diff options
author | Mark Brown <broonie@kernel.org> | 2023-05-24 00:03:49 +0200 |
---|---|---|
committer | Mark Brown <broonie@kernel.org> | 2023-05-24 00:03:49 +0200 |
commit | 90d0d6009c0f6b0693ac58096c655a2df61e0d50 (patch) | |
tree | b076f02b48dc57f295981e27965bb28e571b5cbc /tools | |
parent | regmap-irq: Cleanups and remove unused (diff) | |
parent | Linux 6.4-rc3 (diff) | |
download | linux-90d0d6009c0f6b0693ac58096c655a2df61e0d50.tar.xz linux-90d0d6009c0f6b0693ac58096c655a2df61e0d50.zip |
regmap: Merge up v6.4-rc3
Merge up v6.4-rc3 to get fixes which make my CI more stable.
Diffstat (limited to 'tools')
84 files changed, 1172 insertions, 365 deletions
diff --git a/tools/arch/arm64/include/uapi/asm/kvm.h b/tools/arch/arm64/include/uapi/asm/kvm.h index f8129c624b07..f7ddd73a8c0f 100644 --- a/tools/arch/arm64/include/uapi/asm/kvm.h +++ b/tools/arch/arm64/include/uapi/asm/kvm.h @@ -198,6 +198,15 @@ struct kvm_arm_copy_mte_tags { __u64 reserved[2]; }; +/* + * Counter/Timer offset structure. Describe the virtual/physical offset. + * To be used with KVM_ARM_SET_COUNTER_OFFSET. + */ +struct kvm_arm_counter_offset { + __u64 counter_offset; + __u64 reserved; +}; + #define KVM_ARM_TAGS_TO_GUEST 0 #define KVM_ARM_TAGS_FROM_GUEST 1 @@ -372,6 +381,10 @@ enum { #endif }; +/* Device Control API on vm fd */ +#define KVM_ARM_VM_SMCCC_CTRL 0 +#define KVM_ARM_VM_SMCCC_FILTER 0 + /* Device Control API: ARM VGIC */ #define KVM_DEV_ARM_VGIC_GRP_ADDR 0 #define KVM_DEV_ARM_VGIC_GRP_DIST_REGS 1 @@ -411,6 +424,8 @@ enum { #define KVM_ARM_VCPU_TIMER_CTRL 1 #define KVM_ARM_VCPU_TIMER_IRQ_VTIMER 0 #define KVM_ARM_VCPU_TIMER_IRQ_PTIMER 1 +#define KVM_ARM_VCPU_TIMER_IRQ_HVTIMER 2 +#define KVM_ARM_VCPU_TIMER_IRQ_HPTIMER 3 #define KVM_ARM_VCPU_PVTIME_CTRL 2 #define KVM_ARM_VCPU_PVTIME_IPA 0 @@ -469,6 +484,27 @@ enum { /* run->fail_entry.hardware_entry_failure_reason codes. */ #define KVM_EXIT_FAIL_ENTRY_CPU_UNSUPPORTED (1ULL << 0) +enum kvm_smccc_filter_action { + KVM_SMCCC_FILTER_HANDLE = 0, + KVM_SMCCC_FILTER_DENY, + KVM_SMCCC_FILTER_FWD_TO_USER, + +#ifdef __KERNEL__ + NR_SMCCC_FILTER_ACTIONS +#endif +}; + +struct kvm_smccc_filter { + __u32 base; + __u32 nr_functions; + __u8 action; + __u8 pad[15]; +}; + +/* arm64-specific KVM_EXIT_HYPERCALL flags */ +#define KVM_HYPERCALL_EXIT_SMC (1U << 0) +#define KVM_HYPERCALL_EXIT_16BIT (1U << 1) + #endif #endif /* __ARM_KVM_H__ */ diff --git a/tools/arch/x86/include/asm/cpufeatures.h b/tools/arch/x86/include/asm/cpufeatures.h index b89005819cd5..cb8ca46213be 100644 --- a/tools/arch/x86/include/asm/cpufeatures.h +++ b/tools/arch/x86/include/asm/cpufeatures.h @@ -97,7 +97,7 @@ #define X86_FEATURE_SYSENTER32 ( 3*32+15) /* "" sysenter in IA32 userspace */ #define X86_FEATURE_REP_GOOD ( 3*32+16) /* REP microcode works well */ #define X86_FEATURE_AMD_LBR_V2 ( 3*32+17) /* AMD Last Branch Record Extension Version 2 */ -#define X86_FEATURE_LFENCE_RDTSC ( 3*32+18) /* "" LFENCE synchronizes RDTSC */ +/* FREE, was #define X86_FEATURE_LFENCE_RDTSC ( 3*32+18) "" LFENCE synchronizes RDTSC */ #define X86_FEATURE_ACC_POWER ( 3*32+19) /* AMD Accumulated Power Mechanism */ #define X86_FEATURE_NOPL ( 3*32+20) /* The NOPL (0F 1F) instructions */ #define X86_FEATURE_ALWAYS ( 3*32+21) /* "" Always-present feature */ @@ -226,10 +226,9 @@ /* Virtualization flags: Linux defined, word 8 */ #define X86_FEATURE_TPR_SHADOW ( 8*32+ 0) /* Intel TPR Shadow */ -#define X86_FEATURE_VNMI ( 8*32+ 1) /* Intel Virtual NMI */ -#define X86_FEATURE_FLEXPRIORITY ( 8*32+ 2) /* Intel FlexPriority */ -#define X86_FEATURE_EPT ( 8*32+ 3) /* Intel Extended Page Table */ -#define X86_FEATURE_VPID ( 8*32+ 4) /* Intel Virtual Processor ID */ +#define X86_FEATURE_FLEXPRIORITY ( 8*32+ 1) /* Intel FlexPriority */ +#define X86_FEATURE_EPT ( 8*32+ 2) /* Intel Extended Page Table */ +#define X86_FEATURE_VPID ( 8*32+ 3) /* Intel Virtual Processor ID */ #define X86_FEATURE_VMMCALL ( 8*32+15) /* Prefer VMMCALL to VMCALL */ #define X86_FEATURE_XENPV ( 8*32+16) /* "" Xen paravirtual guest */ @@ -307,14 +306,21 @@ #define X86_FEATURE_SGX_EDECCSSA (11*32+18) /* "" SGX EDECCSSA user leaf function */ #define X86_FEATURE_CALL_DEPTH (11*32+19) /* "" Call depth tracking for RSB stuffing */ #define X86_FEATURE_MSR_TSX_CTRL (11*32+20) /* "" MSR IA32_TSX_CTRL (Intel) implemented */ +#define X86_FEATURE_SMBA (11*32+21) /* "" Slow Memory Bandwidth Allocation */ +#define X86_FEATURE_BMEC (11*32+22) /* "" Bandwidth Monitoring Event Configuration */ /* Intel-defined CPU features, CPUID level 0x00000007:1 (EAX), word 12 */ #define X86_FEATURE_AVX_VNNI (12*32+ 4) /* AVX VNNI instructions */ #define X86_FEATURE_AVX512_BF16 (12*32+ 5) /* AVX512 BFLOAT16 instructions */ #define X86_FEATURE_CMPCCXADD (12*32+ 7) /* "" CMPccXADD instructions */ +#define X86_FEATURE_ARCH_PERFMON_EXT (12*32+ 8) /* "" Intel Architectural PerfMon Extension */ +#define X86_FEATURE_FZRM (12*32+10) /* "" Fast zero-length REP MOVSB */ +#define X86_FEATURE_FSRS (12*32+11) /* "" Fast short REP STOSB */ +#define X86_FEATURE_FSRC (12*32+12) /* "" Fast short REP {CMPSB,SCASB} */ #define X86_FEATURE_LKGS (12*32+18) /* "" Load "kernel" (userspace) GS */ #define X86_FEATURE_AMX_FP16 (12*32+21) /* "" AMX fp16 Support */ #define X86_FEATURE_AVX_IFMA (12*32+23) /* "" Support for VPMADD52[H,L]UQ */ +#define X86_FEATURE_LAM (12*32+26) /* Linear Address Masking */ /* AMD-defined CPU features, CPUID level 0x80000008 (EBX), word 13 */ #define X86_FEATURE_CLZERO (13*32+ 0) /* CLZERO instruction */ @@ -331,6 +337,7 @@ #define X86_FEATURE_VIRT_SSBD (13*32+25) /* Virtualized Speculative Store Bypass Disable */ #define X86_FEATURE_AMD_SSB_NO (13*32+26) /* "" Speculative Store Bypass is fixed in hardware. */ #define X86_FEATURE_CPPC (13*32+27) /* Collaborative Processor Performance Control */ +#define X86_FEATURE_AMD_PSFD (13*32+28) /* "" Predictive Store Forwarding Disable */ #define X86_FEATURE_BTC_NO (13*32+29) /* "" Not vulnerable to Branch Type Confusion */ #define X86_FEATURE_BRS (13*32+31) /* Branch Sampling available */ @@ -363,6 +370,7 @@ #define X86_FEATURE_VGIF (15*32+16) /* Virtual GIF */ #define X86_FEATURE_X2AVIC (15*32+18) /* Virtual x2apic */ #define X86_FEATURE_V_SPEC_CTRL (15*32+20) /* Virtual SPEC_CTRL */ +#define X86_FEATURE_VNMI (15*32+25) /* Virtual NMI */ #define X86_FEATURE_SVME_ADDR_CHK (15*32+28) /* "" SVME addr check */ /* Intel-defined CPU features, CPUID level 0x00000007:0 (ECX), word 16 */ @@ -427,6 +435,13 @@ #define X86_FEATURE_V_TSC_AUX (19*32+ 9) /* "" Virtual TSC_AUX */ #define X86_FEATURE_SME_COHERENT (19*32+10) /* "" AMD hardware-enforced cache coherency */ +/* AMD-defined Extended Feature 2 EAX, CPUID level 0x80000021 (EAX), word 20 */ +#define X86_FEATURE_NO_NESTED_DATA_BP (20*32+ 0) /* "" No Nested Data Breakpoints */ +#define X86_FEATURE_LFENCE_RDTSC (20*32+ 2) /* "" LFENCE always serializing / synchronizes RDTSC */ +#define X86_FEATURE_NULL_SEL_CLR_BASE (20*32+ 6) /* "" Null Selector Clears Base */ +#define X86_FEATURE_AUTOIBRS (20*32+ 8) /* "" Automatic IBRS */ +#define X86_FEATURE_NO_SMM_CTL_MSR (20*32+ 9) /* "" SMM_CTL MSR is not present */ + /* * BUG word(s) */ @@ -467,5 +482,6 @@ #define X86_BUG_MMIO_UNKNOWN X86_BUG(26) /* CPU is too old and its MMIO Stale Data status is unknown */ #define X86_BUG_RETBLEED X86_BUG(27) /* CPU is affected by RETBleed */ #define X86_BUG_EIBRS_PBRSB X86_BUG(28) /* EIBRS is vulnerable to Post Barrier RSB Predictions */ +#define X86_BUG_SMT_RSB X86_BUG(29) /* CPU is vulnerable to Cross-Thread Return Address Predictions */ #endif /* _ASM_X86_CPUFEATURES_H */ diff --git a/tools/arch/x86/include/asm/disabled-features.h b/tools/arch/x86/include/asm/disabled-features.h index 5dfa4fb76f4b..fafe9be7a6f4 100644 --- a/tools/arch/x86/include/asm/disabled-features.h +++ b/tools/arch/x86/include/asm/disabled-features.h @@ -75,6 +75,12 @@ # define DISABLE_CALL_DEPTH_TRACKING (1 << (X86_FEATURE_CALL_DEPTH & 31)) #endif +#ifdef CONFIG_ADDRESS_MASKING +# define DISABLE_LAM 0 +#else +# define DISABLE_LAM (1 << (X86_FEATURE_LAM & 31)) +#endif + #ifdef CONFIG_INTEL_IOMMU_SVM # define DISABLE_ENQCMD 0 #else @@ -115,7 +121,7 @@ #define DISABLED_MASK10 0 #define DISABLED_MASK11 (DISABLE_RETPOLINE|DISABLE_RETHUNK|DISABLE_UNRET| \ DISABLE_CALL_DEPTH_TRACKING) -#define DISABLED_MASK12 0 +#define DISABLED_MASK12 (DISABLE_LAM) #define DISABLED_MASK13 0 #define DISABLED_MASK14 0 #define DISABLED_MASK15 0 diff --git a/tools/arch/x86/include/asm/msr-index.h b/tools/arch/x86/include/asm/msr-index.h index ad35355ee43e..3aedae61af4f 100644 --- a/tools/arch/x86/include/asm/msr-index.h +++ b/tools/arch/x86/include/asm/msr-index.h @@ -206,6 +206,8 @@ /* Abbreviated from Intel SDM name IA32_INTEGRITY_CAPABILITIES */ #define MSR_INTEGRITY_CAPS 0x000002d9 +#define MSR_INTEGRITY_CAPS_ARRAY_BIST_BIT 2 +#define MSR_INTEGRITY_CAPS_ARRAY_BIST BIT(MSR_INTEGRITY_CAPS_ARRAY_BIST_BIT) #define MSR_INTEGRITY_CAPS_PERIODIC_BIST_BIT 4 #define MSR_INTEGRITY_CAPS_PERIODIC_BIST BIT(MSR_INTEGRITY_CAPS_PERIODIC_BIST_BIT) diff --git a/tools/arch/x86/include/uapi/asm/kvm.h b/tools/arch/x86/include/uapi/asm/kvm.h index 7f467fe05d42..1a6a1f987949 100644 --- a/tools/arch/x86/include/uapi/asm/kvm.h +++ b/tools/arch/x86/include/uapi/asm/kvm.h @@ -559,4 +559,7 @@ struct kvm_pmu_event_filter { #define KVM_VCPU_TSC_CTRL 0 /* control group for the timestamp counter (TSC) */ #define KVM_VCPU_TSC_OFFSET 0 /* attribute for the TSC offset */ +/* x86-specific KVM_EXIT_HYPERCALL flags. */ +#define KVM_EXIT_HYPERCALL_LONG_MODE BIT(0) + #endif /* _ASM_X86_KVM_H */ diff --git a/tools/arch/x86/include/uapi/asm/prctl.h b/tools/arch/x86/include/uapi/asm/prctl.h index 500b96e71f18..e8d7ebbca1a4 100644 --- a/tools/arch/x86/include/uapi/asm/prctl.h +++ b/tools/arch/x86/include/uapi/asm/prctl.h @@ -16,8 +16,16 @@ #define ARCH_GET_XCOMP_GUEST_PERM 0x1024 #define ARCH_REQ_XCOMP_GUEST_PERM 0x1025 +#define ARCH_XCOMP_TILECFG 17 +#define ARCH_XCOMP_TILEDATA 18 + #define ARCH_MAP_VDSO_X32 0x2001 #define ARCH_MAP_VDSO_32 0x2002 #define ARCH_MAP_VDSO_64 0x2003 +#define ARCH_GET_UNTAG_MASK 0x4001 +#define ARCH_ENABLE_TAGGED_ADDR 0x4002 +#define ARCH_GET_MAX_TAG_BITS 0x4003 +#define ARCH_FORCE_TAGGED_SVA 0x4004 + #endif /* _ASM_X86_PRCTL_H */ diff --git a/tools/arch/x86/include/uapi/asm/unistd_32.h b/tools/arch/x86/include/uapi/asm/unistd_32.h index b8ddfc4c4ab0..bc48a4dabe5d 100644 --- a/tools/arch/x86/include/uapi/asm/unistd_32.h +++ b/tools/arch/x86/include/uapi/asm/unistd_32.h @@ -2,6 +2,9 @@ #ifndef __NR_fork #define __NR_fork 2 #endif +#ifndef __NR_execve +#define __NR_execve 11 +#endif #ifndef __NR_getppid #define __NR_getppid 64 #endif diff --git a/tools/arch/x86/lib/memcpy_64.S b/tools/arch/x86/lib/memcpy_64.S index a91ac666f758..d055b82d22cc 100644 --- a/tools/arch/x86/lib/memcpy_64.S +++ b/tools/arch/x86/lib/memcpy_64.S @@ -10,13 +10,6 @@ .section .noinstr.text, "ax" /* - * We build a jump to memcpy_orig by default which gets NOPped out on - * the majority of x86 CPUs which set REP_GOOD. In addition, CPUs which - * have the enhanced REP MOVSB/STOSB feature (ERMS), change those NOPs - * to a jmp to memcpy_erms which does the REP; MOVSB mem copy. - */ - -/* * memcpy - Copy a memory block. * * Input: @@ -26,17 +19,21 @@ * * Output: * rax original destination + * + * The FSRM alternative should be done inline (avoiding the call and + * the disgusting return handling), but that would require some help + * from the compiler for better calling conventions. + * + * The 'rep movsb' itself is small enough to replace the call, but the + * two register moves blow up the code. And one of them is "needed" + * only for the return value that is the same as the source input, + * which the compiler could/should do much better anyway. */ SYM_TYPED_FUNC_START(__memcpy) - ALTERNATIVE_2 "jmp memcpy_orig", "", X86_FEATURE_REP_GOOD, \ - "jmp memcpy_erms", X86_FEATURE_ERMS + ALTERNATIVE "jmp memcpy_orig", "", X86_FEATURE_FSRM movq %rdi, %rax movq %rdx, %rcx - shrq $3, %rcx - andl $7, %edx - rep movsq - movl %edx, %ecx rep movsb RET SYM_FUNC_END(__memcpy) @@ -45,17 +42,6 @@ EXPORT_SYMBOL(__memcpy) SYM_FUNC_ALIAS(memcpy, __memcpy) EXPORT_SYMBOL(memcpy) -/* - * memcpy_erms() - enhanced fast string memcpy. This is faster and - * simpler than memcpy. Use memcpy_erms when possible. - */ -SYM_FUNC_START_LOCAL(memcpy_erms) - movq %rdi, %rax - movq %rdx, %rcx - rep movsb - RET -SYM_FUNC_END(memcpy_erms) - SYM_FUNC_START_LOCAL(memcpy_orig) movq %rdi, %rax diff --git a/tools/arch/x86/lib/memset_64.S b/tools/arch/x86/lib/memset_64.S index 6143b1a6fa2c..7c59a704c458 100644 --- a/tools/arch/x86/lib/memset_64.S +++ b/tools/arch/x86/lib/memset_64.S @@ -18,27 +18,22 @@ * rdx count (bytes) * * rax original destination + * + * The FSRS alternative should be done inline (avoiding the call and + * the disgusting return handling), but that would require some help + * from the compiler for better calling conventions. + * + * The 'rep stosb' itself is small enough to replace the call, but all + * the register moves blow up the code. And two of them are "needed" + * only for the return value that is the same as the source input, + * which the compiler could/should do much better anyway. */ SYM_FUNC_START(__memset) - /* - * Some CPUs support enhanced REP MOVSB/STOSB feature. It is recommended - * to use it when possible. If not available, use fast string instructions. - * - * Otherwise, use original memset function. - */ - ALTERNATIVE_2 "jmp memset_orig", "", X86_FEATURE_REP_GOOD, \ - "jmp memset_erms", X86_FEATURE_ERMS + ALTERNATIVE "jmp memset_orig", "", X86_FEATURE_FSRS movq %rdi,%r9 + movb %sil,%al movq %rdx,%rcx - andl $7,%edx - shrq $3,%rcx - /* expand byte value */ - movzbl %sil,%esi - movabs $0x0101010101010101,%rax - imulq %rsi,%rax - rep stosq - movl %edx,%ecx rep stosb movq %r9,%rax RET @@ -48,26 +43,6 @@ EXPORT_SYMBOL(__memset) SYM_FUNC_ALIAS(memset, __memset) EXPORT_SYMBOL(memset) -/* - * ISO C memset - set a memory block to a byte value. This function uses - * enhanced rep stosb to override the fast string function. - * The code is simpler and shorter than the fast string function as well. - * - * rdi destination - * rsi value (char) - * rdx count (bytes) - * - * rax original destination - */ -SYM_FUNC_START_LOCAL(memset_erms) - movq %rdi,%r9 - movb %sil,%al - movq %rdx,%rcx - rep stosb - movq %r9,%rax - RET -SYM_FUNC_END(memset_erms) - SYM_FUNC_START_LOCAL(memset_orig) movq %rdi,%r10 diff --git a/tools/include/asm/alternative.h b/tools/include/asm/alternative.h index b54bd860dff6..7ce02a223732 100644 --- a/tools/include/asm/alternative.h +++ b/tools/include/asm/alternative.h @@ -4,7 +4,6 @@ /* Just disable it so we can build arch/x86/lib/memcpy_64.S for perf bench: */ -#define altinstruction_entry # -#define ALTERNATIVE_2 # +#define ALTERNATIVE # #endif diff --git a/tools/include/uapi/drm/drm.h b/tools/include/uapi/drm/drm.h index 642808520d92..a87bbbbca2d4 100644 --- a/tools/include/uapi/drm/drm.h +++ b/tools/include/uapi/drm/drm.h @@ -972,6 +972,19 @@ extern "C" { #define DRM_IOCTL_GET_STATS DRM_IOR( 0x06, struct drm_stats) #define DRM_IOCTL_SET_VERSION DRM_IOWR(0x07, struct drm_set_version) #define DRM_IOCTL_MODESET_CTL DRM_IOW(0x08, struct drm_modeset_ctl) +/** + * DRM_IOCTL_GEM_CLOSE - Close a GEM handle. + * + * GEM handles are not reference-counted by the kernel. User-space is + * responsible for managing their lifetime. For example, if user-space imports + * the same memory object twice on the same DRM file description, the same GEM + * handle is returned by both imports, and user-space needs to ensure + * &DRM_IOCTL_GEM_CLOSE is performed once only. The same situation can happen + * when a memory object is allocated, then exported and imported again on the + * same DRM file description. The &DRM_IOCTL_MODE_GETFB2 IOCTL is an exception + * and always returns fresh new GEM handles even if an existing GEM handle + * already refers to the same memory object before the IOCTL is performed. + */ #define DRM_IOCTL_GEM_CLOSE DRM_IOW (0x09, struct drm_gem_close) #define DRM_IOCTL_GEM_FLINK DRM_IOWR(0x0a, struct drm_gem_flink) #define DRM_IOCTL_GEM_OPEN DRM_IOWR(0x0b, struct drm_gem_open) @@ -1012,7 +1025,37 @@ extern "C" { #define DRM_IOCTL_UNLOCK DRM_IOW( 0x2b, struct drm_lock) #define DRM_IOCTL_FINISH DRM_IOW( 0x2c, struct drm_lock) +/** + * DRM_IOCTL_PRIME_HANDLE_TO_FD - Convert a GEM handle to a DMA-BUF FD. + * + * User-space sets &drm_prime_handle.handle with the GEM handle to export and + * &drm_prime_handle.flags, and gets back a DMA-BUF file descriptor in + * &drm_prime_handle.fd. + * + * The export can fail for any driver-specific reason, e.g. because export is + * not supported for this specific GEM handle (but might be for others). + * + * Support for exporting DMA-BUFs is advertised via &DRM_PRIME_CAP_EXPORT. + */ #define DRM_IOCTL_PRIME_HANDLE_TO_FD DRM_IOWR(0x2d, struct drm_prime_handle) +/** + * DRM_IOCTL_PRIME_FD_TO_HANDLE - Convert a DMA-BUF FD to a GEM handle. + * + * User-space sets &drm_prime_handle.fd with a DMA-BUF file descriptor to + * import, and gets back a GEM handle in &drm_prime_handle.handle. + * &drm_prime_handle.flags is unused. + * + * If an existing GEM handle refers to the memory object backing the DMA-BUF, + * that GEM handle is returned. Therefore user-space which needs to handle + * arbitrary DMA-BUFs must have a user-space lookup data structure to manually + * reference-count duplicated GEM handles. For more information see + * &DRM_IOCTL_GEM_CLOSE. + * + * The import can fail for any driver-specific reason, e.g. because import is + * only supported for DMA-BUFs allocated on this DRM device. + * + * Support for importing DMA-BUFs is advertised via &DRM_PRIME_CAP_IMPORT. + */ #define DRM_IOCTL_PRIME_FD_TO_HANDLE DRM_IOWR(0x2e, struct drm_prime_handle) #define DRM_IOCTL_AGP_ACQUIRE DRM_IO( 0x30) @@ -1104,8 +1147,13 @@ extern "C" { * struct as the output. * * If the client is DRM master or has &CAP_SYS_ADMIN, &drm_mode_fb_cmd2.handles - * will be filled with GEM buffer handles. Planes are valid until one has a - * zero handle -- this can be used to compute the number of planes. + * will be filled with GEM buffer handles. Fresh new GEM handles are always + * returned, even if another GEM handle referring to the same memory object + * already exists on the DRM file description. The caller is responsible for + * removing the new handles, e.g. via the &DRM_IOCTL_GEM_CLOSE IOCTL. The same + * new handle will be returned for multiple planes in case they use the same + * memory object. Planes are valid until one has a zero handle -- this can be + * used to compute the number of planes. * * Otherwise, &drm_mode_fb_cmd2.handles will be zeroed and planes are valid * until one has a zero &drm_mode_fb_cmd2.pitches. @@ -1113,6 +1161,11 @@ extern "C" { * If the framebuffer has a format modifier, &DRM_MODE_FB_MODIFIERS will be set * in &drm_mode_fb_cmd2.flags and &drm_mode_fb_cmd2.modifier will contain the * modifier. Otherwise, user-space must ignore &drm_mode_fb_cmd2.modifier. + * + * To obtain DMA-BUF FDs for each plane without leaking GEM handles, user-space + * can export each handle via &DRM_IOCTL_PRIME_HANDLE_TO_FD, then immediately + * close each unique handle via &DRM_IOCTL_GEM_CLOSE, making sure to not + * double-close handles which are specified multiple times in the array. */ #define DRM_IOCTL_MODE_GETFB2 DRM_IOWR(0xCE, struct drm_mode_fb_cmd2) diff --git a/tools/include/uapi/drm/i915_drm.h b/tools/include/uapi/drm/i915_drm.h index 8df261c5ab9b..dba7c5a5b25e 100644 --- a/tools/include/uapi/drm/i915_drm.h +++ b/tools/include/uapi/drm/i915_drm.h @@ -2491,7 +2491,7 @@ struct i915_context_param_engines { #define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */ #define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */ #define I915_CONTEXT_ENGINES_EXT_PARALLEL_SUBMIT 2 /* see i915_context_engines_parallel_submit */ - struct i915_engine_class_instance engines[0]; + struct i915_engine_class_instance engines[]; } __attribute__((packed)); #define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \ @@ -2676,6 +2676,10 @@ enum drm_i915_oa_format { I915_OAR_FORMAT_A32u40_A4u32_B8_C8, I915_OA_FORMAT_A24u40_A14u32_B8_C8, + /* MTL OAM */ + I915_OAM_FORMAT_MPEC8u64_B8_C8, + I915_OAM_FORMAT_MPEC8u32_B8_C8, + I915_OA_FORMAT_MAX /* non-ABI */ }; @@ -2758,6 +2762,25 @@ enum drm_i915_perf_property_id { */ DRM_I915_PERF_PROP_POLL_OA_PERIOD, + /** + * Multiple engines may be mapped to the same OA unit. The OA unit is + * identified by class:instance of any engine mapped to it. + * + * This parameter specifies the engine class and must be passed along + * with DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE. + * + * This property is available in perf revision 6. + */ + DRM_I915_PERF_PROP_OA_ENGINE_CLASS, + + /** + * This parameter specifies the engine instance and must be passed along + * with DRM_I915_PERF_PROP_OA_ENGINE_CLASS. + * + * This property is available in perf revision 6. + */ + DRM_I915_PERF_PROP_OA_ENGINE_INSTANCE, + DRM_I915_PERF_PROP_MAX /* non-ABI */ }; diff --git a/tools/include/uapi/linux/const.h b/tools/include/uapi/linux/const.h index af2a44c08683..a429381e7ca5 100644 --- a/tools/include/uapi/linux/const.h +++ b/tools/include/uapi/linux/const.h @@ -28,7 +28,7 @@ #define _BITUL(x) (_UL(1) << (x)) #define _BITULL(x) (_ULL(1) << (x)) -#define __ALIGN_KERNEL(x, a) __ALIGN_KERNEL_MASK(x, (typeof(x))(a) - 1) +#define __ALIGN_KERNEL(x, a) __ALIGN_KERNEL_MASK(x, (__typeof__(x))(a) - 1) #define __ALIGN_KERNEL_MASK(x, mask) (((x) + (mask)) & ~(mask)) #define __KERNEL_DIV_ROUND_UP(n, d) (((n) + (d) - 1) / (d)) diff --git a/tools/include/uapi/linux/in.h b/tools/include/uapi/linux/in.h index 07a4cb149305..4b7f2df66b99 100644 --- a/tools/include/uapi/linux/in.h +++ b/tools/include/uapi/linux/in.h @@ -162,6 +162,7 @@ struct in_addr { #define MCAST_MSFILTER 48 #define IP_MULTICAST_ALL 49 #define IP_UNICAST_IF 50 +#define IP_LOCAL_PORT_RANGE 51 #define MCAST_EXCLUDE 0 #define MCAST_INCLUDE 1 diff --git a/tools/include/uapi/linux/kvm.h b/tools/include/uapi/linux/kvm.h index 4003a166328c..737318b1c1d9 100644 --- a/tools/include/uapi/linux/kvm.h +++ b/tools/include/uapi/linux/kvm.h @@ -341,8 +341,13 @@ struct kvm_run { __u64 nr; __u64 args[6]; __u64 ret; - __u32 longmode; - __u32 pad; + + union { +#ifndef __KERNEL__ + __u32 longmode; +#endif + __u64 flags; + }; } hypercall; /* KVM_EXIT_TPR_ACCESS */ struct { @@ -1184,6 +1189,7 @@ struct kvm_ppc_resize_hpt { #define KVM_CAP_S390_PROTECTED_ASYNC_DISABLE 224 #define KVM_CAP_DIRTY_LOG_RING_WITH_BITMAP 225 #define KVM_CAP_PMU_EVENT_MASKED_EVENTS 226 +#define KVM_CAP_COUNTER_OFFSET 227 #ifdef KVM_CAP_IRQ_ROUTING @@ -1543,6 +1549,8 @@ struct kvm_s390_ucas_mapping { #define KVM_SET_PMU_EVENT_FILTER _IOW(KVMIO, 0xb2, struct kvm_pmu_event_filter) #define KVM_PPC_SVM_OFF _IO(KVMIO, 0xb3) #define KVM_ARM_MTE_COPY_TAGS _IOR(KVMIO, 0xb4, struct kvm_arm_copy_mte_tags) +/* Available with KVM_CAP_COUNTER_OFFSET */ +#define KVM_ARM_SET_COUNTER_OFFSET _IOW(KVMIO, 0xb5, struct kvm_arm_counter_offset) /* ioctl for vm fd */ #define KVM_CREATE_DEVICE _IOWR(KVMIO, 0xe0, struct kvm_create_device) diff --git a/tools/include/uapi/linux/prctl.h b/tools/include/uapi/linux/prctl.h index 759b3f53e53f..f23d9a16507f 100644 --- a/tools/include/uapi/linux/prctl.h +++ b/tools/include/uapi/linux/prctl.h @@ -290,6 +290,8 @@ struct prctl_mm_map { #define PR_SET_VMA 0x53564d41 # define PR_SET_VMA_ANON_NAME 0 +#define PR_GET_AUXV 0x41555856 + #define PR_SET_MEMORY_MERGE 67 #define PR_GET_MEMORY_MERGE 68 #endif /* _LINUX_PRCTL_H */ diff --git a/tools/include/uapi/sound/asound.h b/tools/include/uapi/sound/asound.h index de6810e94abe..0aa955aa8246 100644 --- a/tools/include/uapi/sound/asound.h +++ b/tools/include/uapi/sound/asound.h @@ -429,9 +429,14 @@ struct snd_pcm_sw_params { snd_pcm_uframes_t avail_min; /* min avail frames for wakeup */ snd_pcm_uframes_t xfer_align; /* obsolete: xfer size need to be a multiple */ snd_pcm_uframes_t start_threshold; /* min hw_avail frames for automatic start */ - snd_pcm_uframes_t stop_threshold; /* min avail frames for automatic stop */ - snd_pcm_uframes_t silence_threshold; /* min distance from noise for silence filling */ - snd_pcm_uframes_t silence_size; /* silence block size */ + /* + * The following two thresholds alleviate playback buffer underruns; when + * hw_avail drops below the threshold, the respective action is triggered: + */ + snd_pcm_uframes_t stop_threshold; /* - stop playback */ + snd_pcm_uframes_t silence_threshold; /* - pre-fill buffer with silence */ + snd_pcm_uframes_t silence_size; /* max size of silence pre-fill; when >= boundary, + * fill played area with silence immediately */ snd_pcm_uframes_t boundary; /* pointers wrap point */ unsigned int proto; /* protocol version */ unsigned int tstamp_type; /* timestamp type (req. proto >= 2.0.12) */ @@ -570,7 +575,8 @@ struct __snd_pcm_mmap_status64 { struct __snd_pcm_mmap_control64 { __pad_before_uframe __pad1; snd_pcm_uframes_t appl_ptr; /* RW: appl ptr (0...boundary-1) */ - __pad_before_uframe __pad2; + __pad_before_uframe __pad2; // This should be __pad_after_uframe, but binary + // backwards compatibility constraints prevent a fix. __pad_before_uframe __pad3; snd_pcm_uframes_t avail_min; /* RW: min available frames for wakeup */ diff --git a/tools/perf/Makefile.config b/tools/perf/Makefile.config index 4884520f954f..70268442f7ee 100644 --- a/tools/perf/Makefile.config +++ b/tools/perf/Makefile.config @@ -216,6 +216,12 @@ ifeq ($(call get-executable,$(BISON)),) dummy := $(error Error: $(BISON) is missing on this system, please install it) endif +ifeq ($(BUILD_BPF_SKEL),1) + ifeq ($(call get-executable,$(CLANG)),) + dummy := $(error $(CLANG) is missing on this system, please install it to be able to build with BUILD_BPF_SKEL=1) + endif +endif + ifneq ($(OUTPUT),) ifeq ($(shell expr $(shell $(BISON) --version | grep bison | sed -e 's/.\+ \([0-9]\+\).\([0-9]\+\).\([0-9]\+\)/\1\2\3/g') \>\= 371), 1) BISON_FILE_PREFIX_MAP := --file-prefix-map=$(OUTPUT)= diff --git a/tools/perf/Makefile.perf b/tools/perf/Makefile.perf index a42a6a99c2bc..1593c5dcaa9e 100644 --- a/tools/perf/Makefile.perf +++ b/tools/perf/Makefile.perf @@ -1057,14 +1057,32 @@ $(SKEL_TMP_OUT) $(LIBAPI_OUTPUT) $(LIBBPF_OUTPUT) $(LIBPERF_OUTPUT) $(LIBSUBCMD_ ifdef BUILD_BPF_SKEL BPFTOOL := $(SKEL_TMP_OUT)/bootstrap/bpftool -BPF_INCLUDE := -I$(SKEL_TMP_OUT)/.. -I$(LIBBPF_INCLUDE) +# Get Clang's default includes on this system, as opposed to those seen by +# '-target bpf'. This fixes "missing" files on some architectures/distros, +# such as asm/byteorder.h, asm/socket.h, asm/sockios.h, sys/cdefs.h etc. +# +# Use '-idirafter': Don't interfere with include mechanics except where the +# build would have failed anyways. +define get_sys_includes +$(shell $(1) $(2) -v -E - </dev/null 2>&1 \ + | sed -n '/<...> search starts here:/,/End of search list./{ s| \(/.*\)|-idirafter \1|p }') \ +$(shell $(1) $(2) -dM -E - </dev/null | grep '__riscv_xlen ' | awk '{printf("-D__riscv_xlen=%d -D__BITS_PER_LONG=%d", $$3, $$3)}') +endef + +ifneq ($(CROSS_COMPILE),) +CLANG_TARGET_ARCH = --target=$(notdir $(CROSS_COMPILE:%-=%)) +endif + +CLANG_SYS_INCLUDES = $(call get_sys_includes,$(CLANG),$(CLANG_TARGET_ARCH)) +BPF_INCLUDE := -I$(SKEL_TMP_OUT)/.. -I$(LIBBPF_INCLUDE) $(CLANG_SYS_INCLUDES) +TOOLS_UAPI_INCLUDE := -I$(srctree)/tools/include/uapi $(BPFTOOL): | $(SKEL_TMP_OUT) $(Q)CFLAGS= $(MAKE) -C ../bpf/bpftool \ OUTPUT=$(SKEL_TMP_OUT)/ bootstrap $(SKEL_TMP_OUT)/%.bpf.o: util/bpf_skel/%.bpf.c $(LIBBPF) | $(SKEL_TMP_OUT) - $(QUIET_CLANG)$(CLANG) -g -O2 -target bpf -Wall -Werror $(BPF_INCLUDE) \ + $(QUIET_CLANG)$(CLANG) -g -O2 -target bpf -Wall -Werror $(BPF_INCLUDE) $(TOOLS_UAPI_INCLUDE) \ -c $(filter util/bpf_skel/%.bpf.c,$^) -o $@ && $(LLVM_STRIP) -g $@ $(SKEL_OUT)/%.skel.h: $(SKEL_TMP_OUT)/%.bpf.o | $(BPFTOOL) diff --git a/tools/perf/arch/arm/util/cs-etm.c b/tools/perf/arch/arm/util/cs-etm.c index 77cb03e6ff87..9ca040bfb1aa 100644 --- a/tools/perf/arch/arm/util/cs-etm.c +++ b/tools/perf/arch/arm/util/cs-etm.c @@ -78,9 +78,9 @@ static int cs_etm_validate_context_id(struct auxtrace_record *itr, char path[PATH_MAX]; int err; u32 val; - u64 contextid = - evsel->core.attr.config & - (perf_pmu__format_bits(&cs_etm_pmu->format, "contextid1") | + u64 contextid = evsel->core.attr.config & + (perf_pmu__format_bits(&cs_etm_pmu->format, "contextid") | + perf_pmu__format_bits(&cs_etm_pmu->format, "contextid1") | perf_pmu__format_bits(&cs_etm_pmu->format, "contextid2")); if (!contextid) @@ -114,8 +114,7 @@ static int cs_etm_validate_context_id(struct auxtrace_record *itr, * 0b00100 Maximum of 32-bit Context ID size. * All other values are reserved. */ - val = BMVAL(val, 5, 9); - if (!val || val != 0x4) { + if (BMVAL(val, 5, 9) != 0x4) { pr_err("%s: CONTEXTIDR_EL1 isn't supported, disable with %s/contextid1=0/\n", CORESIGHT_ETM_PMU_NAME, CORESIGHT_ETM_PMU_NAME); return -EINVAL; diff --git a/tools/perf/arch/arm64/util/header.c b/tools/perf/arch/arm64/util/header.c index d730666ab95d..80b9f6287fe2 100644 --- a/tools/perf/arch/arm64/util/header.c +++ b/tools/perf/arch/arm64/util/header.c @@ -29,8 +29,8 @@ static int _get_cpuid(char *buf, size_t sz, struct perf_cpu_map *cpus) char path[PATH_MAX]; FILE *file; - scnprintf(path, PATH_MAX, "%s/devices/system/cpu/cpu%d"MIDR, - sysfs, cpus->map[cpu]); + scnprintf(path, PATH_MAX, "%s/devices/system/cpu/cpu%d" MIDR, + sysfs, RC_CHK_ACCESS(cpus)->map[cpu].cpu); file = fopen(path, "r"); if (!file) { diff --git a/tools/perf/arch/arm64/util/pmu.c b/tools/perf/arch/arm64/util/pmu.c index fa143acb4c8d..ef1ed645097c 100644 --- a/tools/perf/arch/arm64/util/pmu.c +++ b/tools/perf/arch/arm64/util/pmu.c @@ -18,7 +18,7 @@ static struct perf_pmu *pmu__find_core_pmu(void) * The cpumap should cover all CPUs. Otherwise, some CPUs may * not support some events or have different event IDs. */ - if (pmu->cpus->nr != cpu__max_cpu().cpu) + if (RC_CHK_ACCESS(pmu->cpus)->nr != cpu__max_cpu().cpu) return NULL; return pmu; diff --git a/tools/perf/arch/s390/entry/syscalls/syscall.tbl b/tools/perf/arch/s390/entry/syscalls/syscall.tbl index 799147658dee..b68f47541169 100644 --- a/tools/perf/arch/s390/entry/syscalls/syscall.tbl +++ b/tools/perf/arch/s390/entry/syscalls/syscall.tbl @@ -449,7 +449,7 @@ 444 common landlock_create_ruleset sys_landlock_create_ruleset sys_landlock_create_ruleset 445 common landlock_add_rule sys_landlock_add_rule sys_landlock_add_rule 446 common landlock_restrict_self sys_landlock_restrict_self sys_landlock_restrict_self -# 447 reserved for memfd_secret +447 common memfd_secret sys_memfd_secret sys_memfd_secret 448 common process_mrelease sys_process_mrelease sys_process_mrelease 449 common futex_waitv sys_futex_waitv sys_futex_waitv 450 common set_mempolicy_home_node sys_set_mempolicy_home_node sys_set_mempolicy_home_node diff --git a/tools/perf/bench/mem-memcpy-x86-64-asm-def.h b/tools/perf/bench/mem-memcpy-x86-64-asm-def.h index 50ae8bd58296..6188e19d3129 100644 --- a/tools/perf/bench/mem-memcpy-x86-64-asm-def.h +++ b/tools/perf/bench/mem-memcpy-x86-64-asm-def.h @@ -7,7 +7,3 @@ MEMCPY_FN(memcpy_orig, MEMCPY_FN(__memcpy, "x86-64-movsq", "movsq-based memcpy() in arch/x86/lib/memcpy_64.S") - -MEMCPY_FN(memcpy_erms, - "x86-64-movsb", - "movsb-based memcpy() in arch/x86/lib/memcpy_64.S") diff --git a/tools/perf/bench/mem-memcpy-x86-64-asm.S b/tools/perf/bench/mem-memcpy-x86-64-asm.S index 6eb45a2aa8db..1b9fef7efcdc 100644 --- a/tools/perf/bench/mem-memcpy-x86-64-asm.S +++ b/tools/perf/bench/mem-memcpy-x86-64-asm.S @@ -2,7 +2,7 @@ /* Various wrappers to make the kernel .S file build in user-space: */ -// memcpy_orig and memcpy_erms are being defined as SYM_L_LOCAL but we need it +// memcpy_orig is being defined as SYM_L_LOCAL but we need it #define SYM_FUNC_START_LOCAL(name) \ SYM_START(name, SYM_L_GLOBAL, SYM_A_ALIGN) #define memcpy MEMCPY /* don't hide glibc's memcpy() */ diff --git a/tools/perf/bench/mem-memset-x86-64-asm-def.h b/tools/perf/bench/mem-memset-x86-64-asm-def.h index dac6d2b7c39b..247c72fdfb9d 100644 --- a/tools/perf/bench/mem-memset-x86-64-asm-def.h +++ b/tools/perf/bench/mem-memset-x86-64-asm-def.h @@ -7,7 +7,3 @@ MEMSET_FN(memset_orig, MEMSET_FN(__memset, "x86-64-stosq", "movsq-based memset() in arch/x86/lib/memset_64.S") - -MEMSET_FN(memset_erms, - "x86-64-stosb", - "movsb-based memset() in arch/x86/lib/memset_64.S") diff --git a/tools/perf/bench/mem-memset-x86-64-asm.S b/tools/perf/bench/mem-memset-x86-64-asm.S index 6f093c483842..abd26c95f1aa 100644 --- a/tools/perf/bench/mem-memset-x86-64-asm.S +++ b/tools/perf/bench/mem-memset-x86-64-asm.S @@ -1,5 +1,5 @@ /* SPDX-License-Identifier: GPL-2.0 */ -// memset_orig and memset_erms are being defined as SYM_L_LOCAL but we need it +// memset_orig is being defined as SYM_L_LOCAL but we need it #define SYM_FUNC_START_LOCAL(name) \ SYM_START(name, SYM_L_GLOBAL, SYM_A_ALIGN) #define memset MEMSET /* don't hide glibc's memset() */ diff --git a/tools/perf/builtin-script.c b/tools/perf/builtin-script.c index 006f522d0e7f..c57be48d65bb 100644 --- a/tools/perf/builtin-script.c +++ b/tools/perf/builtin-script.c @@ -3647,6 +3647,13 @@ static int process_stat_config_event(struct perf_session *session __maybe_unused union perf_event *event) { perf_event__read_stat_config(&stat_config, &event->stat_config); + + /* + * Aggregation modes are not used since post-processing scripts are + * supposed to take care of such requirements + */ + stat_config.aggr_mode = AGGR_NONE; + return 0; } diff --git a/tools/perf/builtin-stat.c b/tools/perf/builtin-stat.c index cc9fa48d636f..b9ad32f21e57 100644 --- a/tools/perf/builtin-stat.c +++ b/tools/perf/builtin-stat.c @@ -667,6 +667,13 @@ static enum counter_recovery stat_handle_error(struct evsel *counter) evsel_list->core.threads->err_thread = -1; return COUNTER_RETRY; } + } else if (counter->skippable) { + if (verbose > 0) + ui__warning("skipping event %s that kernel failed to open .\n", + evsel__name(counter)); + counter->supported = false; + counter->errored = true; + return COUNTER_SKIP; } evsel__open_strerror(counter, &target, errno, msg, sizeof(msg)); @@ -1890,15 +1897,28 @@ static int add_default_attributes(void) * caused by exposing latent bugs. This is fixed properly in: * https://lore.kernel.org/lkml/bff481ba-e60a-763f-0aa0-3ee53302c480@linux.intel.com/ */ - if (metricgroup__has_metric("TopdownL1") && !perf_pmu__has_hybrid() && - metricgroup__parse_groups(evsel_list, "TopdownL1", - /*metric_no_group=*/false, - /*metric_no_merge=*/false, - /*metric_no_threshold=*/true, - stat_config.user_requested_cpu_list, - stat_config.system_wide, - &stat_config.metric_events) < 0) - return -1; + if (metricgroup__has_metric("TopdownL1") && !perf_pmu__has_hybrid()) { + struct evlist *metric_evlist = evlist__new(); + struct evsel *metric_evsel; + + if (!metric_evlist) + return -1; + + if (metricgroup__parse_groups(metric_evlist, "TopdownL1", + /*metric_no_group=*/false, + /*metric_no_merge=*/false, + /*metric_no_threshold=*/true, + stat_config.user_requested_cpu_list, + stat_config.system_wide, + &stat_config.metric_events) < 0) + return -1; + + evlist__for_each_entry(metric_evlist, metric_evsel) { + metric_evsel->skippable = true; + } + evlist__splice_list_tail(evsel_list, &metric_evlist->core.entries); + evlist__delete(metric_evlist); + } /* Platform specific attrs */ if (evlist__add_default_attrs(evsel_list, default_null_attrs) < 0) diff --git a/tools/perf/pmu-events/arch/x86/alderlake/adl-metrics.json b/tools/perf/pmu-events/arch/x86/alderlake/adl-metrics.json index 75d80e70e5cd..1f9047553942 100644 --- a/tools/perf/pmu-events/arch/x86/alderlake/adl-metrics.json +++ b/tools/perf/pmu-events/arch/x86/alderlake/adl-metrics.json @@ -133,6 +133,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "Counts the total number of issue slots that were not consumed by the backend due to backend stalls. Note that uops must be available for consumption in order for this event to count. If a uop is not available (IQ is empty), this event will not count. The rest of these subevents count backend stalls, in cycles, due to an outstanding request which is memory bound vs core bound. The subevents are not slot based events and therefore can not be precisely added or subtracted from the Backend_Bound_Aux subevents which are slot based.", "ScaleUnit": "100%", "Unit": "cpu_atom" @@ -143,6 +144,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound_aux", "MetricThreshold": "tma_backend_bound_aux > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "Counts the total number of issue slots that were not consumed by the backend due to backend stalls. Note that UOPS must be available for consumption in order for this event to count. If a uop is not available (IQ is empty), this event will not count. All of these subevents count backend stalls, in slots, due to a resource limitation. These are not cycle based events and therefore can not be precisely added or subtracted from the Backend_Bound subevents which are cycle based. These subevents are supplementary to Backend_Bound and can be used to analyze results from a resource perspective at allocation.", "ScaleUnit": "100%", "Unit": "cpu_atom" @@ -153,6 +155,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "Counts the total number of issue slots that were not consumed by the backend because allocation is stalled due to a mispredicted jump or a machine clear. Only issue slots wasted due to fast nukes such as memory ordering nukes are counted. Other nukes are not accounted for. Counts all issue slots blocked during this recovery window including relevant microcode flows and while uops are not yet available in the instruction queue (IQ). Also includes the issue slots that were consumed by the backend but were thrown away because they were younger than the mispredict or machine clear.", "ScaleUnit": "100%", "Unit": "cpu_atom" @@ -163,6 +166,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_base", "MetricThreshold": "tma_base > 0.6", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -182,6 +186,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_bad_speculation_group", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.05", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -209,6 +214,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -255,6 +261,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -264,6 +271,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.15", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -291,6 +299,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -593,6 +602,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_bad_speculation_group", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.05", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -611,6 +621,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -629,6 +640,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_ms_uops", "MetricThreshold": "tma_ms_uops > 0.05", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "Counts the number of uops that are from the complex flows issued by the micro-sequencer (MS). This includes uops from flows due to complex instructions, faults, assists, and inserted flows.", "ScaleUnit": "100%", "Unit": "cpu_atom" @@ -729,6 +741,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_backend_bound_aux_group", "MetricName": "tma_resource_bound", "MetricThreshold": "tma_resource_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "Counts the total number of issue slots that were not consumed by the backend due to backend stalls. Note that uops must be available for consumption in order for this event to count. If a uop is not available (IQ is empty), this event will not count.", "ScaleUnit": "100%", "Unit": "cpu_atom" @@ -739,6 +752,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.75", + "MetricgroupNoGroup": "TopdownL1", "ScaleUnit": "100%", "Unit": "cpu_atom" }, @@ -848,6 +862,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound. Sample with: TOPDOWN.BACKEND_BOUND_SLOTS", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -858,6 +873,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -868,6 +884,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: TOPDOWN.BR_MISPREDICT_SLOTS. Related metrics: tma_info_branch_misprediction_cost, tma_info_mispredictions, tma_mispredicts_resteers", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -919,6 +936,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -1031,6 +1049,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 6 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_dsb_misses, tma_info_iptb, tma_lcp", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -1041,6 +1060,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -1121,6 +1141,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -1141,6 +1162,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences. Sample with: UOPS_RETIRED.HEAVY", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -2023,6 +2045,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -2082,6 +2105,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -2112,6 +2136,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%", "Unit": "cpu_core" @@ -2310,6 +2335,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.SLOTS", "ScaleUnit": "100%", "Unit": "cpu_core" diff --git a/tools/perf/pmu-events/arch/x86/alderlaken/adln-metrics.json b/tools/perf/pmu-events/arch/x86/alderlaken/adln-metrics.json index 1a85d935c733..0402adbf7d92 100644 --- a/tools/perf/pmu-events/arch/x86/alderlaken/adln-metrics.json +++ b/tools/perf/pmu-events/arch/x86/alderlaken/adln-metrics.json @@ -98,6 +98,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "Counts the total number of issue slots that were not consumed by the backend due to backend stalls. Note that uops must be available for consumption in order for this event to count. If a uop is not available (IQ is empty), this event will not count. The rest of these subevents count backend stalls, in cycles, due to an outstanding request which is memory bound vs core bound. The subevents are not slot based events and therefore can not be precisely added or subtracted from the Backend_Bound_Aux subevents which are slot based.", "ScaleUnit": "100%" }, @@ -107,6 +108,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound_aux", "MetricThreshold": "tma_backend_bound_aux > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "Counts the total number of issue slots that were not consumed by the backend due to backend stalls. Note that UOPS must be available for consumption in order for this event to count. If a uop is not available (IQ is empty), this event will not count. All of these subevents count backend stalls, in slots, due to a resource limitation. These are not cycle based events and therefore can not be precisely added or subtracted from the Backend_Bound subevents which are cycle based. These subevents are supplementary to Backend_Bound and can be used to analyze results from a resource perspective at allocation.", "ScaleUnit": "100%" }, @@ -116,6 +118,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "Counts the total number of issue slots that were not consumed by the backend because allocation is stalled due to a mispredicted jump or a machine clear. Only issue slots wasted due to fast nukes such as memory ordering nukes are counted. Other nukes are not accounted for. Counts all issue slots blocked during this recovery window including relevant microcode flows and while uops are not yet available in the instruction queue (IQ). Also includes the issue slots that were consumed by the backend but were thrown away because they were younger than the mispredict or machine clear.", "ScaleUnit": "100%" }, @@ -125,6 +128,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_base", "MetricThreshold": "tma_base > 0.6", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%" }, { @@ -142,6 +146,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_bad_speculation_group", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.05", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%" }, { @@ -166,6 +171,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%" }, { @@ -207,6 +213,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%" }, { @@ -215,6 +222,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.15", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%" }, { @@ -239,6 +247,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "ScaleUnit": "100%" }, { @@ -499,6 +508,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_bad_speculation_group", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.05", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%" }, { @@ -515,6 +525,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "ScaleUnit": "100%" }, { @@ -531,6 +542,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_ms_uops", "MetricThreshold": "tma_ms_uops > 0.05", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "Counts the number of uops that are from the complex flows issued by the micro-sequencer (MS). This includes uops from flows due to complex instructions, faults, assists, and inserted flows.", "ScaleUnit": "100%" }, @@ -620,6 +632,7 @@ "MetricGroup": "TopdownL2;tma_L2_group;tma_backend_bound_aux_group", "MetricName": "tma_resource_bound", "MetricThreshold": "tma_resource_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "Counts the total number of issue slots that were not consumed by the backend due to backend stalls. Note that uops must be available for consumption in order for this event to count. If a uop is not available (IQ is empty), this event will not count.", "ScaleUnit": "100%" }, @@ -629,6 +642,7 @@ "MetricGroup": "TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.75", + "MetricgroupNoGroup": "TopdownL1", "ScaleUnit": "100%" }, { diff --git a/tools/perf/pmu-events/arch/x86/broadwell/bdw-metrics.json b/tools/perf/pmu-events/arch/x86/broadwell/bdw-metrics.json index 51cf8560a8d3..f9e2316601e1 100644 --- a/tools/perf/pmu-events/arch/x86/broadwell/bdw-metrics.json +++ b/tools/perf/pmu-events/arch/x86/broadwell/bdw-metrics.json @@ -103,6 +103,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -112,6 +113,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -122,6 +124,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -170,6 +173,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -263,6 +267,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -272,6 +277,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: RS_EVENTS.EMPTY_END", "ScaleUnit": "100%" }, @@ -326,6 +332,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.", "ScaleUnit": "100%" }, @@ -335,6 +342,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -828,6 +836,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -858,6 +867,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -886,6 +896,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1048,6 +1059,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/broadwellde/bdwde-metrics.json b/tools/perf/pmu-events/arch/x86/broadwellde/bdwde-metrics.json index fb57c7382408..e9c46d336a8e 100644 --- a/tools/perf/pmu-events/arch/x86/broadwellde/bdwde-metrics.json +++ b/tools/perf/pmu-events/arch/x86/broadwellde/bdwde-metrics.json @@ -97,6 +97,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound. Sample with: TOPDOWN.BACKEND_BOUND_SLOTS", "ScaleUnit": "100%" }, @@ -106,6 +107,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -116,6 +118,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: TOPDOWN.BR_MISPREDICT_SLOTS. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -164,6 +167,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -248,6 +252,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -257,6 +262,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%" }, @@ -311,6 +317,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%" }, @@ -320,6 +327,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -795,6 +803,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -825,6 +834,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -853,6 +863,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1013,6 +1024,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/broadwellx/bdx-metrics.json b/tools/perf/pmu-events/arch/x86/broadwellx/bdx-metrics.json index 65ec0c9e55d1..437b9867acb9 100644 --- a/tools/perf/pmu-events/arch/x86/broadwellx/bdx-metrics.json +++ b/tools/perf/pmu-events/arch/x86/broadwellx/bdx-metrics.json @@ -103,6 +103,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -112,6 +113,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -122,6 +124,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -170,6 +173,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -263,6 +267,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -272,6 +277,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: RS_EVENTS.EMPTY_END", "ScaleUnit": "100%" }, @@ -326,6 +332,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.", "ScaleUnit": "100%" }, @@ -335,6 +342,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -829,6 +837,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -869,6 +878,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -897,6 +907,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1079,6 +1090,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json b/tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json index 8f7dc72accd0..875c766222e3 100644 --- a/tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json +++ b/tools/perf/pmu-events/arch/x86/cascadelakex/clx-metrics.json @@ -101,6 +101,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -110,6 +111,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -120,6 +122,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_info_mispredictions, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -167,6 +170,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -271,6 +275,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_dsb_misses, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -280,6 +285,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%" }, @@ -354,6 +360,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%" }, @@ -372,6 +379,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -1142,6 +1150,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -1196,6 +1205,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -1224,6 +1234,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1458,6 +1469,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/haswell/hsw-metrics.json b/tools/perf/pmu-events/arch/x86/haswell/hsw-metrics.json index 2528418200bb..9570a88d6d1c 100644 --- a/tools/perf/pmu-events/arch/x86/haswell/hsw-metrics.json +++ b/tools/perf/pmu-events/arch/x86/haswell/hsw-metrics.json @@ -103,6 +103,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -112,6 +113,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -122,6 +124,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -161,6 +164,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -254,6 +258,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -263,6 +268,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: RS_EVENTS.EMPTY_END", "ScaleUnit": "100%" }, @@ -272,6 +278,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.", "ScaleUnit": "100%" }, @@ -281,6 +288,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -663,6 +671,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -693,6 +702,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -721,6 +731,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -874,6 +885,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/haswellx/hsx-metrics.json b/tools/perf/pmu-events/arch/x86/haswellx/hsx-metrics.json index 11f152c346eb..a522202cf684 100644 --- a/tools/perf/pmu-events/arch/x86/haswellx/hsx-metrics.json +++ b/tools/perf/pmu-events/arch/x86/haswellx/hsx-metrics.json @@ -103,6 +103,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -112,6 +113,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -122,6 +124,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -161,6 +164,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -254,6 +258,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -263,6 +268,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: RS_EVENTS.EMPTY_END", "ScaleUnit": "100%" }, @@ -272,6 +278,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.", "ScaleUnit": "100%" }, @@ -281,6 +288,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -664,6 +672,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -704,6 +713,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -732,6 +742,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -905,6 +916,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/icelake/icl-metrics.json b/tools/perf/pmu-events/arch/x86/icelake/icl-metrics.json index f45ae3483df4..1a2154f28b7b 100644 --- a/tools/perf/pmu-events/arch/x86/icelake/icl-metrics.json +++ b/tools/perf/pmu-events/arch/x86/icelake/icl-metrics.json @@ -115,6 +115,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound. Sample with: TOPDOWN.BACKEND_BOUND_SLOTS", "ScaleUnit": "100%" }, @@ -124,6 +125,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -141,6 +143,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_info_mispredictions, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -187,6 +190,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -288,6 +292,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 5 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_dsb_misses, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -297,6 +302,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%" }, @@ -369,6 +375,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%" }, @@ -378,6 +385,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -1111,6 +1119,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -1164,6 +1173,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -1191,6 +1201,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1360,6 +1371,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/icelakex/icx-metrics.json b/tools/perf/pmu-events/arch/x86/icelakex/icx-metrics.json index 0f9b174dfc22..1ef772b40e04 100644 --- a/tools/perf/pmu-events/arch/x86/icelakex/icx-metrics.json +++ b/tools/perf/pmu-events/arch/x86/icelakex/icx-metrics.json @@ -80,6 +80,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound. Sample with: TOPDOWN.BACKEND_BOUND_SLOTS", "ScaleUnit": "100%" }, @@ -89,6 +90,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -106,6 +108,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_info_mispredictions, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -152,6 +155,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -253,6 +257,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 5 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_dsb_misses, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -262,6 +267,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%" }, @@ -334,6 +340,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%" }, @@ -343,6 +350,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -1134,6 +1142,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -1187,6 +1196,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -1214,6 +1224,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1410,6 +1421,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/ivybridge/ivb-metrics.json b/tools/perf/pmu-events/arch/x86/ivybridge/ivb-metrics.json index 5247f69c13b6..11080ccffd51 100644 --- a/tools/perf/pmu-events/arch/x86/ivybridge/ivb-metrics.json +++ b/tools/perf/pmu-events/arch/x86/ivybridge/ivb-metrics.json @@ -103,6 +103,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -112,6 +113,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -122,6 +124,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -161,6 +164,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -254,6 +258,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -263,6 +268,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: RS_EVENTS.EMPTY_END", "ScaleUnit": "100%" }, @@ -299,6 +305,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.", "ScaleUnit": "100%" }, @@ -308,6 +315,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -724,6 +732,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -754,6 +763,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -782,6 +792,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -917,6 +928,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/ivytown/ivt-metrics.json b/tools/perf/pmu-events/arch/x86/ivytown/ivt-metrics.json index 89469b10fa30..65a46d659c0a 100644 --- a/tools/perf/pmu-events/arch/x86/ivytown/ivt-metrics.json +++ b/tools/perf/pmu-events/arch/x86/ivytown/ivt-metrics.json @@ -103,6 +103,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -112,6 +113,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -122,6 +124,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -161,6 +164,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -254,6 +258,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -263,6 +268,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: RS_EVENTS.EMPTY_END", "ScaleUnit": "100%" }, @@ -299,6 +305,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.", "ScaleUnit": "100%" }, @@ -308,6 +315,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -725,6 +733,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -765,6 +774,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -793,6 +803,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -948,6 +959,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/jaketown/jkt-metrics.json b/tools/perf/pmu-events/arch/x86/jaketown/jkt-metrics.json index e8f4e5c01c9f..66a6f657bd6f 100644 --- a/tools/perf/pmu-events/arch/x86/jaketown/jkt-metrics.json +++ b/tools/perf/pmu-events/arch/x86/jaketown/jkt-metrics.json @@ -76,6 +76,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -85,6 +86,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -95,6 +97,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -114,6 +117,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -160,6 +164,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_lcp", "ScaleUnit": "100%" }, @@ -169,6 +174,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: RS_EVENTS.EMPTY_END", "ScaleUnit": "100%" }, @@ -205,6 +211,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.", "ScaleUnit": "100%" }, @@ -214,6 +221,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -412,6 +420,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -422,6 +431,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -450,6 +460,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -487,6 +498,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/sandybridge/snb-metrics.json b/tools/perf/pmu-events/arch/x86/sandybridge/snb-metrics.json index 4a99fe515f4b..4b8bc19392a4 100644 --- a/tools/perf/pmu-events/arch/x86/sandybridge/snb-metrics.json +++ b/tools/perf/pmu-events/arch/x86/sandybridge/snb-metrics.json @@ -76,6 +76,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -85,6 +86,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -95,6 +97,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -114,6 +117,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -160,6 +164,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_lcp", "ScaleUnit": "100%" }, @@ -169,6 +174,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: RS_EVENTS.EMPTY_END", "ScaleUnit": "100%" }, @@ -205,6 +211,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound.", "ScaleUnit": "100%" }, @@ -214,6 +221,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -411,6 +419,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -421,6 +430,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -449,6 +459,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -486,6 +497,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/sapphirerapids/spr-metrics.json b/tools/perf/pmu-events/arch/x86/sapphirerapids/spr-metrics.json index 126300b7ae77..620fc5bd2217 100644 --- a/tools/perf/pmu-events/arch/x86/sapphirerapids/spr-metrics.json +++ b/tools/perf/pmu-events/arch/x86/sapphirerapids/spr-metrics.json @@ -87,6 +87,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound. Sample with: TOPDOWN.BACKEND_BOUND_SLOTS", "ScaleUnit": "100%" }, @@ -96,6 +97,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -105,6 +107,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: TOPDOWN.BR_MISPREDICT_SLOTS. Related metrics: tma_info_branch_misprediction_cost, tma_info_mispredictions, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -151,6 +154,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -252,6 +256,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 6 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_dsb_misses, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -261,6 +266,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%" }, @@ -351,6 +357,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%" }, @@ -369,6 +376,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences. Sample with: UOPS_RETIRED.HEAVY", "ScaleUnit": "100%" }, @@ -1216,6 +1224,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -1269,6 +1278,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -1304,6 +1314,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1509,6 +1520,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json b/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json index a6d212b349f5..21ef6c9be816 100644 --- a/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json +++ b/tools/perf/pmu-events/arch/x86/skylake/skl-metrics.json @@ -101,6 +101,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -110,6 +111,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -120,6 +122,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_info_mispredictions, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -167,6 +170,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -271,6 +275,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_dsb_misses, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -280,6 +285,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%" }, @@ -345,6 +351,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%" }, @@ -363,6 +370,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -1065,6 +1073,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -1110,6 +1119,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -1138,6 +1148,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1343,6 +1354,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json b/tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json index fa2f7f126a30..eb6f12c0343d 100644 --- a/tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json +++ b/tools/perf/pmu-events/arch/x86/skylakex/skx-metrics.json @@ -101,6 +101,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound.", "ScaleUnit": "100%" }, @@ -110,6 +111,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -120,6 +122,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_info_mispredictions, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -167,6 +170,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -271,6 +275,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 4 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_dsb_misses, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -280,6 +285,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%" }, @@ -354,6 +360,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%" }, @@ -372,6 +379,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -1123,6 +1131,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -1177,6 +1186,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -1205,6 +1215,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1429,6 +1440,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.RETIRE_SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/arch/x86/tigerlake/tgl-metrics.json b/tools/perf/pmu-events/arch/x86/tigerlake/tgl-metrics.json index 4c80d6be6cf1..b442ed4acfbb 100644 --- a/tools/perf/pmu-events/arch/x86/tigerlake/tgl-metrics.json +++ b/tools/perf/pmu-events/arch/x86/tigerlake/tgl-metrics.json @@ -109,6 +109,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_backend_bound", "MetricThreshold": "tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where no uops are being delivered due to a lack of required resources for accepting new uops in the Backend. Backend is the portion of the processor core where the out-of-order scheduler dispatches ready uops into their respective execution units; and once completed these uops get retired according to program order. For example; stalls due to data-cache misses or stalls due to the divider unit being overloaded are both categorized under Backend Bound. Backend Bound is further divided into two main categories: Memory Bound and Core Bound. Sample with: TOPDOWN.BACKEND_BOUND_SLOTS", "ScaleUnit": "100%" }, @@ -118,6 +119,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_bad_speculation", "MetricThreshold": "tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots wasted due to incorrect speculations. This include slots used to issue uops that do not eventually get retired and slots for which the issue-pipeline was blocked due to recovery from earlier incorrect speculation. For example; wasted work due to miss-predicted branches are categorized under Bad Speculation category. Incorrect data speculation followed by Memory Ordering Nukes is another example.", "ScaleUnit": "100%" }, @@ -135,6 +137,7 @@ "MetricGroup": "BadSpec;BrMispredicts;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueBM", "MetricName": "tma_branch_mispredicts", "MetricThreshold": "tma_branch_mispredicts > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Branch Misprediction. These slots are either wasted by uops fetched from an incorrectly speculated program path; or stalls when the out-of-order part of the machine needs to recover its state from a speculative path. Sample with: BR_MISP_RETIRED.ALL_BRANCHES. Related metrics: tma_info_branch_misprediction_cost, tma_info_mispredictions, tma_mispredicts_resteers", "ScaleUnit": "100%" }, @@ -181,6 +184,7 @@ "MetricGroup": "Backend;Compute;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_core_bound", "MetricThreshold": "tma_core_bound > 0.1 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where Core non-memory issues were of a bottleneck. Shortage in hardware compute resources; or dependencies in software's instructions are both categorized under Core Bound. Hence it may indicate the machine ran out of an out-of-order resource; certain execution units are overloaded or dependencies in program's data- or instruction-flow are limiting the performance (e.g. FP-chained long-latency arithmetic operations).", "ScaleUnit": "100%" }, @@ -282,6 +286,7 @@ "MetricGroup": "FetchBW;Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group;tma_issueFB", "MetricName": "tma_fetch_bandwidth", "MetricThreshold": "tma_fetch_bandwidth > 0.1 & tma_frontend_bound > 0.15 & tma_info_ipc / 5 > 0.35", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend bandwidth issues. For example; inefficiencies at the instruction decoders; or restrictions for caching in the DSB (decoded uops cache) are categorized under Fetch Bandwidth. In such cases; the Frontend typically delivers suboptimal amount of uops to the Backend. Sample with: FRONTEND_RETIRED.LATENCY_GE_2_BUBBLES_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_1_PS;FRONTEND_RETIRED.LATENCY_GE_2_PS. Related metrics: tma_dsb_switches, tma_info_dsb_coverage, tma_info_dsb_misses, tma_info_iptb, tma_lcp", "ScaleUnit": "100%" }, @@ -291,6 +296,7 @@ "MetricGroup": "Frontend;TmaL2;TopdownL2;tma_L2_group;tma_frontend_bound_group", "MetricName": "tma_fetch_latency", "MetricThreshold": "tma_fetch_latency > 0.1 & tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU was stalled due to Frontend latency issues. For example; instruction-cache misses; iTLB misses or fetch stalls after a branch misprediction are categorized under Frontend Latency. In such cases; the Frontend eventually delivers no uops for some period. Sample with: FRONTEND_RETIRED.LATENCY_GE_16_PS;FRONTEND_RETIRED.LATENCY_GE_8_PS", "ScaleUnit": "100%" }, @@ -363,6 +369,7 @@ "MetricGroup": "PGO;TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_frontend_bound", "MetricThreshold": "tma_frontend_bound > 0.15", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots where the processor's Frontend undersupplies its Backend. Frontend denotes the first part of the processor core responsible to fetch operations that are executed later on by the Backend part. Within the Frontend; a branch predictor predicts the next address to fetch; cache-lines are fetched from the memory subsystem; parsed into instructions; and lastly decoded into micro-operations (uops). Ideally the Frontend can issue Pipeline_Width uops every cycle to the Backend. Frontend Bound denotes unutilized issue-slots when there is no Backend stall; i.e. bubbles where Frontend delivered no uops while Backend could have accepted them. For example; stalls due to instruction-cache misses would be categorized under Frontend Bound. Sample with: FRONTEND_RETIRED.LATENCY_GE_4_PS", "ScaleUnit": "100%" }, @@ -372,6 +379,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_heavy_operations", "MetricThreshold": "tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring heavy-weight operations -- instructions that require two or more uops or micro-coded sequences. This highly-correlates with the uop length of these instructions/sequences.", "ScaleUnit": "100%" }, @@ -1125,6 +1133,7 @@ "MetricGroup": "Retire;TmaL2;TopdownL2;tma_L2_group;tma_retiring_group", "MetricName": "tma_light_operations", "MetricThreshold": "tma_light_operations > 0.6", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots where the CPU was retiring light-weight operations -- instructions that require no more than one uop (micro-operation). This correlates with total number of instructions used by the program. A uops-per-instruction (see UopPI metric) ratio of 1 or less should be expected for decently optimized software running on Intel Core/Xeon products. While this often indicates efficient X86 instructions were executed; high value does not necessarily mean better performance cannot be achieved. Sample with: INST_RETIRED.PREC_DIST", "ScaleUnit": "100%" }, @@ -1178,6 +1187,7 @@ "MetricGroup": "BadSpec;MachineClears;TmaL2;TopdownL2;tma_L2_group;tma_bad_speculation_group;tma_issueMC;tma_issueSyncxn", "MetricName": "tma_machine_clears", "MetricThreshold": "tma_machine_clears > 0.1 & tma_bad_speculation > 0.15", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the CPU has wasted due to Machine Clears. These slots are either wasted by uops fetched prior to the clear; or stalls the out-of-order portion of the machine needs to recover its state after the clear. For example; this can happen due to memory ordering Nukes (e.g. Memory Disambiguation) or Self-Modifying-Code (SMC) nukes. Sample with: MACHINE_CLEARS.COUNT. Related metrics: tma_clears_resteers, tma_contested_accesses, tma_data_sharing, tma_false_sharing, tma_l1_bound, tma_microcode_sequencer, tma_ms_switches, tma_remote_cache", "ScaleUnit": "100%" }, @@ -1205,6 +1215,7 @@ "MetricGroup": "Backend;TmaL2;TopdownL2;tma_L2_group;tma_backend_bound_group", "MetricName": "tma_memory_bound", "MetricThreshold": "tma_memory_bound > 0.2 & tma_backend_bound > 0.2", + "MetricgroupNoGroup": "TopdownL2", "PublicDescription": "This metric represents fraction of slots the Memory subsystem within the Backend was a bottleneck. Memory Bound estimates fraction of slots where pipeline is likely stalled due to demand load or store instructions. This accounts mainly for (1) non-completed in-flight memory demand loads which coincides with execution units starvation; in addition to (2) cases where stores could impose backpressure on the pipeline when many of them get buffered at the same time (less common out of the two).", "ScaleUnit": "100%" }, @@ -1374,6 +1385,7 @@ "MetricGroup": "TmaL1;TopdownL1;tma_L1_group", "MetricName": "tma_retiring", "MetricThreshold": "tma_retiring > 0.7 | tma_heavy_operations > 0.1", + "MetricgroupNoGroup": "TopdownL1", "PublicDescription": "This category represents fraction of slots utilized by useful work i.e. issued uops that eventually get retired. Ideally; all pipeline slots would be attributed to the Retiring category. Retiring of 100% would indicate the maximum Pipeline_Width throughput was achieved. Maximizing Retiring typically increases the Instructions-per-cycle (see IPC metric). Note that a high Retiring value does not necessary mean there is no room for more performance. For example; Heavy-operations or Microcode Assists are categorized under Retiring. They often indicate suboptimal performance and can often be optimized or avoided. Sample with: UOPS_RETIRED.SLOTS", "ScaleUnit": "100%" }, diff --git a/tools/perf/pmu-events/jevents.py b/tools/perf/pmu-events/jevents.py index ca99b9cfe4ad..f57a8f274025 100755 --- a/tools/perf/pmu-events/jevents.py +++ b/tools/perf/pmu-events/jevents.py @@ -52,7 +52,8 @@ _json_event_attributes = [ # Attributes that are in pmu_metric rather than pmu_event. _json_metric_attributes = [ 'metric_name', 'metric_group', 'metric_expr', 'metric_threshold', 'desc', - 'long_desc', 'unit', 'compat', 'aggr_mode', 'event_grouping' + 'long_desc', 'unit', 'compat', 'metricgroup_no_group', 'aggr_mode', + 'event_grouping' ] # Attributes that are bools or enum int values, encoded as '0', '1',... _json_enum_attributes = ['aggr_mode', 'deprecated', 'event_grouping', 'perpkg'] @@ -303,6 +304,7 @@ class JsonEvent: self.deprecated = jd.get('Deprecated') self.metric_name = jd.get('MetricName') self.metric_group = jd.get('MetricGroup') + self.metricgroup_no_group = jd.get('MetricgroupNoGroup') self.event_grouping = convert_metric_constraint(jd.get('MetricConstraint')) self.metric_expr = None if 'MetricExpr' in jd: diff --git a/tools/perf/pmu-events/pmu-events.h b/tools/perf/pmu-events/pmu-events.h index b7dff8f1021f..80349685cf4d 100644 --- a/tools/perf/pmu-events/pmu-events.h +++ b/tools/perf/pmu-events/pmu-events.h @@ -59,6 +59,7 @@ struct pmu_metric { const char *compat; const char *desc; const char *long_desc; + const char *metricgroup_no_group; enum aggr_mode_class aggr_mode; enum metric_event_groups event_grouping; }; diff --git a/tools/perf/tests/attr.py b/tools/perf/tests/attr.py index ccfef861e931..e890c261ad26 100644 --- a/tools/perf/tests/attr.py +++ b/tools/perf/tests/attr.py @@ -152,7 +152,7 @@ def parse_version(version): # - expected values assignments class Test(object): def __init__(self, path, options): - parser = configparser.SafeConfigParser() + parser = configparser.ConfigParser() parser.read(path) log.warning("running '%s'" % path) @@ -247,7 +247,7 @@ class Test(object): return True def load_events(self, path, events): - parser_event = configparser.SafeConfigParser() + parser_event = configparser.ConfigParser() parser_event.read(path) # The event record section header contains 'event' word, @@ -261,7 +261,7 @@ class Test(object): # Read parent event if there's any if (':' in section): base = section[section.index(':') + 1:] - parser_base = configparser.SafeConfigParser() + parser_base = configparser.ConfigParser() parser_base.read(self.test_dir + '/' + base) base_items = parser_base.items('event') diff --git a/tools/perf/tests/attr/base-stat b/tools/perf/tests/attr/base-stat index a21fb65bc012..fccd8ec4d1b0 100644 --- a/tools/perf/tests/attr/base-stat +++ b/tools/perf/tests/attr/base-stat @@ -16,7 +16,7 @@ pinned=0 exclusive=0 exclude_user=0 exclude_kernel=0|1 -exclude_hv=0 +exclude_hv=0|1 exclude_idle=0 mmap=0 comm=0 diff --git a/tools/perf/tests/attr/test-stat-default b/tools/perf/tests/attr/test-stat-default index d8ea6a88163f..a1e2da0a9a6d 100644 --- a/tools/perf/tests/attr/test-stat-default +++ b/tools/perf/tests/attr/test-stat-default @@ -40,7 +40,6 @@ fd=6 type=0 config=7 optional=1 - # PERF_TYPE_HARDWARE / PERF_COUNT_HW_STALLED_CYCLES_BACKEND [event7:base-stat] fd=7 @@ -89,79 +88,98 @@ enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-bad-spec (0x8100) +# PERF_TYPE_RAW / topdown-fe-bound (0x8200) [event13:base-stat] fd=13 group_fd=11 type=4 -config=33024 +config=33280 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-fe-bound (0x8200) +# PERF_TYPE_RAW / topdown-be-bound (0x8300) [event14:base-stat] fd=14 group_fd=11 type=4 -config=33280 +config=33536 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-be-bound (0x8300) +# PERF_TYPE_RAW / topdown-bad-spec (0x8100) [event15:base-stat] fd=15 group_fd=11 type=4 -config=33536 +config=33024 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-heavy-ops (0x8400) +# PERF_TYPE_RAW / INT_MISC.UOP_DROPPING [event16:base-stat] fd=16 -group_fd=11 type=4 -config=33792 -disabled=0 -enable_on_exec=0 -read_format=15 +config=4109 optional=1 -# PERF_TYPE_RAW / topdown-br-mispredict (0x8500) +# PERF_TYPE_RAW / cpu/INT_MISC.RECOVERY_CYCLES,cmask=1,edge/ [event17:base-stat] fd=17 -group_fd=11 type=4 -config=34048 -disabled=0 -enable_on_exec=0 -read_format=15 +config=17039629 optional=1 -# PERF_TYPE_RAW / topdown-fetch-lat (0x8600) +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.THREAD [event18:base-stat] fd=18 -group_fd=11 type=4 -config=34304 -disabled=0 -enable_on_exec=0 -read_format=15 +config=60 optional=1 -# PERF_TYPE_RAW / topdown-mem-bound (0x8700) +# PERF_TYPE_RAW / INT_MISC.RECOVERY_CYCLES_ANY [event19:base-stat] fd=19 -group_fd=11 type=4 -config=34560 -disabled=0 -enable_on_exec=0 -read_format=15 +config=2097421 +optional=1 + +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.REF_XCLK +[event20:base-stat] +fd=20 +type=4 +config=316 +optional=1 + +# PERF_TYPE_RAW / IDQ_UOPS_NOT_DELIVERED.CORE +[event21:base-stat] +fd=21 +type=4 +config=412 +optional=1 + +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE +[event22:base-stat] +fd=22 +type=4 +config=572 +optional=1 + +# PERF_TYPE_RAW / UOPS_RETIRED.RETIRE_SLOTS +[event23:base-stat] +fd=23 +type=4 +config=706 +optional=1 + +# PERF_TYPE_RAW / UOPS_ISSUED.ANY +[event24:base-stat] +fd=24 +type=4 +config=270 optional=1 diff --git a/tools/perf/tests/attr/test-stat-detailed-1 b/tools/perf/tests/attr/test-stat-detailed-1 index b656ab93c5bf..1c52cb05c900 100644 --- a/tools/perf/tests/attr/test-stat-detailed-1 +++ b/tools/perf/tests/attr/test-stat-detailed-1 @@ -90,89 +90,108 @@ enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-bad-spec (0x8100) +# PERF_TYPE_RAW / topdown-fe-bound (0x8200) [event13:base-stat] fd=13 group_fd=11 type=4 -config=33024 +config=33280 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-fe-bound (0x8200) +# PERF_TYPE_RAW / topdown-be-bound (0x8300) [event14:base-stat] fd=14 group_fd=11 type=4 -config=33280 +config=33536 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-be-bound (0x8300) +# PERF_TYPE_RAW / topdown-bad-spec (0x8100) [event15:base-stat] fd=15 group_fd=11 type=4 -config=33536 +config=33024 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-heavy-ops (0x8400) +# PERF_TYPE_RAW / INT_MISC.UOP_DROPPING [event16:base-stat] fd=16 -group_fd=11 type=4 -config=33792 -disabled=0 -enable_on_exec=0 -read_format=15 +config=4109 optional=1 -# PERF_TYPE_RAW / topdown-br-mispredict (0x8500) +# PERF_TYPE_RAW / cpu/INT_MISC.RECOVERY_CYCLES,cmask=1,edge/ [event17:base-stat] fd=17 -group_fd=11 type=4 -config=34048 -disabled=0 -enable_on_exec=0 -read_format=15 +config=17039629 optional=1 -# PERF_TYPE_RAW / topdown-fetch-lat (0x8600) +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.THREAD [event18:base-stat] fd=18 -group_fd=11 type=4 -config=34304 -disabled=0 -enable_on_exec=0 -read_format=15 +config=60 optional=1 -# PERF_TYPE_RAW / topdown-mem-bound (0x8700) +# PERF_TYPE_RAW / INT_MISC.RECOVERY_CYCLES_ANY [event19:base-stat] fd=19 -group_fd=11 type=4 -config=34560 -disabled=0 -enable_on_exec=0 -read_format=15 +config=2097421 +optional=1 + +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.REF_XCLK +[event20:base-stat] +fd=20 +type=4 +config=316 +optional=1 + +# PERF_TYPE_RAW / IDQ_UOPS_NOT_DELIVERED.CORE +[event21:base-stat] +fd=21 +type=4 +config=412 +optional=1 + +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE +[event22:base-stat] +fd=22 +type=4 +config=572 +optional=1 + +# PERF_TYPE_RAW / UOPS_RETIRED.RETIRE_SLOTS +[event23:base-stat] +fd=23 +type=4 +config=706 +optional=1 + +# PERF_TYPE_RAW / UOPS_ISSUED.ANY +[event24:base-stat] +fd=24 +type=4 +config=270 optional=1 # PERF_TYPE_HW_CACHE / # PERF_COUNT_HW_CACHE_L1D << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event20:base-stat] -fd=20 +[event25:base-stat] +fd=25 type=3 config=0 optional=1 @@ -181,8 +200,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1D << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event21:base-stat] -fd=21 +[event26:base-stat] +fd=26 type=3 config=65536 optional=1 @@ -191,8 +210,8 @@ optional=1 # PERF_COUNT_HW_CACHE_LL << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event22:base-stat] -fd=22 +[event27:base-stat] +fd=27 type=3 config=2 optional=1 @@ -201,8 +220,8 @@ optional=1 # PERF_COUNT_HW_CACHE_LL << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event23:base-stat] -fd=23 +[event28:base-stat] +fd=28 type=3 config=65538 optional=1 diff --git a/tools/perf/tests/attr/test-stat-detailed-2 b/tools/perf/tests/attr/test-stat-detailed-2 index 97625090a1c4..7e961d24a885 100644 --- a/tools/perf/tests/attr/test-stat-detailed-2 +++ b/tools/perf/tests/attr/test-stat-detailed-2 @@ -90,89 +90,108 @@ enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-bad-spec (0x8100) +# PERF_TYPE_RAW / topdown-fe-bound (0x8200) [event13:base-stat] fd=13 group_fd=11 type=4 -config=33024 +config=33280 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-fe-bound (0x8200) +# PERF_TYPE_RAW / topdown-be-bound (0x8300) [event14:base-stat] fd=14 group_fd=11 type=4 -config=33280 +config=33536 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-be-bound (0x8300) +# PERF_TYPE_RAW / topdown-bad-spec (0x8100) [event15:base-stat] fd=15 group_fd=11 type=4 -config=33536 +config=33024 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-heavy-ops (0x8400) +# PERF_TYPE_RAW / INT_MISC.UOP_DROPPING [event16:base-stat] fd=16 -group_fd=11 type=4 -config=33792 -disabled=0 -enable_on_exec=0 -read_format=15 +config=4109 optional=1 -# PERF_TYPE_RAW / topdown-br-mispredict (0x8500) +# PERF_TYPE_RAW / cpu/INT_MISC.RECOVERY_CYCLES,cmask=1,edge/ [event17:base-stat] fd=17 -group_fd=11 type=4 -config=34048 -disabled=0 -enable_on_exec=0 -read_format=15 +config=17039629 optional=1 -# PERF_TYPE_RAW / topdown-fetch-lat (0x8600) +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.THREAD [event18:base-stat] fd=18 -group_fd=11 type=4 -config=34304 -disabled=0 -enable_on_exec=0 -read_format=15 +config=60 optional=1 -# PERF_TYPE_RAW / topdown-mem-bound (0x8700) +# PERF_TYPE_RAW / INT_MISC.RECOVERY_CYCLES_ANY [event19:base-stat] fd=19 -group_fd=11 type=4 -config=34560 -disabled=0 -enable_on_exec=0 -read_format=15 +config=2097421 +optional=1 + +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.REF_XCLK +[event20:base-stat] +fd=20 +type=4 +config=316 +optional=1 + +# PERF_TYPE_RAW / IDQ_UOPS_NOT_DELIVERED.CORE +[event21:base-stat] +fd=21 +type=4 +config=412 +optional=1 + +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE +[event22:base-stat] +fd=22 +type=4 +config=572 +optional=1 + +# PERF_TYPE_RAW / UOPS_RETIRED.RETIRE_SLOTS +[event23:base-stat] +fd=23 +type=4 +config=706 +optional=1 + +# PERF_TYPE_RAW / UOPS_ISSUED.ANY +[event24:base-stat] +fd=24 +type=4 +config=270 optional=1 # PERF_TYPE_HW_CACHE / # PERF_COUNT_HW_CACHE_L1D << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event20:base-stat] -fd=20 +[event25:base-stat] +fd=25 type=3 config=0 optional=1 @@ -181,8 +200,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1D << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event21:base-stat] -fd=21 +[event26:base-stat] +fd=26 type=3 config=65536 optional=1 @@ -191,8 +210,8 @@ optional=1 # PERF_COUNT_HW_CACHE_LL << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event22:base-stat] -fd=22 +[event27:base-stat] +fd=27 type=3 config=2 optional=1 @@ -201,8 +220,8 @@ optional=1 # PERF_COUNT_HW_CACHE_LL << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event23:base-stat] -fd=23 +[event28:base-stat] +fd=28 type=3 config=65538 optional=1 @@ -211,8 +230,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1I << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event24:base-stat] -fd=24 +[event29:base-stat] +fd=29 type=3 config=1 optional=1 @@ -221,8 +240,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1I << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event25:base-stat] -fd=25 +[event30:base-stat] +fd=30 type=3 config=65537 optional=1 @@ -231,8 +250,8 @@ optional=1 # PERF_COUNT_HW_CACHE_DTLB << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event26:base-stat] -fd=26 +[event31:base-stat] +fd=31 type=3 config=3 optional=1 @@ -241,8 +260,8 @@ optional=1 # PERF_COUNT_HW_CACHE_DTLB << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event27:base-stat] -fd=27 +[event32:base-stat] +fd=32 type=3 config=65539 optional=1 @@ -251,8 +270,8 @@ optional=1 # PERF_COUNT_HW_CACHE_ITLB << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event28:base-stat] -fd=28 +[event33:base-stat] +fd=33 type=3 config=4 optional=1 @@ -261,8 +280,8 @@ optional=1 # PERF_COUNT_HW_CACHE_ITLB << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event29:base-stat] -fd=29 +[event34:base-stat] +fd=34 type=3 config=65540 optional=1 diff --git a/tools/perf/tests/attr/test-stat-detailed-3 b/tools/perf/tests/attr/test-stat-detailed-3 index d555042e3fbf..e50535f45977 100644 --- a/tools/perf/tests/attr/test-stat-detailed-3 +++ b/tools/perf/tests/attr/test-stat-detailed-3 @@ -90,89 +90,108 @@ enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-bad-spec (0x8100) +# PERF_TYPE_RAW / topdown-fe-bound (0x8200) [event13:base-stat] fd=13 group_fd=11 type=4 -config=33024 +config=33280 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-fe-bound (0x8200) +# PERF_TYPE_RAW / topdown-be-bound (0x8300) [event14:base-stat] fd=14 group_fd=11 type=4 -config=33280 +config=33536 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-be-bound (0x8300) +# PERF_TYPE_RAW / topdown-bad-spec (0x8100) [event15:base-stat] fd=15 group_fd=11 type=4 -config=33536 +config=33024 disabled=0 enable_on_exec=0 read_format=15 optional=1 -# PERF_TYPE_RAW / topdown-heavy-ops (0x8400) +# PERF_TYPE_RAW / INT_MISC.UOP_DROPPING [event16:base-stat] fd=16 -group_fd=11 type=4 -config=33792 -disabled=0 -enable_on_exec=0 -read_format=15 +config=4109 optional=1 -# PERF_TYPE_RAW / topdown-br-mispredict (0x8500) +# PERF_TYPE_RAW / cpu/INT_MISC.RECOVERY_CYCLES,cmask=1,edge/ [event17:base-stat] fd=17 -group_fd=11 type=4 -config=34048 -disabled=0 -enable_on_exec=0 -read_format=15 +config=17039629 optional=1 -# PERF_TYPE_RAW / topdown-fetch-lat (0x8600) +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.THREAD [event18:base-stat] fd=18 -group_fd=11 type=4 -config=34304 -disabled=0 -enable_on_exec=0 -read_format=15 +config=60 optional=1 -# PERF_TYPE_RAW / topdown-mem-bound (0x8700) +# PERF_TYPE_RAW / INT_MISC.RECOVERY_CYCLES_ANY [event19:base-stat] fd=19 -group_fd=11 type=4 -config=34560 -disabled=0 -enable_on_exec=0 -read_format=15 +config=2097421 +optional=1 + +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.REF_XCLK +[event20:base-stat] +fd=20 +type=4 +config=316 +optional=1 + +# PERF_TYPE_RAW / IDQ_UOPS_NOT_DELIVERED.CORE +[event21:base-stat] +fd=21 +type=4 +config=412 +optional=1 + +# PERF_TYPE_RAW / CPU_CLK_UNHALTED.ONE_THREAD_ACTIVE +[event22:base-stat] +fd=22 +type=4 +config=572 +optional=1 + +# PERF_TYPE_RAW / UOPS_RETIRED.RETIRE_SLOTS +[event23:base-stat] +fd=23 +type=4 +config=706 +optional=1 + +# PERF_TYPE_RAW / UOPS_ISSUED.ANY +[event24:base-stat] +fd=24 +type=4 +config=270 optional=1 # PERF_TYPE_HW_CACHE / # PERF_COUNT_HW_CACHE_L1D << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event20:base-stat] -fd=20 +[event25:base-stat] +fd=25 type=3 config=0 optional=1 @@ -181,8 +200,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1D << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event21:base-stat] -fd=21 +[event26:base-stat] +fd=26 type=3 config=65536 optional=1 @@ -191,8 +210,8 @@ optional=1 # PERF_COUNT_HW_CACHE_LL << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event22:base-stat] -fd=22 +[event27:base-stat] +fd=27 type=3 config=2 optional=1 @@ -201,8 +220,8 @@ optional=1 # PERF_COUNT_HW_CACHE_LL << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event23:base-stat] -fd=23 +[event28:base-stat] +fd=28 type=3 config=65538 optional=1 @@ -211,8 +230,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1I << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event24:base-stat] -fd=24 +[event29:base-stat] +fd=29 type=3 config=1 optional=1 @@ -221,8 +240,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1I << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event25:base-stat] -fd=25 +[event30:base-stat] +fd=30 type=3 config=65537 optional=1 @@ -231,8 +250,8 @@ optional=1 # PERF_COUNT_HW_CACHE_DTLB << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event26:base-stat] -fd=26 +[event31:base-stat] +fd=31 type=3 config=3 optional=1 @@ -241,8 +260,8 @@ optional=1 # PERF_COUNT_HW_CACHE_DTLB << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event27:base-stat] -fd=27 +[event32:base-stat] +fd=32 type=3 config=65539 optional=1 @@ -251,8 +270,8 @@ optional=1 # PERF_COUNT_HW_CACHE_ITLB << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event28:base-stat] -fd=28 +[event33:base-stat] +fd=33 type=3 config=4 optional=1 @@ -261,8 +280,8 @@ optional=1 # PERF_COUNT_HW_CACHE_ITLB << 0 | # (PERF_COUNT_HW_CACHE_OP_READ << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event29:base-stat] -fd=29 +[event34:base-stat] +fd=34 type=3 config=65540 optional=1 @@ -271,8 +290,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1D << 0 | # (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | # (PERF_COUNT_HW_CACHE_RESULT_ACCESS << 16) -[event30:base-stat] -fd=30 +[event35:base-stat] +fd=35 type=3 config=512 optional=1 @@ -281,8 +300,8 @@ optional=1 # PERF_COUNT_HW_CACHE_L1D << 0 | # (PERF_COUNT_HW_CACHE_OP_PREFETCH << 8) | # (PERF_COUNT_HW_CACHE_RESULT_MISS << 16) -[event31:base-stat] -fd=31 +[event36:base-stat] +fd=36 type=3 config=66048 optional=1 diff --git a/tools/perf/tests/expr.c b/tools/perf/tests/expr.c index cbf0e0c74906..733ead151c63 100644 --- a/tools/perf/tests/expr.c +++ b/tools/perf/tests/expr.c @@ -120,7 +120,8 @@ static int test__expr(struct test_suite *t __maybe_unused, int subtest __maybe_u p = "FOO/0"; ret = expr__parse(&val, ctx, p); - TEST_ASSERT_VAL("division by zero", ret == -1); + TEST_ASSERT_VAL("division by zero", ret == 0); + TEST_ASSERT_VAL("division by zero", isnan(val)); p = "BAR/"; ret = expr__parse(&val, ctx, p); diff --git a/tools/perf/tests/parse-metric.c b/tools/perf/tests/parse-metric.c index 1185b79e6274..c05148ea400c 100644 --- a/tools/perf/tests/parse-metric.c +++ b/tools/perf/tests/parse-metric.c @@ -38,6 +38,7 @@ static void load_runtime_stat(struct evlist *evlist, struct value *vals) evlist__alloc_aggr_stats(evlist, 1); evlist__for_each_entry(evlist, evsel) { count = find_value(evsel->name, vals); + evsel->supported = true; evsel->stats->aggr->counts.val = count; if (evsel__name_is(evsel, "duration_time")) update_stats(&walltime_nsecs_stats, count); diff --git a/tools/perf/tests/shell/stat.sh b/tools/perf/tests/shell/stat.sh index 2c1d3f704995..b154fbb15d54 100755 --- a/tools/perf/tests/shell/stat.sh +++ b/tools/perf/tests/shell/stat.sh @@ -28,6 +28,18 @@ test_stat_record_report() { echo "stat record and report test [Success]" } +test_stat_record_script() { + echo "stat record and script test" + if ! perf stat record -o - true | perf script -i - 2>&1 | \ + grep -E -q "CPU[[:space:]]+THREAD[[:space:]]+VAL[[:space:]]+ENA[[:space:]]+RUN[[:space:]]+TIME[[:space:]]+EVENT" + then + echo "stat record and script test [Failed]" + err=1 + return + fi + echo "stat record and script test [Success]" +} + test_stat_repeat_weak_groups() { echo "stat repeat weak groups test" if ! perf stat -e '{cycles,cycles,cycles,cycles,cycles,cycles,cycles,cycles,cycles,cycles}' \ @@ -93,6 +105,7 @@ test_topdown_weak_groups() { test_default_stat test_stat_record_report +test_stat_record_script test_stat_repeat_weak_groups test_topdown_groups test_topdown_weak_groups diff --git a/tools/perf/tests/shell/test_intel_pt.sh b/tools/perf/tests/shell/test_intel_pt.sh index 4ddb17cb83c5..3a8b9bffa022 100755 --- a/tools/perf/tests/shell/test_intel_pt.sh +++ b/tools/perf/tests/shell/test_intel_pt.sh @@ -506,6 +506,13 @@ test_sample() echo "perf record failed with --aux-sample" return 1 fi + # Check with event with PMU name + if perf_record_no_decode -o "${perfdatafile}" -e br_misp_retired.all_branches:u uname ; then + if ! perf_record_no_decode -o "${perfdatafile}" -e '{intel_pt//,br_misp_retired.all_branches/aux-sample-size=8192/}:u' uname ; then + echo "perf record failed with --aux-sample-size" + return 1 + fi + fi echo OK return 0 } diff --git a/tools/perf/tests/shell/test_java_symbol.sh b/tools/perf/tests/shell/test_java_symbol.sh index 90cea8811926..499539d1c479 100755 --- a/tools/perf/tests/shell/test_java_symbol.sh +++ b/tools/perf/tests/shell/test_java_symbol.sh @@ -56,7 +56,7 @@ if [ $? -ne 0 ]; then exit 1 fi -if ! perf inject -i $PERF_DATA -o $PERF_INJ_DATA -j; then +if ! DEBUGINFOD_URLS='' perf inject -i $PERF_DATA -o $PERF_INJ_DATA -j; then echo "Fail to inject samples" exit 1 fi diff --git a/tools/perf/trace/beauty/arch_prctl.c b/tools/perf/trace/beauty/arch_prctl.c index fe022ca67e60..a211348d3204 100644 --- a/tools/perf/trace/beauty/arch_prctl.c +++ b/tools/perf/trace/beauty/arch_prctl.c @@ -12,10 +12,12 @@ static DEFINE_STRARRAY_OFFSET(x86_arch_prctl_codes_1, "ARCH_", x86_arch_prctl_codes_1_offset); static DEFINE_STRARRAY_OFFSET(x86_arch_prctl_codes_2, "ARCH_", x86_arch_prctl_codes_2_offset); +static DEFINE_STRARRAY_OFFSET(x86_arch_prctl_codes_3, "ARCH_", x86_arch_prctl_codes_3_offset); static struct strarray *x86_arch_prctl_codes[] = { &strarray__x86_arch_prctl_codes_1, &strarray__x86_arch_prctl_codes_2, + &strarray__x86_arch_prctl_codes_3, }; static DEFINE_STRARRAYS(x86_arch_prctl_codes); diff --git a/tools/perf/trace/beauty/x86_arch_prctl.sh b/tools/perf/trace/beauty/x86_arch_prctl.sh index 57fa6aaffe70..fd5c740512c5 100755 --- a/tools/perf/trace/beauty/x86_arch_prctl.sh +++ b/tools/perf/trace/beauty/x86_arch_prctl.sh @@ -24,3 +24,4 @@ print_range () { print_range 1 0x1 0x1001 print_range 2 0x2 0x2001 +print_range 3 0x4 0x4001 diff --git a/tools/perf/util/bpf_skel/lock_contention.bpf.c b/tools/perf/util/bpf_skel/lock_contention.bpf.c index 8d3cfbb3cc65..1d48226ae75d 100644 --- a/tools/perf/util/bpf_skel/lock_contention.bpf.c +++ b/tools/perf/util/bpf_skel/lock_contention.bpf.c @@ -416,6 +416,8 @@ int contention_end(u64 *ctx) return 0; } +struct rq {}; + extern struct rq runqueues __ksym; struct rq___old { diff --git a/tools/perf/util/bpf_skel/vmlinux.h b/tools/perf/util/bpf_skel/vmlinux.h index 449b1ea91fc4..c7ed51b0c1ef 100644 --- a/tools/perf/util/bpf_skel/vmlinux.h +++ b/tools/perf/util/bpf_skel/vmlinux.h @@ -1,6 +1,7 @@ #ifndef __VMLINUX_H #define __VMLINUX_H +#include <linux/stddef.h> // for define __always_inline #include <linux/bpf.h> #include <linux/types.h> #include <linux/perf_event.h> diff --git a/tools/perf/util/evsel.c b/tools/perf/util/evsel.c index 356c07f03be6..2f5910b31fa9 100644 --- a/tools/perf/util/evsel.c +++ b/tools/perf/util/evsel.c @@ -290,6 +290,7 @@ void evsel__init(struct evsel *evsel, evsel->per_pkg_mask = NULL; evsel->collect_stat = false; evsel->pmu_name = NULL; + evsel->skippable = false; } struct evsel *evsel__new_idx(struct perf_event_attr *attr, int idx) @@ -828,26 +829,26 @@ bool evsel__name_is(struct evsel *evsel, const char *name) const char *evsel__group_pmu_name(const struct evsel *evsel) { - const struct evsel *leader; + struct evsel *leader = evsel__leader(evsel); + struct evsel *pos; - /* If the pmu_name is set use it. pmu_name isn't set for CPU and software events. */ - if (evsel->pmu_name) - return evsel->pmu_name; /* * Software events may be in a group with other uncore PMU events. Use - * the pmu_name of the group leader to avoid breaking the software event - * out of the group. + * the pmu_name of the first non-software event to avoid breaking the + * software event out of the group. * * Aux event leaders, like intel_pt, expect a group with events from * other PMUs, so substitute the AUX event's PMU in this case. */ - leader = evsel__leader(evsel); - if ((evsel->core.attr.type == PERF_TYPE_SOFTWARE || evsel__is_aux_event(leader)) && - leader->pmu_name) { - return leader->pmu_name; + if (evsel->core.attr.type == PERF_TYPE_SOFTWARE || evsel__is_aux_event(leader)) { + /* Starting with the leader, find the first event with a named PMU. */ + for_each_group_evsel(pos, leader) { + if (pos->pmu_name) + return pos->pmu_name; + } } - return "cpu"; + return evsel->pmu_name ?: "cpu"; } const char *evsel__metric_id(const struct evsel *evsel) @@ -1725,9 +1726,13 @@ static int get_group_fd(struct evsel *evsel, int cpu_map_idx, int thread) return -1; fd = FD(leader, cpu_map_idx, thread); - BUG_ON(fd == -1); + BUG_ON(fd == -1 && !leader->skippable); - return fd; + /* + * When the leader has been skipped, return -2 to distinguish from no + * group leader case. + */ + return fd == -1 ? -2 : fd; } static void evsel__remove_fd(struct evsel *pos, int nr_cpus, int nr_threads, int thread_idx) @@ -2109,6 +2114,12 @@ retry_open: group_fd = get_group_fd(evsel, idx, thread); + if (group_fd == -2) { + pr_debug("broken group leader for %s\n", evsel->name); + err = -EINVAL; + goto out_close; + } + test_attr__ready(); /* Debug message used by test scripts */ diff --git a/tools/perf/util/evsel.h b/tools/perf/util/evsel.h index d575390d80bc..df8928745fc6 100644 --- a/tools/perf/util/evsel.h +++ b/tools/perf/util/evsel.h @@ -95,6 +95,7 @@ struct evsel { bool weak_group; bool bpf_counter; bool use_config_name; + bool skippable; int bpf_fd; struct bpf_object *bpf_obj; struct list_head config_terms; diff --git a/tools/perf/util/expr.y b/tools/perf/util/expr.y index 250e444bf032..4ce931cccb63 100644 --- a/tools/perf/util/expr.y +++ b/tools/perf/util/expr.y @@ -225,7 +225,11 @@ expr: NUMBER { if (fpclassify($3.val) == FP_ZERO) { pr_debug("division by zero\n"); - YYABORT; + assert($3.ids == NULL); + if (compute_ids) + ids__free($1.ids); + $$.val = NAN; + $$.ids = NULL; } else if (!compute_ids || (is_const($1.val) && is_const($3.val))) { assert($1.ids == NULL); assert($3.ids == NULL); diff --git a/tools/perf/util/metricgroup.c b/tools/perf/util/metricgroup.c index c566c6859302..5e9c657dd3f7 100644 --- a/tools/perf/util/metricgroup.c +++ b/tools/perf/util/metricgroup.c @@ -1144,12 +1144,12 @@ static int metricgroup__add_metric_callback(const struct pmu_metric *pm, struct metricgroup__add_metric_data *data = vdata; int ret = 0; - if (pm->metric_expr && - (match_metric(pm->metric_group, data->metric_name) || - match_metric(pm->metric_name, data->metric_name))) { + if (pm->metric_expr && match_pm_metric(pm, data->metric_name)) { + bool metric_no_group = data->metric_no_group || + match_metric(data->metric_name, pm->metricgroup_no_group); data->has_match = true; - ret = add_metric(data->list, pm, data->modifier, data->metric_no_group, + ret = add_metric(data->list, pm, data->modifier, metric_no_group, data->metric_no_threshold, data->user_requested_cpu_list, data->system_wide, /*root_metric=*/NULL, /*visited_metrics=*/NULL, table); @@ -1672,7 +1672,7 @@ static int metricgroup__topdown_max_level_callback(const struct pmu_metric *pm, { unsigned int *max_level = data; unsigned int level; - const char *p = strstr(pm->metric_group, "TopdownL"); + const char *p = strstr(pm->metric_group ?: "", "TopdownL"); if (!p || p[8] == '\0') return 0; diff --git a/tools/perf/util/parse-events.c b/tools/perf/util/parse-events.c index d71019dcd614..34ba840ae19a 100644 --- a/tools/perf/util/parse-events.c +++ b/tools/perf/util/parse-events.c @@ -2140,25 +2140,32 @@ static int evlist__cmp(void *state, const struct list_head *l, const struct list int *leader_idx = state; int lhs_leader_idx = *leader_idx, rhs_leader_idx = *leader_idx, ret; const char *lhs_pmu_name, *rhs_pmu_name; + bool lhs_has_group = false, rhs_has_group = false; /* * First sort by grouping/leader. Read the leader idx only if the evsel * is part of a group, as -1 indicates no group. */ - if (lhs_core->leader != lhs_core || lhs_core->nr_members > 1) + if (lhs_core->leader != lhs_core || lhs_core->nr_members > 1) { + lhs_has_group = true; lhs_leader_idx = lhs_core->leader->idx; - if (rhs_core->leader != rhs_core || rhs_core->nr_members > 1) + } + if (rhs_core->leader != rhs_core || rhs_core->nr_members > 1) { + rhs_has_group = true; rhs_leader_idx = rhs_core->leader->idx; + } if (lhs_leader_idx != rhs_leader_idx) return lhs_leader_idx - rhs_leader_idx; - /* Group by PMU. Groups can't span PMUs. */ - lhs_pmu_name = evsel__group_pmu_name(lhs); - rhs_pmu_name = evsel__group_pmu_name(rhs); - ret = strcmp(lhs_pmu_name, rhs_pmu_name); - if (ret) - return ret; + /* Group by PMU if there is a group. Groups can't span PMUs. */ + if (lhs_has_group && rhs_has_group) { + lhs_pmu_name = evsel__group_pmu_name(lhs); + rhs_pmu_name = evsel__group_pmu_name(rhs); + ret = strcmp(lhs_pmu_name, rhs_pmu_name); + if (ret) + return ret; + } /* Architecture specific sorting. */ return arch_evlist__cmp(lhs, rhs); diff --git a/tools/perf/util/stat-display.c b/tools/perf/util/stat-display.c index 73b2ff2ddf29..bf5a6c14dfcd 100644 --- a/tools/perf/util/stat-display.c +++ b/tools/perf/util/stat-display.c @@ -431,7 +431,7 @@ static void print_metric_json(struct perf_stat_config *config __maybe_unused, struct outstate *os = ctx; FILE *out = os->fh; - fprintf(out, "\"metric-value\" : %f, ", val); + fprintf(out, "\"metric-value\" : \"%f\", ", val); fprintf(out, "\"metric-unit\" : \"%s\"", unit); if (!config->metric_only) fprintf(out, "}"); diff --git a/tools/perf/util/stat-shadow.c b/tools/perf/util/stat-shadow.c index eeccab6751d7..1566a206ba42 100644 --- a/tools/perf/util/stat-shadow.c +++ b/tools/perf/util/stat-shadow.c @@ -403,12 +403,25 @@ static int prepare_metric(struct evsel **metric_events, if (!aggr) break; - /* - * If an event was scaled during stat gathering, reverse - * the scale before computing the metric. - */ - val = aggr->counts.val * (1.0 / metric_events[i]->scale); - source_count = evsel__source_count(metric_events[i]); + if (!metric_events[i]->supported) { + /* + * Not supported events will have a count of 0, + * which can be confusing in a + * metric. Explicitly set the value to NAN. Not + * counted events (enable time of 0) are read as + * 0. + */ + val = NAN; + source_count = 0; + } else { + /* + * If an event was scaled during stat gathering, + * reverse the scale before computing the + * metric. + */ + val = aggr->counts.val * (1.0 / metric_events[i]->scale); + source_count = evsel__source_count(metric_events[i]); + } } n = strdup(evsel__metric_id(metric_events[i])); if (!n) diff --git a/tools/power/cpupower/lib/powercap.c b/tools/power/cpupower/lib/powercap.c index 0ce29ee4c2e4..a7a59c6bacda 100644 --- a/tools/power/cpupower/lib/powercap.c +++ b/tools/power/cpupower/lib/powercap.c @@ -40,25 +40,34 @@ static int sysfs_get_enabled(char *path, int *mode) { int fd; char yes_no; + int ret = 0; *mode = 0; fd = open(path, O_RDONLY); - if (fd == -1) - return -1; + if (fd == -1) { + ret = -1; + goto out; + } if (read(fd, &yes_no, 1) != 1) { - close(fd); - return -1; + ret = -1; + goto out_close; } if (yes_no == '1') { *mode = 1; - return 0; + goto out_close; } else if (yes_no == '0') { - return 0; + goto out_close; + } else { + ret = -1; + goto out_close; } - return -1; +out_close: + close(fd); +out: + return ret; } int powercap_get_enabled(int *mode) diff --git a/tools/power/cpupower/utils/idle_monitor/mperf_monitor.c b/tools/power/cpupower/utils/idle_monitor/mperf_monitor.c index e7d48cb563c0..ae6af354a81d 100644 --- a/tools/power/cpupower/utils/idle_monitor/mperf_monitor.c +++ b/tools/power/cpupower/utils/idle_monitor/mperf_monitor.c @@ -70,8 +70,8 @@ static int max_freq_mode; */ static unsigned long max_frequency; -static unsigned long long tsc_at_measure_start; -static unsigned long long tsc_at_measure_end; +static unsigned long long *tsc_at_measure_start; +static unsigned long long *tsc_at_measure_end; static unsigned long long *mperf_previous_count; static unsigned long long *aperf_previous_count; static unsigned long long *mperf_current_count; @@ -169,7 +169,7 @@ static int mperf_get_count_percent(unsigned int id, double *percent, aperf_diff = aperf_current_count[cpu] - aperf_previous_count[cpu]; if (max_freq_mode == MAX_FREQ_TSC_REF) { - tsc_diff = tsc_at_measure_end - tsc_at_measure_start; + tsc_diff = tsc_at_measure_end[cpu] - tsc_at_measure_start[cpu]; *percent = 100.0 * mperf_diff / tsc_diff; dprint("%s: TSC Ref - mperf_diff: %llu, tsc_diff: %llu\n", mperf_cstates[id].name, mperf_diff, tsc_diff); @@ -206,7 +206,7 @@ static int mperf_get_count_freq(unsigned int id, unsigned long long *count, if (max_freq_mode == MAX_FREQ_TSC_REF) { /* Calculate max_freq from TSC count */ - tsc_diff = tsc_at_measure_end - tsc_at_measure_start; + tsc_diff = tsc_at_measure_end[cpu] - tsc_at_measure_start[cpu]; time_diff = timespec_diff_us(time_start, time_end); max_frequency = tsc_diff / time_diff; } @@ -225,33 +225,27 @@ static int mperf_get_count_freq(unsigned int id, unsigned long long *count, static int mperf_start(void) { int cpu; - unsigned long long dbg; clock_gettime(CLOCK_REALTIME, &time_start); - mperf_get_tsc(&tsc_at_measure_start); - for (cpu = 0; cpu < cpu_count; cpu++) + for (cpu = 0; cpu < cpu_count; cpu++) { + mperf_get_tsc(&tsc_at_measure_start[cpu]); mperf_init_stats(cpu); + } - mperf_get_tsc(&dbg); - dprint("TSC diff: %llu\n", dbg - tsc_at_measure_start); return 0; } static int mperf_stop(void) { - unsigned long long dbg; int cpu; - for (cpu = 0; cpu < cpu_count; cpu++) + for (cpu = 0; cpu < cpu_count; cpu++) { mperf_measure_stats(cpu); + mperf_get_tsc(&tsc_at_measure_end[cpu]); + } - mperf_get_tsc(&tsc_at_measure_end); clock_gettime(CLOCK_REALTIME, &time_end); - - mperf_get_tsc(&dbg); - dprint("TSC diff: %llu\n", dbg - tsc_at_measure_end); - return 0; } @@ -353,7 +347,8 @@ struct cpuidle_monitor *mperf_register(void) aperf_previous_count = calloc(cpu_count, sizeof(unsigned long long)); mperf_current_count = calloc(cpu_count, sizeof(unsigned long long)); aperf_current_count = calloc(cpu_count, sizeof(unsigned long long)); - + tsc_at_measure_start = calloc(cpu_count, sizeof(unsigned long long)); + tsc_at_measure_end = calloc(cpu_count, sizeof(unsigned long long)); mperf_monitor.name_len = strlen(mperf_monitor.name); return &mperf_monitor; } @@ -364,6 +359,8 @@ void mperf_unregister(void) free(aperf_previous_count); free(mperf_current_count); free(aperf_current_count); + free(tsc_at_measure_start); + free(tsc_at_measure_end); free(is_valid); } diff --git a/tools/testing/cxl/test/mock.c b/tools/testing/cxl/test/mock.c index c4e53f22e421..de3933a776fd 100644 --- a/tools/testing/cxl/test/mock.c +++ b/tools/testing/cxl/test/mock.c @@ -19,7 +19,7 @@ void register_cxl_mock_ops(struct cxl_mock_ops *ops) } EXPORT_SYMBOL_GPL(register_cxl_mock_ops); -static DEFINE_SRCU(cxl_mock_srcu); +DEFINE_STATIC_SRCU(cxl_mock_srcu); void unregister_cxl_mock_ops(struct cxl_mock_ops *ops) { diff --git a/tools/testing/selftests/drivers/net/bonding/bond_options.sh b/tools/testing/selftests/drivers/net/bonding/bond_options.sh index db29a3146a86..607ba5c38977 100755 --- a/tools/testing/selftests/drivers/net/bonding/bond_options.sh +++ b/tools/testing/selftests/drivers/net/bonding/bond_options.sh @@ -6,6 +6,7 @@ ALL_TESTS=" prio arp_validate + num_grat_arp " REQUIRE_MZ=no @@ -255,6 +256,55 @@ arp_validate() arp_validate_ns "active-backup" } +garp_test() +{ + local param="$1" + local active_slave exp_num real_num i + RET=0 + + # create bond + bond_reset "${param}" + + bond_check_connection + [ $RET -ne 0 ] && log_test "num_grat_arp" "$retmsg" + + + # Add tc rules to count GARP number + for i in $(seq 0 2); do + tc -n ${g_ns} filter add dev s$i ingress protocol arp pref 1 handle 101 \ + flower skip_hw arp_op request arp_sip ${s_ip4} arp_tip ${s_ip4} action pass + done + + # Do failover + active_slave=$(cmd_jq "ip -n ${s_ns} -d -j link show bond0" ".[].linkinfo.info_data.active_slave") + ip -n ${s_ns} link set ${active_slave} down + + exp_num=$(echo "${param}" | cut -f6 -d ' ') + sleep $((exp_num + 2)) + + active_slave=$(cmd_jq "ip -n ${s_ns} -d -j link show bond0" ".[].linkinfo.info_data.active_slave") + + # check result + real_num=$(tc_rule_handle_stats_get "dev s${active_slave#eth} ingress" 101 ".packets" "-n ${g_ns}") + if [ "${real_num}" -ne "${exp_num}" ]; then + echo "$real_num garp packets sent on active slave ${active_slave}" + RET=1 + fi + + for i in $(seq 0 2); do + tc -n ${g_ns} filter del dev s$i ingress + done +} + +num_grat_arp() +{ + local val + for val in 10 20 30 50; do + garp_test "mode active-backup miimon 100 num_grat_arp $val peer_notify_delay 1000" + log_test "num_grat_arp" "active-backup miimon num_grat_arp $val" + done +} + trap cleanup EXIT setup_prepare diff --git a/tools/testing/selftests/drivers/net/bonding/bond_topo_3d1c.sh b/tools/testing/selftests/drivers/net/bonding/bond_topo_3d1c.sh index 4045ca97fb22..69ab99a56043 100644 --- a/tools/testing/selftests/drivers/net/bonding/bond_topo_3d1c.sh +++ b/tools/testing/selftests/drivers/net/bonding/bond_topo_3d1c.sh @@ -61,6 +61,8 @@ server_create() ip -n ${g_ns} link set s${i} up ip -n ${g_ns} link set s${i} master br0 ip -n ${s_ns} link set eth${i} master bond0 + + tc -n ${g_ns} qdisc add dev s${i} clsact done ip -n ${s_ns} link set bond0 up diff --git a/tools/testing/selftests/ftrace/Makefile b/tools/testing/selftests/ftrace/Makefile index d6e106fbce11..a1e955d2de4c 100644 --- a/tools/testing/selftests/ftrace/Makefile +++ b/tools/testing/selftests/ftrace/Makefile @@ -1,7 +1,8 @@ # SPDX-License-Identifier: GPL-2.0 all: -TEST_PROGS := ftracetest +TEST_PROGS_EXTENDED := ftracetest +TEST_PROGS := ftracetest-ktap TEST_FILES := test.d settings EXTRA_CLEAN := $(OUTPUT)/logs/* diff --git a/tools/testing/selftests/ftrace/ftracetest b/tools/testing/selftests/ftrace/ftracetest index c3311c8c4089..2506621e75df 100755 --- a/tools/testing/selftests/ftrace/ftracetest +++ b/tools/testing/selftests/ftrace/ftracetest @@ -13,6 +13,7 @@ echo "Usage: ftracetest [options] [testcase(s)] [testcase-directory(s)]" echo " Options:" echo " -h|--help Show help message" echo " -k|--keep Keep passed test logs" +echo " -K|--ktap Output in KTAP format" echo " -v|--verbose Increase verbosity of test messages" echo " -vv Alias of -v -v (Show all results in stdout)" echo " -vvv Alias of -v -v -v (Show all commands immediately)" @@ -85,6 +86,10 @@ parse_opts() { # opts KEEP_LOG=1 shift 1 ;; + --ktap|-K) + KTAP=1 + shift 1 + ;; --verbose|-v|-vv|-vvv) if [ $VERBOSE -eq -1 ]; then usage "--console can not use with --verbose" @@ -178,6 +183,7 @@ TEST_DIR=$TOP_DIR/test.d TEST_CASES=`find_testcases $TEST_DIR` LOG_DIR=$TOP_DIR/logs/`date +%Y%m%d-%H%M%S`/ KEEP_LOG=0 +KTAP=0 DEBUG=0 VERBOSE=0 UNSUPPORTED_RESULT=0 @@ -229,7 +235,7 @@ prlog() { # messages newline= shift fi - printf "$*$newline" + [ "$KTAP" != "1" ] && printf "$*$newline" [ "$LOG_FILE" ] && printf "$*$newline" | strip_esc >> $LOG_FILE } catlog() { #file @@ -260,11 +266,11 @@ TOTAL_RESULT=0 INSTANCE= CASENO=0 +CASENAME= testcase() { # testfile CASENO=$((CASENO+1)) - desc=`grep "^#[ \t]*description:" $1 | cut -f2- -d:` - prlog -n "[$CASENO]$INSTANCE$desc" + CASENAME=`grep "^#[ \t]*description:" $1 | cut -f2- -d:` } checkreq() { # testfile @@ -277,40 +283,68 @@ test_on_instance() { # testfile grep -q "^#[ \t]*flags:.*instance" $1 } +ktaptest() { # result comment + if [ "$KTAP" != "1" ]; then + return + fi + + local result= + if [ "$1" = "1" ]; then + result="ok" + else + result="not ok" + fi + shift + + local comment=$* + if [ "$comment" != "" ]; then + comment="# $comment" + fi + + echo $CASENO $result $INSTANCE$CASENAME $comment +} + eval_result() { # sigval case $1 in $PASS) prlog " [${color_green}PASS${color_reset}]" + ktaptest 1 PASSED_CASES="$PASSED_CASES $CASENO" return 0 ;; $FAIL) prlog " [${color_red}FAIL${color_reset}]" + ktaptest 0 FAILED_CASES="$FAILED_CASES $CASENO" return 1 # this is a bug. ;; $UNRESOLVED) prlog " [${color_blue}UNRESOLVED${color_reset}]" + ktaptest 0 UNRESOLVED UNRESOLVED_CASES="$UNRESOLVED_CASES $CASENO" return $UNRESOLVED_RESULT # depends on use case ;; $UNTESTED) prlog " [${color_blue}UNTESTED${color_reset}]" + ktaptest 1 SKIP UNTESTED_CASES="$UNTESTED_CASES $CASENO" return 0 ;; $UNSUPPORTED) prlog " [${color_blue}UNSUPPORTED${color_reset}]" + ktaptest 1 SKIP UNSUPPORTED_CASES="$UNSUPPORTED_CASES $CASENO" return $UNSUPPORTED_RESULT # depends on use case ;; $XFAIL) prlog " [${color_green}XFAIL${color_reset}]" + ktaptest 1 XFAIL XFAILED_CASES="$XFAILED_CASES $CASENO" return 0 ;; *) prlog " [${color_blue}UNDEFINED${color_reset}]" + ktaptest 0 error UNDEFINED_CASES="$UNDEFINED_CASES $CASENO" return 1 # this must be a test bug ;; @@ -371,6 +405,7 @@ __run_test() { # testfile run_test() { # testfile local testname=`basename $1` testcase $1 + prlog -n "[$CASENO]$INSTANCE$CASENAME" if [ ! -z "$LOG_FILE" ] ; then local testlog=`mktemp $LOG_DIR/${CASENO}-${testname}-log.XXXXXX` else @@ -405,6 +440,17 @@ run_test() { # testfile # load in the helper functions . $TEST_DIR/functions +if [ "$KTAP" = "1" ]; then + echo "TAP version 13" + + casecount=`echo $TEST_CASES | wc -w` + for t in $TEST_CASES; do + test_on_instance $t || continue + casecount=$((casecount+1)) + done + echo "1..${casecount}" +fi + # Main loop for t in $TEST_CASES; do run_test $t @@ -439,6 +485,17 @@ prlog "# of unsupported: " `echo $UNSUPPORTED_CASES | wc -w` prlog "# of xfailed: " `echo $XFAILED_CASES | wc -w` prlog "# of undefined(test bug): " `echo $UNDEFINED_CASES | wc -w` +if [ "$KTAP" = "1" ]; then + echo -n "# Totals:" + echo -n " pass:"`echo $PASSED_CASES | wc -w` + echo -n " faii:"`echo $FAILED_CASES | wc -w` + echo -n " xfail:"`echo $XFAILED_CASES | wc -w` + echo -n " xpass:0" + echo -n " skip:"`echo $UNTESTED_CASES $UNSUPPORTED_CASES | wc -w` + echo -n " error:"`echo $UNRESOLVED_CASES $UNDEFINED_CASES | wc -w` + echo +fi + cleanup # if no error, return 0 diff --git a/tools/testing/selftests/ftrace/ftracetest-ktap b/tools/testing/selftests/ftrace/ftracetest-ktap new file mode 100755 index 000000000000..b3284679ef3a --- /dev/null +++ b/tools/testing/selftests/ftrace/ftracetest-ktap @@ -0,0 +1,8 @@ +#!/bin/sh -e +# SPDX-License-Identifier: GPL-2.0-only +# +# ftracetest-ktap: Wrapper to integrate ftracetest with the kselftest runner +# +# Copyright (C) Arm Ltd., 2023 + +./ftracetest -K diff --git a/tools/testing/selftests/net/fib_nexthops.sh b/tools/testing/selftests/net/fib_nexthops.sh index a47b26ab48f2..0f5e88c8f4ff 100755 --- a/tools/testing/selftests/net/fib_nexthops.sh +++ b/tools/testing/selftests/net/fib_nexthops.sh @@ -2283,7 +2283,7 @@ EOF ################################################################################ # main -while getopts :t:pP46hv:w: o +while getopts :t:pP46hvw: o do case $o in t) TESTS=$OPTARG;; diff --git a/tools/testing/selftests/net/forwarding/lib.sh b/tools/testing/selftests/net/forwarding/lib.sh index 057c3d0ad620..9ddb68dd6a08 100755 --- a/tools/testing/selftests/net/forwarding/lib.sh +++ b/tools/testing/selftests/net/forwarding/lib.sh @@ -791,8 +791,9 @@ tc_rule_handle_stats_get() local id=$1; shift local handle=$1; shift local selector=${1:-.packets}; shift + local netns=${1:-""}; shift - tc -j -s filter show $id \ + tc $netns -j -s filter show $id \ | jq ".[] | select(.options.handle == $handle) | \ .options.actions[0].stats$selector" } diff --git a/tools/testing/selftests/net/srv6_end_dt4_l3vpn_test.sh b/tools/testing/selftests/net/srv6_end_dt4_l3vpn_test.sh index 1003119773e5..f96282362811 100755 --- a/tools/testing/selftests/net/srv6_end_dt4_l3vpn_test.sh +++ b/tools/testing/selftests/net/srv6_end_dt4_l3vpn_test.sh @@ -232,10 +232,14 @@ setup_rt_networking() local nsname=rt-${rt} ip netns add ${nsname} + + ip netns exec ${nsname} sysctl -wq net.ipv6.conf.all.accept_dad=0 + ip netns exec ${nsname} sysctl -wq net.ipv6.conf.default.accept_dad=0 + ip link set veth-rt-${rt} netns ${nsname} ip -netns ${nsname} link set veth-rt-${rt} name veth0 - ip -netns ${nsname} addr add ${IPv6_RT_NETWORK}::${rt}/64 dev veth0 + ip -netns ${nsname} addr add ${IPv6_RT_NETWORK}::${rt}/64 dev veth0 nodad ip -netns ${nsname} link set veth0 up ip -netns ${nsname} link set lo up @@ -254,6 +258,12 @@ setup_hs() # set the networking for the host ip netns add ${hsname} + + # disable the rp_filter otherwise the kernel gets confused about how + # to route decap ipv4 packets. + ip netns exec ${rtname} sysctl -wq net.ipv4.conf.all.rp_filter=0 + ip netns exec ${rtname} sysctl -wq net.ipv4.conf.default.rp_filter=0 + ip -netns ${hsname} link add veth0 type veth peer name ${rtveth} ip -netns ${hsname} link set ${rtveth} netns ${rtname} ip -netns ${hsname} addr add ${IPv4_HS_NETWORK}.${hs}/24 dev veth0 @@ -272,11 +282,6 @@ setup_hs() ip netns exec ${rtname} sysctl -wq net.ipv4.conf.${rtveth}.proxy_arp=1 - # disable the rp_filter otherwise the kernel gets confused about how - # to route decap ipv4 packets. - ip netns exec ${rtname} sysctl -wq net.ipv4.conf.all.rp_filter=0 - ip netns exec ${rtname} sysctl -wq net.ipv4.conf.${rtveth}.rp_filter=0 - ip netns exec ${rtname} sh -c "echo 1 > /proc/sys/net/vrf/strict_mode" } diff --git a/tools/testing/selftests/netfilter/nft_flowtable.sh b/tools/testing/selftests/netfilter/nft_flowtable.sh index 7060bae04ec8..a32f490f7539 100755 --- a/tools/testing/selftests/netfilter/nft_flowtable.sh +++ b/tools/testing/selftests/netfilter/nft_flowtable.sh @@ -188,6 +188,26 @@ if [ $? -ne 0 ]; then exit $ksft_skip fi +ip netns exec $ns2 nft -f - <<EOF +table inet filter { + counter ip4dscp0 { } + counter ip4dscp3 { } + + chain input { + type filter hook input priority 0; policy accept; + meta l4proto tcp goto { + ip dscp cs3 counter name ip4dscp3 accept + ip dscp 0 counter name ip4dscp0 accept + } + } +} +EOF + +if [ $? -ne 0 ]; then + echo "SKIP: Could not load nft ruleset" + exit $ksft_skip +fi + # test basic connectivity if ! ip netns exec $ns1 ping -c 1 -q 10.0.2.99 > /dev/null; then echo "ERROR: $ns1 cannot reach ns2" 1>&2 @@ -255,6 +275,60 @@ check_counters() fi } +check_dscp() +{ + local what=$1 + local ok=1 + + local counter=$(ip netns exec $ns2 nft reset counter inet filter ip4dscp3 | grep packets) + + local pc4=${counter%*bytes*} + local pc4=${pc4#*packets} + + local counter=$(ip netns exec $ns2 nft reset counter inet filter ip4dscp0 | grep packets) + local pc4z=${counter%*bytes*} + local pc4z=${pc4z#*packets} + + case "$what" in + "dscp_none") + if [ $pc4 -gt 0 ] || [ $pc4z -eq 0 ]; then + echo "FAIL: dscp counters do not match, expected dscp3 == 0, dscp0 > 0, but got $pc4,$pc4z" 1>&2 + ret=1 + ok=0 + fi + ;; + "dscp_fwd") + if [ $pc4 -eq 0 ] || [ $pc4z -eq 0 ]; then + echo "FAIL: dscp counters do not match, expected dscp3 and dscp0 > 0 but got $pc4,$pc4z" 1>&2 + ret=1 + ok=0 + fi + ;; + "dscp_ingress") + if [ $pc4 -eq 0 ] || [ $pc4z -gt 0 ]; then + echo "FAIL: dscp counters do not match, expected dscp3 > 0, dscp0 == 0 but got $pc4,$pc4z" 1>&2 + ret=1 + ok=0 + fi + ;; + "dscp_egress") + if [ $pc4 -eq 0 ] || [ $pc4z -gt 0 ]; then + echo "FAIL: dscp counters do not match, expected dscp3 > 0, dscp0 == 0 but got $pc4,$pc4z" 1>&2 + ret=1 + ok=0 + fi + ;; + *) + echo "FAIL: Unknown DSCP check" 1>&2 + ret=1 + ok=0 + esac + + if [ $ok -eq 1 ] ;then + echo "PASS: $what: dscp packet counters match" + fi +} + check_transfer() { in=$1 @@ -286,17 +360,26 @@ test_tcp_forwarding_ip() ip netns exec $nsa nc -w 4 "$dstip" "$dstport" < "$nsin" > "$ns1out" & cpid=$! - sleep 3 + sleep 1 - if ps -p $lpid > /dev/null;then + prev="$(ls -l $ns1out $ns2out)" + sleep 1 + + while [[ "$prev" != "$(ls -l $ns1out $ns2out)" ]]; do + sleep 1; + prev="$(ls -l $ns1out $ns2out)" + done + + if test -d /proc/"$lpid"/; then kill $lpid fi - if ps -p $cpid > /dev/null;then + if test -d /proc/"$cpid"/; then kill $cpid fi - wait + wait $lpid + wait $cpid if ! check_transfer "$nsin" "$ns2out" "ns1 -> ns2"; then lret=1 @@ -316,6 +399,51 @@ test_tcp_forwarding() return $? } +test_tcp_forwarding_set_dscp() +{ + check_dscp "dscp_none" + +ip netns exec $nsr1 nft -f - <<EOF +table netdev dscpmangle { + chain setdscp0 { + type filter hook ingress device "veth0" priority 0; policy accept + ip dscp set cs3 + } +} +EOF +if [ $? -eq 0 ]; then + test_tcp_forwarding_ip "$1" "$2" 10.0.2.99 12345 + check_dscp "dscp_ingress" + + ip netns exec $nsr1 nft delete table netdev dscpmangle +else + echo "SKIP: Could not load netdev:ingress for veth0" +fi + +ip netns exec $nsr1 nft -f - <<EOF +table netdev dscpmangle { + chain setdscp0 { + type filter hook egress device "veth1" priority 0; policy accept + ip dscp set cs3 + } +} +EOF +if [ $? -eq 0 ]; then + test_tcp_forwarding_ip "$1" "$2" 10.0.2.99 12345 + check_dscp "dscp_egress" + + ip netns exec $nsr1 nft flush table netdev dscpmangle +else + echo "SKIP: Could not load netdev:egress for veth1" +fi + + # partial. If flowtable really works, then both dscp-is-0 and dscp-is-cs3 + # counters should have seen packets (before and after ft offload kicks in). + ip netns exec $nsr1 nft -a insert rule inet filter forward ip dscp set cs3 + test_tcp_forwarding_ip "$1" "$2" 10.0.2.99 12345 + check_dscp "dscp_fwd" +} + test_tcp_forwarding_nat() { local lret @@ -385,6 +513,11 @@ table ip nat { } EOF +if ! test_tcp_forwarding_set_dscp $ns1 $ns2 0 ""; then + echo "FAIL: flow offload for ns1/ns2 with dscp update" 1>&2 + exit 0 +fi + if ! test_tcp_forwarding_nat $ns1 $ns2 0 ""; then echo "FAIL: flow offload for ns1/ns2 with NAT" 1>&2 ip netns exec $nsr1 nft list ruleset @@ -489,8 +622,8 @@ ip -net $nsr1 addr add 10.0.1.1/24 dev veth0 ip -net $nsr1 addr add dead:1::1/64 dev veth0 ip -net $nsr1 link set up dev veth0 -KEY_SHA="0x"$(ps -xaf | sha1sum | cut -d " " -f 1) -KEY_AES="0x"$(ps -xaf | md5sum | cut -d " " -f 1) +KEY_SHA="0x"$(ps -af | sha1sum | cut -d " " -f 1) +KEY_AES="0x"$(ps -af | md5sum | cut -d " " -f 1) SPI1=$RANDOM SPI2=$RANDOM diff --git a/tools/testing/selftests/sgx/Makefile b/tools/testing/selftests/sgx/Makefile index 75af864e07b6..50aab6b57da3 100644 --- a/tools/testing/selftests/sgx/Makefile +++ b/tools/testing/selftests/sgx/Makefile @@ -17,6 +17,7 @@ ENCL_CFLAGS := -Wall -Werror -static -nostdlib -nostartfiles -fPIC \ -fno-stack-protector -mrdrnd $(INCLUDES) TEST_CUSTOM_PROGS := $(OUTPUT)/test_sgx +TEST_FILES := $(OUTPUT)/test_encl.elf ifeq ($(CAN_BUILD_X86_64), 1) all: $(TEST_CUSTOM_PROGS) $(OUTPUT)/test_encl.elf |