struct seq_file *m, void *v) +{ + struct cgroup_subsys_state *css = seq_css(m), *pos; + + mutex_lock(&freezer_mutex); + rcu_read_lock(); + + /* update states bottom-up */ + css_for_each_descendant_post(pos, css) { + if (!css_tryget_online(pos)) + continue; + rcu_read_unlock(); + + update_if_frozen(pos); + + rcu_read_lock(); + css_put(pos); + } + + rcu_read_unlock(); + mutex_unlock(&freezer_mutex); + + seq_puts(m, freezer_state_strs(css_freezer(css)->state)); + seq_putc(m, '\n'); + return 0; +} + +static void freeze_cgroup(struct freezer *freezer) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&freezer->css, &it); + while ((task = css_task_iter_next(&it))) + freeze_task(task); + css_task_iter_end(&it); +} + +static void unfreeze_cgroup(struct freezer *freezer) +{ + struct css_task_iter it; + struct task_struct *task; + + css_task_iter_start(&freezer->css, &it); + while ((task = css_task_iter_next(&it))) + __thaw_task(task); + css_task_iter_end(&it); +} + +/** + * freezer_apply_state - apply state change to a single cgroup_freezer + * @freezer: freezer to apply state change to + * @freeze: whether to freeze or unfreeze + * @state: CGROUP_FREEZING_* flag to set or clear + * + * Set or clear @state on @cgroup according to @freeze, and perform + * freezing or thawing as necessary. + */ +static void freezer_apply_state(struct freezer *freezer, bool freeze, + unsigned int state) +{ + /* also synchronizes against task migration, see freezer_attach() */ + lockdep_assert_held(&freezer_mutex); + + if (!(freezer->state & CGROUP_FREEZER_ONLINE)) + return; + + if (freeze) { + if (!(freezer->state & CGROUP_FREEZING)) + atomic_inc(&system_freezing_cnt); + freezer->state |= state; + freeze_cgroup(freezer); + } else { + bool was_freezing = freezer->state & CGROUP_FREEZING; + + freezer->state &= ~state; + + if (!(freezer->state & CGROUP_FREEZING)) { + if (was_freezing) + atomic_dec(&system_freezing_cnt); + freezer->state &= ~CGROUP_FROZEN; + unfreeze_cgroup(freezer); + } + } +} + +/** + * freezer_change_state - change the freezing state of a cgroup_freezer + * @freezer: freezer of interest + * @freeze: whether to freeze or thaw + * + * Freeze or thaw @freezer according to @freeze. The operations are + * recursive - all descendants of @freezer will be affected. + */ +static void freezer_change_state(struct freezer *freezer, bool freeze) +{ + struct cgroup_subsys_state *pos; + + /* + * Update all its descendants in pre-order traversal. Each + * descendant will try to inherit its parent's FREEZING state as + * CGROUP_FREEZING_PARENT. + */ + mutex_lock(&freezer_mutex); + rcu_read_lock(); + css_for_each_descendant_pre(pos, &freezer->css) { + struct freezer *pos_f = css_freezer(pos); + struct freezer *parent = parent_freezer(pos_f); + + if (!css_tryget_online(pos)) + continue; + rcu_read_unlock(); + + if (pos_f == freezer) + freezer_apply_state(pos_f, freeze, + CGROUP_FREEZING_SELF); + else + freezer_apply_state(pos_f, + parent->state & CGROUP_FREEZING, + CGROUP_FREEZING_PARENT); + + rcu_read_lock(); + css_put(pos); + } + rcu_read_unlock(); + mutex_unlock(&freezer_mutex); +} + +static ssize_t freezer_write(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + bool freeze; + + buf = strstrip(buf); + + if (strcmp(buf, freezer_state_strs(0)) == 0) + freeze = false; + else if (strcmp(buf, freezer_state_strs(CGROUP_FROZEN)) == 0) + freeze = true; + else + return -EINVAL; + + freezer_change_state(css_freezer(of_css(of)), freeze); + return nbytes; +} + +static u64 freezer_self_freezing_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct freezer *freezer = css_freezer(css); + + return (bool)(freezer->state & CGROUP_FREEZING_SELF); +} + +static u64 freezer_parent_freezing_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct freezer *freezer = css_freezer(css); + + return (bool)(freezer->state & CGROUP_FREEZING_PARENT); +} + +static struct cftype files[] = { + { + .name = "state", + .flags = CFTYPE_NOT_ON_ROOT, + .seq_show = freezer_read, + .write = freezer_write, + }, + { + .name = "self_freezing", + .flags = CFTYPE_NOT_ON_ROOT, + .read_u64 = freezer_self_freezing_read, + }, + { + .name = "parent_freezing", + .flags = CFTYPE_NOT_ON_ROOT, + .read_u64 = freezer_parent_freezing_read, + }, + { } /* terminate */ +}; + +struct cgroup_subsys freezer_cgrp_subsys = { + .css_alloc = freezer_css_alloc, + .css_online = freezer_css_online, + .css_offline = freezer_css_offline, + .css_free = freezer_css_free, + .attach = freezer_attach, + .fork = freezer_fork, + .legacy_cftypes = files, +}; diff --git a/kernel/cgroup/namespace.c b/kernel/cgroup/namespace.c new file mode 100644 index 000000000000..cff7ea62c38f --- /dev/null +++ b/kernel/cgroup/namespace.c @@ -0,0 +1,155 @@ +#include "cgroup-internal.h" + +#include <linux/sched.h> +#include <linux/slab.h> +#include <linux/nsproxy.h> +#include <linux/proc_ns.h> + + +/* cgroup namespaces */ + +static struct ucounts *inc_cgroup_namespaces(struct user_namespace *ns) +{ + return inc_ucount(ns, current_euid(), UCOUNT_CGROUP_NAMESPACES); +} + +static void dec_cgroup_namespaces(struct ucounts *ucounts) +{ + dec_ucount(ucounts, UCOUNT_CGROUP_NAMESPACES); +} + +static struct cgroup_namespace *alloc_cgroup_ns(void) +{ + struct cgroup_namespace *new_ns; + int ret; + + new_ns = kzalloc(sizeof(struct cgroup_namespace), GFP_KERNEL); + if (!new_ns) + return ERR_PTR(-ENOMEM); + ret = ns_alloc_inum(&new_ns->ns); + if (ret) { + kfree(new_ns); + return ERR_PTR(ret); + } + atomic_set(&new_ns->count, 1); + new_ns->ns.ops = &cgroupns_operations; + return new_ns; +} + +void free_cgroup_ns(struct cgroup_namespace *ns) +{ + put_css_set(ns->root_cset); + dec_cgroup_namespaces(ns->ucounts); + put_user_ns(ns->user_ns); + ns_free_inum(&ns->ns); + kfree(ns); +} +EXPORT_SYMBOL(free_cgroup_ns); + +struct cgroup_namespace *copy_cgroup_ns(unsigned long flags, + struct user_namespace *user_ns, + struct cgroup_namespace *old_ns) +{ + struct cgroup_namespace *new_ns; + struct ucounts *ucounts; + struct css_set *cset; + + BUG_ON(!old_ns); + + if (!(flags & CLONE_NEWCGROUP)) { + get_cgroup_ns(old_ns); + return old_ns; + } + + /* Allow only sysadmin to create cgroup namespace. */ + if (!ns_capable(user_ns, CAP_SYS_ADMIN)) + return ERR_PTR(-EPERM); + + ucounts = inc_cgroup_namespaces(user_ns); + if (!ucounts) + return ERR_PTR(-ENOSPC); + + /* It is not safe to take cgroup_mutex here */ + spin_lock_irq(&css_set_lock); + cset = task_css_set(current); + get_css_set(cset); + spin_unlock_irq(&css_set_lock); + + new_ns = alloc_cgroup_ns(); + if (IS_ERR(new_ns)) { + put_css_set(cset); + dec_cgroup_namespaces(ucounts); + return new_ns; + } + + new_ns->user_ns = get_user_ns(user_ns); + new_ns->ucounts = ucounts; + new_ns->root_cset = cset; + + return new_ns; +} + +static inline struct cgroup_namespace *to_cg_ns(struct ns_common *ns) +{ + return container_of(ns, struct cgroup_namespace, ns); +} + +static int cgroupns_install(struct nsproxy *nsproxy, struct ns_common *ns) +{ + struct cgroup_namespace *cgroup_ns = to_cg_ns(ns); + + if (!ns_capable(current_user_ns(), CAP_SYS_ADMIN) || + !ns_capable(cgroup_ns->user_ns, CAP_SYS_ADMIN)) + return -EPERM; + + /* Don't need to do anything if we are attaching to our own cgroupns. */ + if (cgroup_ns == nsproxy->cgroup_ns) + return 0; + + get_cgroup_ns(cgroup_ns); + put_cgroup_ns(nsproxy->cgroup_ns); + nsproxy->cgroup_ns = cgroup_ns; + + return 0; +} + +static struct ns_common *cgroupns_get(struct task_struct *task) +{ + struct cgroup_namespace *ns = NULL; + struct nsproxy *nsproxy; + + task_lock(task); + nsproxy = task->nsproxy; + if (nsproxy) { + ns = nsproxy->cgroup_ns; + get_cgroup_ns(ns); + } + task_unlock(task); + + return ns ? &ns->ns : NULL; +} + +static void cgroupns_put(struct ns_common *ns) +{ + put_cgroup_ns(to_cg_ns(ns)); +} + +static struct user_namespace *cgroupns_owner(struct ns_common *ns) +{ + return to_cg_ns(ns)->user_ns; +} + +const struct proc_ns_operations cgroupns_operations = { + .name = "cgroup", + .type = CLONE_NEWCGROUP, + .get = cgroupns_get, + .put = cgroupns_put, + .install = cgroupns_install, + .owner = cgroupns_owner, +}; + +static __init int cgroup_namespaces_init(void) +{ + return 0; +} +subsys_initcall(cgroup_namespaces_init); diff --git a/kernel/cgroup/pids.c b/kernel/cgroup/pids.c new file mode 100644 index 000000000000..2bd673783f1a --- /dev/null +++ b/kernel/cgroup/pids.c @@ -0,0 +1,348 @@ +/* + * Process number limiting controller for cgroups. + * + * Used to allow a cgroup hierarchy to stop any new processes from fork()ing + * after a certain limit is reached. + * + * Since it is trivial to hit the task limit without hitting any kmemcg limits + * in place, PIDs are a fundamental resource. As such, PID exhaustion must be + * preventable in the scope of a cgroup hierarchy by allowing resource limiting + * of the number of tasks in a cgroup. + * + * In order to use the `pids` controller, set the maximum number of tasks in + * pids.max (this is not available in the root cgroup for obvious reasons). The + * number of processes currently in the cgroup is given by pids.current. + * Organisational operations are not blocked by cgroup policies, so it is + * possible to have pids.current > pids.max. However, it is not possible to + * violate a cgroup policy through fork(). fork() will return -EAGAIN if forking + * would cause a cgroup policy to be violated. + * + * To set a cgroup to have no limit, set pids.max to "max". This is the default + * for all new cgroups (N.B. that PID limits are hierarchical, so the most + * stringent limit in the hierarchy is followed). + * + * pids.current tracks all child cgroup hierarchies, so parent/pids.current is + * a superset of parent/child/pids.current. + * + * Copyright (C) 2015 Aleksa Sarai <cyphar@cyphar.com> + * + * This file is subject to the terms and conditions of version 2 of the GNU + * General Public License. See the file COPYING in the main directory of the + * Linux distribution for more details. + */ + +#include <linux/kernel.h> +#include <linux/threads.h> +#include <linux/atomic.h> +#include <linux/cgroup.h> +#include <linux/slab.h> + +#define PIDS_MAX (PID_MAX_LIMIT + 1ULL) +#define PIDS_MAX_STR "max" + +struct pids_cgroup { + struct cgroup_subsys_state css; + + /* + * Use 64-bit types so that we can safely represent "max" as + * %PIDS_MAX = (%PID_MAX_LIMIT + 1). + */ + atomic64_t counter; + int64_t limit; + + /* Handle for "pids.events" */ + struct cgroup_file events_file; + + /* Number of times fork failed because limit was hit. */ + atomic64_t events_limit; +}; + +static struct pids_cgroup *css_pids(struct cgroup_subsys_state *css) +{ + return container_of(css, struct pids_cgroup, css); +} + +static struct pids_cgroup *parent_pids(struct pids_cgroup *pids) +{ + return css_pids(pids->css.parent); +} + +static struct cgroup_subsys_state * +pids_css_alloc(struct cgroup_subsys_state *parent) +{ + struct pids_cgroup *pids; + + pids = kzalloc(sizeof(struct pids_cgroup), GFP_KERNEL); + if (!pids) + return ERR_PTR(-ENOMEM); + + pids->limit = PIDS_MAX; + atomic64_set(&pids->counter, 0); + atomic64_set(&pids->events_limit, 0); + return &pids->css; +} + +static void pids_css_free(struct cgroup_subsys_state *css) +{ + kfree(css_pids(css)); +} + +/** + * pids_cancel - uncharge the local pid count + * @pids: the pid cgroup state + * @num: the number of pids to cancel + * + * This function will WARN if the pid count goes under 0, because such a case is + * a bug in the pids controller proper. + */ +static void pids_cancel(struct pids_cgroup *pids, int num) +{ + /* + * A negative count (or overflow for that matter) is invalid, + * and indicates a bug in the `pids` controller proper. + */ + WARN_ON_ONCE(atomic64_add_negative(-num, &pids->counter)); +} + +/** + * pids_uncharge - hierarchically uncharge the pid count + * @pids: the pid cgroup state + * @num: the number of pids to uncharge + */ +static void pids_uncharge(struct pids_cgroup *pids, int num) +{ + struct pids_cgroup *p; + + for (p = pids; parent_pids(p); p = parent_pids(p)) + pids_cancel(p, num); +} + +/** + * pids_charge - hierarchically charge the pid count + * @pids: the pid cgroup state + * @num: the number of pids to charge + * + * This function does *not* follow the pid limit set. It cannot fail and the new + * pid count may exceed the limit. This is only used for reverting failed + * attaches, where there is no other way out than violating the limit. + */ +static void pids_charge(struct pids_cgroup *pids, int num) +{ + struct pids_cgroup *p; + + for (p = pids; parent_pids(p); p = parent_pids(p)) + atomic64_add(num, &p->counter); +} + +/** + * pids_try_charge - hierarchically try to charge the pid count + * @pids: the pid cgroup state + * @num: the number of pids to charge + * + * This function follows the set limit. It will fail if the charge would cause + * the new value to exceed the hierarchical limit. Returns 0 if the charge + * succeeded, otherwise -EAGAIN. + */ +static int pids_try_charge(struct pids_cgroup *pids, int num) +{ + struct pids_cgroup *p, *q; + + for (p = pids; parent_pids(p); p = parent_pids(p)) { + int64_t new = atomic64_add_return(num, &p->counter); + + /* + * Since new is capped to the maximum number of pid_t, if + * p->limit is %PIDS_MAX then we know that this test will never + * fail. + */ + if (new > p->limit) + goto revert; + } + + return 0; + +revert: + for (q = pids; q != p; q = parent_pids(q)) + pids_cancel(q, num); + pids_cancel(p, num); + + return -EAGAIN; +} + +static int pids_can_attach(struct cgroup_taskset *tset) +{ + struct task_struct *task; + struct cgroup_subsys_state *dst_css; + + cgroup_taskset_for_each(task, dst_css, tset) { + struct pids_cgroup *pids = css_pids(dst_css); + struct cgroup_subsys_state *old_css; + struct pids_cgroup *old_pids; + + /* + * No need to pin @old_css between here and cancel_attach() + * because cgroup core protects it from being freed before + * the migration completes or fails. + */ + old_css = task_css(task, pids_cgrp_id); + old_pids = css_pids(old_css); + + pids_charge(pids, 1); + pids_uncharge(old_pids, 1); + } + + return 0; +} + +static void pids_cancel_attach(struct cgroup_taskset *tset) +{ + struct task_struct *task; + struct cgroup_subsys_state *dst_css; + + cgroup_taskset_for_each(task, dst_css, tset) { + struct pids_cgroup *pids = css_pids(dst_css); + struct cgroup_subsys_state *old_css; + struct pids_cgroup *old_pids; + + old_css = task_css(task, pids_cgrp_id); + old_pids = css_pids(old_css); + + pids_charge(old_pids, 1); + pids_uncharge(pids, 1); + } +} + +/* + * task_css_check(true) in pids_can_fork() and pids_cancel_fork() relies + * on threadgroup_change_begin() held by the copy_process(). + */ +static int pids_can_fork(struct task_struct *task) +{ + struct cgroup_subsys_state *css; + struct pids_cgroup *pids; + int err; + + css = task_css_check(current, pids_cgrp_id, true); + pids = css_pids(css); + err = pids_try_charge(pids, 1); + if (err) { + /* Only log the first time events_limit is incremented. */ + if (atomic64_inc_return(&pids->events_limit) == 1) { + pr_info("cgroup: fork rejected by pids controller in "); + pr_cont_cgroup_path(task_cgroup(current, pids_cgrp_id)); + pr_cont("\n"); + } + cgroup_file_notify(&pids->events_file); + } + return err; +} + +static void pids_cancel_fork(struct task_struct *task) +{ + struct cgroup_subsys_state *css; + struct pids_cgroup *pids; + + css = task_css_check(current, pids_cgrp_id, true); + pids = css_pids(css); + pids_uncharge(pids, 1); +} + +static void pids_free(struct task_struct *task) +{ + struct pids_cgroup *pids = css_pids(task_css(task, pids_cgrp_id)); + + pids_uncharge(pids, 1); +} + +static ssize_t pids_max_write(struct kernfs_open_file *of, char *buf, + size_t nbytes, loff_t off) +{ + struct cgroup_subsys_state *css = of_css(of); + struct pids_cgroup *pids = css_pids(css); + int64_t limit; + int err; + + buf = strstrip(buf); + if (!strcmp(buf, PIDS_MAX_STR)) { + limit = PIDS_MAX; + goto set_limit; + } + + err = kstrtoll(buf, 0, &limit); + if (err) + return err; + + if (limit < 0 || limit >= PIDS_MAX) + return -EINVAL; + +set_limit: + /* + * Limit updates don't need to be mutex'd, since it isn't + * critical that any racing fork()s follow the new limit. + */ + pids->limit = limit; + return nbytes; +} + +static int pids_max_show(struct seq_file *sf, void *v) +{ + struct cgroup_subsys_state *css = seq_css(sf); + struct pids_cgroup *pids = css_pids(css); + int64_t limit = pids->limit; + + if (limit >= PIDS_MAX) + seq_printf(sf, "%s\n", PIDS_MAX_STR); + else + seq_printf(sf, "%lld\n", limit); + + return 0; +} + +static s64 pids_current_read(struct cgroup_subsys_state *css, + struct cftype *cft) +{ + struct pids_cgroup *pids = css_pids(css); + + return atomic64_read(&pids->counter); +} + +static int pids_events_show(struct seq_file *sf, void *v) +{ + struct pids_cgroup *pids = css_pids(seq_css(sf)); + + seq_printf(sf, "max %lld\n", (s64)atomic64_read(&pids->events_limit)); + return 0; +} + +static struct cftype pids_files[] = { + { + .name = "max", + .write = pids_max_write, + .seq_show = pids_max_show, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "current", + .read_s64 = pids_current_read, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "events", + .seq_show = pids_events_show, + .file_offset = offsetof(struct pids_cgroup, events_file), + .flags = CFTYPE_NOT_ON_ROOT, + }, + { } /* terminate */ +}; + +struct cgroup_subsys pids_cgrp_subsys = { + .css_alloc = pids_css_alloc, + .css_free = pids_css_free, + .can_attach = pids_can_attach, + .cancel_attach = pids_cancel_attach, + .can_fork = pids_can_fork, + .cancel_fork = pids_cancel_fork, + .free = pids_free, + .legacy_cftypes = pids_files, + .dfl_cftypes = pids_files, +}; diff --git a/kernel/cgroup/rdma.c b/kernel/cgroup/rdma.c new file mode 100644 index 000000000000..defad3c5e7dc --- /dev/null +++ b/kernel/cgroup/rdma.c @@ -0,0 +1,619 @@ +/* + * RDMA resource limiting controller for cgroups. + * + * Used to allow a cgroup hierarchy to stop processes from consuming + * additional RDMA resources after a certain limit is reached. + * + * Copyright (C) 2016 Parav Pandit <pandit.parav@gmail.com> + * + * This file is subject to the terms and conditions of version 2 of the GNU + * General Public License. See the file COPYING in the main directory of the + * Linux distribution for more details. + */ + +#include <linux/bitops.h> +#include <linux/slab.h> +#include <linux/seq_file.h> +#include <linux/cgroup.h> +#include <linux/parser.h> +#include <linux/cgroup_rdma.h> + +#define RDMACG_MAX_STR "max" + +/* + * Protects list of resource pools maintained on per cgroup basis + * and rdma device list. + */ +static DEFINE_MUTEX(rdmacg_mutex); +static LIST_HEAD(rdmacg_devices); + +enum rdmacg_file_type { + RDMACG_RESOURCE_TYPE_MAX, + RDMACG_RESOURCE_TYPE_STAT, +}; + +/* + * resource table definition as to be seen by the user. + * Need to add entries to it when more resources are + * added/defined at IB verb/core layer. + */ +static char const *rdmacg_resource_names[] = { + [RDMACG_RESOURCE_HCA_HANDLE] = "hca_handle", + [RDMACG_RESOURCE_HCA_OBJECT] = "hca_object", +}; + +/* resource tracker for each resource of rdma cgroup */ +struct rdmacg_resource { + int max; + int usage; +}; + +/* + * resource pool object which represents per cgroup, per device + * resources. There are multiple instances of this object per cgroup, + * therefore it cannot be embedded within rdma_cgroup structure. It + * is maintained as list. + */ +struct rdmacg_resource_pool { + struct rdmacg_device *device; + struct rdmacg_resource resources[RDMACG_RESOURCE_MAX]; + + struct list_head cg_node; + struct list_head dev_node; + + /* count active user tasks of this pool */ + u64 usage_sum; + /* total number counts which are set to max */ + int num_max_cnt; +}; + +static struct rdma_cgroup *css_rdmacg(struct cgroup_subsys_state *css) +{ + return container_of(css, struct rdma_cgroup, css); +} + +static struct rdma_cgroup *parent_rdmacg(struct rdma_cgroup *cg) +{ + return css_rdmacg(cg->css.parent); +} + +static inline struct rdma_cgroup *get_current_rdmacg(void) +{ + return css_rdmacg(task_get_css(current, rdma_cgrp_id)); +} + +static void set_resource_limit(struct rdmacg_resource_pool *rpool, + int index, int new_max) +{ + if (new_max == S32_MAX) { + if (rpool->resources[index].max != S32_MAX) + rpool->num_max_cnt++; + } else { + if (rpool->resources[index].max == S32_MAX) + rpool->num_max_cnt--; + } + rpool->resources[index].max = new_max; +} + +static void set_all_resource_max_limit(struct rdmacg_resource_pool *rpool) +{ + int i; + + for (i = 0; i < RDMACG_RESOURCE_MAX; i++) + set_resource_limit(rpool, i, S32_MAX); +} + +static void free_cg_rpool_locked(struct rdmacg_resource_pool *rpool) +{ + lockdep_assert_held(&rdmacg_mutex); + + list_del(&rpool->cg_node); + list_del(&rpool->dev_node); + kfree(rpool); +} + +static struct rdmacg_resource_pool * +find_cg_rpool_locked(struct rdma_cgroup *cg, + struct rdmacg_device *device) + +{ + struct rdmacg_resource_pool *pool; + + lockdep_assert_held(&rdmacg_mutex); + + list_for_each_entry(pool, &cg->rpools, cg_node) + if (pool->device == device) + return pool; + + return NULL; +} + +static struct rdmacg_resource_pool * +get_cg_rpool_locked(struct rdma_cgroup *cg, struct rdmacg_device *device) +{ + struct rdmacg_resource_pool *rpool; + + rpool = find_cg_rpool_locked(cg, device); + if (rpool) + return rpool; + + rpool = kzalloc(sizeof(*rpool), GFP_KERNEL); + if (!rpool) + return ERR_PTR(-ENOMEM); + + rpool->device = device; + set_all_resource_max_limit(rpool); + + INIT_LIST_HEAD(&rpool->cg_node); + INIT_LIST_HEAD(&rpool->dev_node); + list_add_tail(&rpool->cg_node, &cg->rpools); + list_add_tail(&rpool->dev_node, &device->rpools); + return rpool; +} + +/** + * uncharge_cg_locked - uncharge resource for rdma cgroup + * @cg: pointer to cg to uncharge and all parents in hierarchy + * @device: pointer to rdmacg device + * @index: index of the resource to uncharge in cg (resource pool) + * + * It also frees the resource pool which was created as part of + * charging operation when there are no resources attached to + * resource pool. + */ +static void +uncharge_cg_locked(struct rdma_cgroup *cg, + struct rdmacg_device *device, + enum rdmacg_resource_type index) +{ + struct rdmacg_resource_pool *rpool; + + rpool = find_cg_rpool_locked(cg, device); + + /* + * rpool cannot be null at this stage. Let kernel operate in case + * if there a bug in IB stack or rdma controller, instead of crashing + * the system. + */ + if (unlikely(!rpool)) { + pr_warn("Invalid device %p or rdma cgroup %p\n", cg, device); + return; + } + + rpool->resources[index].usage--; + + /* + * A negative count (or overflow) is invalid, + * it indicates a bug in the rdma controller. + */ + WARN_ON_ONCE(rpool->resources[index].usage < 0); + rpool->usage_sum--; + if (rpool->usage_sum == 0 && + rpool->num_max_cnt == RDMACG_RESOURCE_MAX) { + /* + * No user of the rpool and all entries are set to max, so + * safe to delete this rpool. + */ + free_cg_rpool_locked(rpool); + } +} + +/** + * rdmacg_uncharge_hierarchy - hierarchically uncharge rdma resource count + * @device: pointer to rdmacg device + * @stop_cg: while traversing hirerchy, when meet with stop_cg cgroup + * stop uncharging + * @index: index of the resource to uncharge in cg in given resource pool + */ +static void rdmacg_uncharge_hierarchy(struct rdma_cgroup *cg, + struct rdmacg_device *device, + struct rdma_cgroup *stop_cg, + enum rdmacg_resource_type index) +{ + struct rdma_cgroup *p; + + mutex_lock(&rdmacg_mutex); + + for (p = cg; p != stop_cg; p = parent_rdmacg(p)) + uncharge_cg_locked(p, device, index); + + mutex_unlock(&rdmacg_mutex); + + css_put(&cg->css); +} + +/** + * rdmacg_uncharge - hierarchically uncharge rdma resource count + * @device: pointer to rdmacg device + * @index: index of the resource to uncharge in cgroup in given resource pool + */ +void rdmacg_uncharge(struct rdma_cgroup *cg, + struct rdmacg_device *device, + enum rdmacg_resource_type index) +{ + if (index >= RDMACG_RESOURCE_MAX) + return; + + rdmacg_uncharge_hierarchy(cg, device, NULL, index); +} +EXPORT_SYMBOL(rdmacg_uncharge); + +/** + * rdmacg_try_charge - hierarchically try to charge the rdma resource + * @rdmacg: pointer to rdma cgroup which will own this resource + * @device: pointer to rdmacg device + * @index: index of the resource to charge in cgroup (resource pool) + * + * This function follows charging resource in hierarchical way. + * It will fail if the charge would cause the new value to exceed the + * hierarchical limit. + * Returns 0 if the charge succeded, otherwise -EAGAIN, -ENOMEM or -EINVAL. + * Returns pointer to rdmacg for this resource when charging is successful. + * + * Charger needs to account resources on two criteria. + * (a) per cgroup & (b) per device resource usage. + * Per cgroup resource usage ensures that tasks of cgroup doesn't cross + * the configured limits. Per device provides granular configuration + * in multi device usage. It allocates resource pool in the hierarchy + * for each parent it come across for first resource. Later on resource + * pool will be available. Therefore it will be much faster thereon + * to charge/uncharge. + */ +int rdmacg_try_charge(struct rdma_cgroup **rdmacg, + struct rdmacg_device *device, + enum rdmacg_resource_type index) +{ + struct rdma_cgroup *cg, *p; + struct rdmacg_resource_pool *rpool; + s64 new; + int ret = 0; + + if (index >= RDMACG_RESOURCE_MAX) + return -EINVAL; + + /* + * hold on to css, as cgroup can be removed but resource + * accounting happens on css. + */ + cg = get_current_rdmacg(); + + mutex_lock(&rdmacg_mutex); + for (p = cg; p; p = parent_rdmacg(p)) { + rpool = get_cg_rpool_locked(p, device); + if (IS_ERR(rpool)) { + ret = PTR_ERR(rpool); + goto err; + } else { + new = rpool->resources[index].usage + 1; + if (new > rpool->resources[index].max) { + ret = -EAGAIN; + goto err; + } else { + rpool->resources[index].usage = new; + rpool->usage_sum++; + } + } + } + mutex_unlock(&rdmacg_mutex); + + *rdmacg = cg; + return 0; + +err: + mutex_unlock(&rdmacg_mutex); + rdmacg_uncharge_hierarchy(cg, device, p, index); + return ret; +} +EXPORT_SYMBOL(rdmacg_try_charge); + +/** + * rdmacg_register_device - register rdmacg device to rdma controller. + * @device: pointer to rdmacg device whose resources need to be accounted. + * + * If IB stack wish a device to participate in rdma cgroup resource + * tracking, it must invoke this API to register with rdma cgroup before + * any user space application can start using the RDMA resources. + * Returns 0 on success or EINVAL when table length given is beyond + * supported size. + */ +int rdmacg_register_device(struct rdmacg_device *device) +{ + INIT_LIST_HEAD(&device->dev_node); + INIT_LIST_HEAD(&device->rpools); + + mutex_lock(&rdmacg_mutex); + list_add_tail(&device->dev_node, &rdmacg_devices); + mutex_unlock(&rdmacg_mutex); + return 0; +} +EXPORT_SYMBOL(rdmacg_register_device); + +/** + * rdmacg_unregister_device - unregister rdmacg device from rdma controller. + * @device: pointer to rdmacg device which was previously registered with rdma + * controller using rdmacg_register_device(). + * + * IB stack must invoke this after all the resources of the IB device + * are destroyed and after ensuring that no more resources will be created + * when this API is invoked. + */ +void rdmacg_unregister_device(struct rdmacg_device *device) +{ + struct rdmacg_resource_pool *rpool, *tmp; + + /* + * Synchronize with any active resource settings, + * usage query happening via configfs. + */ + mutex_lock(&rdmacg_mutex); + list_del_init(&device->dev_node); + + /* + * Now that this device is off the cgroup list, its safe to free + * all the rpool resources. + */ + list_for_each_entry_safe(rpool, tmp, &device->rpools, dev_node) + free_cg_rpool_locked(rpool); + + mutex_unlock(&rdmacg_mutex); +} +EXPORT_SYMBOL(rdmacg_unregister_device); + +static int parse_resource(char *c, int *intval) +{ + substring_t argstr; + const char **table = &rdmacg_resource_names[0]; + char *name, *value = c; + size_t len; + int ret, i = 0; + + name = strsep(&value, "="); + if (!name || !value) + return -EINVAL; + + len = strlen(value); + + for (i = 0; i < RDMACG_RESOURCE_MAX; i++) { + if (strcmp(table[i], name)) + continue; + + argstr.from = value; + argstr.to = value + len; + + ret = match_int(&argstr, intval); + if (ret >= 0) { + if (*intval < 0) + break; + return i; + } + if (strncmp(value, RDMACG_MAX_STR, len) == 0) { + *intval = S32_MAX; + return i; + } + break; + } + return -EINVAL; +} + +static int rdmacg_parse_limits(char *options, + int *new_limits, unsigned long *enables) +{ + char *c; + int err = -EINVAL; + + /* parse resource options */ + while ((c = strsep(&options, " ")) != NULL) { + int index, intval; + + index = parse_resource(c, &intval); + if (index < 0) + goto err; + + new_limits[index] = intval; + *enables |= BIT(index); + } + return 0; + +err: + return err; +} + +static struct rdmacg_device *rdmacg_get_device_locked(const char *name) +{ + struct rdmacg_device *device; + + lockdep_assert_held(&rdmacg_mutex); + + list_for_each_entry(device, &rdmacg_devices, dev_node) + if (!strcmp(name, device->name)) + return device; + + return NULL; +} + +static ssize_t rdmacg_resource_set_max(struct kernfs_open_file *of, + char *buf, size_t nbytes, loff_t off) +{ + struct rdma_cgroup *cg = css_rdmacg(of_css(of)); + const char *dev_name; + struct rdmacg_resource_pool *rpool; + struct rdmacg_device *device; + char *options = strstrip(buf); + int *new_limits; + unsigned long enables = 0; + int i = 0, ret = 0; + + /* extract the device name first */ + dev_name = strsep(&options, " "); + if (!dev_name) { + ret = -EINVAL; + goto err; + } + + new_limits = kcalloc(RDMACG_RESOURCE_MAX, sizeof(int), GFP_KERNEL); + if (!new_limits) { + ret = -ENOMEM; + goto err; + } + + ret = rdmacg_parse_limits(options, new_limits, &enables); + if (ret) + goto parse_err; + + /* acquire lock to synchronize with hot plug devices */ + mutex_lock(&rdmacg_mutex); + + device = rdmacg_get_device_locked(dev_name); + if (!device) { + ret = -ENODEV; + goto dev_err; + } + + rpool = get_cg_rpool_locked(cg, device); + if (IS_ERR(rpool)) { + ret = PTR_ERR(rpool); + goto dev_err; + } + + /* now set the new limits of the rpool */ + for_each_set_bit(i, &enables, RDMACG_RESOURCE_MAX) + set_resource_limit(rpool, i, new_limits[i]); + + if (rpool->usage_sum == 0 && + rpool->num_max_cnt == RDMACG_RESOURCE_MAX) { + /* + * No user of the rpool and all entries are set to max, so + * safe to delete this rpool. + */ + free_cg_rpool_locked(rpool); + } + +dev_err: + mutex_unlock(&rdmacg_mutex); + +parse_err: + kfree(new_limits); + +err: + return ret ?: nbytes; +} + +static void print_rpool_values(struct seq_file *sf, + struct rdmacg_resource_pool *rpool) +{ + enum rdmacg_file_type sf_type; + int i; + u32 value; + + sf_type = seq_cft(sf)->private; + + for (i = 0; i < RDMACG_RESOURCE_MAX; i++) { + seq_puts(sf, rdmacg_resource_names[i]); + seq_putc(sf, '='); + if (sf_type == RDMACG_RESOURCE_TYPE_MAX) { + if (rpool) + value = rpool->resources[i].max; + else + value = S32_MAX; + } else { + if (rpool) + value = rpool->resources[i].usage; + else + value = 0; + } + + if (value == S32_MAX) + seq_puts(sf, RDMACG_MAX_STR); + else + seq_printf(sf, "%d", value); + seq_putc(sf, ' '); + } +} + +static int rdmacg_resource_read(struct seq_file *sf, void *v) +{ + struct rdmacg_device *device; + struct rdmacg_resource_pool *rpool; + struct rdma_cgroup *cg = css_rdmacg(seq_css(sf)); + + mutex_lock(&rdmacg_mutex); + + list_for_each_entry(device, &rdmacg_devices, dev_node) { + seq_printf(sf, "%s ", device->name); + + rpool = find_cg_rpool_locked(cg, device); + print_rpool_values(sf, rpool); + + seq_putc(sf, '\n'); + } + + mutex_unlock(&rdmacg_mutex); + return 0; +} + +static struct cftype rdmacg_files[] = { + { + .name = "max", + .write = rdmacg_resource_set_max, + .seq_show = rdmacg_resource_read, + .private = RDMACG_RESOURCE_TYPE_MAX, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { + .name = "current", + .seq_show = rdmacg_resource_read, + .private = RDMACG_RESOURCE_TYPE_STAT, + .flags = CFTYPE_NOT_ON_ROOT, + }, + { } /* terminate */ +}; + +static struct cgroup_subsys_state * +rdmacg_css_alloc(struct cgroup_subsys_state *parent) +{ + struct rdma_cgroup *cg; + + cg = kzalloc(sizeof(*cg), GFP_KERNEL); + if (!cg) + return ERR_PTR(-ENOMEM); + + INIT_LIST_HEAD(&cg->rpools); + return &cg->css; +} + +static void rdmacg_css_free(struct cgroup_subsys_state *css) +{ + struct rdma_cgroup *cg = css_rdmacg(css); + + kfree(cg); +} + +/** + * rdmacg_css_offline - cgroup css_offline callback + * @css: css of interest + * + * This function is called when @css is about to go away and responsible + * for shooting down all rdmacg associated with @css. As part of that it + * marks all the resource pool entries to max value, so that when resources are + * uncharged, associated resource pool can be freed as well. + */ +static void rdmacg_css_offline(struct cgroup_subsys_state *css) +{ + struct rdma_cgroup *cg = css_rdmacg(css); + struct rdmacg_resource_pool *rpool; + + mutex_lock(&rdmacg_mutex); + + list_for_each_entry(rpool, &cg->rpools, cg_node) + set_all_resource_max_limit(rpool); + + mutex_unlock(&rdmacg_mutex); +} + +struct cgroup_subsys rdma_cgrp_subsys = { + .css_alloc = rdmacg_css_alloc, + .css_free = rdmacg_css_free, + .css_offline = rdmacg_css_offline, + .legacy_cftypes = rdmacg_files, + .dfl_cftypes = rdmacg_files, +}; |