diff options
author | Ingo Molnar <mingo@kernel.org> | 2017-02-01 13:10:18 +0100 |
---|---|---|
committer | Ingo Molnar <mingo@kernel.org> | 2017-02-07 10:58:12 +0100 |
commit | f2cb13609d5397cdd747f3ed6fb651233851717d (patch) | |
tree | 0714785a7b04430b41346653178afc7b9a7bca70 /kernel | |
parent | sched/core: Remove unnecessary #include headers (diff) | |
download | linux-f2cb13609d5397cdd747f3ed6fb651233851717d.tar.xz linux-f2cb13609d5397cdd747f3ed6fb651233851717d.zip |
sched/topology: Split out scheduler topology code from core.c into topology.c
Cc: Mike Galbraith <efault@gmx.de>
Cc: Peter Zijlstra <peterz@infradead.org>
Cc: Thomas Gleixner <tglx@linutronix.de>
Cc: linux-kernel@vger.kernel.org
Signed-off-by: Ingo Molnar <mingo@kernel.org>
Diffstat (limited to 'kernel')
-rw-r--r-- | kernel/sched/Makefile | 2 | ||||
-rw-r--r-- | kernel/sched/core.c | 1659 | ||||
-rw-r--r-- | kernel/sched/sched.h | 23 | ||||
-rw-r--r-- | kernel/sched/topology.c | 1658 |
4 files changed, 1684 insertions, 1658 deletions
diff --git a/kernel/sched/Makefile b/kernel/sched/Makefile index 5e59b832ae2b..130ce8ac725b 100644 --- a/kernel/sched/Makefile +++ b/kernel/sched/Makefile @@ -18,7 +18,7 @@ endif obj-y += core.o loadavg.o clock.o cputime.o obj-y += idle_task.o fair.o rt.o deadline.o stop_task.o obj-y += wait.o swait.o completion.o idle.o -obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o +obj-$(CONFIG_SMP) += cpupri.o cpudeadline.o topology.o obj-$(CONFIG_SCHED_AUTOGROUP) += auto_group.o obj-$(CONFIG_SCHEDSTATS) += stats.o obj-$(CONFIG_SCHED_DEBUG) += debug.o diff --git a/kernel/sched/core.c b/kernel/sched/core.c index 1cea6c61fb01..e4aa470ed454 100644 --- a/kernel/sched/core.c +++ b/kernel/sched/core.c @@ -31,7 +31,6 @@ #define CREATE_TRACE_POINTS #include <trace/events/sched.h> -DEFINE_MUTEX(sched_domains_mutex); DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); /* @@ -5446,7 +5445,7 @@ out: #ifdef CONFIG_SMP -static bool sched_smp_initialized __read_mostly; +bool sched_smp_initialized __read_mostly; #ifdef CONFIG_NUMA_BALANCING /* Migrate current task p to target_cpu */ @@ -5643,7 +5642,7 @@ static void migrate_tasks(struct rq *dead_rq) } #endif /* CONFIG_HOTPLUG_CPU */ -static void set_rq_online(struct rq *rq) +void set_rq_online(struct rq *rq) { if (!rq->online) { const struct sched_class *class; @@ -5658,7 +5657,7 @@ static void set_rq_online(struct rq *rq) } } -static void set_rq_offline(struct rq *rq) +void set_rq_offline(struct rq *rq) { if (rq->online) { const struct sched_class *class; @@ -5680,1658 +5679,6 @@ static void set_cpu_rq_start_time(unsigned int cpu) rq->age_stamp = sched_clock_cpu(cpu); } -/* Protected by sched_domains_mutex: */ -static cpumask_var_t sched_domains_tmpmask; - -#ifdef CONFIG_SCHED_DEBUG - -static __read_mostly int sched_debug_enabled; - -static int __init sched_debug_setup(char *str) -{ - sched_debug_enabled = 1; - - return 0; -} -early_param("sched_debug", sched_debug_setup); - -static inline bool sched_debug(void) -{ - return sched_debug_enabled; -} - -static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, - struct cpumask *groupmask) -{ - struct sched_group *group = sd->groups; - - cpumask_clear(groupmask); - - printk(KERN_DEBUG "%*s domain %d: ", level, "", level); - - if (!(sd->flags & SD_LOAD_BALANCE)) { - printk("does not load-balance\n"); - if (sd->parent) - printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" - " has parent"); - return -1; - } - - printk(KERN_CONT "span %*pbl level %s\n", - cpumask_pr_args(sched_domain_span(sd)), sd->name); - - if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { - printk(KERN_ERR "ERROR: domain->span does not contain " - "CPU%d\n", cpu); - } - if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { - printk(KERN_ERR "ERROR: domain->groups does not contain" - " CPU%d\n", cpu); - } - - printk(KERN_DEBUG "%*s groups:", level + 1, ""); - do { - if (!group) { - printk("\n"); - printk(KERN_ERR "ERROR: group is NULL\n"); - break; - } - - if (!cpumask_weight(sched_group_cpus(group))) { - printk(KERN_CONT "\n"); - printk(KERN_ERR "ERROR: empty group\n"); - break; - } - - if (!(sd->flags & SD_OVERLAP) && - cpumask_intersects(groupmask, sched_group_cpus(group))) { - printk(KERN_CONT "\n"); - printk(KERN_ERR "ERROR: repeated CPUs\n"); - break; - } - - cpumask_or(groupmask, groupmask, sched_group_cpus(group)); - - printk(KERN_CONT " %*pbl", - cpumask_pr_args(sched_group_cpus(group))); - if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { - printk(KERN_CONT " (cpu_capacity = %lu)", - group->sgc->capacity); - } - - group = group->next; - } while (group != sd->groups); - printk(KERN_CONT "\n"); - - if (!cpumask_equal(sched_domain_span(sd), groupmask)) - printk(KERN_ERR "ERROR: groups don't span domain->span\n"); - - if (sd->parent && - !cpumask_subset(groupmask, sched_domain_span(sd->parent))) - printk(KERN_ERR "ERROR: parent span is not a superset " - "of domain->span\n"); - return 0; -} - -static void sched_domain_debug(struct sched_domain *sd, int cpu) -{ - int level = 0; - - if (!sched_debug_enabled) - return; - - if (!sd) { - printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); - return; - } - - printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); - - for (;;) { - if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) - break; - level++; - sd = sd->parent; - if (!sd) - break; - } -} -#else /* !CONFIG_SCHED_DEBUG */ - -# define sched_debug_enabled 0 -# define sched_domain_debug(sd, cpu) do { } while (0) -static inline bool sched_debug(void) -{ - return false; -} -#endif /* CONFIG_SCHED_DEBUG */ - -static int sd_degenerate(struct sched_domain *sd) -{ - if (cpumask_weight(sched_domain_span(sd)) == 1) - return 1; - - /* Following flags need at least 2 groups */ - if (sd->flags & (SD_LOAD_BALANCE | - SD_BALANCE_NEWIDLE | - SD_BALANCE_FORK | - SD_BALANCE_EXEC | - SD_SHARE_CPUCAPACITY | - SD_ASYM_CPUCAPACITY | - SD_SHARE_PKG_RESOURCES | - SD_SHARE_POWERDOMAIN)) { - if (sd->groups != sd->groups->next) - return 0; - } - - /* Following flags don't use groups */ - if (sd->flags & (SD_WAKE_AFFINE)) - return 0; - - return 1; -} - -static int -sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) -{ - unsigned long cflags = sd->flags, pflags = parent->flags; - - if (sd_degenerate(parent)) - return 1; - - if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) - return 0; - - /* Flags needing groups don't count if only 1 group in parent */ - if (parent->groups == parent->groups->next) { - pflags &= ~(SD_LOAD_BALANCE | - SD_BALANCE_NEWIDLE | - SD_BALANCE_FORK | - SD_BALANCE_EXEC | - SD_ASYM_CPUCAPACITY | - SD_SHARE_CPUCAPACITY | - SD_SHARE_PKG_RESOURCES | - SD_PREFER_SIBLING | - SD_SHARE_POWERDOMAIN); - if (nr_node_ids == 1) - pflags &= ~SD_SERIALIZE; - } - if (~cflags & pflags) - return 0; - - return 1; -} - -static void free_rootdomain(struct rcu_head *rcu) -{ - struct root_domain *rd = container_of(rcu, struct root_domain, rcu); - - cpupri_cleanup(&rd->cpupri); - cpudl_cleanup(&rd->cpudl); - free_cpumask_var(rd->dlo_mask); - free_cpumask_var(rd->rto_mask); - free_cpumask_var(rd->online); - free_cpumask_var(rd->span); - kfree(rd); -} - -static void rq_attach_root(struct rq *rq, struct root_domain *rd) -{ - struct root_domain *old_rd = NULL; - unsigned long flags; - - raw_spin_lock_irqsave(&rq->lock, flags); - - if (rq->rd) { - old_rd = rq->rd; - - if (cpumask_test_cpu(rq->cpu, old_rd->online)) - set_rq_offline(rq); - - cpumask_clear_cpu(rq->cpu, old_rd->span); - - /* - * If we dont want to free the old_rd yet then - * set old_rd to NULL to skip the freeing later - * in this function: - */ - if (!atomic_dec_and_test(&old_rd->refcount)) - old_rd = NULL; - } - - atomic_inc(&rd->refcount); - rq->rd = rd; - - cpumask_set_cpu(rq->cpu, rd->span); - if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) - set_rq_online(rq); - - raw_spin_unlock_irqrestore(&rq->lock, flags); - - if (old_rd) - call_rcu_sched(&old_rd->rcu, free_rootdomain); -} - -static int init_rootdomain(struct root_domain *rd) -{ - memset(rd, 0, sizeof(*rd)); - - if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) - goto out; - if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) - goto free_span; - if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) - goto free_online; - if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) - goto free_dlo_mask; - - init_dl_bw(&rd->dl_bw); - if (cpudl_init(&rd->cpudl) != 0) - goto free_rto_mask; - - if (cpupri_init(&rd->cpupri) != 0) - goto free_cpudl; - return 0; - -free_cpudl: - cpudl_cleanup(&rd->cpudl); -free_rto_mask: - free_cpumask_var(rd->rto_mask); -free_dlo_mask: - free_cpumask_var(rd->dlo_mask); -free_online: - free_cpumask_var(rd->online); -free_span: - free_cpumask_var(rd->span); -out: - return -ENOMEM; -} - -/* - * By default the system creates a single root-domain with all CPUs as - * members (mimicking the global state we have today). - */ -struct root_domain def_root_domain; - -static void init_defrootdomain(void) -{ - init_rootdomain(&def_root_domain); - - atomic_set(&def_root_domain.refcount, 1); -} - -static struct root_domain *alloc_rootdomain(void) -{ - struct root_domain *rd; - - rd = kmalloc(sizeof(*rd), GFP_KERNEL); - if (!rd) - return NULL; - - if (init_rootdomain(rd) != 0) { - kfree(rd); - return NULL; - } - - return rd; -} - -static void free_sched_groups(struct sched_group *sg, int free_sgc) -{ - struct sched_group *tmp, *first; - - if (!sg) - return; - - first = sg; - do { - tmp = sg->next; - - if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) - kfree(sg->sgc); - - kfree(sg); - sg = tmp; - } while (sg != first); -} - -static void destroy_sched_domain(struct sched_domain *sd) -{ - /* - * If its an overlapping domain it has private groups, iterate and - * nuke them all. - */ - if (sd->flags & SD_OVERLAP) { - free_sched_groups(sd->groups, 1); - } else if (atomic_dec_and_test(&sd->groups->ref)) { - kfree(sd->groups->sgc); - kfree(sd->groups); - } - if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) - kfree(sd->shared); - kfree(sd); -} - -static void destroy_sched_domains_rcu(struct rcu_head *rcu) -{ - struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); - - while (sd) { - struct sched_domain *parent = sd->parent; - destroy_sched_domain(sd); - sd = parent; - } -} - -static void destroy_sched_domains(struct sched_domain *sd) -{ - if (sd) - call_rcu(&sd->rcu, destroy_sched_domains_rcu); -} - -/* - * Keep a special pointer to the highest sched_domain that has - * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this - * allows us to avoid some pointer chasing select_idle_sibling(). - * - * Also keep a unique ID per domain (we use the first CPU number in - * the cpumask of the domain), this allows us to quickly tell if - * two CPUs are in the same cache domain, see cpus_share_cache(). - */ -DEFINE_PER_CPU(struct sched_domain *, sd_llc); -DEFINE_PER_CPU(int, sd_llc_size); -DEFINE_PER_CPU(int, sd_llc_id); -DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); -DEFINE_PER_CPU(struct sched_domain *, sd_numa); -DEFINE_PER_CPU(struct sched_domain *, sd_asym); - -static void update_top_cache_domain(int cpu) -{ - struct sched_domain_shared *sds = NULL; - struct sched_domain *sd; - int id = cpu; - int size = 1; - - sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); - if (sd) { - id = cpumask_first(sched_domain_span(sd)); - size = cpumask_weight(sched_domain_span(sd)); - sds = sd->shared; - } - - rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); - per_cpu(sd_llc_size, cpu) = size; - per_cpu(sd_llc_id, cpu) = id; - rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); - - sd = lowest_flag_domain(cpu, SD_NUMA); - rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); - - sd = highest_flag_domain(cpu, SD_ASYM_PACKING); - rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); -} - -/* - * Attach the domain 'sd' to 'cpu' as its base domain. Callers must - * hold the hotplug lock. - */ -static void -cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) -{ - struct rq *rq = cpu_rq(cpu); - struct sched_domain *tmp; - - /* Remove the sched domains which do not contribute to scheduling. */ - for (tmp = sd; tmp; ) { - struct sched_domain *parent = tmp->parent; - if (!parent) - break; - - if (sd_parent_degenerate(tmp, parent)) { - tmp->parent = parent->parent; - if (parent->parent) - parent->parent->child = tmp; - /* - * Transfer SD_PREFER_SIBLING down in case of a - * degenerate parent; the spans match for this - * so the property transfers. - */ - if (parent->flags & SD_PREFER_SIBLING) - tmp->flags |= SD_PREFER_SIBLING; - destroy_sched_domain(parent); - } else - tmp = tmp->parent; - } - - if (sd && sd_degenerate(sd)) { - tmp = sd; - sd = sd->parent; - destroy_sched_domain(tmp); - if (sd) - sd->child = NULL; - } - - sched_domain_debug(sd, cpu); - - rq_attach_root(rq, rd); - tmp = rq->sd; - rcu_assign_pointer(rq->sd, sd); - destroy_sched_domains(tmp); - - update_top_cache_domain(cpu); -} - -/* Setup the mask of CPUs configured for isolated domains */ -static int __init isolated_cpu_setup(char *str) -{ - int ret; - - alloc_bootmem_cpumask_var(&cpu_isolated_map); - ret = cpulist_parse(str, cpu_isolated_map); - if (ret) { - pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); - return 0; - } - return 1; -} -__setup("isolcpus=", isolated_cpu_setup); - -struct s_data { - struct sched_domain ** __percpu sd; - struct root_domain *rd; -}; - -enum s_alloc { - sa_rootdomain, - sa_sd, - sa_sd_storage, - sa_none, -}; - -/* - * Build an iteration mask that can exclude certain CPUs from the upwards - * domain traversal. - * - * Asymmetric node setups can result in situations where the domain tree is of - * unequal depth, make sure to skip domains that already cover the entire - * range. - * - * In that case build_sched_domains() will have terminated the iteration early - * and our sibling sd spans will be empty. Domains should always include the - * CPU they're built on, so check that. - */ -static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) -{ - const struct cpumask *span = sched_domain_span(sd); - struct sd_data *sdd = sd->private; - struct sched_domain *sibling; - int i; - - for_each_cpu(i, span) { - sibling = *per_cpu_ptr(sdd->sd, i); - if (!cpumask_test_cpu(i, sched_domain_span(sibling))) - continue; - - cpumask_set_cpu(i, sched_group_mask(sg)); - } -} - -/* - * Return the canonical balance CPU for this group, this is the first CPU - * of this group that's also in the iteration mask. - */ -int group_balance_cpu(struct sched_group *sg) -{ - return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); -} - -static int -build_overlap_sched_groups(struct sched_domain *sd, int cpu) -{ - struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; - const struct cpumask *span = sched_domain_span(sd); - struct cpumask *covered = sched_domains_tmpmask; - struct sd_data *sdd = sd->private; - struct sched_domain *sibling; - int i; - - cpumask_clear(covered); - - for_each_cpu(i, span) { - struct cpumask *sg_span; - - if (cpumask_test_cpu(i, covered)) - continue; - - sibling = *per_cpu_ptr(sdd->sd, i); - - /* See the comment near build_group_mask(). */ - if (!cpumask_test_cpu(i, sched_domain_span(sibling))) - continue; - - sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), - GFP_KERNEL, cpu_to_node(cpu)); - - if (!sg) - goto fail; - - sg_span = sched_group_cpus(sg); - if (sibling->child) - cpumask_copy(sg_span, sched_domain_span(sibling->child)); - else - cpumask_set_cpu(i, sg_span); - - cpumask_or(covered, covered, sg_span); - - sg->sgc = *per_cpu_ptr(sdd->sgc, i); - if (atomic_inc_return(&sg->sgc->ref) == 1) - build_group_mask(sd, sg); - - /* - * Initialize sgc->capacity such that even if we mess up the - * domains and no possible iteration will get us here, we won't - * die on a /0 trap. - */ - sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); - sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; - - /* - * Make sure the first group of this domain contains the - * canonical balance CPU. Otherwise the sched_domain iteration - * breaks. See update_sg_lb_stats(). - */ - if ((!groups && cpumask_test_cpu(cpu, sg_span)) || - group_balance_cpu(sg) == cpu) - groups = sg; - - if (!first) - first = sg; - if (last) - last->next = sg; - last = sg; - last->next = first; - } - sd->groups = groups; - - return 0; - -fail: - free_sched_groups(first, 0); - - return -ENOMEM; -} - -static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) -{ - struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); - struct sched_domain *child = sd->child; - - if (child) - cpu = cpumask_first(sched_domain_span(child)); - - if (sg) { - *sg = *per_cpu_ptr(sdd->sg, cpu); - (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); - - /* For claim_allocations: */ - atomic_set(&(*sg)->sgc->ref, 1); - } - - return cpu; -} - -/* - * build_sched_groups will build a circular linked list of the groups - * covered by the given span, and will set each group's ->cpumask correctly, - * and ->cpu_capacity to 0. - * - * Assumes the sched_domain tree is fully constructed - */ -static int -build_sched_groups(struct sched_domain *sd, int cpu) -{ - struct sched_group *first = NULL, *last = NULL; - struct sd_data *sdd = sd->private; - const struct cpumask *span = sched_domain_span(sd); - struct cpumask *covered; - int i; - - get_group(cpu, sdd, &sd->groups); - atomic_inc(&sd->groups->ref); - - if (cpu != cpumask_first(span)) - return 0; - - lockdep_assert_held(&sched_domains_mutex); - covered = sched_domains_tmpmask; - - cpumask_clear(covered); - - for_each_cpu(i, span) { - struct sched_group *sg; - int group, j; - - if (cpumask_test_cpu(i, covered)) - continue; - - group = get_group(i, sdd, &sg); - cpumask_setall(sched_group_mask(sg)); - - for_each_cpu(j, span) { - if (get_group(j, sdd, NULL) != group) - continue; - - cpumask_set_cpu(j, covered); - cpumask_set_cpu(j, sched_group_cpus(sg)); - } - - if (!first) - first = sg; - if (last) - last->next = sg; - last = sg; - } - last->next = first; - - return 0; -} - -/* - * Initialize sched groups cpu_capacity. - * - * cpu_capacity indicates the capacity of sched group, which is used while - * distributing the load between different sched groups in a sched domain. - * Typically cpu_capacity for all the groups in a sched domain will be same - * unless there are asymmetries in the topology. If there are asymmetries, - * group having more cpu_capacity will pickup more load compared to the - * group having less cpu_capacity. - */ -static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) -{ - struct sched_group *sg = sd->groups; - - WARN_ON(!sg); - - do { - int cpu, max_cpu = -1; - - sg->group_weight = cpumask_weight(sched_group_cpus(sg)); - - if (!(sd->flags & SD_ASYM_PACKING)) - goto next; - - for_each_cpu(cpu, sched_group_cpus(sg)) { - if (max_cpu < 0) - max_cpu = cpu; - else if (sched_asym_prefer(cpu, max_cpu)) - max_cpu = cpu; - } - sg->asym_prefer_cpu = max_cpu; - -next: - sg = sg->next; - } while (sg != sd->groups); - - if (cpu != group_balance_cpu(sg)) - return; - - update_group_capacity(sd, cpu); -} - -/* - * Initializers for schedule domains - * Non-inlined to reduce accumulated stack pressure in build_sched_domains() - */ - -static int default_relax_domain_level = -1; -int sched_domain_level_max; - -static int __init setup_relax_domain_level(char *str) -{ - if (kstrtoint(str, 0, &default_relax_domain_level)) - pr_warn("Unable to set relax_domain_level\n"); - - return 1; -} -__setup("relax_domain_level=", setup_relax_domain_level); - -static void set_domain_attribute(struct sched_domain *sd, - struct sched_domain_attr *attr) -{ - int request; - - if (!attr || attr->relax_domain_level < 0) { - if (default_relax_domain_level < 0) - return; - else - request = default_relax_domain_level; - } else - request = attr->relax_domain_level; - if (request < sd->level) { - /* Turn off idle balance on this domain: */ - sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); - } else { - /* Turn on idle balance on this domain: */ - sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); - } -} - -static void __sdt_free(const struct cpumask *cpu_map); -static int __sdt_alloc(const struct cpumask *cpu_map); - -static void __free_domain_allocs(struct s_data *d, enum s_alloc what, - const struct cpumask *cpu_map) -{ - switch (what) { - case sa_rootdomain: - if (!atomic_read(&d->rd->refcount)) - free_rootdomain(&d->rd->rcu); - /* Fall through */ - case sa_sd: - free_percpu(d->sd); - /* Fall through */ - case sa_sd_storage: - __sdt_free(cpu_map); - /* Fall through */ - case sa_none: - break; - } -} - -static enum s_alloc -__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) -{ - memset(d, 0, sizeof(*d)); - - if (__sdt_alloc(cpu_map)) - return sa_sd_storage; - d->sd = alloc_percpu(struct sched_domain *); - if (!d->sd) - return sa_sd_storage; - d->rd = alloc_rootdomain(); - if (!d->rd) - return sa_sd; - return sa_rootdomain; -} - -/* - * NULL the sd_data elements we've used to build the sched_domain and - * sched_group structure so that the subsequent __free_domain_allocs() - * will not free the data we're using. - */ -static void claim_allocations(int cpu, struct sched_domain *sd) -{ - struct sd_data *sdd = sd->private; - - WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); - *per_cpu_ptr(sdd->sd, cpu) = NULL; - - if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) - *per_cpu_ptr(sdd->sds, cpu) = NULL; - - if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) - *per_cpu_ptr(sdd->sg, cpu) = NULL; - - if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) - *per_cpu_ptr(sdd->sgc, cpu) = NULL; -} - -#ifdef CONFIG_NUMA -static int sched_domains_numa_levels; -enum numa_topology_type sched_numa_topology_type; -static int *sched_domains_numa_distance; -int sched_max_numa_distance; -static struct cpumask ***sched_domains_numa_masks; -static int sched_domains_curr_level; -#endif - -/* - * SD_flags allowed in topology descriptions. - * - * These flags are purely descriptive of the topology and do not prescribe - * behaviour. Behaviour is artificial and mapped in the below sd_init() - * function: - * - * SD_SHARE_CPUCAPACITY - describes SMT topologies - * SD_SHARE_PKG_RESOURCES - describes shared caches - * SD_NUMA - describes NUMA topologies - * SD_SHARE_POWERDOMAIN - describes shared power domain - * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies - * - * Odd one out, which beside describing the topology has a quirk also - * prescribes the desired behaviour that goes along with it: - * - * SD_ASYM_PACKING - describes SMT quirks - */ -#define TOPOLOGY_SD_FLAGS \ - (SD_SHARE_CPUCAPACITY | \ - SD_SHARE_PKG_RESOURCES | \ - SD_NUMA | \ - SD_ASYM_PACKING | \ - SD_ASYM_CPUCAPACITY | \ - SD_SHARE_POWERDOMAIN) - -static struct sched_domain * -sd_init(struct sched_domain_topology_level *tl, - const struct cpumask *cpu_map, - struct sched_domain *child, int cpu) -{ - struct sd_data *sdd = &tl->data; - struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); - int sd_id, sd_weight, sd_flags = 0; - -#ifdef CONFIG_NUMA - /* - * Ugly hack to pass state to sd_numa_mask()... - */ - sched_domains_curr_level = tl->numa_level; -#endif - - sd_weight = cpumask_weight(tl->mask(cpu)); - - if (tl->sd_flags) - sd_flags = (*tl->sd_flags)(); - if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, - "wrong sd_flags in topology description\n")) - sd_flags &= ~TOPOLOGY_SD_FLAGS; - - *sd = (struct sched_domain){ - .min_interval = sd_weight, - .max_interval = 2*sd_weight, - .busy_factor = 32, - .imbalance_pct = 125, - - .cache_nice_tries = 0, - .busy_idx = 0, - .idle_idx = 0, - .newidle_idx = 0, - .wake_idx = 0, - .forkexec_idx = 0, - - .flags = 1*SD_LOAD_BALANCE - | 1*SD_BALANCE_NEWIDLE - | 1*SD_BALANCE_EXEC - | 1*SD_BALANCE_FORK - | 0*SD_BALANCE_WAKE - | 1*SD_WAKE_AFFINE - | 0*SD_SHARE_CPUCAPACITY - | 0*SD_SHARE_PKG_RESOURCES - | 0*SD_SERIALIZE - | 0*SD_PREFER_SIBLING - | 0*SD_NUMA - | sd_flags - , - - .last_balance = jiffies, - .balance_interval = sd_weight, - .smt_gain = 0, - .max_newidle_lb_cost = 0, - .next_decay_max_lb_cost = jiffies, - .child = child, -#ifdef CONFIG_SCHED_DEBUG - .name = tl->name, -#endif - }; - - cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); - sd_id = cpumask_first(sched_domain_span(sd)); - - /* - * Convert topological properties into behaviour. - */ - - if (sd->flags & SD_ASYM_CPUCAPACITY) { - struct sched_domain *t = sd; - - for_each_lower_domain(t) - t->flags |= SD_BALANCE_WAKE; - } - - if (sd->flags & SD_SHARE_CPUCAPACITY) { - sd->flags |= SD_PREFER_SIBLING; - sd->imbalance_pct = 110; - sd->smt_gain = 1178; /* ~15% */ - - } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { - sd->imbalance_pct = 117; - sd->cache_nice_tries = 1; - sd->busy_idx = 2; - -#ifdef CONFIG_NUMA - } else if (sd->flags & SD_NUMA) { - sd->cache_nice_tries = 2; - sd->busy_idx = 3; - sd->idle_idx = 2; - - sd->flags |= SD_SERIALIZE; - if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { - sd->flags &= ~(SD_BALANCE_EXEC | - SD_BALANCE_FORK | - SD_WAKE_AFFINE); - } - -#endif - } else { - sd->flags |= SD_PREFER_SIBLING; - sd->cache_nice_tries = 1; - sd->busy_idx = 2; - sd->idle_idx = 1; - } - - /* - * For all levels sharing cache; connect a sched_domain_shared - * instance. - */ - if (sd->flags & SD_SHARE_PKG_RESOURCES) { - sd->shared = *per_cpu_ptr(sdd->sds, sd_id); - atomic_inc(&sd->shared->ref); - atomic_set(&sd->shared->nr_busy_cpus, sd_weight); - } - - sd->private = sdd; - - return sd; -} - -/* - * Topology list, bottom-up. - */ -static struct sched_domain_topology_level default_topology[] = { -#ifdef CONFIG_SCHED_SMT - { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, -#endif -#ifdef CONFIG_SCHED_MC - { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, -#endif - { cpu_cpu_mask, SD_INIT_NAME(DIE) }, - { NULL, }, -}; - -static struct sched_domain_topology_level *sched_domain_topology = - default_topology; - -#define for_each_sd_topology(tl) \ - for (tl = sched_domain_topology; tl->mask; tl++) - -void set_sched_topology(struct sched_domain_topology_level *tl) -{ - if (WARN_ON_ONCE(sched_smp_initialized)) - return; - - sched_domain_topology = tl; -} - -#ifdef CONFIG_NUMA - -static const struct cpumask *sd_numa_mask(int cpu) -{ - return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; -} - -static void sched_numa_warn(const char *str) -{ - static int done = false; - int i,j; - - if (done) - return; - - done = true; - - printk(KERN_WARNING "ERROR: %s\n\n", str); - - for (i = 0; i < nr_node_ids; i++) { - printk(KERN_WARNING " "); - for (j = 0; j < nr_node_ids; j++) - printk(KERN_CONT "%02d ", node_distance(i,j)); - printk(KERN_CONT "\n"); - } - printk(KERN_WARNING "\n"); -} - -bool find_numa_distance(int distance) -{ - int i; - - if (distance == node_distance(0, 0)) - return true; - - for (i = 0; i < sched_domains_numa_levels; i++) { - if (sched_domains_numa_distance[i] == distance) - return true; - } - - return false; -} - -/* - * A system can have three types of NUMA topology: - * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system - * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes - * NUMA_BACKPLANE: nodes can reach other nodes through a backplane - * - * The difference between a glueless mesh topology and a backplane - * topology lies in whether communication between not directly - * connected nodes goes through intermediary nodes (where programs - * could run), or through backplane controllers. This affects - * placement of programs. - * - * The type of topology can be discerned with the following tests: - * - If the maximum distance between any nodes is 1 hop, the system - * is directly connected. - * - If for two nodes A and B, located N > 1 hops away from each other, - * there is an intermediary node C, which is < N hops away from both - * nodes A and B, the system is a glueless mesh. - */ -static void init_numa_topology_type(void) -{ - int a, b, c, n; - - n = sched_max_numa_distance; - - if (sched_domains_numa_levels <= 1) { - sched_numa_topology_type = NUMA_DIRECT; - return; - } - - for_each_online_node(a) { - for_each_online_node(b) { - /* Find two nodes furthest removed from each other. */ - if (node_distance(a, b) < n) - continue; - - /* Is there an intermediary node between a and b? */ - for_each_online_node(c) { - if (node_distance(a, c) < n && - node_distance(b, c) < n) { - sched_numa_topology_type = - NUMA_GLUELESS_MESH; - return; - } - } - - sched_numa_topology_type = NUMA_BACKPLANE; - return; - } - } -} - -static void sched_init_numa(void) -{ - int next_distance, curr_distance = node_distance(0, 0); - struct sched_domain_topology_level *tl; - int level = 0; - int i, j, k; - - sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); - if (!sched_domains_numa_distance) - return; - - /* - * O(nr_nodes^2) deduplicating selection sort -- in order to find the - * unique distances in the node_distance() table. - * - * Assumes node_distance(0,j) includes all distances in - * node_distance(i,j) in order to avoid cubic time. - */ - next_distance = curr_distance; - for (i = 0; i < nr_node_ids; i++) { - for (j = 0; j < nr_node_ids; j++) { - for (k = 0; k < nr_node_ids; k++) { - int distance = node_distance(i, k); - - if (distance > curr_distance && - (distance < next_distance || - next_distance == curr_distance)) - next_distance = distance; - - /* - * While not a strong assumption it would be nice to know - * about cases where if node A is connected to B, B is not - * equally connected to A. - */ - if (sched_debug() && node_distance(k, i) != distance) - sched_numa_warn("Node-distance not symmetric"); - - if (sched_debug() && i && !find_numa_distance(distance)) - sched_numa_warn("Node-0 not representative"); - } - if (next_distance != curr_distance) { - sched_domains_numa_distance[level++] = next_distance; - sched_domains_numa_levels = level; - curr_distance = next_distance; - } else break; - } - - /* - * In case of sched_debug() we verify the above assumption. - */ - if (!sched_debug()) - break; - } - - if (!level) - return; - - /* - * 'level' contains the number of unique distances, excluding the - * identity distance node_distance(i,i). - * - * The sched_domains_numa_distance[] array includes the actual distance - * numbers. - */ - - /* - * Here, we should temporarily reset sched_domains_numa_levels to 0. - * If it fails to allocate memory for array sched_domains_numa_masks[][], - * the array will contain less then 'level' members. This could be - * dangerous when we use it to iterate array sched_domains_numa_masks[][] - * in other functions. - * - * We reset it to 'level' at the end of this function. - */ - sched_domains_numa_levels = 0; - - sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); - if (!sched_domains_numa_masks) - return; - - /* - * Now for each level, construct a mask per node which contains all - * CPUs of nodes that are that many hops away from us. - */ - for (i = 0; i < level; i++) { - sched_domains_numa_masks[i] = - kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); - if (!sched_domains_numa_masks[i]) - return; - - for (j = 0; j < nr_node_ids; j++) { - struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); - if (!mask) - return; - - sched_domains_numa_masks[i][j] = mask; - - for_each_node(k) { - if (node_distance(j, k) > sched_domains_numa_distance[i]) - continue; - - cpumask_or(mask, mask, cpumask_of_node(k)); - } - } - } - - /* Compute default topology size */ - for (i = 0; sched_domain_topology[i].mask; i++); - - tl = kzalloc((i + level + 1) * - sizeof(struct sched_domain_topology_level), GFP_KERNEL); - if (!tl) - return; - - /* - * Copy the default topology bits.. - */ - for (i = 0; sched_domain_topology[i].mask; i++) - tl[i] = sched_domain_topology[i]; - - /* - * .. and append 'j' levels of NUMA goodness. - */ - for (j = 0; j < level; i++, j++) { - tl[i] = (struct sched_domain_topology_level){ - .mask = sd_numa_mask, - .sd_flags = cpu_numa_flags, - .flags = SDTL_OVERLAP, - .numa_level = j, - SD_INIT_NAME(NUMA) - }; - } - - sched_domain_topology = tl; - - sched_domains_numa_levels = level; - sched_max_numa_distance = sched_domains_numa_distance[level - 1]; - - init_numa_topology_type(); -} - -static void sched_domains_numa_masks_set(unsigned int cpu) -{ - int node = cpu_to_node(cpu); - int i, j; - - for (i = 0; i < sched_domains_numa_levels; i++) { - for (j = 0; j < nr_node_ids; j++) { - if (node_distance(j, node) <= sched_domains_numa_distance[i]) - cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); - } - } -} - -static void sched_domains_numa_masks_clear(unsigned int cpu) -{ - int i, j; - - for (i = 0; i < sched_domains_numa_levels; i++) { - for (j = 0; j < nr_node_ids; j++) - cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); - } -} - -#else -static inline void sched_init_numa(void) { } -static void sched_domains_numa_masks_set(unsigned int cpu) { } -static void sched_domains_numa_masks_clear(unsigned int cpu) { } -#endif /* CONFIG_NUMA */ - -static int __sdt_alloc(const struct cpumask *cpu_map) -{ - struct sched_domain_topology_level *tl; - int j; - - for_each_sd_topology(tl) { - struct sd_data *sdd = &tl->data; - - sdd->sd = alloc_percpu(struct sched_domain *); - if (!sdd->sd) - return -ENOMEM; - - sdd->sds = alloc_percpu(struct sched_domain_shared *); - if (!sdd->sds) - return -ENOMEM; - - sdd->sg = alloc_percpu(struct sched_group *); - if (!sdd->sg) - return -ENOMEM; - - sdd->sgc = alloc_percpu(struct sched_group_capacity *); - if (!sdd->sgc) - return -ENOMEM; - - for_each_cpu(j, cpu_map) { - struct sched_domain *sd; - struct sched_domain_shared *sds; - struct sched_group *sg; - struct sched_group_capacity *sgc; - - sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), - GFP_KERNEL, cpu_to_node(j)); - if (!sd) - return -ENOMEM; - - *per_cpu_ptr(sdd->sd, j) = sd; - - sds = kzalloc_node(sizeof(struct sched_domain_shared), - GFP_KERNEL, cpu_to_node(j)); - if (!sds) - return -ENOMEM; - - *per_cpu_ptr(sdd->sds, j) = sds; - - sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), - GFP_KERNEL, cpu_to_node(j)); - if (!sg) - return -ENOMEM; - - sg->next = sg; - - *per_cpu_ptr(sdd->sg, j) = sg; - - sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), - GFP_KERNEL, cpu_to_node(j)); - if (!sgc) - return -ENOMEM; - - *per_cpu_ptr(sdd->sgc, j) = sgc; - } - } - - return 0; -} - -static void __sdt_free(const struct cpumask *cpu_map) -{ - struct sched_domain_topology_level *tl; - int j; - - for_each_sd_topology(tl) { - struct sd_data *sdd = &tl->data; - - for_each_cpu(j, cpu_map) { - struct sched_domain *sd; - - if (sdd->sd) { - sd = *per_cpu_ptr(sdd->sd, j); - if (sd && (sd->flags & SD_OVERLAP)) - free_sched_groups(sd->groups, 0); - kfree(*per_cpu_ptr(sdd->sd, j)); - } - - if (sdd->sds) - kfree(*per_cpu_ptr(sdd->sds, j)); - if (sdd->sg) - kfree(*per_cpu_ptr(sdd->sg, j)); - if (sdd->sgc) - kfree(*per_cpu_ptr(sdd->sgc, j)); - } - free_percpu(sdd->sd); - sdd->sd = NULL; - free_percpu(sdd->sds); - sdd->sds = NULL; - free_percpu(sdd->sg); - sdd->sg = NULL; - free_percpu(sdd->sgc); - sdd->sgc = NULL; - } -} - -struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, - const struct cpumask *cpu_map, struct sched_domain_attr *attr, - struct sched_domain *child, int cpu) -{ - struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); - - if (child) { - sd->level = child->level + 1; - sched_domain_level_max = max(sched_domain_level_max, sd->level); - child->parent = sd; - - if (!cpumask_subset(sched_domain_span(child), - sched_domain_span(sd))) { - pr_err("BUG: arch topology borken\n"); -#ifdef CONFIG_SCHED_DEBUG - pr_err(" the %s domain not a subset of the %s domain\n", - child->name, sd->name); -#endif - /* Fixup, ensure @sd has at least @child cpus. */ - cpumask_or(sched_domain_span(sd), - sched_domain_span(sd), - sched_domain_span(child)); - } - - } - set_domain_attribute(sd, attr); - - return sd; -} - -/* - * Build sched domains for a given set of CPUs and attach the sched domains - * to the individual CPUs - */ -static int -build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) -{ - enum s_alloc alloc_state; - struct sched_domain *sd; - struct s_data d; - struct rq *rq = NULL; - int i, ret = -ENOMEM; - - alloc_state = __visit_domain_allocation_hell(&d, cpu_map); - if (alloc_state != sa_rootdomain) - goto error; - - /* Set up domains for CPUs specified by the cpu_map: */ - for_each_cpu(i, cpu_map) { - struct sched_domain_topology_level *tl; - - sd = NULL; - for_each_sd_topology(tl) { - sd = build_sched_domain(tl, cpu_map, attr, sd, i); - if (tl == sched_domain_topology) - *per_cpu_ptr(d.sd, i) = sd; - if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) - sd->flags |= SD_OVERLAP; - if (cpumask_equal(cpu_map, sched_domain_span(sd))) - break; - } - } - - /* Build the groups for the domains */ - for_each_cpu(i, cpu_map) { - for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { - sd->span_weight = cpumask_weight(sched_domain_span(sd)); - if (sd->flags & SD_OVERLAP) { - if (build_overlap_sched_groups(sd, i)) - goto error; - } else { - if (build_sched_groups(sd, i)) - goto error; - } - } - } - - /* Calculate CPU capacity for physical packages and nodes */ - for (i = nr_cpumask_bits-1; i >= 0; i--) { - if (!cpumask_test_cpu(i, cpu_map)) - continue; - - for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { - claim_allocations(i, sd); - init_sched_groups_capacity(i, sd); - } - } - - /* Attach the domains */ - rcu_read_lock(); - for_each_cpu(i, cpu_map) { - rq = cpu_rq(i); - sd = *per_cpu_ptr(d.sd, i); - - /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ - if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) - WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); - - cpu_attach_domain(sd, d.rd, i); - } - rcu_read_unlock(); - - if (rq && sched_debug_enabled) { - pr_info("span: %*pbl (max cpu_capacity = %lu)\n", - cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); - } - - ret = 0; -error: - __free_domain_allocs(&d, alloc_state, cpu_map); - return ret; -} - -/* Current sched domains: */ -static cpumask_var_t *doms_cur; - -/* Number of sched domains in 'doms_cur': */ -static int ndoms_cur; - -/* Attribues of custom domains in 'doms_cur' */ -static struct sched_domain_attr *dattr_cur; - -/* - * Special case: If a kmalloc() of a doms_cur partition (array of - * cpumask) fails, then fallback to a single sched domain, - * as determined by the single cpumask fallback_doms. - */ -static cpumask_var_t fallback_doms; - -/* - * arch_update_cpu_topology lets virtualized architectures update the - * CPU core maps. It is supposed to return 1 if the topology changed - * or 0 if it stayed the same. - */ -int __weak arch_update_cpu_topology(void) -{ - return 0; -} - -cpumask_var_t *alloc_sched_domains(unsigned int ndoms) -{ - int i; - cpumask_var_t *doms; - - doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); - if (!doms) - return NULL; - for (i = 0; i < ndoms; i++) { - if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { - free_sched_domains(doms, i); - return NULL; - } - } - return doms; -} - -void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) -{ - unsigned int i; - for (i = 0; i < ndoms; i++) - free_cpumask_var(doms[i]); - kfree(doms); -} - -/* - * Set up scheduler domains and groups. Callers must hold the hotplug lock. - * For now this just excludes isolated CPUs, but could be used to - * exclude other special cases in the future. - */ -static int init_sched_domains(const struct cpumask *cpu_map) -{ - int err; - - arch_update_cpu_topology(); - ndoms_cur = 1; - doms_cur = alloc_sched_domains(ndoms_cur); - if (!doms_cur) - doms_cur = &fallback_doms; - cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); - err = build_sched_domains(doms_cur[0], NULL); - register_sched_domain_sysctl(); - - return err; -} - -/* - * Detach sched domains from a group of CPUs specified in cpu_map - * These CPUs will now be attached to the NULL domain - */ -static void detach_destroy_domains(const struct cpumask *cpu_map) -{ - int i; - - rcu_read_lock(); - for_each_cpu(i, cpu_map) - cpu_attach_domain(NULL, &def_root_domain, i); - rcu_read_unlock(); -} - -/* handle null as "default" */ -static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, - struct sched_domain_attr *new, int idx_new) -{ - struct sched_domain_attr tmp; - - /* Fast path: */ - if (!new && !cur) - return 1; - - tmp = SD_ATTR_INIT; - return !memcmp(cur ? (cur + idx_cur) : &tmp, - new ? (new + idx_new) : &tmp, - sizeof(struct sched_domain_attr)); -} - -/* - * Partition sched domains as specified by the 'ndoms_new' - * cpumasks in the array doms_new[] of cpumasks. This compares - * doms_new[] to the current sched domain partitioning, doms_cur[]. - * It destroys each deleted domain and builds each new domain. - * - * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. - * The masks don't intersect (don't overlap.) We should setup one - * sched domain for each mask. CPUs not in any of the cpumasks will - * not be load balanced. If the same cpumask appears both in the - * current 'doms_cur' domains and in the new 'doms_new', we can leave - * it as it is. - * - * The passed in 'doms_new' should be allocated using - * alloc_sched_domains. This routine takes ownership of it and will - * free_sched_domains it when done with it. If the caller failed the - * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, - * and partition_sched_domains() will fallback to the single partition - * 'fallback_doms', it also forces the domains to be rebuilt. - * - * If doms_new == NULL it will be replaced with cpu_online_mask. - * ndoms_new == 0 is a special case for destroying existing domains, - * and it will not create the default domain. - * - * Call with hotplug lock held - */ -void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], - struct sched_domain_attr *dattr_new) -{ - int i, j, n; - int new_topology; - - mutex_lock(&sched_domains_mutex); - - /* Always unregister in case we don't destroy any domains: */ - unregister_sched_domain_sysctl(); - - /* Let the architecture update CPU core mappings: */ - new_topology = arch_update_cpu_topology(); - - n = doms_new ? ndoms_new : 0; - - /* Destroy deleted domains: */ - for (i = 0; i < ndoms_cur; i++) { - for (j = 0; j < n && !new_topology; j++) { - if (cpumask_equal(doms_cur[i], doms_new[j]) - && dattrs_equal(dattr_cur, i, dattr_new, j)) - goto match1; - } - /* No match - a current sched domain not in new doms_new[] */ - detach_destroy_domains(doms_cur[i]); -match1: - ; - } - - n = ndoms_cur; - if (doms_new == NULL) { - n = 0; - doms_new = &fallback_doms; - cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); - WARN_ON_ONCE(dattr_new); - } - - /* Build new domains: */ - for (i = 0; i < ndoms_new; i++) { - for (j = 0; j < n && !new_topology; j++) { - if (cpumask_equal(doms_new[i], doms_cur[j]) - && dattrs_equal(dattr_new, i, dattr_cur, j)) - goto match2; - } - /* No match - add a new doms_new */ - build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); -match2: - ; - } - - /* Remember the new sched domains: */ - if (doms_cur != &fallback_doms) - free_sched_domains(doms_cur, ndoms_cur); - - kfree(dattr_cur); - doms_cur = doms_new; - dattr_cur = dattr_new; - ndoms_cur = ndoms_new; - - register_sched_domain_sysctl(); - - mutex_unlock(&sched_domains_mutex); -} - /* * used to mark begin/end of suspend/resume: */ diff --git a/kernel/sched/sched.h b/kernel/sched/sched.h index 8ff5cc539e8a..17ed94b9b413 100644 --- a/kernel/sched/sched.h +++ b/kernel/sched/sched.h @@ -223,7 +223,7 @@ bool __dl_overflow(struct dl_bw *dl_b, int cpus, u64 old_bw, u64 new_bw) dl_b->bw * cpus < dl_b->total_bw - old_bw + new_bw; } -extern struct mutex sched_domains_mutex; +extern void init_dl_bw(struct dl_bw *dl_b); #ifdef CONFIG_CGROUP_SCHED @@ -584,6 +584,13 @@ struct root_domain { }; extern struct root_domain def_root_domain; +extern struct mutex sched_domains_mutex; +extern cpumask_var_t fallback_doms; +extern cpumask_var_t sched_domains_tmpmask; + +extern void init_defrootdomain(void); +extern int init_sched_domains(const struct cpumask *cpu_map); +extern void rq_attach_root(struct rq *rq, struct root_domain *rd); #endif /* CONFIG_SMP */ @@ -886,6 +893,16 @@ extern int sched_max_numa_distance; extern bool find_numa_distance(int distance); #endif +#ifdef CONFIG_NUMA +extern void sched_init_numa(void); +extern void sched_domains_numa_masks_set(unsigned int cpu); +extern void sched_domains_numa_masks_clear(unsigned int cpu); +#else +static inline void sched_init_numa(void) { } +static inline void sched_domains_numa_masks_set(unsigned int cpu) { } +static inline void sched_domains_numa_masks_clear(unsigned int cpu) { } +#endif + #ifdef CONFIG_NUMA_BALANCING /* The regions in numa_faults array from task_struct */ enum numa_faults_stats { @@ -1752,6 +1769,10 @@ static inline void double_rq_unlock(struct rq *rq1, struct rq *rq2) __release(rq2->lock); } +extern void set_rq_online (struct rq *rq); +extern void set_rq_offline(struct rq *rq); +extern bool sched_smp_initialized; + #else /* CONFIG_SMP */ /* diff --git a/kernel/sched/topology.c b/kernel/sched/topology.c new file mode 100644 index 000000000000..1b0b4fb12837 --- /dev/null +++ b/kernel/sched/topology.c @@ -0,0 +1,1658 @@ +/* + * Scheduler topology setup/handling methods + */ +#include <linux/sched.h> +#include <linux/mutex.h> + +#include "sched.h" + +DEFINE_MUTEX(sched_domains_mutex); + +/* Protected by sched_domains_mutex: */ +cpumask_var_t sched_domains_tmpmask; + +#ifdef CONFIG_SCHED_DEBUG + +static __read_mostly int sched_debug_enabled; + +static int __init sched_debug_setup(char *str) +{ + sched_debug_enabled = 1; + + return 0; +} +early_param("sched_debug", sched_debug_setup); + +static inline bool sched_debug(void) +{ + return sched_debug_enabled; +} + +static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level, + struct cpumask *groupmask) +{ + struct sched_group *group = sd->groups; + + cpumask_clear(groupmask); + + printk(KERN_DEBUG "%*s domain %d: ", level, "", level); + + if (!(sd->flags & SD_LOAD_BALANCE)) { + printk("does not load-balance\n"); + if (sd->parent) + printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain" + " has parent"); + return -1; + } + + printk(KERN_CONT "span %*pbl level %s\n", + cpumask_pr_args(sched_domain_span(sd)), sd->name); + + if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) { + printk(KERN_ERR "ERROR: domain->span does not contain " + "CPU%d\n", cpu); + } + if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) { + printk(KERN_ERR "ERROR: domain->groups does not contain" + " CPU%d\n", cpu); + } + + printk(KERN_DEBUG "%*s groups:", level + 1, ""); + do { + if (!group) { + printk("\n"); + printk(KERN_ERR "ERROR: group is NULL\n"); + break; + } + + if (!cpumask_weight(sched_group_cpus(group))) { + printk(KERN_CONT "\n"); + printk(KERN_ERR "ERROR: empty group\n"); + break; + } + + if (!(sd->flags & SD_OVERLAP) && + cpumask_intersects(groupmask, sched_group_cpus(group))) { + printk(KERN_CONT "\n"); + printk(KERN_ERR "ERROR: repeated CPUs\n"); + break; + } + + cpumask_or(groupmask, groupmask, sched_group_cpus(group)); + + printk(KERN_CONT " %*pbl", + cpumask_pr_args(sched_group_cpus(group))); + if (group->sgc->capacity != SCHED_CAPACITY_SCALE) { + printk(KERN_CONT " (cpu_capacity = %lu)", + group->sgc->capacity); + } + + group = group->next; + } while (group != sd->groups); + printk(KERN_CONT "\n"); + + if (!cpumask_equal(sched_domain_span(sd), groupmask)) + printk(KERN_ERR "ERROR: groups don't span domain->span\n"); + + if (sd->parent && + !cpumask_subset(groupmask, sched_domain_span(sd->parent))) + printk(KERN_ERR "ERROR: parent span is not a superset " + "of domain->span\n"); + return 0; +} + +static void sched_domain_debug(struct sched_domain *sd, int cpu) +{ + int level = 0; + + if (!sched_debug_enabled) + return; + + if (!sd) { + printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu); + return; + } + + printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu); + + for (;;) { + if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask)) + break; + level++; + sd = sd->parent; + if (!sd) + break; + } +} +#else /* !CONFIG_SCHED_DEBUG */ + +# define sched_debug_enabled 0 +# define sched_domain_debug(sd, cpu) do { } while (0) +static inline bool sched_debug(void) +{ + return false; +} +#endif /* CONFIG_SCHED_DEBUG */ + +static int sd_degenerate(struct sched_domain *sd) +{ + if (cpumask_weight(sched_domain_span(sd)) == 1) + return 1; + + /* Following flags need at least 2 groups */ + if (sd->flags & (SD_LOAD_BALANCE | + SD_BALANCE_NEWIDLE | + SD_BALANCE_FORK | + SD_BALANCE_EXEC | + SD_SHARE_CPUCAPACITY | + SD_ASYM_CPUCAPACITY | + SD_SHARE_PKG_RESOURCES | + SD_SHARE_POWERDOMAIN)) { + if (sd->groups != sd->groups->next) + return 0; + } + + /* Following flags don't use groups */ + if (sd->flags & (SD_WAKE_AFFINE)) + return 0; + + return 1; +} + +static int +sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent) +{ + unsigned long cflags = sd->flags, pflags = parent->flags; + + if (sd_degenerate(parent)) + return 1; + + if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent))) + return 0; + + /* Flags needing groups don't count if only 1 group in parent */ + if (parent->groups == parent->groups->next) { + pflags &= ~(SD_LOAD_BALANCE | + SD_BALANCE_NEWIDLE | + SD_BALANCE_FORK | + SD_BALANCE_EXEC | + SD_ASYM_CPUCAPACITY | + SD_SHARE_CPUCAPACITY | + SD_SHARE_PKG_RESOURCES | + SD_PREFER_SIBLING | + SD_SHARE_POWERDOMAIN); + if (nr_node_ids == 1) + pflags &= ~SD_SERIALIZE; + } + if (~cflags & pflags) + return 0; + + return 1; +} + +static void free_rootdomain(struct rcu_head *rcu) +{ + struct root_domain *rd = container_of(rcu, struct root_domain, rcu); + + cpupri_cleanup(&rd->cpupri); + cpudl_cleanup(&rd->cpudl); + free_cpumask_var(rd->dlo_mask); + free_cpumask_var(rd->rto_mask); + free_cpumask_var(rd->online); + free_cpumask_var(rd->span); + kfree(rd); +} + +void rq_attach_root(struct rq *rq, struct root_domain *rd) +{ + struct root_domain *old_rd = NULL; + unsigned long flags; + + raw_spin_lock_irqsave(&rq->lock, flags); + + if (rq->rd) { + old_rd = rq->rd; + + if (cpumask_test_cpu(rq->cpu, old_rd->online)) + set_rq_offline(rq); + + cpumask_clear_cpu(rq->cpu, old_rd->span); + + /* + * If we dont want to free the old_rd yet then + * set old_rd to NULL to skip the freeing later + * in this function: + */ + if (!atomic_dec_and_test(&old_rd->refcount)) + old_rd = NULL; + } + + atomic_inc(&rd->refcount); + rq->rd = rd; + + cpumask_set_cpu(rq->cpu, rd->span); + if (cpumask_test_cpu(rq->cpu, cpu_active_mask)) + set_rq_online(rq); + + raw_spin_unlock_irqrestore(&rq->lock, flags); + + if (old_rd) + call_rcu_sched(&old_rd->rcu, free_rootdomain); +} + +static int init_rootdomain(struct root_domain *rd) +{ + memset(rd, 0, sizeof(*rd)); + + if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL)) + goto out; + if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL)) + goto free_span; + if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL)) + goto free_online; + if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL)) + goto free_dlo_mask; + + init_dl_bw(&rd->dl_bw); + if (cpudl_init(&rd->cpudl) != 0) + goto free_rto_mask; + + if (cpupri_init(&rd->cpupri) != 0) + goto free_cpudl; + return 0; + +free_cpudl: + cpudl_cleanup(&rd->cpudl); +free_rto_mask: + free_cpumask_var(rd->rto_mask); +free_dlo_mask: + free_cpumask_var(rd->dlo_mask); +free_online: + free_cpumask_var(rd->online); +free_span: + free_cpumask_var(rd->span); +out: + return -ENOMEM; +} + +/* + * By default the system creates a single root-domain with all CPUs as + * members (mimicking the global state we have today). + */ +struct root_domain def_root_domain; + +void init_defrootdomain(void) +{ + init_rootdomain(&def_root_domain); + + atomic_set(&def_root_domain.refcount, 1); +} + +static struct root_domain *alloc_rootdomain(void) +{ + struct root_domain *rd; + + rd = kmalloc(sizeof(*rd), GFP_KERNEL); + if (!rd) + return NULL; + + if (init_rootdomain(rd) != 0) { + kfree(rd); + return NULL; + } + + return rd; +} + +static void free_sched_groups(struct sched_group *sg, int free_sgc) +{ + struct sched_group *tmp, *first; + + if (!sg) + return; + + first = sg; + do { + tmp = sg->next; + + if (free_sgc && atomic_dec_and_test(&sg->sgc->ref)) + kfree(sg->sgc); + + kfree(sg); + sg = tmp; + } while (sg != first); +} + +static void destroy_sched_domain(struct sched_domain *sd) +{ + /* + * If its an overlapping domain it has private groups, iterate and + * nuke them all. + */ + if (sd->flags & SD_OVERLAP) { + free_sched_groups(sd->groups, 1); + } else if (atomic_dec_and_test(&sd->groups->ref)) { + kfree(sd->groups->sgc); + kfree(sd->groups); + } + if (sd->shared && atomic_dec_and_test(&sd->shared->ref)) + kfree(sd->shared); + kfree(sd); +} + +static void destroy_sched_domains_rcu(struct rcu_head *rcu) +{ + struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu); + + while (sd) { + struct sched_domain *parent = sd->parent; + destroy_sched_domain(sd); + sd = parent; + } +} + +static void destroy_sched_domains(struct sched_domain *sd) +{ + if (sd) + call_rcu(&sd->rcu, destroy_sched_domains_rcu); +} + +/* + * Keep a special pointer to the highest sched_domain that has + * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this + * allows us to avoid some pointer chasing select_idle_sibling(). + * + * Also keep a unique ID per domain (we use the first CPU number in + * the cpumask of the domain), this allows us to quickly tell if + * two CPUs are in the same cache domain, see cpus_share_cache(). + */ +DEFINE_PER_CPU(struct sched_domain *, sd_llc); +DEFINE_PER_CPU(int, sd_llc_size); +DEFINE_PER_CPU(int, sd_llc_id); +DEFINE_PER_CPU(struct sched_domain_shared *, sd_llc_shared); +DEFINE_PER_CPU(struct sched_domain *, sd_numa); +DEFINE_PER_CPU(struct sched_domain *, sd_asym); + +static void update_top_cache_domain(int cpu) +{ + struct sched_domain_shared *sds = NULL; + struct sched_domain *sd; + int id = cpu; + int size = 1; + + sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES); + if (sd) { + id = cpumask_first(sched_domain_span(sd)); + size = cpumask_weight(sched_domain_span(sd)); + sds = sd->shared; + } + + rcu_assign_pointer(per_cpu(sd_llc, cpu), sd); + per_cpu(sd_llc_size, cpu) = size; + per_cpu(sd_llc_id, cpu) = id; + rcu_assign_pointer(per_cpu(sd_llc_shared, cpu), sds); + + sd = lowest_flag_domain(cpu, SD_NUMA); + rcu_assign_pointer(per_cpu(sd_numa, cpu), sd); + + sd = highest_flag_domain(cpu, SD_ASYM_PACKING); + rcu_assign_pointer(per_cpu(sd_asym, cpu), sd); +} + +/* + * Attach the domain 'sd' to 'cpu' as its base domain. Callers must + * hold the hotplug lock. + */ +static void +cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu) +{ + struct rq *rq = cpu_rq(cpu); + struct sched_domain *tmp; + + /* Remove the sched domains which do not contribute to scheduling. */ + for (tmp = sd; tmp; ) { + struct sched_domain *parent = tmp->parent; + if (!parent) + break; + + if (sd_parent_degenerate(tmp, parent)) { + tmp->parent = parent->parent; + if (parent->parent) + parent->parent->child = tmp; + /* + * Transfer SD_PREFER_SIBLING down in case of a + * degenerate parent; the spans match for this + * so the property transfers. + */ + if (parent->flags & SD_PREFER_SIBLING) + tmp->flags |= SD_PREFER_SIBLING; + destroy_sched_domain(parent); + } else + tmp = tmp->parent; + } + + if (sd && sd_degenerate(sd)) { + tmp = sd; + sd = sd->parent; + destroy_sched_domain(tmp); + if (sd) + sd->child = NULL; + } + + sched_domain_debug(sd, cpu); + + rq_attach_root(rq, rd); + tmp = rq->sd; + rcu_assign_pointer(rq->sd, sd); + destroy_sched_domains(tmp); + + update_top_cache_domain(cpu); +} + +/* Setup the mask of CPUs configured for isolated domains */ +static int __init isolated_cpu_setup(char *str) +{ + int ret; + + alloc_bootmem_cpumask_var(&cpu_isolated_map); + ret = cpulist_parse(str, cpu_isolated_map); + if (ret) { + pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids); + return 0; + } + return 1; +} +__setup("isolcpus=", isolated_cpu_setup); + +struct s_data { + struct sched_domain ** __percpu sd; + struct root_domain *rd; +}; + +enum s_alloc { + sa_rootdomain, + sa_sd, + sa_sd_storage, + sa_none, +}; + +/* + * Build an iteration mask that can exclude certain CPUs from the upwards + * domain traversal. + * + * Asymmetric node setups can result in situations where the domain tree is of + * unequal depth, make sure to skip domains that already cover the entire + * range. + * + * In that case build_sched_domains() will have terminated the iteration early + * and our sibling sd spans will be empty. Domains should always include the + * CPU they're built on, so check that. + */ +static void build_group_mask(struct sched_domain *sd, struct sched_group *sg) +{ + const struct cpumask *span = sched_domain_span(sd); + struct sd_data *sdd = sd->private; + struct sched_domain *sibling; + int i; + + for_each_cpu(i, span) { + sibling = *per_cpu_ptr(sdd->sd, i); + if (!cpumask_test_cpu(i, sched_domain_span(sibling))) + continue; + + cpumask_set_cpu(i, sched_group_mask(sg)); + } +} + +/* + * Return the canonical balance CPU for this group, this is the first CPU + * of this group that's also in the iteration mask. + */ +int group_balance_cpu(struct sched_group *sg) +{ + return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg)); +} + +static int +build_overlap_sched_groups(struct sched_domain *sd, int cpu) +{ + struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg; + const struct cpumask *span = sched_domain_span(sd); + struct cpumask *covered = sched_domains_tmpmask; + struct sd_data *sdd = sd->private; + struct sched_domain *sibling; + int i; + + cpumask_clear(covered); + + for_each_cpu(i, span) { + struct cpumask *sg_span; + + if (cpumask_test_cpu(i, covered)) + continue; + + sibling = *per_cpu_ptr(sdd->sd, i); + + /* See the comment near build_group_mask(). */ + if (!cpumask_test_cpu(i, sched_domain_span(sibling))) + continue; + + sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, cpu_to_node(cpu)); + + if (!sg) + goto fail; + + sg_span = sched_group_cpus(sg); + if (sibling->child) + cpumask_copy(sg_span, sched_domain_span(sibling->child)); + else + cpumask_set_cpu(i, sg_span); + + cpumask_or(covered, covered, sg_span); + + sg->sgc = *per_cpu_ptr(sdd->sgc, i); + if (atomic_inc_return(&sg->sgc->ref) == 1) + build_group_mask(sd, sg); + + /* + * Initialize sgc->capacity such that even if we mess up the + * domains and no possible iteration will get us here, we won't + * die on a /0 trap. + */ + sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span); + sg->sgc->min_capacity = SCHED_CAPACITY_SCALE; + + /* + * Make sure the first group of this domain contains the + * canonical balance CPU. Otherwise the sched_domain iteration + * breaks. See update_sg_lb_stats(). + */ + if ((!groups && cpumask_test_cpu(cpu, sg_span)) || + group_balance_cpu(sg) == cpu) + groups = sg; + + if (!first) + first = sg; + if (last) + last->next = sg; + last = sg; + last->next = first; + } + sd->groups = groups; + + return 0; + +fail: + free_sched_groups(first, 0); + + return -ENOMEM; +} + +static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg) +{ + struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); + struct sched_domain *child = sd->child; + + if (child) + cpu = cpumask_first(sched_domain_span(child)); + + if (sg) { + *sg = *per_cpu_ptr(sdd->sg, cpu); + (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu); + + /* For claim_allocations: */ + atomic_set(&(*sg)->sgc->ref, 1); + } + + return cpu; +} + +/* + * build_sched_groups will build a circular linked list of the groups + * covered by the given span, and will set each group's ->cpumask correctly, + * and ->cpu_capacity to 0. + * + * Assumes the sched_domain tree is fully constructed + */ +static int +build_sched_groups(struct sched_domain *sd, int cpu) +{ + struct sched_group *first = NULL, *last = NULL; + struct sd_data *sdd = sd->private; + const struct cpumask *span = sched_domain_span(sd); + struct cpumask *covered; + int i; + + get_group(cpu, sdd, &sd->groups); + atomic_inc(&sd->groups->ref); + + if (cpu != cpumask_first(span)) + return 0; + + lockdep_assert_held(&sched_domains_mutex); + covered = sched_domains_tmpmask; + + cpumask_clear(covered); + + for_each_cpu(i, span) { + struct sched_group *sg; + int group, j; + + if (cpumask_test_cpu(i, covered)) + continue; + + group = get_group(i, sdd, &sg); + cpumask_setall(sched_group_mask(sg)); + + for_each_cpu(j, span) { + if (get_group(j, sdd, NULL) != group) + continue; + + cpumask_set_cpu(j, covered); + cpumask_set_cpu(j, sched_group_cpus(sg)); + } + + if (!first) + first = sg; + if (last) + last->next = sg; + last = sg; + } + last->next = first; + + return 0; +} + +/* + * Initialize sched groups cpu_capacity. + * + * cpu_capacity indicates the capacity of sched group, which is used while + * distributing the load between different sched groups in a sched domain. + * Typically cpu_capacity for all the groups in a sched domain will be same + * unless there are asymmetries in the topology. If there are asymmetries, + * group having more cpu_capacity will pickup more load compared to the + * group having less cpu_capacity. + */ +static void init_sched_groups_capacity(int cpu, struct sched_domain *sd) +{ + struct sched_group *sg = sd->groups; + + WARN_ON(!sg); + + do { + int cpu, max_cpu = -1; + + sg->group_weight = cpumask_weight(sched_group_cpus(sg)); + + if (!(sd->flags & SD_ASYM_PACKING)) + goto next; + + for_each_cpu(cpu, sched_group_cpus(sg)) { + if (max_cpu < 0) + max_cpu = cpu; + else if (sched_asym_prefer(cpu, max_cpu)) + max_cpu = cpu; + } + sg->asym_prefer_cpu = max_cpu; + +next: + sg = sg->next; + } while (sg != sd->groups); + + if (cpu != group_balance_cpu(sg)) + return; + + update_group_capacity(sd, cpu); +} + +/* + * Initializers for schedule domains + * Non-inlined to reduce accumulated stack pressure in build_sched_domains() + */ + +static int default_relax_domain_level = -1; +int sched_domain_level_max; + +static int __init setup_relax_domain_level(char *str) +{ + if (kstrtoint(str, 0, &default_relax_domain_level)) + pr_warn("Unable to set relax_domain_level\n"); + + return 1; +} +__setup("relax_domain_level=", setup_relax_domain_level); + +static void set_domain_attribute(struct sched_domain *sd, + struct sched_domain_attr *attr) +{ + int request; + + if (!attr || attr->relax_domain_level < 0) { + if (default_relax_domain_level < 0) + return; + else + request = default_relax_domain_level; + } else + request = attr->relax_domain_level; + if (request < sd->level) { + /* Turn off idle balance on this domain: */ + sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); + } else { + /* Turn on idle balance on this domain: */ + sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE); + } +} + +static void __sdt_free(const struct cpumask *cpu_map); +static int __sdt_alloc(const struct cpumask *cpu_map); + +static void __free_domain_allocs(struct s_data *d, enum s_alloc what, + const struct cpumask *cpu_map) +{ + switch (what) { + case sa_rootdomain: + if (!atomic_read(&d->rd->refcount)) + free_rootdomain(&d->rd->rcu); + /* Fall through */ + case sa_sd: + free_percpu(d->sd); + /* Fall through */ + case sa_sd_storage: + __sdt_free(cpu_map); + /* Fall through */ + case sa_none: + break; + } +} + +static enum s_alloc +__visit_domain_allocation_hell(struct s_data *d, const struct cpumask *cpu_map) +{ + memset(d, 0, sizeof(*d)); + + if (__sdt_alloc(cpu_map)) + return sa_sd_storage; + d->sd = alloc_percpu(struct sched_domain *); + if (!d->sd) + return sa_sd_storage; + d->rd = alloc_rootdomain(); + if (!d->rd) + return sa_sd; + return sa_rootdomain; +} + +/* + * NULL the sd_data elements we've used to build the sched_domain and + * sched_group structure so that the subsequent __free_domain_allocs() + * will not free the data we're using. + */ +static void claim_allocations(int cpu, struct sched_domain *sd) +{ + struct sd_data *sdd = sd->private; + + WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd); + *per_cpu_ptr(sdd->sd, cpu) = NULL; + + if (atomic_read(&(*per_cpu_ptr(sdd->sds, cpu))->ref)) + *per_cpu_ptr(sdd->sds, cpu) = NULL; + + if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref)) + *per_cpu_ptr(sdd->sg, cpu) = NULL; + + if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref)) + *per_cpu_ptr(sdd->sgc, cpu) = NULL; +} + +#ifdef CONFIG_NUMA +static int sched_domains_numa_levels; +enum numa_topology_type sched_numa_topology_type; +static int *sched_domains_numa_distance; +int sched_max_numa_distance; +static struct cpumask ***sched_domains_numa_masks; +static int sched_domains_curr_level; +#endif + +/* + * SD_flags allowed in topology descriptions. + * + * These flags are purely descriptive of the topology and do not prescribe + * behaviour. Behaviour is artificial and mapped in the below sd_init() + * function: + * + * SD_SHARE_CPUCAPACITY - describes SMT topologies + * SD_SHARE_PKG_RESOURCES - describes shared caches + * SD_NUMA - describes NUMA topologies + * SD_SHARE_POWERDOMAIN - describes shared power domain + * SD_ASYM_CPUCAPACITY - describes mixed capacity topologies + * + * Odd one out, which beside describing the topology has a quirk also + * prescribes the desired behaviour that goes along with it: + * + * SD_ASYM_PACKING - describes SMT quirks + */ +#define TOPOLOGY_SD_FLAGS \ + (SD_SHARE_CPUCAPACITY | \ + SD_SHARE_PKG_RESOURCES | \ + SD_NUMA | \ + SD_ASYM_PACKING | \ + SD_ASYM_CPUCAPACITY | \ + SD_SHARE_POWERDOMAIN) + +static struct sched_domain * +sd_init(struct sched_domain_topology_level *tl, + const struct cpumask *cpu_map, + struct sched_domain *child, int cpu) +{ + struct sd_data *sdd = &tl->data; + struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu); + int sd_id, sd_weight, sd_flags = 0; + +#ifdef CONFIG_NUMA + /* + * Ugly hack to pass state to sd_numa_mask()... + */ + sched_domains_curr_level = tl->numa_level; +#endif + + sd_weight = cpumask_weight(tl->mask(cpu)); + + if (tl->sd_flags) + sd_flags = (*tl->sd_flags)(); + if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS, + "wrong sd_flags in topology description\n")) + sd_flags &= ~TOPOLOGY_SD_FLAGS; + + *sd = (struct sched_domain){ + .min_interval = sd_weight, + .max_interval = 2*sd_weight, + .busy_factor = 32, + .imbalance_pct = 125, + + .cache_nice_tries = 0, + .busy_idx = 0, + .idle_idx = 0, + .newidle_idx = 0, + .wake_idx = 0, + .forkexec_idx = 0, + + .flags = 1*SD_LOAD_BALANCE + | 1*SD_BALANCE_NEWIDLE + | 1*SD_BALANCE_EXEC + | 1*SD_BALANCE_FORK + | 0*SD_BALANCE_WAKE + | 1*SD_WAKE_AFFINE + | 0*SD_SHARE_CPUCAPACITY + | 0*SD_SHARE_PKG_RESOURCES + | 0*SD_SERIALIZE + | 0*SD_PREFER_SIBLING + | 0*SD_NUMA + | sd_flags + , + + .last_balance = jiffies, + .balance_interval = sd_weight, + .smt_gain = 0, + .max_newidle_lb_cost = 0, + .next_decay_max_lb_cost = jiffies, + .child = child, +#ifdef CONFIG_SCHED_DEBUG + .name = tl->name, +#endif + }; + + cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu)); + sd_id = cpumask_first(sched_domain_span(sd)); + + /* + * Convert topological properties into behaviour. + */ + + if (sd->flags & SD_ASYM_CPUCAPACITY) { + struct sched_domain *t = sd; + + for_each_lower_domain(t) + t->flags |= SD_BALANCE_WAKE; + } + + if (sd->flags & SD_SHARE_CPUCAPACITY) { + sd->flags |= SD_PREFER_SIBLING; + sd->imbalance_pct = 110; + sd->smt_gain = 1178; /* ~15% */ + + } else if (sd->flags & SD_SHARE_PKG_RESOURCES) { + sd->imbalance_pct = 117; + sd->cache_nice_tries = 1; + sd->busy_idx = 2; + +#ifdef CONFIG_NUMA + } else if (sd->flags & SD_NUMA) { + sd->cache_nice_tries = 2; + sd->busy_idx = 3; + sd->idle_idx = 2; + + sd->flags |= SD_SERIALIZE; + if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) { + sd->flags &= ~(SD_BALANCE_EXEC | + SD_BALANCE_FORK | + SD_WAKE_AFFINE); + } + +#endif + } else { + sd->flags |= SD_PREFER_SIBLING; + sd->cache_nice_tries = 1; + sd->busy_idx = 2; + sd->idle_idx = 1; + } + + /* + * For all levels sharing cache; connect a sched_domain_shared + * instance. + */ + if (sd->flags & SD_SHARE_PKG_RESOURCES) { + sd->shared = *per_cpu_ptr(sdd->sds, sd_id); + atomic_inc(&sd->shared->ref); + atomic_set(&sd->shared->nr_busy_cpus, sd_weight); + } + + sd->private = sdd; + + return sd; +} + +/* + * Topology list, bottom-up. + */ +static struct sched_domain_topology_level default_topology[] = { +#ifdef CONFIG_SCHED_SMT + { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) }, +#endif +#ifdef CONFIG_SCHED_MC + { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) }, +#endif + { cpu_cpu_mask, SD_INIT_NAME(DIE) }, + { NULL, }, +}; + +static struct sched_domain_topology_level *sched_domain_topology = + default_topology; + +#define for_each_sd_topology(tl) \ + for (tl = sched_domain_topology; tl->mask; tl++) + +void set_sched_topology(struct sched_domain_topology_level *tl) +{ + if (WARN_ON_ONCE(sched_smp_initialized)) + return; + + sched_domain_topology = tl; +} + +#ifdef CONFIG_NUMA + +static const struct cpumask *sd_numa_mask(int cpu) +{ + return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)]; +} + +static void sched_numa_warn(const char *str) +{ + static int done = false; + int i,j; + + if (done) + return; + + done = true; + + printk(KERN_WARNING "ERROR: %s\n\n", str); + + for (i = 0; i < nr_node_ids; i++) { + printk(KERN_WARNING " "); + for (j = 0; j < nr_node_ids; j++) + printk(KERN_CONT "%02d ", node_distance(i,j)); + printk(KERN_CONT "\n"); + } + printk(KERN_WARNING "\n"); +} + +bool find_numa_distance(int distance) +{ + int i; + + if (distance == node_distance(0, 0)) + return true; + + for (i = 0; i < sched_domains_numa_levels; i++) { + if (sched_domains_numa_distance[i] == distance) + return true; + } + + return false; +} + +/* + * A system can have three types of NUMA topology: + * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system + * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes + * NUMA_BACKPLANE: nodes can reach other nodes through a backplane + * + * The difference between a glueless mesh topology and a backplane + * topology lies in whether communication between not directly + * connected nodes goes through intermediary nodes (where programs + * could run), or through backplane controllers. This affects + * placement of programs. + * + * The type of topology can be discerned with the following tests: + * - If the maximum distance between any nodes is 1 hop, the system + * is directly connected. + * - If for two nodes A and B, located N > 1 hops away from each other, + * there is an intermediary node C, which is < N hops away from both + * nodes A and B, the system is a glueless mesh. + */ +static void init_numa_topology_type(void) +{ + int a, b, c, n; + + n = sched_max_numa_distance; + + if (sched_domains_numa_levels <= 1) { + sched_numa_topology_type = NUMA_DIRECT; + return; + } + + for_each_online_node(a) { + for_each_online_node(b) { + /* Find two nodes furthest removed from each other. */ + if (node_distance(a, b) < n) + continue; + + /* Is there an intermediary node between a and b? */ + for_each_online_node(c) { + if (node_distance(a, c) < n && + node_distance(b, c) < n) { + sched_numa_topology_type = + NUMA_GLUELESS_MESH; + return; + } + } + + sched_numa_topology_type = NUMA_BACKPLANE; + return; + } + } +} + +void sched_init_numa(void) +{ + int next_distance, curr_distance = node_distance(0, 0); + struct sched_domain_topology_level *tl; + int level = 0; + int i, j, k; + + sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL); + if (!sched_domains_numa_distance) + return; + + /* + * O(nr_nodes^2) deduplicating selection sort -- in order to find the + * unique distances in the node_distance() table. + * + * Assumes node_distance(0,j) includes all distances in + * node_distance(i,j) in order to avoid cubic time. + */ + next_distance = curr_distance; + for (i = 0; i < nr_node_ids; i++) { + for (j = 0; j < nr_node_ids; j++) { + for (k = 0; k < nr_node_ids; k++) { + int distance = node_distance(i, k); + + if (distance > curr_distance && + (distance < next_distance || + next_distance == curr_distance)) + next_distance = distance; + + /* + * While not a strong assumption it would be nice to know + * about cases where if node A is connected to B, B is not + * equally connected to A. + */ + if (sched_debug() && node_distance(k, i) != distance) + sched_numa_warn("Node-distance not symmetric"); + + if (sched_debug() && i && !find_numa_distance(distance)) + sched_numa_warn("Node-0 not representative"); + } + if (next_distance != curr_distance) { + sched_domains_numa_distance[level++] = next_distance; + sched_domains_numa_levels = level; + curr_distance = next_distance; + } else break; + } + + /* + * In case of sched_debug() we verify the above assumption. + */ + if (!sched_debug()) + break; + } + + if (!level) + return; + + /* + * 'level' contains the number of unique distances, excluding the + * identity distance node_distance(i,i). + * + * The sched_domains_numa_distance[] array includes the actual distance + * numbers. + */ + + /* + * Here, we should temporarily reset sched_domains_numa_levels to 0. + * If it fails to allocate memory for array sched_domains_numa_masks[][], + * the array will contain less then 'level' members. This could be + * dangerous when we use it to iterate array sched_domains_numa_masks[][] + * in other functions. + * + * We reset it to 'level' at the end of this function. + */ + sched_domains_numa_levels = 0; + + sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL); + if (!sched_domains_numa_masks) + return; + + /* + * Now for each level, construct a mask per node which contains all + * CPUs of nodes that are that many hops away from us. + */ + for (i = 0; i < level; i++) { + sched_domains_numa_masks[i] = + kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL); + if (!sched_domains_numa_masks[i]) + return; + + for (j = 0; j < nr_node_ids; j++) { + struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL); + if (!mask) + return; + + sched_domains_numa_masks[i][j] = mask; + + for_each_node(k) { + if (node_distance(j, k) > sched_domains_numa_distance[i]) + continue; + + cpumask_or(mask, mask, cpumask_of_node(k)); + } + } + } + + /* Compute default topology size */ + for (i = 0; sched_domain_topology[i].mask; i++); + + tl = kzalloc((i + level + 1) * + sizeof(struct sched_domain_topology_level), GFP_KERNEL); + if (!tl) + return; + + /* + * Copy the default topology bits.. + */ + for (i = 0; sched_domain_topology[i].mask; i++) + tl[i] = sched_domain_topology[i]; + + /* + * .. and append 'j' levels of NUMA goodness. + */ + for (j = 0; j < level; i++, j++) { + tl[i] = (struct sched_domain_topology_level){ + .mask = sd_numa_mask, + .sd_flags = cpu_numa_flags, + .flags = SDTL_OVERLAP, + .numa_level = j, + SD_INIT_NAME(NUMA) + }; + } + + sched_domain_topology = tl; + + sched_domains_numa_levels = level; + sched_max_numa_distance = sched_domains_numa_distance[level - 1]; + + init_numa_topology_type(); +} + +void sched_domains_numa_masks_set(unsigned int cpu) +{ + int node = cpu_to_node(cpu); + int i, j; + + for (i = 0; i < sched_domains_numa_levels; i++) { + for (j = 0; j < nr_node_ids; j++) { + if (node_distance(j, node) <= sched_domains_numa_distance[i]) + cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]); + } + } +} + +void sched_domains_numa_masks_clear(unsigned int cpu) +{ + int i, j; + + for (i = 0; i < sched_domains_numa_levels; i++) { + for (j = 0; j < nr_node_ids; j++) + cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]); + } +} + +#endif /* CONFIG_NUMA */ + +static int __sdt_alloc(const struct cpumask *cpu_map) +{ + struct sched_domain_topology_level *tl; + int j; + + for_each_sd_topology(tl) { + struct sd_data *sdd = &tl->data; + + sdd->sd = alloc_percpu(struct sched_domain *); + if (!sdd->sd) + return -ENOMEM; + + sdd->sds = alloc_percpu(struct sched_domain_shared *); + if (!sdd->sds) + return -ENOMEM; + + sdd->sg = alloc_percpu(struct sched_group *); + if (!sdd->sg) + return -ENOMEM; + + sdd->sgc = alloc_percpu(struct sched_group_capacity *); + if (!sdd->sgc) + return -ENOMEM; + + for_each_cpu(j, cpu_map) { + struct sched_domain *sd; + struct sched_domain_shared *sds; + struct sched_group *sg; + struct sched_group_capacity *sgc; + + sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(), + GFP_KERNEL, cpu_to_node(j)); + if (!sd) + return -ENOMEM; + + *per_cpu_ptr(sdd->sd, j) = sd; + + sds = kzalloc_node(sizeof(struct sched_domain_shared), + GFP_KERNEL, cpu_to_node(j)); + if (!sds) + return -ENOMEM; + + *per_cpu_ptr(sdd->sds, j) = sds; + + sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(), + GFP_KERNEL, cpu_to_node(j)); + if (!sg) + return -ENOMEM; + + sg->next = sg; + + *per_cpu_ptr(sdd->sg, j) = sg; + + sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(), + GFP_KERNEL, cpu_to_node(j)); + if (!sgc) + return -ENOMEM; + + *per_cpu_ptr(sdd->sgc, j) = sgc; + } + } + + return 0; +} + +static void __sdt_free(const struct cpumask *cpu_map) +{ + struct sched_domain_topology_level *tl; + int j; + + for_each_sd_topology(tl) { + struct sd_data *sdd = &tl->data; + + for_each_cpu(j, cpu_map) { + struct sched_domain *sd; + + if (sdd->sd) { + sd = *per_cpu_ptr(sdd->sd, j); + if (sd && (sd->flags & SD_OVERLAP)) + free_sched_groups(sd->groups, 0); + kfree(*per_cpu_ptr(sdd->sd, j)); + } + + if (sdd->sds) + kfree(*per_cpu_ptr(sdd->sds, j)); + if (sdd->sg) + kfree(*per_cpu_ptr(sdd->sg, j)); + if (sdd->sgc) + kfree(*per_cpu_ptr(sdd->sgc, j)); + } + free_percpu(sdd->sd); + sdd->sd = NULL; + free_percpu(sdd->sds); + sdd->sds = NULL; + free_percpu(sdd->sg); + sdd->sg = NULL; + free_percpu(sdd->sgc); + sdd->sgc = NULL; + } +} + +struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl, + const struct cpumask *cpu_map, struct sched_domain_attr *attr, + struct sched_domain *child, int cpu) +{ + struct sched_domain *sd = sd_init(tl, cpu_map, child, cpu); + + if (child) { + sd->level = child->level + 1; + sched_domain_level_max = max(sched_domain_level_max, sd->level); + child->parent = sd; + + if (!cpumask_subset(sched_domain_span(child), + sched_domain_span(sd))) { + pr_err("BUG: arch topology borken\n"); +#ifdef CONFIG_SCHED_DEBUG + pr_err(" the %s domain not a subset of the %s domain\n", + child->name, sd->name); +#endif + /* Fixup, ensure @sd has at least @child cpus. */ + cpumask_or(sched_domain_span(sd), + sched_domain_span(sd), + sched_domain_span(child)); + } + + } + set_domain_attribute(sd, attr); + + return sd; +} + +/* + * Build sched domains for a given set of CPUs and attach the sched domains + * to the individual CPUs + */ +static int +build_sched_domains(const struct cpumask *cpu_map, struct sched_domain_attr *attr) +{ + enum s_alloc alloc_state; + struct sched_domain *sd; + struct s_data d; + struct rq *rq = NULL; + int i, ret = -ENOMEM; + + alloc_state = __visit_domain_allocation_hell(&d, cpu_map); + if (alloc_state != sa_rootdomain) + goto error; + + /* Set up domains for CPUs specified by the cpu_map: */ + for_each_cpu(i, cpu_map) { + struct sched_domain_topology_level *tl; + + sd = NULL; + for_each_sd_topology(tl) { + sd = build_sched_domain(tl, cpu_map, attr, sd, i); + if (tl == sched_domain_topology) + *per_cpu_ptr(d.sd, i) = sd; + if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP)) + sd->flags |= SD_OVERLAP; + if (cpumask_equal(cpu_map, sched_domain_span(sd))) + break; + } + } + + /* Build the groups for the domains */ + for_each_cpu(i, cpu_map) { + for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { + sd->span_weight = cpumask_weight(sched_domain_span(sd)); + if (sd->flags & SD_OVERLAP) { + if (build_overlap_sched_groups(sd, i)) + goto error; + } else { + if (build_sched_groups(sd, i)) + goto error; + } + } + } + + /* Calculate CPU capacity for physical packages and nodes */ + for (i = nr_cpumask_bits-1; i >= 0; i--) { + if (!cpumask_test_cpu(i, cpu_map)) + continue; + + for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) { + claim_allocations(i, sd); + init_sched_groups_capacity(i, sd); + } + } + + /* Attach the domains */ + rcu_read_lock(); + for_each_cpu(i, cpu_map) { + rq = cpu_rq(i); + sd = *per_cpu_ptr(d.sd, i); + + /* Use READ_ONCE()/WRITE_ONCE() to avoid load/store tearing: */ + if (rq->cpu_capacity_orig > READ_ONCE(d.rd->max_cpu_capacity)) + WRITE_ONCE(d.rd->max_cpu_capacity, rq->cpu_capacity_orig); + + cpu_attach_domain(sd, d.rd, i); + } + rcu_read_unlock(); + + if (rq && sched_debug_enabled) { + pr_info("span: %*pbl (max cpu_capacity = %lu)\n", + cpumask_pr_args(cpu_map), rq->rd->max_cpu_capacity); + } + + ret = 0; +error: + __free_domain_allocs(&d, alloc_state, cpu_map); + return ret; +} + +/* Current sched domains: */ +static cpumask_var_t *doms_cur; + +/* Number of sched domains in 'doms_cur': */ +static int ndoms_cur; + +/* Attribues of custom domains in 'doms_cur' */ +static struct sched_domain_attr *dattr_cur; + +/* + * Special case: If a kmalloc() of a doms_cur partition (array of + * cpumask) fails, then fallback to a single sched domain, + * as determined by the single cpumask fallback_doms. + */ +cpumask_var_t fallback_doms; + +/* + * arch_update_cpu_topology lets virtualized architectures update the + * CPU core maps. It is supposed to return 1 if the topology changed + * or 0 if it stayed the same. + */ +int __weak arch_update_cpu_topology(void) +{ + return 0; +} + +cpumask_var_t *alloc_sched_domains(unsigned int ndoms) +{ + int i; + cpumask_var_t *doms; + + doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL); + if (!doms) + return NULL; + for (i = 0; i < ndoms; i++) { + if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) { + free_sched_domains(doms, i); + return NULL; + } + } + return doms; +} + +void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms) +{ + unsigned int i; + for (i = 0; i < ndoms; i++) + free_cpumask_var(doms[i]); + kfree(doms); +} + +/* + * Set up scheduler domains and groups. Callers must hold the hotplug lock. + * For now this just excludes isolated CPUs, but could be used to + * exclude other special cases in the future. + */ +int init_sched_domains(const struct cpumask *cpu_map) +{ + int err; + + arch_update_cpu_topology(); + ndoms_cur = 1; + doms_cur = alloc_sched_domains(ndoms_cur); + if (!doms_cur) + doms_cur = &fallback_doms; + cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map); + err = build_sched_domains(doms_cur[0], NULL); + register_sched_domain_sysctl(); + + return err; +} + +/* + * Detach sched domains from a group of CPUs specified in cpu_map + * These CPUs will now be attached to the NULL domain + */ +static void detach_destroy_domains(const struct cpumask *cpu_map) +{ + int i; + + rcu_read_lock(); + for_each_cpu(i, cpu_map) + cpu_attach_domain(NULL, &def_root_domain, i); + rcu_read_unlock(); +} + +/* handle null as "default" */ +static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur, + struct sched_domain_attr *new, int idx_new) +{ + struct sched_domain_attr tmp; + + /* Fast path: */ + if (!new && !cur) + return 1; + + tmp = SD_ATTR_INIT; + return !memcmp(cur ? (cur + idx_cur) : &tmp, + new ? (new + idx_new) : &tmp, + sizeof(struct sched_domain_attr)); +} + +/* + * Partition sched domains as specified by the 'ndoms_new' + * cpumasks in the array doms_new[] of cpumasks. This compares + * doms_new[] to the current sched domain partitioning, doms_cur[]. + * It destroys each deleted domain and builds each new domain. + * + * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'. + * The masks don't intersect (don't overlap.) We should setup one + * sched domain for each mask. CPUs not in any of the cpumasks will + * not be load balanced. If the same cpumask appears both in the + * current 'doms_cur' domains and in the new 'doms_new', we can leave + * it as it is. + * + * The passed in 'doms_new' should be allocated using + * alloc_sched_domains. This routine takes ownership of it and will + * free_sched_domains it when done with it. If the caller failed the + * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1, + * and partition_sched_domains() will fallback to the single partition + * 'fallback_doms', it also forces the domains to be rebuilt. + * + * If doms_new == NULL it will be replaced with cpu_online_mask. + * ndoms_new == 0 is a special case for destroying existing domains, + * and it will not create the default domain. + * + * Call with hotplug lock held + */ +void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[], + struct sched_domain_attr *dattr_new) +{ + int i, j, n; + int new_topology; + + mutex_lock(&sched_domains_mutex); + + /* Always unregister in case we don't destroy any domains: */ + unregister_sched_domain_sysctl(); + + /* Let the architecture update CPU core mappings: */ + new_topology = arch_update_cpu_topology(); + + n = doms_new ? ndoms_new : 0; + + /* Destroy deleted domains: */ + for (i = 0; i < ndoms_cur; i++) { + for (j = 0; j < n && !new_topology; j++) { + if (cpumask_equal(doms_cur[i], doms_new[j]) + && dattrs_equal(dattr_cur, i, dattr_new, j)) + goto match1; + } + /* No match - a current sched domain not in new doms_new[] */ + detach_destroy_domains(doms_cur[i]); +match1: + ; + } + + n = ndoms_cur; + if (doms_new == NULL) { + n = 0; + doms_new = &fallback_doms; + cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map); + WARN_ON_ONCE(dattr_new); + } + + /* Build new domains: */ + for (i = 0; i < ndoms_new; i++) { + for (j = 0; j < n && !new_topology; j++) { + if (cpumask_equal(doms_new[i], doms_cur[j]) + && dattrs_equal(dattr_new, i, dattr_cur, j)) + goto match2; + } + /* No match - add a new doms_new */ + build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL); +match2: + ; + } + + /* Remember the new sched domains: */ + if (doms_cur != &fallback_doms) + free_sched_domains(doms_cur, ndoms_cur); + + kfree(dattr_cur); + doms_cur = doms_new; + dattr_cur = dattr_new; + ndoms_cur = ndoms_new; + + register_sched_domain_sysctl(); + + mutex_unlock(&sched_domains_mutex); +} + |