summaryrefslogtreecommitdiffstats
path: root/kernel/sched/fair.c
diff options
context:
space:
mode:
authorLinus Torvalds <torvalds@linux-foundation.org>2024-09-19 15:55:58 +0200
committerLinus Torvalds <torvalds@linux-foundation.org>2024-09-19 15:55:58 +0200
commit2004cef11ea072838f99bd95cefa5c8e45df0847 (patch)
treed7162235ad3c3985abbb5233657eef0c03819b28 /kernel/sched/fair.c
parentMerge tag 'Smack-for-6.12' of https://github.com/cschaufler/smack-next (diff)
parentsched/cpufreq: Use NSEC_PER_MSEC for deadline task (diff)
downloadlinux-2004cef11ea072838f99bd95cefa5c8e45df0847.tar.xz
linux-2004cef11ea072838f99bd95cefa5c8e45df0847.zip
Merge tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
Pull scheduler updates from Ingo Molnar: - Implement the SCHED_DEADLINE server infrastructure - Daniel Bristot de Oliveira's last major contribution to the kernel: "SCHED_DEADLINE servers can help fixing starvation issues of low priority tasks (e.g., SCHED_OTHER) when higher priority tasks monopolize CPU cycles. Today we have RT Throttling; DEADLINE servers should be able to replace and improve that." (Daniel Bristot de Oliveira, Peter Zijlstra, Joel Fernandes, Youssef Esmat, Huang Shijie) - Preparatory changes for sched_ext integration: - Use set_next_task(.first) where required - Fix up set_next_task() implementations - Clean up DL server vs. core sched - Split up put_prev_task_balance() - Rework pick_next_task() - Combine the last put_prev_task() and the first set_next_task() - Rework dl_server - Add put_prev_task(.next) (Peter Zijlstra, with a fix by Tejun Heo) - Complete the EEVDF transition and refine EEVDF scheduling: - Implement delayed dequeue - Allow shorter slices to wakeup-preempt - Use sched_attr::sched_runtime to set request/slice suggestion - Document the new feature flags - Remove unused and duplicate-functionality fields - Simplify & unify pick_next_task_fair() - Misc debuggability enhancements (Peter Zijlstra, with fixes/cleanups by Dietmar Eggemann, Valentin Schneider and Chuyi Zhou) - Initialize the vruntime of a new task when it is first enqueued, resulting in significant decrease in latency of newly woken tasks (Zhang Qiao) - Introduce SM_IDLE and an idle re-entry fast-path in __schedule() (K Prateek Nayak, Peter Zijlstra) - Clean up and clarify the usage of Clean up usage of rt_task() (Qais Yousef) - Preempt SCHED_IDLE entities in strict cgroup hierarchies (Tianchen Ding) - Clarify the documentation of time units for deadline scheduler parameters (Christian Loehle) - Remove the HZ_BW chicken-bit feature flag introduced a year ago, the original change seems to be working fine (Phil Auld) - Misc fixes and cleanups (Chen Yu, Dan Carpenter, Huang Shijie, Peilin He, Qais Yousefm and Vincent Guittot) * tag 'sched-core-2024-09-19' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip: (64 commits) sched/cpufreq: Use NSEC_PER_MSEC for deadline task cpufreq/cppc: Use NSEC_PER_MSEC for deadline task sched/deadline: Clarify nanoseconds in uapi sched/deadline: Convert schedtool example to chrt sched/debug: Fix the runnable tasks output sched: Fix sched_delayed vs sched_core kernel/sched: Fix util_est accounting for DELAY_DEQUEUE kthread: Fix task state in kthread worker if being frozen sched/pelt: Use rq_clock_task() for hw_pressure sched/fair: Move effective_cpu_util() and effective_cpu_util() in fair.c sched/core: Introduce SM_IDLE and an idle re-entry fast-path in __schedule() sched: Add put_prev_task(.next) sched: Rework dl_server sched: Combine the last put_prev_task() and the first set_next_task() sched: Rework pick_next_task() sched: Split up put_prev_task_balance() sched: Clean up DL server vs core sched sched: Fixup set_next_task() implementations sched: Use set_next_task(.first) where required sched/fair: Properly deactivate sched_delayed task upon class change ...
Diffstat (limited to 'kernel/sched/fair.c')
-rw-r--r--kernel/sched/fair.c770
1 files changed, 580 insertions, 190 deletions
diff --git a/kernel/sched/fair.c b/kernel/sched/fair.c
index 8dc9385f6da4..b9784e13e6b6 100644
--- a/kernel/sched/fair.c
+++ b/kernel/sched/fair.c
@@ -511,7 +511,7 @@ static int cfs_rq_is_idle(struct cfs_rq *cfs_rq)
static int se_is_idle(struct sched_entity *se)
{
- return 0;
+ return task_has_idle_policy(task_of(se));
}
#endif /* CONFIG_FAIR_GROUP_SCHED */
@@ -779,8 +779,22 @@ static void update_min_vruntime(struct cfs_rq *cfs_rq)
}
/* ensure we never gain time by being placed backwards. */
- u64_u32_store(cfs_rq->min_vruntime,
- __update_min_vruntime(cfs_rq, vruntime));
+ cfs_rq->min_vruntime = __update_min_vruntime(cfs_rq, vruntime);
+}
+
+static inline u64 cfs_rq_min_slice(struct cfs_rq *cfs_rq)
+{
+ struct sched_entity *root = __pick_root_entity(cfs_rq);
+ struct sched_entity *curr = cfs_rq->curr;
+ u64 min_slice = ~0ULL;
+
+ if (curr && curr->on_rq)
+ min_slice = curr->slice;
+
+ if (root)
+ min_slice = min(min_slice, root->min_slice);
+
+ return min_slice;
}
static inline bool __entity_less(struct rb_node *a, const struct rb_node *b)
@@ -799,19 +813,34 @@ static inline void __min_vruntime_update(struct sched_entity *se, struct rb_node
}
}
+static inline void __min_slice_update(struct sched_entity *se, struct rb_node *node)
+{
+ if (node) {
+ struct sched_entity *rse = __node_2_se(node);
+ if (rse->min_slice < se->min_slice)
+ se->min_slice = rse->min_slice;
+ }
+}
+
/*
* se->min_vruntime = min(se->vruntime, {left,right}->min_vruntime)
*/
static inline bool min_vruntime_update(struct sched_entity *se, bool exit)
{
u64 old_min_vruntime = se->min_vruntime;
+ u64 old_min_slice = se->min_slice;
struct rb_node *node = &se->run_node;
se->min_vruntime = se->vruntime;
__min_vruntime_update(se, node->rb_right);
__min_vruntime_update(se, node->rb_left);
- return se->min_vruntime == old_min_vruntime;
+ se->min_slice = se->slice;
+ __min_slice_update(se, node->rb_right);
+ __min_slice_update(se, node->rb_left);
+
+ return se->min_vruntime == old_min_vruntime &&
+ se->min_slice == old_min_slice;
}
RB_DECLARE_CALLBACKS(static, min_vruntime_cb, struct sched_entity,
@@ -824,6 +853,7 @@ static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
avg_vruntime_add(cfs_rq, se);
se->min_vruntime = se->vruntime;
+ se->min_slice = se->slice;
rb_add_augmented_cached(&se->run_node, &cfs_rq->tasks_timeline,
__entity_less, &min_vruntime_cb);
}
@@ -974,17 +1004,18 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se);
* XXX: strictly: vd_i += N*r_i/w_i such that: vd_i > ve_i
* this is probably good enough.
*/
-static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
+static bool update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
{
if ((s64)(se->vruntime - se->deadline) < 0)
- return;
+ return false;
/*
* For EEVDF the virtual time slope is determined by w_i (iow.
* nice) while the request time r_i is determined by
* sysctl_sched_base_slice.
*/
- se->slice = sysctl_sched_base_slice;
+ if (!se->custom_slice)
+ se->slice = sysctl_sched_base_slice;
/*
* EEVDF: vd_i = ve_i + r_i / w_i
@@ -994,10 +1025,7 @@ static void update_deadline(struct cfs_rq *cfs_rq, struct sched_entity *se)
/*
* The task has consumed its request, reschedule.
*/
- if (cfs_rq->nr_running > 1) {
- resched_curr(rq_of(cfs_rq));
- clear_buddies(cfs_rq, se);
- }
+ return true;
}
#include "pelt.h"
@@ -1135,6 +1163,38 @@ static inline void update_curr_task(struct task_struct *p, s64 delta_exec)
dl_server_update(p->dl_server, delta_exec);
}
+static inline bool did_preempt_short(struct cfs_rq *cfs_rq, struct sched_entity *curr)
+{
+ if (!sched_feat(PREEMPT_SHORT))
+ return false;
+
+ if (curr->vlag == curr->deadline)
+ return false;
+
+ return !entity_eligible(cfs_rq, curr);
+}
+
+static inline bool do_preempt_short(struct cfs_rq *cfs_rq,
+ struct sched_entity *pse, struct sched_entity *se)
+{
+ if (!sched_feat(PREEMPT_SHORT))
+ return false;
+
+ if (pse->slice >= se->slice)
+ return false;
+
+ if (!entity_eligible(cfs_rq, pse))
+ return false;
+
+ if (entity_before(pse, se))
+ return true;
+
+ if (!entity_eligible(cfs_rq, se))
+ return true;
+
+ return false;
+}
+
/*
* Used by other classes to account runtime.
*/
@@ -1156,23 +1216,44 @@ s64 update_curr_common(struct rq *rq)
static void update_curr(struct cfs_rq *cfs_rq)
{
struct sched_entity *curr = cfs_rq->curr;
+ struct rq *rq = rq_of(cfs_rq);
s64 delta_exec;
+ bool resched;
if (unlikely(!curr))
return;
- delta_exec = update_curr_se(rq_of(cfs_rq), curr);
+ delta_exec = update_curr_se(rq, curr);
if (unlikely(delta_exec <= 0))
return;
curr->vruntime += calc_delta_fair(delta_exec, curr);
- update_deadline(cfs_rq, curr);
+ resched = update_deadline(cfs_rq, curr);
update_min_vruntime(cfs_rq);
- if (entity_is_task(curr))
- update_curr_task(task_of(curr), delta_exec);
+ if (entity_is_task(curr)) {
+ struct task_struct *p = task_of(curr);
+
+ update_curr_task(p, delta_exec);
+
+ /*
+ * Any fair task that runs outside of fair_server should
+ * account against fair_server such that it can account for
+ * this time and possibly avoid running this period.
+ */
+ if (p->dl_server != &rq->fair_server)
+ dl_server_update(&rq->fair_server, delta_exec);
+ }
account_cfs_rq_runtime(cfs_rq, delta_exec);
+
+ if (rq->nr_running == 1)
+ return;
+
+ if (resched || did_preempt_short(cfs_rq, curr)) {
+ resched_curr(rq);
+ clear_buddies(cfs_rq, curr);
+ }
}
static void update_curr_fair(struct rq *rq)
@@ -5178,7 +5259,8 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
u64 vslice, vruntime = avg_vruntime(cfs_rq);
s64 lag = 0;
- se->slice = sysctl_sched_base_slice;
+ if (!se->custom_slice)
+ se->slice = sysctl_sched_base_slice;
vslice = calc_delta_fair(se->slice, se);
/*
@@ -5259,6 +5341,12 @@ place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
se->vruntime = vruntime - lag;
+ if (sched_feat(PLACE_REL_DEADLINE) && se->rel_deadline) {
+ se->deadline += se->vruntime;
+ se->rel_deadline = 0;
+ return;
+ }
+
/*
* When joining the competition; the existing tasks will be,
* on average, halfway through their slice, as such start tasks
@@ -5279,6 +5367,9 @@ static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq);
static inline bool cfs_bandwidth_used(void);
static void
+requeue_delayed_entity(struct sched_entity *se);
+
+static void
enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
bool curr = cfs_rq->curr == se;
@@ -5365,20 +5456,48 @@ static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
-static void
+static inline void finish_delayed_dequeue_entity(struct sched_entity *se)
+{
+ se->sched_delayed = 0;
+ if (sched_feat(DELAY_ZERO) && se->vlag > 0)
+ se->vlag = 0;
+}
+
+static bool
dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
{
- int action = UPDATE_TG;
+ bool sleep = flags & DEQUEUE_SLEEP;
+ update_curr(cfs_rq);
+
+ if (flags & DEQUEUE_DELAYED) {
+ SCHED_WARN_ON(!se->sched_delayed);
+ } else {
+ bool delay = sleep;
+ /*
+ * DELAY_DEQUEUE relies on spurious wakeups, special task
+ * states must not suffer spurious wakeups, excempt them.
+ */
+ if (flags & DEQUEUE_SPECIAL)
+ delay = false;
+
+ SCHED_WARN_ON(delay && se->sched_delayed);
+
+ if (sched_feat(DELAY_DEQUEUE) && delay &&
+ !entity_eligible(cfs_rq, se)) {
+ if (cfs_rq->next == se)
+ cfs_rq->next = NULL;
+ update_load_avg(cfs_rq, se, 0);
+ se->sched_delayed = 1;
+ return false;
+ }
+ }
+
+ int action = UPDATE_TG;
if (entity_is_task(se) && task_on_rq_migrating(task_of(se)))
action |= DO_DETACH;
/*
- * Update run-time statistics of the 'current'.
- */
- update_curr(cfs_rq);
-
- /*
* When dequeuing a sched_entity, we must:
* - Update loads to have both entity and cfs_rq synced with now.
* - For group_entity, update its runnable_weight to reflect the new
@@ -5395,6 +5514,11 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
clear_buddies(cfs_rq, se);
update_entity_lag(cfs_rq, se);
+ if (sched_feat(PLACE_REL_DEADLINE) && !sleep) {
+ se->deadline -= se->vruntime;
+ se->rel_deadline = 1;
+ }
+
if (se != cfs_rq->curr)
__dequeue_entity(cfs_rq, se);
se->on_rq = 0;
@@ -5414,8 +5538,13 @@ dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
if ((flags & (DEQUEUE_SAVE | DEQUEUE_MOVE)) != DEQUEUE_SAVE)
update_min_vruntime(cfs_rq);
+ if (flags & DEQUEUE_DELAYED)
+ finish_delayed_dequeue_entity(se);
+
if (cfs_rq->nr_running == 0)
update_idle_cfs_rq_clock_pelt(cfs_rq);
+
+ return true;
}
static void
@@ -5441,6 +5570,7 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
}
update_stats_curr_start(cfs_rq, se);
+ SCHED_WARN_ON(cfs_rq->curr);
cfs_rq->curr = se;
/*
@@ -5461,6 +5591,8 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
se->prev_sum_exec_runtime = se->sum_exec_runtime;
}
+static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags);
+
/*
* Pick the next process, keeping these things in mind, in this order:
* 1) keep things fair between processes/task groups
@@ -5469,16 +5601,26 @@ set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
* 4) do not run the "skip" process, if something else is available
*/
static struct sched_entity *
-pick_next_entity(struct cfs_rq *cfs_rq)
+pick_next_entity(struct rq *rq, struct cfs_rq *cfs_rq)
{
/*
* Enabling NEXT_BUDDY will affect latency but not fairness.
*/
if (sched_feat(NEXT_BUDDY) &&
- cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next))
+ cfs_rq->next && entity_eligible(cfs_rq, cfs_rq->next)) {
+ /* ->next will never be delayed */
+ SCHED_WARN_ON(cfs_rq->next->sched_delayed);
return cfs_rq->next;
+ }
- return pick_eevdf(cfs_rq);
+ struct sched_entity *se = pick_eevdf(cfs_rq);
+ if (se->sched_delayed) {
+ dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+ SCHED_WARN_ON(se->sched_delayed);
+ SCHED_WARN_ON(se->on_rq);
+ return NULL;
+ }
+ return se;
}
static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
@@ -5502,6 +5644,7 @@ static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
/* in !on_rq case, update occurred at dequeue */
update_load_avg(cfs_rq, prev, 0);
}
+ SCHED_WARN_ON(cfs_rq->curr != prev);
cfs_rq->curr = NULL;
}
@@ -5765,6 +5908,7 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
long task_delta, idle_task_delta, dequeue = 1;
+ long rq_h_nr_running = rq->cfs.h_nr_running;
raw_spin_lock(&cfs_b->lock);
/* This will start the period timer if necessary */
@@ -5798,11 +5942,21 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
idle_task_delta = cfs_rq->idle_h_nr_running;
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
+ int flags;
+
/* throttled entity or throttle-on-deactivate */
if (!se->on_rq)
goto done;
- dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
+ /*
+ * Abuse SPECIAL to avoid delayed dequeue in this instance.
+ * This avoids teaching dequeue_entities() about throttled
+ * entities and keeps things relatively simple.
+ */
+ flags = DEQUEUE_SLEEP | DEQUEUE_SPECIAL;
+ if (se->sched_delayed)
+ flags |= DEQUEUE_DELAYED;
+ dequeue_entity(qcfs_rq, se, flags);
if (cfs_rq_is_idle(group_cfs_rq(se)))
idle_task_delta = cfs_rq->h_nr_running;
@@ -5836,6 +5990,9 @@ static bool throttle_cfs_rq(struct cfs_rq *cfs_rq)
/* At this point se is NULL and we are at root level*/
sub_nr_running(rq, task_delta);
+ /* Stop the fair server if throttling resulted in no runnable tasks */
+ if (rq_h_nr_running && !rq->cfs.h_nr_running)
+ dl_server_stop(&rq->fair_server);
done:
/*
* Note: distribution will already see us throttled via the
@@ -5854,6 +6011,7 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
struct sched_entity *se;
long task_delta, idle_task_delta;
+ long rq_h_nr_running = rq->cfs.h_nr_running;
se = cfs_rq->tg->se[cpu_of(rq)];
@@ -5891,8 +6049,10 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
for_each_sched_entity(se) {
struct cfs_rq *qcfs_rq = cfs_rq_of(se);
- if (se->on_rq)
+ if (se->on_rq) {
+ SCHED_WARN_ON(se->sched_delayed);
break;
+ }
enqueue_entity(qcfs_rq, se, ENQUEUE_WAKEUP);
if (cfs_rq_is_idle(group_cfs_rq(se)))
@@ -5923,6 +6083,10 @@ void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
goto unthrottle_throttle;
}
+ /* Start the fair server if un-throttling resulted in new runnable tasks */
+ if (!rq_h_nr_running && rq->cfs.h_nr_running)
+ dl_server_start(&rq->fair_server);
+
/* At this point se is NULL and we are at root level*/
add_nr_running(rq, task_delta);
@@ -6555,7 +6719,7 @@ static void sched_fair_update_stop_tick(struct rq *rq, struct task_struct *p)
{
int cpu = cpu_of(rq);
- if (!sched_feat(HZ_BW) || !cfs_bandwidth_used())
+ if (!cfs_bandwidth_used())
return;
if (!tick_nohz_full_cpu(cpu))
@@ -6738,6 +6902,37 @@ static int sched_idle_cpu(int cpu)
}
#endif
+static void
+requeue_delayed_entity(struct sched_entity *se)
+{
+ struct cfs_rq *cfs_rq = cfs_rq_of(se);
+
+ /*
+ * se->sched_delayed should imply: se->on_rq == 1.
+ * Because a delayed entity is one that is still on
+ * the runqueue competing until elegibility.
+ */
+ SCHED_WARN_ON(!se->sched_delayed);
+ SCHED_WARN_ON(!se->on_rq);
+
+ if (sched_feat(DELAY_ZERO)) {
+ update_entity_lag(cfs_rq, se);
+ if (se->vlag > 0) {
+ cfs_rq->nr_running--;
+ if (se != cfs_rq->curr)
+ __dequeue_entity(cfs_rq, se);
+ se->vlag = 0;
+ place_entity(cfs_rq, se, 0);
+ if (se != cfs_rq->curr)
+ __enqueue_entity(cfs_rq, se);
+ cfs_rq->nr_running++;
+ }
+ }
+
+ update_load_avg(cfs_rq, se, 0);
+ se->sched_delayed = 0;
+}
+
/*
* The enqueue_task method is called before nr_running is
* increased. Here we update the fair scheduling stats and
@@ -6750,6 +6945,8 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
struct sched_entity *se = &p->se;
int idle_h_nr_running = task_has_idle_policy(p);
int task_new = !(flags & ENQUEUE_WAKEUP);
+ int rq_h_nr_running = rq->cfs.h_nr_running;
+ u64 slice = 0;
/*
* The code below (indirectly) updates schedutil which looks at
@@ -6757,7 +6954,13 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
* Let's add the task's estimated utilization to the cfs_rq's
* estimated utilization, before we update schedutil.
*/
- util_est_enqueue(&rq->cfs, p);
+ if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & ENQUEUE_RESTORE))))
+ util_est_enqueue(&rq->cfs, p);
+
+ if (flags & ENQUEUE_DELAYED) {
+ requeue_delayed_entity(se);
+ return;
+ }
/*
* If in_iowait is set, the code below may not trigger any cpufreq
@@ -6768,10 +6971,24 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
cpufreq_update_util(rq, SCHED_CPUFREQ_IOWAIT);
for_each_sched_entity(se) {
- if (se->on_rq)
+ if (se->on_rq) {
+ if (se->sched_delayed)
+ requeue_delayed_entity(se);
break;
+ }
cfs_rq = cfs_rq_of(se);
+
+ /*
+ * Basically set the slice of group entries to the min_slice of
+ * their respective cfs_rq. This ensures the group can service
+ * its entities in the desired time-frame.
+ */
+ if (slice) {
+ se->slice = slice;
+ se->custom_slice = 1;
+ }
enqueue_entity(cfs_rq, se, flags);
+ slice = cfs_rq_min_slice(cfs_rq);
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
@@ -6793,6 +7010,9 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
se_update_runnable(se);
update_cfs_group(se);
+ se->slice = slice;
+ slice = cfs_rq_min_slice(cfs_rq);
+
cfs_rq->h_nr_running++;
cfs_rq->idle_h_nr_running += idle_h_nr_running;
@@ -6804,6 +7024,13 @@ enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
goto enqueue_throttle;
}
+ if (!rq_h_nr_running && rq->cfs.h_nr_running) {
+ /* Account for idle runtime */
+ if (!rq->nr_running)
+ dl_server_update_idle_time(rq, rq->curr);
+ dl_server_start(&rq->fair_server);
+ }
+
/* At this point se is NULL and we are at root level*/
add_nr_running(rq, 1);
@@ -6833,36 +7060,59 @@ enqueue_throttle:
static void set_next_buddy(struct sched_entity *se);
/*
- * The dequeue_task method is called before nr_running is
- * decreased. We remove the task from the rbtree and
- * update the fair scheduling stats:
+ * Basically dequeue_task_fair(), except it can deal with dequeue_entity()
+ * failing half-way through and resume the dequeue later.
+ *
+ * Returns:
+ * -1 - dequeue delayed
+ * 0 - dequeue throttled
+ * 1 - dequeue complete
*/
-static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
+static int dequeue_entities(struct rq *rq, struct sched_entity *se, int flags)
{
- struct cfs_rq *cfs_rq;
- struct sched_entity *se = &p->se;
- int task_sleep = flags & DEQUEUE_SLEEP;
- int idle_h_nr_running = task_has_idle_policy(p);
bool was_sched_idle = sched_idle_rq(rq);
+ int rq_h_nr_running = rq->cfs.h_nr_running;
+ bool task_sleep = flags & DEQUEUE_SLEEP;
+ bool task_delayed = flags & DEQUEUE_DELAYED;
+ struct task_struct *p = NULL;
+ int idle_h_nr_running = 0;
+ int h_nr_running = 0;
+ struct cfs_rq *cfs_rq;
+ u64 slice = 0;
- util_est_dequeue(&rq->cfs, p);
+ if (entity_is_task(se)) {
+ p = task_of(se);
+ h_nr_running = 1;
+ idle_h_nr_running = task_has_idle_policy(p);
+ } else {
+ cfs_rq = group_cfs_rq(se);
+ slice = cfs_rq_min_slice(cfs_rq);
+ }
for_each_sched_entity(se) {
cfs_rq = cfs_rq_of(se);
- dequeue_entity(cfs_rq, se, flags);
- cfs_rq->h_nr_running--;
+ if (!dequeue_entity(cfs_rq, se, flags)) {
+ if (p && &p->se == se)
+ return -1;
+
+ break;
+ }
+
+ cfs_rq->h_nr_running -= h_nr_running;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
- idle_h_nr_running = 1;
+ idle_h_nr_running = h_nr_running;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
- goto dequeue_throttle;
+ return 0;
/* Don't dequeue parent if it has other entities besides us */
if (cfs_rq->load.weight) {
+ slice = cfs_rq_min_slice(cfs_rq);
+
/* Avoid re-evaluating load for this entity: */
se = parent_entity(se);
/*
@@ -6874,6 +7124,7 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
break;
}
flags |= DEQUEUE_SLEEP;
+ flags &= ~(DEQUEUE_DELAYED | DEQUEUE_SPECIAL);
}
for_each_sched_entity(se) {
@@ -6883,28 +7134,61 @@ static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
se_update_runnable(se);
update_cfs_group(se);
- cfs_rq->h_nr_running--;
+ se->slice = slice;
+ slice = cfs_rq_min_slice(cfs_rq);
+
+ cfs_rq->h_nr_running -= h_nr_running;
cfs_rq->idle_h_nr_running -= idle_h_nr_running;
if (cfs_rq_is_idle(cfs_rq))
- idle_h_nr_running = 1;
+ idle_h_nr_running = h_nr_running;
/* end evaluation on encountering a throttled cfs_rq */
if (cfs_rq_throttled(cfs_rq))
- goto dequeue_throttle;
-
+ return 0;
}
- /* At this point se is NULL and we are at root level*/
- sub_nr_running(rq, 1);
+ sub_nr_running(rq, h_nr_running);
+
+ if (rq_h_nr_running && !rq->cfs.h_nr_running)
+ dl_server_stop(&rq->fair_server);
/* balance early to pull high priority tasks */
if (unlikely(!was_sched_idle && sched_idle_rq(rq)))
rq->next_balance = jiffies;
-dequeue_throttle:
- util_est_update(&rq->cfs, p, task_sleep);
+ if (p && task_delayed) {
+ SCHED_WARN_ON(!task_sleep);
+ SCHED_WARN_ON(p->on_rq != 1);
+
+ /* Fix-up what dequeue_task_fair() skipped */
+ hrtick_update(rq);
+
+ /* Fix-up what block_task() skipped. */
+ __block_task(rq, p);
+ }
+
+ return 1;
+}
+
+/*
+ * The dequeue_task method is called before nr_running is
+ * decreased. We remove the task from the rbtree and
+ * update the fair scheduling stats:
+ */
+static bool dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
+{
+ if (!(p->se.sched_delayed && (task_on_rq_migrating(p) || (flags & DEQUEUE_SAVE))))
+ util_est_dequeue(&rq->cfs, p);
+
+ if (dequeue_entities(rq, &p->se, flags) < 0) {
+ util_est_update(&rq->cfs, p, DEQUEUE_SLEEP);
+ return false;
+ }
+
+ util_est_update(&rq->cfs, p, flags & DEQUEUE_SLEEP);
hrtick_update(rq);
+ return true;
}
#ifdef CONFIG_SMP
@@ -7803,6 +8087,105 @@ static unsigned long cpu_util_without(int cpu, struct task_struct *p)
}
/*
+ * This function computes an effective utilization for the given CPU, to be
+ * used for frequency selection given the linear relation: f = u * f_max.
+ *
+ * The scheduler tracks the following metrics:
+ *
+ * cpu_util_{cfs,rt,dl,irq}()
+ * cpu_bw_dl()
+ *
+ * Where the cfs,rt and dl util numbers are tracked with the same metric and
+ * synchronized windows and are thus directly comparable.
+ *
+ * The cfs,rt,dl utilization are the running times measured with rq->clock_task
+ * which excludes things like IRQ and steal-time. These latter are then accrued
+ * in the IRQ utilization.
+ *
+ * The DL bandwidth number OTOH is not a measured metric but a value computed
+ * based on the task model parameters and gives the minimal utilization
+ * required to meet deadlines.
+ */
+unsigned long effective_cpu_util(int cpu, unsigned long util_cfs,
+ unsigned long *min,
+ unsigned long *max)
+{
+ unsigned long util, irq, scale;
+ struct rq *rq = cpu_rq(cpu);
+
+ scale = arch_scale_cpu_capacity(cpu);
+
+ /*
+ * Early check to see if IRQ/steal time saturates the CPU, can be
+ * because of inaccuracies in how we track these -- see
+ * update_irq_load_avg().
+ */
+ irq = cpu_util_irq(rq);
+ if (unlikely(irq >= scale)) {
+ if (min)
+ *min = scale;
+ if (max)
+ *max = scale;
+ return scale;
+ }
+
+ if (min) {
+ /*
+ * The minimum utilization returns the highest level between:
+ * - the computed DL bandwidth needed with the IRQ pressure which
+ * steals time to the deadline task.
+ * - The minimum performance requirement for CFS and/or RT.
+ */
+ *min = max(irq + cpu_bw_dl(rq), uclamp_rq_get(rq, UCLAMP_MIN));
+
+ /*
+ * When an RT task is runnable and uclamp is not used, we must
+ * ensure that the task will run at maximum compute capacity.
+ */
+ if (!uclamp_is_used() && rt_rq_is_runnable(&rq->rt))
+ *min = max(*min, scale);
+ }
+
+ /*
+ * Because the time spend on RT/DL tasks is visible as 'lost' time to
+ * CFS tasks and we use the same metric to track the effective
+ * utilization (PELT windows are synchronized) we can directly add them
+ * to obtain the CPU's actual utilization.
+ */
+ util = util_cfs + cpu_util_rt(rq);
+ util += cpu_util_dl(rq);
+
+ /*
+ * The maximum hint is a soft bandwidth requirement, which can be lower
+ * than the actual utilization because of uclamp_max requirements.
+ */
+ if (max)
+ *max = min(scale, uclamp_rq_get(rq, UCLAMP_MAX));
+
+ if (util >= scale)
+ return scale;
+
+ /*
+ * There is still idle time; further improve the number by using the
+ * IRQ metric. Because IRQ/steal time is hidden from the task clock we
+ * need to scale the task numbers:
+ *
+ * max - irq
+ * U' = irq + --------- * U
+ * max
+ */
+ util = scale_irq_capacity(util, irq, scale);
+ util += irq;
+
+ return min(scale, util);
+}
+
+unsigned long sched_cpu_util(int cpu)
+{
+ return effective_cpu_util(cpu, cpu_util_cfs(cpu), NULL, NULL);
+}
+
+/*
* energy_env - Utilization landscape for energy estimation.
* @task_busy_time: Utilization contribution by the task for which we test the
* placement. Given by eenv_task_busy_time().
@@ -8286,7 +8669,21 @@ static void migrate_task_rq_fair(struct task_struct *p, int new_cpu)
static void task_dead_fair(struct task_struct *p)
{
- remove_entity_load_avg(&p->se);
+ struct sched_entity *se = &p->se;
+
+ if (se->sched_delayed) {
+ struct rq_flags rf;
+ struct rq *rq;
+
+ rq = task_rq_lock(p, &rf);
+ if (se->sched_delayed) {
+ update_rq_clock(rq);
+ dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+ }
+ task_rq_unlock(rq, p, &rf);
+ }
+
+ remove_entity_load_avg(se);
}
/*
@@ -8322,7 +8719,7 @@ static void set_cpus_allowed_fair(struct task_struct *p, struct affinity_context
static int
balance_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
- if (rq->nr_running)
+ if (sched_fair_runnable(rq))
return 1;
return sched_balance_newidle(rq, rf) != 0;
@@ -8381,16 +8778,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
if (test_tsk_need_resched(curr))
return;
- /* Idle tasks are by definition preempted by non-idle tasks. */
- if (unlikely(task_has_idle_policy(curr)) &&
- likely(!task_has_idle_policy(p)))
- goto preempt;
-
- /*
- * Batch and idle tasks do not preempt non-idle tasks (their preemption
- * is driven by the tick):
- */
- if (unlikely(p->policy != SCHED_NORMAL) || !sched_feat(WAKEUP_PREEMPTION))
+ if (!sched_feat(WAKEUP_PREEMPTION))
return;
find_matching_se(&se, &pse);
@@ -8400,7 +8788,7 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
pse_is_idle = se_is_idle(pse);
/*
- * Preempt an idle group in favor of a non-idle group (and don't preempt
+ * Preempt an idle entity in favor of a non-idle entity (and don't preempt
* in the inverse case).
*/
if (cse_is_idle && !pse_is_idle)
@@ -8408,11 +8796,26 @@ static void check_preempt_wakeup_fair(struct rq *rq, struct task_struct *p, int
if (cse_is_idle != pse_is_idle)
return;
+ /*
+ * BATCH and IDLE tasks do not preempt others.
+ */
+ if (unlikely(p->policy != SCHED_NORMAL))
+ return;
+
cfs_rq = cfs_rq_of(se);
update_curr(cfs_rq);
+ /*
+ * If @p has a shorter slice than current and @p is eligible, override
+ * current's slice protection in order to allow preemption.
+ *
+ * Note that even if @p does not turn out to be the most eligible
+ * task at this moment, current's slice protection will be lost.
+ */
+ if (do_preempt_short(cfs_rq, pse, se) && se->vlag == se->deadline)
+ se->vlag = se->deadline + 1;
/*
- * XXX pick_eevdf(cfs_rq) != se ?
+ * If @p has become the most eligible task, force preemption.
*/
if (pick_eevdf(cfs_rq) == pse)
goto preempt;
@@ -8423,7 +8826,6 @@ preempt:
resched_curr(rq);
}
-#ifdef CONFIG_SMP
static struct task_struct *pick_task_fair(struct rq *rq)
{
struct sched_entity *se;
@@ -8435,95 +8837,58 @@ again:
return NULL;
do {
- struct sched_entity *curr = cfs_rq->curr;
-
- /* When we pick for a remote RQ, we'll not have done put_prev_entity() */
- if (curr) {
- if (curr->on_rq)
- update_curr(cfs_rq);
- else
- curr = NULL;
+ /* Might not have done put_prev_entity() */
+ if (cfs_rq->curr && cfs_rq->curr->on_rq)
+ update_curr(cfs_rq);
- if (unlikely(check_cfs_rq_runtime(cfs_rq)))
- goto again;
- }
+ if (unlikely(check_cfs_rq_runtime(cfs_rq)))
+ goto again;
- se = pick_next_entity(cfs_rq);
+ se = pick_next_entity(rq, cfs_rq);
+ if (!se)
+ goto again;
cfs_rq = group_cfs_rq(se);
} while (cfs_rq);
return task_of(se);
}
-#endif
+
+static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
+static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first);
struct task_struct *
pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct rq_flags *rf)
{
- struct cfs_rq *cfs_rq = &rq->cfs;
struct sched_entity *se;
struct task_struct *p;
int new_tasks;
again:
- if (!sched_fair_runnable(rq))
+ p = pick_task_fair(rq);
+ if (!p)
goto idle;
+ se = &p->se;
#ifdef CONFIG_FAIR_GROUP_SCHED
- if (!prev || prev->sched_class != &fair_sched_class)
+ if (prev->sched_class != &fair_sched_class)
goto simple;
+ __put_prev_set_next_dl_server(rq, prev, p);
+
/*
* Because of the set_next_buddy() in dequeue_task_fair() it is rather
* likely that a next task is from the same cgroup as the current.
*
* Therefore attempt to avoid putting and setting the entire cgroup
* hierarchy, only change the part that actually changes.
- */
-
- do {
- struct sched_entity *curr = cfs_rq->curr;
-
- /*
- * Since we got here without doing put_prev_entity() we also
- * have to consider cfs_rq->curr. If it is still a runnable
- * entity, update_curr() will update its vruntime, otherwise
- * forget we've ever seen it.
- */
- if (curr) {
- if (curr->on_rq)
- update_curr(cfs_rq);
- else
- curr = NULL;
-
- /*
- * This call to check_cfs_rq_runtime() will do the
- * throttle and dequeue its entity in the parent(s).
- * Therefore the nr_running test will indeed
- * be correct.
- */
- if (unlikely(check_cfs_rq_runtime(cfs_rq))) {
- cfs_rq = &rq->cfs;
-
- if (!cfs_rq->nr_running)
- goto idle;
-
- goto simple;
- }
- }
-
- se = pick_next_entity(cfs_rq);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
-
- p = task_of(se);
-
- /*
+ *
* Since we haven't yet done put_prev_entity and if the selected task
* is a different task than we started out with, try and touch the
* least amount of cfs_rqs.
*/
if (prev != p) {
struct sched_entity *pse = &prev->se;
+ struct cfs_rq *cfs_rq;
while (!(cfs_rq = is_same_group(se, pse))) {
int se_depth = se->depth;
@@ -8541,38 +8906,15 @@ again:
put_prev_entity(cfs_rq, pse);
set_next_entity(cfs_rq, se);
- }
-
- goto done;
-simple:
-#endif
- if (prev)
- put_prev_task(rq, prev);
- do {
- se = pick_next_entity(cfs_rq);
- set_next_entity(cfs_rq, se);
- cfs_rq = group_cfs_rq(se);
- } while (cfs_rq);
+ __set_next_task_fair(rq, p, true);
+ }
- p = task_of(se);
+ return p;
-done: __maybe_unused;
-#ifdef CONFIG_SMP
- /*
- * Move the next running task to the front of
- * the list, so our cfs_tasks list becomes MRU
- * one.
- */
- list_move(&p->se.group_node, &rq->cfs_tasks);
+simple:
#endif
-
- if (hrtick_enabled_fair(rq))
- hrtick_start_fair(rq, p);
-
- update_misfit_status(p, rq);
- sched_fair_update_stop_tick(rq, p);
-
+ put_prev_set_next_task(rq, prev, p);
return p;
idle:
@@ -8601,15 +8943,34 @@ idle:
return NULL;
}
-static struct task_struct *__pick_next_task_fair(struct rq *rq)
+static struct task_struct *__pick_next_task_fair(struct rq *rq, struct task_struct *prev)
{
- return pick_next_task_fair(rq, NULL, NULL);
+ return pick_next_task_fair(rq, prev, NULL);
+}
+
+static bool fair_server_has_tasks(struct sched_dl_entity *dl_se)
+{
+ return !!dl_se->rq->cfs.nr_running;
+}
+
+static struct task_struct *fair_server_pick_task(struct sched_dl_entity *dl_se)
+{
+ return pick_task_fair(dl_se->rq);
+}
+
+void fair_server_init(struct rq *rq)
+{
+ struct sched_dl_entity *dl_se = &rq->fair_server;
+
+ init_dl_entity(dl_se);
+
+ dl_server_init(dl_se, rq, fair_server_has_tasks, fair_server_pick_task);
}
/*
* Account for a descheduled task:
*/
-static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
+static void put_prev_task_fair(struct rq *rq, struct task_struct *prev, struct task_struct *next)
{
struct sched_entity *se = &prev->se;
struct cfs_rq *cfs_rq;
@@ -9360,9 +9721,10 @@ static bool __update_blocked_others(struct rq *rq, bool *done)
hw_pressure = arch_scale_hw_pressure(cpu_of(rq));
+ /* hw_pressure doesn't care about invariance */
decayed = update_rt_rq_load_avg(now, rq, curr_class == &rt_sched_class) |
update_dl_rq_load_avg(now, rq, curr_class == &dl_sched_class) |
- update_hw_load_avg(now, rq, hw_pressure) |
+ update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure) |
update_irq_load_avg(rq, 0);
if (others_have_blocked(rq))
@@ -12702,22 +13064,7 @@ static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
*/
static void task_fork_fair(struct task_struct *p)
{
- struct sched_entity *se = &p->se, *curr;
- struct cfs_rq *cfs_rq;
- struct rq *rq = this_rq();
- struct rq_flags rf;
-
- rq_lock(rq, &rf);
- update_rq_clock(rq);
-
set_task_max_allowed_capacity(p);
-
- cfs_rq = task_cfs_rq(current);
- curr = cfs_rq->curr;
- if (curr)
- update_curr(cfs_rq);
- place_entity(cfs_rq, se, ENQUEUE_INITIAL);
- rq_unlock(rq, &rf);
}
/*
@@ -12829,10 +13176,28 @@ static void attach_task_cfs_rq(struct task_struct *p)
static void switched_from_fair(struct rq *rq, struct task_struct *p)
{
detach_task_cfs_rq(p);
+ /*
+ * Since this is called after changing class, this is a little weird
+ * and we cannot use DEQUEUE_DELAYED.
+ */
+ if (p->se.sched_delayed) {
+ /* First, dequeue it from its new class' structures */
+ dequeue_task(rq, p, DEQUEUE_NOCLOCK | DEQUEUE_SLEEP);
+ /*
+ * Now, clean up the fair_sched_class side of things
+ * related to sched_delayed being true and that wasn't done
+ * due to the generic dequeue not using DEQUEUE_DELAYED.
+ */
+ finish_delayed_dequeue_entity(&p->se);
+ p->se.rel_deadline = 0;
+ __block_task(rq, p);
+ }
}
static void switched_to_fair(struct rq *rq, struct task_struct *p)
{
+ SCHED_WARN_ON(p->se.sched_delayed);
+
attach_task_cfs_rq(p);
set_task_max_allowed_capacity(p);
@@ -12850,12 +13215,7 @@ static void switched_to_fair(struct rq *rq, struct task_struct *p)
}
}
-/* Account for a task changing its policy or group.
- *
- * This routine is mostly called to set cfs_rq->curr field when a task
- * migrates between groups/classes.
- */
-static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
+static void __set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
{
struct sched_entity *se = &p->se;
@@ -12868,6 +13228,27 @@ static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
list_move(&se->group_node, &rq->cfs_tasks);
}
#endif
+ if (!first)
+ return;
+
+ SCHED_WARN_ON(se->sched_delayed);
+
+ if (hrtick_enabled_fair(rq))
+ hrtick_start_fair(rq, p);
+
+ update_misfit_status(p, rq);
+ sched_fair_update_stop_tick(rq, p);
+}
+
+/*
+ * Account for a task changing its policy or group.
+ *
+ * This routine is mostly called to set cfs_rq->curr field when a task
+ * migrates between groups/classes.
+ */
+static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
+{
+ struct sched_entity *se = &p->se;
for_each_sched_entity(se) {
struct cfs_rq *cfs_rq = cfs_rq_of(se);
@@ -12876,12 +13257,14 @@ static void set_next_task_fair(struct rq *rq, struct task_struct *p, bool first)
/* ensure bandwidth has been allocated on our new cfs_rq */
account_cfs_rq_runtime(cfs_rq, 0);
}
+
+ __set_next_task_fair(rq, p, first);
}
void init_cfs_rq(struct cfs_rq *cfs_rq)
{
cfs_rq->tasks_timeline = RB_ROOT_CACHED;
- u64_u32_store(cfs_rq->min_vruntime, (u64)(-(1LL << 20)));
+ cfs_rq->min_vruntime = (u64)(-(1LL << 20));
#ifdef CONFIG_SMP
raw_spin_lock_init(&cfs_rq->removed.lock);
#endif
@@ -12983,28 +13366,35 @@ void online_fair_sched_group(struct task_group *tg)
void unregister_fair_sched_group(struct task_group *tg)
{
- unsigned long flags;
- struct rq *rq;
int cpu;
destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
for_each_possible_cpu(cpu) {
- if (tg->se[cpu])
- remove_entity_load_avg(tg->se[cpu]);
+ struct cfs_rq *cfs_rq = tg->cfs_rq[cpu];
+ struct sched_entity *se = tg->se[cpu];
+ struct rq *rq = cpu_rq(cpu);
+
+ if (se) {
+ if (se->sched_delayed) {
+ guard(rq_lock_irqsave)(rq);
+ if (se->sched_delayed) {
+ update_rq_clock(rq);
+ dequeue_entities(rq, se, DEQUEUE_SLEEP | DEQUEUE_DELAYED);
+ }
+ list_del_leaf_cfs_rq(cfs_rq);
+ }
+ remove_entity_load_avg(se);
+ }
/*
* Only empty task groups can be destroyed; so we can speculatively
* check on_list without danger of it being re-added.
*/
- if (!tg->cfs_rq[cpu]->on_list)
- continue;
-
- rq = cpu_rq(cpu);
-
- raw_spin_rq_lock_irqsave(rq, flags);
- list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
- raw_spin_rq_unlock_irqrestore(rq, flags);
+ if (cfs_rq->on_list) {
+ guard(rq_lock_irqsave)(rq);
+ list_del_leaf_cfs_rq(cfs_rq);
+ }
}
}
@@ -13194,13 +13584,13 @@ DEFINE_SCHED_CLASS(fair) = {
.wakeup_preempt = check_preempt_wakeup_fair,
+ .pick_task = pick_task_fair,
.pick_next_task = __pick_next_task_fair,
.put_prev_task = put_prev_task_fair,
.set_next_task = set_next_task_fair,
#ifdef CONFIG_SMP
.balance = balance_fair,
- .pick_task = pick_task_fair,
.select_task_rq = select_task_rq_fair,
.migrate_task_rq = migrate_task_rq_fair,