summaryrefslogtreecommitdiffstats
path: root/net
diff options
context:
space:
mode:
authorDavid S. Miller <davem@sunset.davemloft.net>2006-12-04 04:24:40 +0100
committerDavid S. Miller <davem@sunset.davemloft.net>2006-12-04 04:24:40 +0100
commit83ac58ba0a26228c0b16baa2c4b821de9c4ad5ca (patch)
tree6c8354a6314c39c5fa3f923e4095c16a5fed3d08 /net
parent[XFRM] xfrm_user: Better validation of user templates. (diff)
parent[DCCP] tfrc: Binary search for reverse TFRC lookup (diff)
downloadlinux-83ac58ba0a26228c0b16baa2c4b821de9c4ad5ca.tar.xz
linux-83ac58ba0a26228c0b16baa2c4b821de9c4ad5ca.zip
Merge master.kernel.org:/pub/scm/linux/kernel/git/acme/net-2.6
Diffstat (limited to 'net')
-rw-r--r--net/dccp/ccids/Kconfig33
-rw-r--r--net/dccp/ccids/ccid3.c119
-rw-r--r--net/dccp/ccids/ccid3.h2
-rw-r--r--net/dccp/ccids/lib/tfrc_equation.c222
4 files changed, 237 insertions, 139 deletions
diff --git a/net/dccp/ccids/Kconfig b/net/dccp/ccids/Kconfig
index dac89166eb18..80f469887691 100644
--- a/net/dccp/ccids/Kconfig
+++ b/net/dccp/ccids/Kconfig
@@ -89,4 +89,37 @@ config IP_DCCP_CCID3_DEBUG
parameter to 0 or 1.
If in doubt, say N.
+
+config IP_DCCP_CCID3_RTO
+ int "Use higher bound for nofeedback timer"
+ default 100
+ depends on IP_DCCP_CCID3 && EXPERIMENTAL
+ ---help---
+ Use higher lower bound for nofeedback timer expiration.
+
+ The TFRC nofeedback timer normally expires after the maximum of 4
+ RTTs and twice the current send interval (RFC 3448, 4.3). On LANs
+ with a small RTT this can mean a high processing load and reduced
+ performance, since then the nofeedback timer is triggered very
+ frequently.
+
+ This option enables to set a higher lower bound for the nofeedback
+ value. Values in units of milliseconds can be set here.
+
+ A value of 0 disables this feature by enforcing the value specified
+ in RFC 3448. The following values have been suggested as bounds for
+ experimental use:
+ * 16-20ms to match the typical multimedia inter-frame interval
+ * 100ms as a reasonable compromise [default]
+ * 1000ms corresponds to the lower TCP RTO bound (RFC 2988, 2.4)
+
+ The default of 100ms is a compromise between a large value for
+ efficient DCCP implementations, and a small value to avoid disrupting
+ the network in times of congestion.
+
+ The purpose of the nofeedback timer is to slow DCCP down when there
+ is serious network congestion: experimenting with larger values should
+ therefore not be performed on WANs.
+
+
endmenu
diff --git a/net/dccp/ccids/ccid3.c b/net/dccp/ccids/ccid3.c
index 70ebe705eb75..cf8c07b2704f 100644
--- a/net/dccp/ccids/ccid3.c
+++ b/net/dccp/ccids/ccid3.c
@@ -121,12 +121,15 @@ static inline void ccid3_update_send_time(struct ccid3_hc_tx_sock *hctx)
/*
* Update X by
* If (p > 0)
- * x_calc = calcX(s, R, p);
+ * X_calc = calcX(s, R, p);
* X = max(min(X_calc, 2 * X_recv), s / t_mbi);
* Else
* If (now - tld >= R)
* X = max(min(2 * X, 2 * X_recv), s / R);
* tld = now;
+ *
+ * If X has changed, we also update the scheduled send time t_now,
+ * the inter-packet interval t_ipi, and the delta value.
*/
static void ccid3_hc_tx_update_x(struct sock *sk, struct timeval *now)
@@ -134,8 +137,7 @@ static void ccid3_hc_tx_update_x(struct sock *sk, struct timeval *now)
struct ccid3_hc_tx_sock *hctx = ccid3_hc_tx_sk(sk);
const __u32 old_x = hctx->ccid3hctx_x;
- /* To avoid large error in calcX */
- if (hctx->ccid3hctx_p >= TFRC_SMALLEST_P) {
+ if (hctx->ccid3hctx_p > 0) {
hctx->ccid3hctx_x_calc = tfrc_calc_x(hctx->ccid3hctx_s,
hctx->ccid3hctx_rtt,
hctx->ccid3hctx_p);
@@ -223,16 +225,14 @@ static void ccid3_hc_tx_no_feedback_timer(unsigned long data)
ccid3_tx_state_name(hctx->ccid3hctx_state));
/* Halve sending rate */
- /* If (X_calc > 2 * X_recv)
+ /* If (p == 0 || X_calc > 2 * X_recv)
* X_recv = max(X_recv / 2, s / (2 * t_mbi));
* Else
* X_recv = X_calc / 4;
*/
- BUG_ON(hctx->ccid3hctx_p >= TFRC_SMALLEST_P &&
- hctx->ccid3hctx_x_calc == 0);
+ BUG_ON(hctx->ccid3hctx_p && !hctx->ccid3hctx_x_calc);
- /* check also if p is zero -> x_calc is infinity? */
- if (hctx->ccid3hctx_p < TFRC_SMALLEST_P ||
+ if (hctx->ccid3hctx_p == 0 ||
hctx->ccid3hctx_x_calc > 2 * hctx->ccid3hctx_x_recv)
hctx->ccid3hctx_x_recv = max_t(u32, hctx->ccid3hctx_x_recv / 2,
hctx->ccid3hctx_s / (2 * TFRC_T_MBI));
@@ -245,9 +245,10 @@ static void ccid3_hc_tx_no_feedback_timer(unsigned long data)
}
/*
* Schedule no feedback timer to expire in
- * max(4 * R, 2 * s/X) = max(4 * R, 2 * t_ipi)
+ * max(t_RTO, 2 * s/X) = max(t_RTO, 2 * t_ipi)
+ * See comments in packet_recv() regarding the value of t_RTO.
*/
- t_nfb = max(4 * hctx->ccid3hctx_rtt, 2 * hctx->ccid3hctx_t_ipi);
+ t_nfb = max(hctx->ccid3hctx_t_rto, 2 * hctx->ccid3hctx_t_ipi);
break;
case TFRC_SSTATE_NO_SENT:
DCCP_BUG("Illegal %s state NO_SENT, sk=%p", dccp_role(sk), sk);
@@ -338,7 +339,7 @@ static int ccid3_hc_tx_send_packet(struct sock *sk, struct sk_buff *skb)
* else
* // send the packet in (t_nom - t_now) milliseconds.
*/
- if (delay >= hctx->ccid3hctx_delta)
+ if (delay - (long)hctx->ccid3hctx_delta >= 0)
return delay / 1000L;
break;
case TFRC_SSTATE_TERM:
@@ -412,10 +413,8 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
struct dccp_tx_hist_entry *packet;
struct timeval now;
unsigned long t_nfb;
- u32 t_elapsed;
u32 pinv;
- u32 x_recv;
- u32 r_sample;
+ long r_sample, t_elapsed;
BUG_ON(hctx == NULL);
@@ -426,31 +425,44 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
opt_recv = &hctx->ccid3hctx_options_received;
- t_elapsed = dp->dccps_options_received.dccpor_elapsed_time * 10;
- x_recv = opt_recv->ccid3or_receive_rate;
- pinv = opt_recv->ccid3or_loss_event_rate;
-
switch (hctx->ccid3hctx_state) {
case TFRC_SSTATE_NO_FBACK:
case TFRC_SSTATE_FBACK:
- /* Calculate new round trip sample by
- * R_sample = (now - t_recvdata) - t_delay */
- /* get t_recvdata from history */
+ /* get packet from history to look up t_recvdata */
packet = dccp_tx_hist_find_entry(&hctx->ccid3hctx_hist,
DCCP_SKB_CB(skb)->dccpd_ack_seq);
if (unlikely(packet == NULL)) {
- DCCP_WARN("%s, sk=%p, seqno %llu(%s) does't exist "
+ DCCP_WARN("%s(%p), seqno %llu(%s) doesn't exist "
"in history!\n", dccp_role(sk), sk,
(unsigned long long)DCCP_SKB_CB(skb)->dccpd_ack_seq,
dccp_packet_name(DCCP_SKB_CB(skb)->dccpd_type));
return;
}
- /* Update RTT */
+ /* Update receive rate */
+ hctx->ccid3hctx_x_recv = opt_recv->ccid3or_receive_rate;
+
+ /* Update loss event rate */
+ pinv = opt_recv->ccid3or_loss_event_rate;
+ if (pinv == ~0U || pinv == 0)
+ hctx->ccid3hctx_p = 0;
+ else
+ hctx->ccid3hctx_p = 1000000 / pinv;
+
dccp_timestamp(sk, &now);
- r_sample = timeval_delta(&now, &packet->dccphtx_tstamp);
- if (unlikely(r_sample <= t_elapsed))
- DCCP_WARN("r_sample=%uus,t_elapsed=%uus\n",
+
+ /*
+ * Calculate new round trip sample as per [RFC 3448, 4.3] by
+ * R_sample = (now - t_recvdata) - t_elapsed
+ */
+ r_sample = timeval_delta(&now, &packet->dccphtx_tstamp);
+ t_elapsed = dp->dccps_options_received.dccpor_elapsed_time * 10;
+
+ if (unlikely(r_sample <= 0)) {
+ DCCP_WARN("WARNING: R_sample (%ld) <= 0!\n", r_sample);
+ r_sample = 0;
+ } else if (unlikely(r_sample <= t_elapsed))
+ DCCP_WARN("WARNING: r_sample=%ldus <= t_elapsed=%ldus\n",
r_sample, t_elapsed);
else
r_sample -= t_elapsed;
@@ -473,31 +485,25 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
hctx->ccid3hctx_t_ld = now;
ccid3_update_send_time(hctx);
- ccid3_hc_tx_set_state(sk, TFRC_SSTATE_FBACK);
- } else {
- hctx->ccid3hctx_rtt = (hctx->ccid3hctx_rtt * 9) / 10 +
- r_sample / 10;
- ccid3_hc_tx_update_x(sk, &now);
- }
- ccid3_pr_debug("%s, sk=%p, New RTT estimate=%uus, "
- "r_sample=%us\n", dccp_role(sk), sk,
- hctx->ccid3hctx_rtt, r_sample);
+ ccid3_pr_debug("%s(%p), s=%u, w_init=%u, "
+ "R_sample=%ldus, X=%u\n", dccp_role(sk),
+ sk, hctx->ccid3hctx_s, w_init, r_sample,
+ hctx->ccid3hctx_x);
- /* Update receive rate */
- hctx->ccid3hctx_x_recv = x_recv;/* X_recv in bytes per sec */
+ ccid3_hc_tx_set_state(sk, TFRC_SSTATE_FBACK);
+ } else {
+ hctx->ccid3hctx_rtt = (9 * hctx->ccid3hctx_rtt +
+ (u32)r_sample ) / 10;
- /* Update loss event rate */
- if (pinv == ~0 || pinv == 0)
- hctx->ccid3hctx_p = 0;
- else {
- hctx->ccid3hctx_p = 1000000 / pinv;
+ ccid3_hc_tx_update_x(sk, &now);
- if (hctx->ccid3hctx_p < TFRC_SMALLEST_P) {
- hctx->ccid3hctx_p = TFRC_SMALLEST_P;
- ccid3_pr_debug("%s, sk=%p, Smallest p used!\n",
- dccp_role(sk), sk);
- }
+ ccid3_pr_debug("%s(%p), RTT=%uus (sample=%ldus), s=%u, "
+ "p=%u, X_calc=%u, X=%u\n", dccp_role(sk),
+ sk, hctx->ccid3hctx_rtt, r_sample,
+ hctx->ccid3hctx_s, hctx->ccid3hctx_p,
+ hctx->ccid3hctx_x_calc,
+ hctx->ccid3hctx_x);
}
/* unschedule no feedback timer */
@@ -512,16 +518,20 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
*/
sk->sk_write_space(sk);
- /* Update timeout interval. We use the alternative variant of
- * [RFC 3448, 3.1] which sets the upper bound of t_rto to one
- * second, as it is suggested for TCP (see RFC 2988, 2.4). */
+ /*
+ * Update timeout interval for the nofeedback timer.
+ * We use a configuration option to increase the lower bound.
+ * This can help avoid triggering the nofeedback timer too often
+ * ('spinning') on LANs with small RTTs.
+ */
hctx->ccid3hctx_t_rto = max_t(u32, 4 * hctx->ccid3hctx_rtt,
- USEC_PER_SEC );
+ CONFIG_IP_DCCP_CCID3_RTO *
+ (USEC_PER_SEC/1000) );
/*
* Schedule no feedback timer to expire in
- * max(4 * R, 2 * s/X) = max(4 * R, 2 * t_ipi)
+ * max(t_RTO, 2 * s/X) = max(t_RTO, 2 * t_ipi)
*/
- t_nfb = max(4 * hctx->ccid3hctx_rtt, 2 * hctx->ccid3hctx_t_ipi);
+ t_nfb = max(hctx->ccid3hctx_t_rto, 2 * hctx->ccid3hctx_t_ipi);
ccid3_pr_debug("%s, sk=%p, Scheduled no feedback timer to "
"expire in %lu jiffies (%luus)\n",
@@ -535,7 +545,8 @@ static void ccid3_hc_tx_packet_recv(struct sock *sk, struct sk_buff *skb)
hctx->ccid3hctx_idle = 1;
break;
case TFRC_SSTATE_NO_SENT:
- DCCP_WARN("Illegal ACK received - no packet has been sent\n");
+ if (dccp_sk(sk)->dccps_role == DCCP_ROLE_CLIENT)
+ DCCP_WARN("Illegal ACK received - no packet sent\n");
/* fall through */
case TFRC_SSTATE_TERM: /* ignore feedback when closing */
break;
diff --git a/net/dccp/ccids/ccid3.h b/net/dccp/ccids/ccid3.h
index 27cb20ae1da8..07596d704ef9 100644
--- a/net/dccp/ccids/ccid3.h
+++ b/net/dccp/ccids/ccid3.h
@@ -51,8 +51,6 @@
/* Parameter t_mbi from [RFC 3448, 4.3]: backoff interval in seconds */
#define TFRC_T_MBI 64
-#define TFRC_SMALLEST_P 40
-
enum ccid3_options {
TFRC_OPT_LOSS_EVENT_RATE = 192,
TFRC_OPT_LOSS_INTERVALS = 193,
diff --git a/net/dccp/ccids/lib/tfrc_equation.c b/net/dccp/ccids/lib/tfrc_equation.c
index 2601012383fb..ddac2c511e2f 100644
--- a/net/dccp/ccids/lib/tfrc_equation.c
+++ b/net/dccp/ccids/lib/tfrc_equation.c
@@ -18,10 +18,79 @@
#include "tfrc.h"
#define TFRC_CALC_X_ARRSIZE 500
+#define TFRC_CALC_X_SPLIT 50000 /* 0.05 * 1000000, details below */
+#define TFRC_SMALLEST_P (TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE)
-#define TFRC_CALC_X_SPLIT 50000
-/* equivalent to 0.05 */
-
+/*
+ TFRC TCP Reno Throughput Equation Lookup Table for f(p)
+
+ The following two-column lookup table implements a part of the TCP throughput
+ equation from [RFC 3448, sec. 3.1]:
+
+ s
+ X_calc = --------------------------------------------------------------
+ R * sqrt(2*b*p/3) + (3 * t_RTO * sqrt(3*b*p/8) * (p + 32*p^3))
+
+ Where:
+ X is the transmit rate in bytes/second
+ s is the packet size in bytes
+ R is the round trip time in seconds
+ p is the loss event rate, between 0 and 1.0, of the number of loss
+ events as a fraction of the number of packets transmitted
+ t_RTO is the TCP retransmission timeout value in seconds
+ b is the number of packets acknowledged by a single TCP ACK
+
+ We can assume that b = 1 and t_RTO is 4 * R. The equation now becomes:
+
+ s
+ X_calc = -------------------------------------------------------
+ R * sqrt(p*2/3) + (12 * R * sqrt(p*3/8) * (p + 32*p^3))
+
+ which we can break down into:
+
+ s
+ X_calc = ---------
+ R * f(p)
+
+ where f(p) is given for 0 < p <= 1 by:
+
+ f(p) = sqrt(2*p/3) + 12 * sqrt(3*p/8) * (p + 32*p^3)
+
+ Since this is kernel code, floating-point arithmetic is avoided in favour of
+ integer arithmetic. This means that nearly all fractional parameters are
+ scaled by 1000000:
+ * the parameters p and R
+ * the return result f(p)
+ The lookup table therefore actually tabulates the following function g(q):
+
+ g(q) = 1000000 * f(q/1000000)
+
+ Hence, when p <= 1, q must be less than or equal to 1000000. To achieve finer
+ granularity for the practically more relevant case of small values of p (up to
+ 5%), the second column is used; the first one ranges up to 100%. This split
+ corresponds to the value of q = TFRC_CALC_X_SPLIT. At the same time this also
+ determines the smallest resolution possible with this lookup table:
+
+ TFRC_SMALLEST_P = TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE
+
+ The entire table is generated by:
+ for(i=0; i < TFRC_CALC_X_ARRSIZE; i++) {
+ lookup[i][0] = g((i+1) * 1000000/TFRC_CALC_X_ARRSIZE);
+ lookup[i][1] = g((i+1) * TFRC_CALC_X_SPLIT/TFRC_CALC_X_ARRSIZE);
+ }
+
+ With the given configuration, we have, with M = TFRC_CALC_X_ARRSIZE-1,
+ lookup[0][0] = g(1000000/(M+1)) = 1000000 * f(0.2%)
+ lookup[M][0] = g(1000000) = 1000000 * f(100%)
+ lookup[0][1] = g(TFRC_SMALLEST_P) = 1000000 * f(0.01%)
+ lookup[M][1] = g(TFRC_CALC_X_SPLIT) = 1000000 * f(5%)
+
+ In summary, the two columns represent f(p) for the following ranges:
+ * The first column is for 0.002 <= p <= 1.0
+ * The second column is for 0.0001 <= p <= 0.05
+ Where the columns overlap, the second (finer-grained) is given preference,
+ i.e. the first column is used only for p >= 0.05.
+ */
static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = {
{ 37172, 8172 },
{ 53499, 11567 },
@@ -525,85 +594,69 @@ static const u32 tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE][2] = {
{ 243315981, 271305 }
};
-/* Calculate the send rate as per section 3.1 of RFC3448
-
-Returns send rate in bytes per second
-
-Integer maths and lookups are used as not allowed floating point in kernel
-
-The function for Xcalc as per section 3.1 of RFC3448 is:
-
-X = s
- -------------------------------------------------------------
- R*sqrt(2*b*p/3) + (t_RTO * (3*sqrt(3*b*p/8) * p * (1+32*p^2)))
-
-where
-X is the trasmit rate in bytes/second
-s is the packet size in bytes
-R is the round trip time in seconds
-p is the loss event rate, between 0 and 1.0, of the number of loss events
- as a fraction of the number of packets transmitted
-t_RTO is the TCP retransmission timeout value in seconds
-b is the number of packets acknowledged by a single TCP acknowledgement
-
-we can assume that b = 1 and t_RTO is 4 * R. With this the equation becomes:
-
-X = s
- -----------------------------------------------------------------------
- R * sqrt(2 * p / 3) + (12 * R * (sqrt(3 * p / 8) * p * (1 + 32 * p^2)))
-
-
-which we can break down into:
-
-X = s
- --------
- R * f(p)
-
-where f(p) = sqrt(2 * p / 3) + (12 * sqrt(3 * p / 8) * p * (1 + 32 * p * p))
-
-Function parameters:
-s - bytes
-R - RTT in usecs
-p - loss rate (decimal fraction multiplied by 1,000,000)
-
-Returns Xcalc in bytes per second
-
-DON'T alter this code unless you run test cases against it as the code
-has been manipulated to stop underflow/overlow.
+/* return largest index i such that fval <= lookup[i][small] */
+static inline u32 tfrc_binsearch(u32 fval, u8 small)
+{
+ u32 try, low = 0, high = TFRC_CALC_X_ARRSIZE - 1;
+
+ while (low < high) {
+ try = (low + high) / 2;
+ if (fval <= tfrc_calc_x_lookup[try][small])
+ high = try;
+ else
+ low = try + 1;
+ }
+ return high;
+}
-*/
+/**
+ * tfrc_calc_x - Calculate the send rate as per section 3.1 of RFC3448
+ *
+ * @s: packet size in bytes
+ * @R: RTT scaled by 1000000 (i.e., microseconds)
+ * @p: loss ratio estimate scaled by 1000000
+ * Returns X_calc in bytes per second (not scaled).
+ *
+ * Note: DO NOT alter this code unless you run test cases against it,
+ * as the code has been optimized to stop underflow/overflow.
+ */
u32 tfrc_calc_x(u16 s, u32 R, u32 p)
{
int index;
u32 f;
u64 tmp1, tmp2;
- if (p < TFRC_CALC_X_SPLIT)
- index = (p / (TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE)) - 1;
- else
- index = (p / (1000000 / TFRC_CALC_X_ARRSIZE)) - 1;
+ /* check against invalid parameters and divide-by-zero */
+ BUG_ON(p > 1000000); /* p must not exceed 100% */
+ BUG_ON(p == 0); /* f(0) = 0, divide by zero */
+ if (R == 0) { /* possible divide by zero */
+ DCCP_CRIT("WARNING: RTT is 0, returning maximum X_calc.");
+ return ~0U;
+ }
- if (index < 0)
- /* p should be 0 unless there is a bug in my code */
- index = 0;
+ if (p <= TFRC_CALC_X_SPLIT) { /* 0.0000 < p <= 0.05 */
+ if (p < TFRC_SMALLEST_P) { /* 0.0000 < p < 0.0001 */
+ DCCP_WARN("Value of p (%d) below resolution. "
+ "Substituting %d\n", p, TFRC_SMALLEST_P);
+ index = 0;
+ } else /* 0.0001 <= p <= 0.05 */
+ index = p/TFRC_SMALLEST_P - 1;
- if (R == 0) {
- DCCP_WARN("RTT==0, setting to 1\n");
- R = 1; /* RTT can't be zero or else divide by zero */
- }
+ f = tfrc_calc_x_lookup[index][1];
- BUG_ON(index >= TFRC_CALC_X_ARRSIZE);
+ } else { /* 0.05 < p <= 1.00 */
+ index = p/(1000000/TFRC_CALC_X_ARRSIZE) - 1;
- if (p >= TFRC_CALC_X_SPLIT)
f = tfrc_calc_x_lookup[index][0];
- else
- f = tfrc_calc_x_lookup[index][1];
+ }
+ /* The following computes X = s/(R*f(p)) in bytes per second. Since f(p)
+ * and R are both scaled by 1000000, we need to multiply by 1000000^2.
+ * ==> DO NOT alter this unless you test against overflow on 32 bit */
tmp1 = ((u64)s * 100000000);
tmp2 = ((u64)R * (u64)f);
do_div(tmp2, 10000);
do_div(tmp1, tmp2);
- /* Don't alter above math unless you test due to overflow on 32 bit */
return (u32)tmp1;
}
@@ -611,33 +664,36 @@ u32 tfrc_calc_x(u16 s, u32 R, u32 p)
EXPORT_SYMBOL_GPL(tfrc_calc_x);
/*
- * args: fvalue - function value to match
- * returns: p closest to that value
+ * tfrc_calc_x_reverse_lookup - try to find p given f(p)
*
- * both fvalue and p are multiplied by 1,000,000 to use ints
+ * @fvalue: function value to match, scaled by 1000000
+ * Returns closest match for p, also scaled by 1000000
*/
u32 tfrc_calc_x_reverse_lookup(u32 fvalue)
{
- int ctr = 0;
- int small;
+ int index;
- if (fvalue < tfrc_calc_x_lookup[0][1])
+ if (fvalue == 0) /* f(p) = 0 whenever p = 0 */
return 0;
- if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1])
- small = 1;
- else if (fvalue > tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][0])
+ /* Error cases. */
+ if (fvalue < tfrc_calc_x_lookup[0][1]) {
+ DCCP_WARN("fvalue %d smaller than resolution\n", fvalue);
+ return tfrc_calc_x_lookup[0][1];
+ }
+ if (fvalue > tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][0]) {
+ DCCP_WARN("fvalue %d exceeds bounds!\n", fvalue);
return 1000000;
- else
- small = 0;
-
- while (fvalue > tfrc_calc_x_lookup[ctr][small])
- ctr++;
+ }
- if (small)
- return TFRC_CALC_X_SPLIT * ctr / TFRC_CALC_X_ARRSIZE;
- else
- return 1000000 * ctr / TFRC_CALC_X_ARRSIZE;
+ if (fvalue <= tfrc_calc_x_lookup[TFRC_CALC_X_ARRSIZE - 1][1]) {
+ index = tfrc_binsearch(fvalue, 1);
+ return (index + 1) * TFRC_CALC_X_SPLIT / TFRC_CALC_X_ARRSIZE;
+ }
+
+ /* else ... it must be in the coarse-grained column */
+ index = tfrc_binsearch(fvalue, 0);
+ return (index + 1) * 1000000 / TFRC_CALC_X_ARRSIZE;
}
EXPORT_SYMBOL_GPL(tfrc_calc_x_reverse_lookup);