diff options
-rw-r--r-- | tools/memory-model/Documentation/explanation.txt | 9 | ||||
-rw-r--r-- | tools/memory-model/linux-kernel.bell | 6 | ||||
-rw-r--r-- | tools/memory-model/litmus-tests/dep+plain.litmus | 31 |
3 files changed, 45 insertions, 1 deletions
diff --git a/tools/memory-model/Documentation/explanation.txt b/tools/memory-model/Documentation/explanation.txt index e901b47236c3..8e7085238470 100644 --- a/tools/memory-model/Documentation/explanation.txt +++ b/tools/memory-model/Documentation/explanation.txt @@ -2575,7 +2575,7 @@ smp_store_release() -- which is basically how the Linux kernel treats them. Although we said that plain accesses are not linked by the ppo -relation, they do contribute to it indirectly. Namely, when there is +relation, they do contribute to it indirectly. Firstly, when there is an address dependency from a marked load R to a plain store W, followed by smp_wmb() and then a marked store W', the LKMM creates a ppo link from R to W'. The reasoning behind this is perhaps a little @@ -2584,6 +2584,13 @@ for this source code in which W' could execute before R. Just as with pre-bounding by address dependencies, it is possible for the compiler to undermine this relation if sufficient care is not taken. +Secondly, plain accesses can carry dependencies: If a data dependency +links a marked load R to a store W, and the store is read by a load R' +from the same thread, then the data loaded by R' depends on the data +loaded originally by R. Thus, if R' is linked to any access X by a +dependency, R is also linked to access X by the same dependency, even +if W' or R' (or both!) are plain. + There are a few oddball fences which need special treatment: smp_mb__before_atomic(), smp_mb__after_atomic(), and smp_mb__after_spinlock(). The LKMM uses fence events with special diff --git a/tools/memory-model/linux-kernel.bell b/tools/memory-model/linux-kernel.bell index 5be86b1025e8..70a9073dec3e 100644 --- a/tools/memory-model/linux-kernel.bell +++ b/tools/memory-model/linux-kernel.bell @@ -82,3 +82,9 @@ flag ~empty different-values(srcu-rscs) as srcu-bad-nesting let Marked = (~M) | IW | Once | Release | Acquire | domain(rmw) | range(rmw) | LKR | LKW | UL | LF | RL | RU let Plain = M \ Marked + +(* Redefine dependencies to include those carried through plain accesses *) +let carry-dep = (data ; rfi)* +let addr = carry-dep ; addr +let ctrl = carry-dep ; ctrl +let data = carry-dep ; data diff --git a/tools/memory-model/litmus-tests/dep+plain.litmus b/tools/memory-model/litmus-tests/dep+plain.litmus new file mode 100644 index 000000000000..ebf84daa9a59 --- /dev/null +++ b/tools/memory-model/litmus-tests/dep+plain.litmus @@ -0,0 +1,31 @@ +C dep+plain + +(* + * Result: Never + * + * This litmus test demonstrates that in LKMM, plain accesses + * carry dependencies much like accesses to registers: + * The data stored to *z1 and *z2 by P0() originates from P0()'s + * READ_ONCE(), and therefore using that data to compute the + * conditional of P0()'s if-statement creates a control dependency + * from that READ_ONCE() to P0()'s WRITE_ONCE(). + *) + +{} + +P0(int *x, int *y, int *z1, int *z2) +{ + int a = READ_ONCE(*x); + *z1 = a; + *z2 = *z1; + if (*z2 == 1) + WRITE_ONCE(*y, 1); +} + +P1(int *x, int *y) +{ + int r = smp_load_acquire(y); + smp_store_release(x, r); +} + +exists (x=1 /\ y=1) |