diff options
Diffstat (limited to 'drivers/media/common/tuners/mt2063.c')
-rw-r--r-- | drivers/media/common/tuners/mt2063.c | 2307 |
1 files changed, 0 insertions, 2307 deletions
diff --git a/drivers/media/common/tuners/mt2063.c b/drivers/media/common/tuners/mt2063.c deleted file mode 100644 index 0ed9091ff48e..000000000000 --- a/drivers/media/common/tuners/mt2063.c +++ /dev/null @@ -1,2307 +0,0 @@ -/* - * Driver for mt2063 Micronas tuner - * - * Copyright (c) 2011 Mauro Carvalho Chehab <mchehab@redhat.com> - * - * This driver came from a driver originally written by: - * Henry Wang <Henry.wang@AzureWave.com> - * Made publicly available by Terratec, at: - * http://linux.terratec.de/files/TERRATEC_H7/20110323_TERRATEC_H7_Linux.tar.gz - * The original driver's license is GPL, as declared with MODULE_LICENSE() - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation under version 2 of the License. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - */ - -#include <linux/init.h> -#include <linux/kernel.h> -#include <linux/module.h> -#include <linux/string.h> -#include <linux/videodev2.h> - -#include "mt2063.h" - -static unsigned int debug; -module_param(debug, int, 0644); -MODULE_PARM_DESC(debug, "Set Verbosity level"); - -#define dprintk(level, fmt, arg...) do { \ -if (debug >= level) \ - printk(KERN_DEBUG "mt2063 %s: " fmt, __func__, ## arg); \ -} while (0) - - -/* positive error codes used internally */ - -/* Info: Unavoidable LO-related spur may be present in the output */ -#define MT2063_SPUR_PRESENT_ERR (0x00800000) - -/* Info: Mask of bits used for # of LO-related spurs that were avoided during tuning */ -#define MT2063_SPUR_CNT_MASK (0x001f0000) -#define MT2063_SPUR_SHIFT (16) - -/* Info: Upconverter frequency is out of range (may be reason for MT_UPC_UNLOCK) */ -#define MT2063_UPC_RANGE (0x04000000) - -/* Info: Downconverter frequency is out of range (may be reason for MT_DPC_UNLOCK) */ -#define MT2063_DNC_RANGE (0x08000000) - -/* - * Constant defining the version of the following structure - * and therefore the API for this code. - * - * When compiling the tuner driver, the preprocessor will - * check against this version number to make sure that - * it matches the version that the tuner driver knows about. - */ - -/* DECT Frequency Avoidance */ -#define MT2063_DECT_AVOID_US_FREQS 0x00000001 - -#define MT2063_DECT_AVOID_EURO_FREQS 0x00000002 - -#define MT2063_EXCLUDE_US_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_US_FREQS) != 0) - -#define MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(s) (((s) & MT2063_DECT_AVOID_EURO_FREQS) != 0) - -enum MT2063_DECT_Avoid_Type { - MT2063_NO_DECT_AVOIDANCE = 0, /* Do not create DECT exclusion zones. */ - MT2063_AVOID_US_DECT = MT2063_DECT_AVOID_US_FREQS, /* Avoid US DECT frequencies. */ - MT2063_AVOID_EURO_DECT = MT2063_DECT_AVOID_EURO_FREQS, /* Avoid European DECT frequencies. */ - MT2063_AVOID_BOTH /* Avoid both regions. Not typically used. */ -}; - -#define MT2063_MAX_ZONES 48 - -struct MT2063_ExclZone_t { - u32 min_; - u32 max_; - struct MT2063_ExclZone_t *next_; -}; - -/* - * Structure of data needed for Spur Avoidance - */ -struct MT2063_AvoidSpursData_t { - u32 f_ref; - u32 f_in; - u32 f_LO1; - u32 f_if1_Center; - u32 f_if1_Request; - u32 f_if1_bw; - u32 f_LO2; - u32 f_out; - u32 f_out_bw; - u32 f_LO1_Step; - u32 f_LO2_Step; - u32 f_LO1_FracN_Avoid; - u32 f_LO2_FracN_Avoid; - u32 f_zif_bw; - u32 f_min_LO_Separation; - u32 maxH1; - u32 maxH2; - enum MT2063_DECT_Avoid_Type avoidDECT; - u32 bSpurPresent; - u32 bSpurAvoided; - u32 nSpursFound; - u32 nZones; - struct MT2063_ExclZone_t *freeZones; - struct MT2063_ExclZone_t *usedZones; - struct MT2063_ExclZone_t MT2063_ExclZones[MT2063_MAX_ZONES]; -}; - -/* - * Parameter for function MT2063_SetPowerMask that specifies the power down - * of various sections of the MT2063. - */ -enum MT2063_Mask_Bits { - MT2063_REG_SD = 0x0040, /* Shutdown regulator */ - MT2063_SRO_SD = 0x0020, /* Shutdown SRO */ - MT2063_AFC_SD = 0x0010, /* Shutdown AFC A/D */ - MT2063_PD_SD = 0x0002, /* Enable power detector shutdown */ - MT2063_PDADC_SD = 0x0001, /* Enable power detector A/D shutdown */ - MT2063_VCO_SD = 0x8000, /* Enable VCO shutdown */ - MT2063_LTX_SD = 0x4000, /* Enable LTX shutdown */ - MT2063_LT1_SD = 0x2000, /* Enable LT1 shutdown */ - MT2063_LNA_SD = 0x1000, /* Enable LNA shutdown */ - MT2063_UPC_SD = 0x0800, /* Enable upconverter shutdown */ - MT2063_DNC_SD = 0x0400, /* Enable downconverter shutdown */ - MT2063_VGA_SD = 0x0200, /* Enable VGA shutdown */ - MT2063_AMP_SD = 0x0100, /* Enable AMP shutdown */ - MT2063_ALL_SD = 0xFF73, /* All shutdown bits for this tuner */ - MT2063_NONE_SD = 0x0000 /* No shutdown bits */ -}; - -/* - * Possible values for MT2063_DNC_OUTPUT - */ -enum MT2063_DNC_Output_Enable { - MT2063_DNC_NONE = 0, - MT2063_DNC_1, - MT2063_DNC_2, - MT2063_DNC_BOTH -}; - -/* - * Two-wire serial bus subaddresses of the tuner registers. - * Also known as the tuner's register addresses. - */ -enum MT2063_Register_Offsets { - MT2063_REG_PART_REV = 0, /* 0x00: Part/Rev Code */ - MT2063_REG_LO1CQ_1, /* 0x01: LO1C Queued Byte 1 */ - MT2063_REG_LO1CQ_2, /* 0x02: LO1C Queued Byte 2 */ - MT2063_REG_LO2CQ_1, /* 0x03: LO2C Queued Byte 1 */ - MT2063_REG_LO2CQ_2, /* 0x04: LO2C Queued Byte 2 */ - MT2063_REG_LO2CQ_3, /* 0x05: LO2C Queued Byte 3 */ - MT2063_REG_RSVD_06, /* 0x06: Reserved */ - MT2063_REG_LO_STATUS, /* 0x07: LO Status */ - MT2063_REG_FIFFC, /* 0x08: FIFF Center */ - MT2063_REG_CLEARTUNE, /* 0x09: ClearTune Filter */ - MT2063_REG_ADC_OUT, /* 0x0A: ADC_OUT */ - MT2063_REG_LO1C_1, /* 0x0B: LO1C Byte 1 */ - MT2063_REG_LO1C_2, /* 0x0C: LO1C Byte 2 */ - MT2063_REG_LO2C_1, /* 0x0D: LO2C Byte 1 */ - MT2063_REG_LO2C_2, /* 0x0E: LO2C Byte 2 */ - MT2063_REG_LO2C_3, /* 0x0F: LO2C Byte 3 */ - MT2063_REG_RSVD_10, /* 0x10: Reserved */ - MT2063_REG_PWR_1, /* 0x11: PWR Byte 1 */ - MT2063_REG_PWR_2, /* 0x12: PWR Byte 2 */ - MT2063_REG_TEMP_STATUS, /* 0x13: Temp Status */ - MT2063_REG_XO_STATUS, /* 0x14: Crystal Status */ - MT2063_REG_RF_STATUS, /* 0x15: RF Attn Status */ - MT2063_REG_FIF_STATUS, /* 0x16: FIF Attn Status */ - MT2063_REG_LNA_OV, /* 0x17: LNA Attn Override */ - MT2063_REG_RF_OV, /* 0x18: RF Attn Override */ - MT2063_REG_FIF_OV, /* 0x19: FIF Attn Override */ - MT2063_REG_LNA_TGT, /* 0x1A: Reserved */ - MT2063_REG_PD1_TGT, /* 0x1B: Pwr Det 1 Target */ - MT2063_REG_PD2_TGT, /* 0x1C: Pwr Det 2 Target */ - MT2063_REG_RSVD_1D, /* 0x1D: Reserved */ - MT2063_REG_RSVD_1E, /* 0x1E: Reserved */ - MT2063_REG_RSVD_1F, /* 0x1F: Reserved */ - MT2063_REG_RSVD_20, /* 0x20: Reserved */ - MT2063_REG_BYP_CTRL, /* 0x21: Bypass Control */ - MT2063_REG_RSVD_22, /* 0x22: Reserved */ - MT2063_REG_RSVD_23, /* 0x23: Reserved */ - MT2063_REG_RSVD_24, /* 0x24: Reserved */ - MT2063_REG_RSVD_25, /* 0x25: Reserved */ - MT2063_REG_RSVD_26, /* 0x26: Reserved */ - MT2063_REG_RSVD_27, /* 0x27: Reserved */ - MT2063_REG_FIFF_CTRL, /* 0x28: FIFF Control */ - MT2063_REG_FIFF_OFFSET, /* 0x29: FIFF Offset */ - MT2063_REG_CTUNE_CTRL, /* 0x2A: Reserved */ - MT2063_REG_CTUNE_OV, /* 0x2B: Reserved */ - MT2063_REG_CTRL_2C, /* 0x2C: Reserved */ - MT2063_REG_FIFF_CTRL2, /* 0x2D: Fiff Control */ - MT2063_REG_RSVD_2E, /* 0x2E: Reserved */ - MT2063_REG_DNC_GAIN, /* 0x2F: DNC Control */ - MT2063_REG_VGA_GAIN, /* 0x30: VGA Gain Ctrl */ - MT2063_REG_RSVD_31, /* 0x31: Reserved */ - MT2063_REG_TEMP_SEL, /* 0x32: Temperature Selection */ - MT2063_REG_RSVD_33, /* 0x33: Reserved */ - MT2063_REG_RSVD_34, /* 0x34: Reserved */ - MT2063_REG_RSVD_35, /* 0x35: Reserved */ - MT2063_REG_RSVD_36, /* 0x36: Reserved */ - MT2063_REG_RSVD_37, /* 0x37: Reserved */ - MT2063_REG_RSVD_38, /* 0x38: Reserved */ - MT2063_REG_RSVD_39, /* 0x39: Reserved */ - MT2063_REG_RSVD_3A, /* 0x3A: Reserved */ - MT2063_REG_RSVD_3B, /* 0x3B: Reserved */ - MT2063_REG_RSVD_3C, /* 0x3C: Reserved */ - MT2063_REG_END_REGS -}; - -struct mt2063_state { - struct i2c_adapter *i2c; - - bool init; - - const struct mt2063_config *config; - struct dvb_tuner_ops ops; - struct dvb_frontend *frontend; - struct tuner_state status; - - u32 frequency; - u32 srate; - u32 bandwidth; - u32 reference; - - u32 tuner_id; - struct MT2063_AvoidSpursData_t AS_Data; - u32 f_IF1_actual; - u32 rcvr_mode; - u32 ctfilt_sw; - u32 CTFiltMax[31]; - u32 num_regs; - u8 reg[MT2063_REG_END_REGS]; -}; - -/* - * mt2063_write - Write data into the I2C bus - */ -static u32 mt2063_write(struct mt2063_state *state, u8 reg, u8 *data, u32 len) -{ - struct dvb_frontend *fe = state->frontend; - int ret; - u8 buf[60]; - struct i2c_msg msg = { - .addr = state->config->tuner_address, - .flags = 0, - .buf = buf, - .len = len + 1 - }; - - dprintk(2, "\n"); - - msg.buf[0] = reg; - memcpy(msg.buf + 1, data, len); - - if (fe->ops.i2c_gate_ctrl) - fe->ops.i2c_gate_ctrl(fe, 1); - ret = i2c_transfer(state->i2c, &msg, 1); - if (fe->ops.i2c_gate_ctrl) - fe->ops.i2c_gate_ctrl(fe, 0); - - if (ret < 0) - printk(KERN_ERR "%s error ret=%d\n", __func__, ret); - - return ret; -} - -/* - * mt2063_write - Write register data into the I2C bus, caching the value - */ -static u32 mt2063_setreg(struct mt2063_state *state, u8 reg, u8 val) -{ - u32 status; - - dprintk(2, "\n"); - - if (reg >= MT2063_REG_END_REGS) - return -ERANGE; - - status = mt2063_write(state, reg, &val, 1); - if (status < 0) - return status; - - state->reg[reg] = val; - - return 0; -} - -/* - * mt2063_read - Read data from the I2C bus - */ -static u32 mt2063_read(struct mt2063_state *state, - u8 subAddress, u8 *pData, u32 cnt) -{ - u32 status = 0; /* Status to be returned */ - struct dvb_frontend *fe = state->frontend; - u32 i = 0; - - dprintk(2, "addr 0x%02x, cnt %d\n", subAddress, cnt); - - if (fe->ops.i2c_gate_ctrl) - fe->ops.i2c_gate_ctrl(fe, 1); - - for (i = 0; i < cnt; i++) { - u8 b0[] = { subAddress + i }; - struct i2c_msg msg[] = { - { - .addr = state->config->tuner_address, - .flags = 0, - .buf = b0, - .len = 1 - }, { - .addr = state->config->tuner_address, - .flags = I2C_M_RD, - .buf = pData + i, - .len = 1 - } - }; - - status = i2c_transfer(state->i2c, msg, 2); - dprintk(2, "addr 0x%02x, ret = %d, val = 0x%02x\n", - subAddress + i, status, *(pData + i)); - if (status < 0) - break; - } - if (fe->ops.i2c_gate_ctrl) - fe->ops.i2c_gate_ctrl(fe, 0); - - if (status < 0) - printk(KERN_ERR "Can't read from address 0x%02x,\n", - subAddress + i); - - return status; -} - -/* - * FIXME: Is this really needed? - */ -static int MT2063_Sleep(struct dvb_frontend *fe) -{ - /* - * ToDo: Add code here to implement a OS blocking - */ - msleep(100); - - return 0; -} - -/* - * Microtune spur avoidance - */ - -/* Implement ceiling, floor functions. */ -#define ceil(n, d) (((n) < 0) ? (-((-(n))/(d))) : (n)/(d) + ((n)%(d) != 0)) -#define floor(n, d) (((n) < 0) ? (-((-(n))/(d))) - ((n)%(d) != 0) : (n)/(d)) - -struct MT2063_FIFZone_t { - s32 min_; - s32 max_; -}; - -static struct MT2063_ExclZone_t *InsertNode(struct MT2063_AvoidSpursData_t - *pAS_Info, - struct MT2063_ExclZone_t *pPrevNode) -{ - struct MT2063_ExclZone_t *pNode; - - dprintk(2, "\n"); - - /* Check for a node in the free list */ - if (pAS_Info->freeZones != NULL) { - /* Use one from the free list */ - pNode = pAS_Info->freeZones; - pAS_Info->freeZones = pNode->next_; - } else { - /* Grab a node from the array */ - pNode = &pAS_Info->MT2063_ExclZones[pAS_Info->nZones]; - } - - if (pPrevNode != NULL) { - pNode->next_ = pPrevNode->next_; - pPrevNode->next_ = pNode; - } else { /* insert at the beginning of the list */ - - pNode->next_ = pAS_Info->usedZones; - pAS_Info->usedZones = pNode; - } - - pAS_Info->nZones++; - return pNode; -} - -static struct MT2063_ExclZone_t *RemoveNode(struct MT2063_AvoidSpursData_t - *pAS_Info, - struct MT2063_ExclZone_t *pPrevNode, - struct MT2063_ExclZone_t - *pNodeToRemove) -{ - struct MT2063_ExclZone_t *pNext = pNodeToRemove->next_; - - dprintk(2, "\n"); - - /* Make previous node point to the subsequent node */ - if (pPrevNode != NULL) - pPrevNode->next_ = pNext; - - /* Add pNodeToRemove to the beginning of the freeZones */ - pNodeToRemove->next_ = pAS_Info->freeZones; - pAS_Info->freeZones = pNodeToRemove; - - /* Decrement node count */ - pAS_Info->nZones--; - - return pNext; -} - -/* - * MT_AddExclZone() - * - * Add (and merge) an exclusion zone into the list. - * If the range (f_min, f_max) is totally outside the - * 1st IF BW, ignore the entry. - * If the range (f_min, f_max) is negative, ignore the entry. - */ -static void MT2063_AddExclZone(struct MT2063_AvoidSpursData_t *pAS_Info, - u32 f_min, u32 f_max) -{ - struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; - struct MT2063_ExclZone_t *pPrev = NULL; - struct MT2063_ExclZone_t *pNext = NULL; - - dprintk(2, "\n"); - - /* Check to see if this overlaps the 1st IF filter */ - if ((f_max > (pAS_Info->f_if1_Center - (pAS_Info->f_if1_bw / 2))) - && (f_min < (pAS_Info->f_if1_Center + (pAS_Info->f_if1_bw / 2))) - && (f_min < f_max)) { - /* - * 1 2 3 4 5 6 - * - * New entry: |---| |--| |--| |-| |---| |--| - * or or or or or - * Existing: |--| |--| |--| |---| |-| |--| - */ - - /* Check for our place in the list */ - while ((pNode != NULL) && (pNode->max_ < f_min)) { - pPrev = pNode; - pNode = pNode->next_; - } - - if ((pNode != NULL) && (pNode->min_ < f_max)) { - /* Combine me with pNode */ - if (f_min < pNode->min_) - pNode->min_ = f_min; - if (f_max > pNode->max_) - pNode->max_ = f_max; - } else { - pNode = InsertNode(pAS_Info, pPrev); - pNode->min_ = f_min; - pNode->max_ = f_max; - } - - /* Look for merging possibilities */ - pNext = pNode->next_; - while ((pNext != NULL) && (pNext->min_ < pNode->max_)) { - if (pNext->max_ > pNode->max_) - pNode->max_ = pNext->max_; - /* Remove pNext, return ptr to pNext->next */ - pNext = RemoveNode(pAS_Info, pNode, pNext); - } - } -} - -/* - * Reset all exclusion zones. - * Add zones to protect the PLL FracN regions near zero - */ -static void MT2063_ResetExclZones(struct MT2063_AvoidSpursData_t *pAS_Info) -{ - u32 center; - - dprintk(2, "\n"); - - pAS_Info->nZones = 0; /* this clears the used list */ - pAS_Info->usedZones = NULL; /* reset ptr */ - pAS_Info->freeZones = NULL; /* reset ptr */ - - center = - pAS_Info->f_ref * - ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 + - pAS_Info->f_in) / pAS_Info->f_ref) - pAS_Info->f_in; - while (center < - pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + - pAS_Info->f_LO1_FracN_Avoid) { - /* Exclude LO1 FracN */ - MT2063_AddExclZone(pAS_Info, - center - pAS_Info->f_LO1_FracN_Avoid, - center - 1); - MT2063_AddExclZone(pAS_Info, center + 1, - center + pAS_Info->f_LO1_FracN_Avoid); - center += pAS_Info->f_ref; - } - - center = - pAS_Info->f_ref * - ((pAS_Info->f_if1_Center - pAS_Info->f_if1_bw / 2 - - pAS_Info->f_out) / pAS_Info->f_ref) + pAS_Info->f_out; - while (center < - pAS_Info->f_if1_Center + pAS_Info->f_if1_bw / 2 + - pAS_Info->f_LO2_FracN_Avoid) { - /* Exclude LO2 FracN */ - MT2063_AddExclZone(pAS_Info, - center - pAS_Info->f_LO2_FracN_Avoid, - center - 1); - MT2063_AddExclZone(pAS_Info, center + 1, - center + pAS_Info->f_LO2_FracN_Avoid); - center += pAS_Info->f_ref; - } - - if (MT2063_EXCLUDE_US_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { - /* Exclude LO1 values that conflict with DECT channels */ - MT2063_AddExclZone(pAS_Info, 1920836000 - pAS_Info->f_in, 1922236000 - pAS_Info->f_in); /* Ctr = 1921.536 */ - MT2063_AddExclZone(pAS_Info, 1922564000 - pAS_Info->f_in, 1923964000 - pAS_Info->f_in); /* Ctr = 1923.264 */ - MT2063_AddExclZone(pAS_Info, 1924292000 - pAS_Info->f_in, 1925692000 - pAS_Info->f_in); /* Ctr = 1924.992 */ - MT2063_AddExclZone(pAS_Info, 1926020000 - pAS_Info->f_in, 1927420000 - pAS_Info->f_in); /* Ctr = 1926.720 */ - MT2063_AddExclZone(pAS_Info, 1927748000 - pAS_Info->f_in, 1929148000 - pAS_Info->f_in); /* Ctr = 1928.448 */ - } - - if (MT2063_EXCLUDE_EURO_DECT_FREQUENCIES(pAS_Info->avoidDECT)) { - MT2063_AddExclZone(pAS_Info, 1896644000 - pAS_Info->f_in, 1898044000 - pAS_Info->f_in); /* Ctr = 1897.344 */ - MT2063_AddExclZone(pAS_Info, 1894916000 - pAS_Info->f_in, 1896316000 - pAS_Info->f_in); /* Ctr = 1895.616 */ - MT2063_AddExclZone(pAS_Info, 1893188000 - pAS_Info->f_in, 1894588000 - pAS_Info->f_in); /* Ctr = 1893.888 */ - MT2063_AddExclZone(pAS_Info, 1891460000 - pAS_Info->f_in, 1892860000 - pAS_Info->f_in); /* Ctr = 1892.16 */ - MT2063_AddExclZone(pAS_Info, 1889732000 - pAS_Info->f_in, 1891132000 - pAS_Info->f_in); /* Ctr = 1890.432 */ - MT2063_AddExclZone(pAS_Info, 1888004000 - pAS_Info->f_in, 1889404000 - pAS_Info->f_in); /* Ctr = 1888.704 */ - MT2063_AddExclZone(pAS_Info, 1886276000 - pAS_Info->f_in, 1887676000 - pAS_Info->f_in); /* Ctr = 1886.976 */ - MT2063_AddExclZone(pAS_Info, 1884548000 - pAS_Info->f_in, 1885948000 - pAS_Info->f_in); /* Ctr = 1885.248 */ - MT2063_AddExclZone(pAS_Info, 1882820000 - pAS_Info->f_in, 1884220000 - pAS_Info->f_in); /* Ctr = 1883.52 */ - MT2063_AddExclZone(pAS_Info, 1881092000 - pAS_Info->f_in, 1882492000 - pAS_Info->f_in); /* Ctr = 1881.792 */ - } -} - -/* - * MT_ChooseFirstIF - Choose the best available 1st IF - * If f_Desired is not excluded, choose that first. - * Otherwise, return the value closest to f_Center that is - * not excluded - */ -static u32 MT2063_ChooseFirstIF(struct MT2063_AvoidSpursData_t *pAS_Info) -{ - /* - * Update "f_Desired" to be the nearest "combinational-multiple" of - * "f_LO1_Step". - * The resulting number, F_LO1 must be a multiple of f_LO1_Step. - * And F_LO1 is the arithmetic sum of f_in + f_Center. - * Neither f_in, nor f_Center must be a multiple of f_LO1_Step. - * However, the sum must be. - */ - const u32 f_Desired = - pAS_Info->f_LO1_Step * - ((pAS_Info->f_if1_Request + pAS_Info->f_in + - pAS_Info->f_LO1_Step / 2) / pAS_Info->f_LO1_Step) - - pAS_Info->f_in; - const u32 f_Step = - (pAS_Info->f_LO1_Step > - pAS_Info->f_LO2_Step) ? pAS_Info->f_LO1_Step : pAS_Info-> - f_LO2_Step; - u32 f_Center; - s32 i; - s32 j = 0; - u32 bDesiredExcluded = 0; - u32 bZeroExcluded = 0; - s32 tmpMin, tmpMax; - s32 bestDiff; - struct MT2063_ExclZone_t *pNode = pAS_Info->usedZones; - struct MT2063_FIFZone_t zones[MT2063_MAX_ZONES]; - - dprintk(2, "\n"); - - if (pAS_Info->nZones == 0) - return f_Desired; - - /* - * f_Center needs to be an integer multiple of f_Step away - * from f_Desired - */ - if (pAS_Info->f_if1_Center > f_Desired) - f_Center = - f_Desired + - f_Step * - ((pAS_Info->f_if1_Center - f_Desired + - f_Step / 2) / f_Step); - else - f_Center = - f_Desired - - f_Step * - ((f_Desired - pAS_Info->f_if1_Center + - f_Step / 2) / f_Step); - - /* - * Take MT_ExclZones, center around f_Center and change the - * resolution to f_Step - */ - while (pNode != NULL) { - /* floor function */ - tmpMin = - floor((s32) (pNode->min_ - f_Center), (s32) f_Step); - - /* ceil function */ - tmpMax = - ceil((s32) (pNode->max_ - f_Center), (s32) f_Step); - - if ((pNode->min_ < f_Desired) && (pNode->max_ > f_Desired)) - bDesiredExcluded = 1; - - if ((tmpMin < 0) && (tmpMax > 0)) - bZeroExcluded = 1; - - /* See if this zone overlaps the previous */ - if ((j > 0) && (tmpMin < zones[j - 1].max_)) - zones[j - 1].max_ = tmpMax; - else { - /* Add new zone */ - zones[j].min_ = tmpMin; - zones[j].max_ = tmpMax; - j++; - } - pNode = pNode->next_; - } - - /* - * If the desired is okay, return with it - */ - if (bDesiredExcluded == 0) - return f_Desired; - - /* - * If the desired is excluded and the center is okay, return with it - */ - if (bZeroExcluded == 0) - return f_Center; - - /* Find the value closest to 0 (f_Center) */ - bestDiff = zones[0].min_; - for (i = 0; i < j; i++) { - if (abs(zones[i].min_) < abs(bestDiff)) - bestDiff = zones[i].min_; - if (abs(zones[i].max_) < abs(bestDiff)) - bestDiff = zones[i].max_; - } - - if (bestDiff < 0) - return f_Center - ((u32) (-bestDiff) * f_Step); - - return f_Center + (bestDiff * f_Step); -} - -/** - * gcd() - Uses Euclid's algorithm - * - * @u, @v: Unsigned values whose GCD is desired. - * - * Returns THE greatest common divisor of u and v, if either value is 0, - * the other value is returned as the result. - */ -static u32 MT2063_gcd(u32 u, u32 v) -{ - u32 r; - - while (v != 0) { - r = u % v; - u = v; - v = r; - } - - return u; -} - -/** - * IsSpurInBand() - Checks to see if a spur will be present within the IF's - * bandwidth. (fIFOut +/- fIFBW, -fIFOut +/- fIFBW) - * - * ma mb mc md - * <--+-+-+-------------------+-------------------+-+-+--> - * | ^ 0 ^ | - * ^ b=-fIFOut+fIFBW/2 -b=+fIFOut-fIFBW/2 ^ - * a=-fIFOut-fIFBW/2 -a=+fIFOut+fIFBW/2 - * - * Note that some equations are doubled to prevent round-off - * problems when calculating fIFBW/2 - * - * @pAS_Info: Avoid Spurs information block - * @fm: If spur, amount f_IF1 has to move negative - * @fp: If spur, amount f_IF1 has to move positive - * - * Returns 1 if an LO spur would be present, otherwise 0. - */ -static u32 IsSpurInBand(struct MT2063_AvoidSpursData_t *pAS_Info, - u32 *fm, u32 * fp) -{ - /* - ** Calculate LO frequency settings. - */ - u32 n, n0; - const u32 f_LO1 = pAS_Info->f_LO1; - const u32 f_LO2 = pAS_Info->f_LO2; - const u32 d = pAS_Info->f_out + pAS_Info->f_out_bw / 2; - const u32 c = d - pAS_Info->f_out_bw; - const u32 f = pAS_Info->f_zif_bw / 2; - const u32 f_Scale = (f_LO1 / (UINT_MAX / 2 / pAS_Info->maxH1)) + 1; - s32 f_nsLO1, f_nsLO2; - s32 f_Spur; - u32 ma, mb, mc, md, me, mf; - u32 lo_gcd, gd_Scale, gc_Scale, gf_Scale, hgds, hgfs, hgcs; - - dprintk(2, "\n"); - - *fm = 0; - - /* - ** For each edge (d, c & f), calculate a scale, based on the gcd - ** of f_LO1, f_LO2 and the edge value. Use the larger of this - ** gcd-based scale factor or f_Scale. - */ - lo_gcd = MT2063_gcd(f_LO1, f_LO2); - gd_Scale = max((u32) MT2063_gcd(lo_gcd, d), f_Scale); - hgds = gd_Scale / 2; - gc_Scale = max((u32) MT2063_gcd(lo_gcd, c), f_Scale); - hgcs = gc_Scale / 2; - gf_Scale = max((u32) MT2063_gcd(lo_gcd, f), f_Scale); - hgfs = gf_Scale / 2; - - n0 = DIV_ROUND_UP(f_LO2 - d, f_LO1 - f_LO2); - - /* Check out all multiples of LO1 from n0 to m_maxLOSpurHarmonic */ - for (n = n0; n <= pAS_Info->maxH1; ++n) { - md = (n * ((f_LO1 + hgds) / gd_Scale) - - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); - - /* If # fLO2 harmonics > m_maxLOSpurHarmonic, then no spurs present */ - if (md >= pAS_Info->maxH1) - break; - - ma = (n * ((f_LO1 + hgds) / gd_Scale) + - ((d + hgds) / gd_Scale)) / ((f_LO2 + hgds) / gd_Scale); - - /* If no spurs between +/- (f_out + f_IFBW/2), then try next harmonic */ - if (md == ma) - continue; - - mc = (n * ((f_LO1 + hgcs) / gc_Scale) - - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); - if (mc != md) { - f_nsLO1 = (s32) (n * (f_LO1 / gc_Scale)); - f_nsLO2 = (s32) (mc * (f_LO2 / gc_Scale)); - f_Spur = - (gc_Scale * (f_nsLO1 - f_nsLO2)) + - n * (f_LO1 % gc_Scale) - mc * (f_LO2 % gc_Scale); - - *fp = ((f_Spur - (s32) c) / (mc - n)) + 1; - *fm = (((s32) d - f_Spur) / (mc - n)) + 1; - return 1; - } - - /* Location of Zero-IF-spur to be checked */ - me = (n * ((f_LO1 + hgfs) / gf_Scale) + - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); - mf = (n * ((f_LO1 + hgfs) / gf_Scale) - - ((f + hgfs) / gf_Scale)) / ((f_LO2 + hgfs) / gf_Scale); - if (me != mf) { - f_nsLO1 = n * (f_LO1 / gf_Scale); - f_nsLO2 = me * (f_LO2 / gf_Scale); - f_Spur = - (gf_Scale * (f_nsLO1 - f_nsLO2)) + - n * (f_LO1 % gf_Scale) - me * (f_LO2 % gf_Scale); - - *fp = ((f_Spur + (s32) f) / (me - n)) + 1; - *fm = (((s32) f - f_Spur) / (me - n)) + 1; - return 1; - } - - mb = (n * ((f_LO1 + hgcs) / gc_Scale) + - ((c + hgcs) / gc_Scale)) / ((f_LO2 + hgcs) / gc_Scale); - if (ma != mb) { - f_nsLO1 = n * (f_LO1 / gc_Scale); - f_nsLO2 = ma * (f_LO2 / gc_Scale); - f_Spur = - (gc_Scale * (f_nsLO1 - f_nsLO2)) + - n * (f_LO1 % gc_Scale) - ma * (f_LO2 % gc_Scale); - - *fp = (((s32) d + f_Spur) / (ma - n)) + 1; - *fm = (-(f_Spur + (s32) c) / (ma - n)) + 1; - return 1; - } - } - - /* No spurs found */ - return 0; -} - -/* - * MT_AvoidSpurs() - Main entry point to avoid spurs. - * Checks for existing spurs in present LO1, LO2 freqs - * and if present, chooses spur-free LO1, LO2 combination - * that tunes the same input/output frequencies. - */ -static u32 MT2063_AvoidSpurs(struct MT2063_AvoidSpursData_t *pAS_Info) -{ - u32 status = 0; - u32 fm, fp; /* restricted range on LO's */ - pAS_Info->bSpurAvoided = 0; - pAS_Info->nSpursFound = 0; - - dprintk(2, "\n"); - - if (pAS_Info->maxH1 == 0) - return 0; - - /* - * Avoid LO Generated Spurs - * - * Make sure that have no LO-related spurs within the IF output - * bandwidth. - * - * If there is an LO spur in this band, start at the current IF1 frequency - * and work out until we find a spur-free frequency or run up against the - * 1st IF SAW band edge. Use temporary copies of fLO1 and fLO2 so that they - * will be unchanged if a spur-free setting is not found. - */ - pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); - if (pAS_Info->bSpurPresent) { - u32 zfIF1 = pAS_Info->f_LO1 - pAS_Info->f_in; /* current attempt at a 1st IF */ - u32 zfLO1 = pAS_Info->f_LO1; /* current attempt at an LO1 freq */ - u32 zfLO2 = pAS_Info->f_LO2; /* current attempt at an LO2 freq */ - u32 delta_IF1; - u32 new_IF1; - - /* - ** Spur was found, attempt to find a spur-free 1st IF - */ - do { - pAS_Info->nSpursFound++; - - /* Raise f_IF1_upper, if needed */ - MT2063_AddExclZone(pAS_Info, zfIF1 - fm, zfIF1 + fp); - - /* Choose next IF1 that is closest to f_IF1_CENTER */ - new_IF1 = MT2063_ChooseFirstIF(pAS_Info); - - if (new_IF1 > zfIF1) { - pAS_Info->f_LO1 += (new_IF1 - zfIF1); - pAS_Info->f_LO2 += (new_IF1 - zfIF1); - } else { - pAS_Info->f_LO1 -= (zfIF1 - new_IF1); - pAS_Info->f_LO2 -= (zfIF1 - new_IF1); - } - zfIF1 = new_IF1; - - if (zfIF1 > pAS_Info->f_if1_Center) - delta_IF1 = zfIF1 - pAS_Info->f_if1_Center; - else - delta_IF1 = pAS_Info->f_if1_Center - zfIF1; - - pAS_Info->bSpurPresent = IsSpurInBand(pAS_Info, &fm, &fp); - /* - * Continue while the new 1st IF is still within the 1st IF bandwidth - * and there is a spur in the band (again) - */ - } while ((2 * delta_IF1 + pAS_Info->f_out_bw <= pAS_Info->f_if1_bw) && pAS_Info->bSpurPresent); - - /* - * Use the LO-spur free values found. If the search went all - * the way to the 1st IF band edge and always found spurs, just - * leave the original choice. It's as "good" as any other. - */ - if (pAS_Info->bSpurPresent == 1) { - status |= MT2063_SPUR_PRESENT_ERR; - pAS_Info->f_LO1 = zfLO1; - pAS_Info->f_LO2 = zfLO2; - } else - pAS_Info->bSpurAvoided = 1; - } - - status |= - ((pAS_Info-> - nSpursFound << MT2063_SPUR_SHIFT) & MT2063_SPUR_CNT_MASK); - - return status; -} - -/* - * Constants used by the tuning algorithm - */ -#define MT2063_REF_FREQ (16000000UL) /* Reference oscillator Frequency (in Hz) */ -#define MT2063_IF1_BW (22000000UL) /* The IF1 filter bandwidth (in Hz) */ -#define MT2063_TUNE_STEP_SIZE (50000UL) /* Tune in steps of 50 kHz */ -#define MT2063_SPUR_STEP_HZ (250000UL) /* Step size (in Hz) to move IF1 when avoiding spurs */ -#define MT2063_ZIF_BW (2000000UL) /* Zero-IF spur-free bandwidth (in Hz) */ -#define MT2063_MAX_HARMONICS_1 (15UL) /* Highest intra-tuner LO Spur Harmonic to be avoided */ -#define MT2063_MAX_HARMONICS_2 (5UL) /* Highest inter-tuner LO Spur Harmonic to be avoided */ -#define MT2063_MIN_LO_SEP (1000000UL) /* Minimum inter-tuner LO frequency separation */ -#define MT2063_LO1_FRACN_AVOID (0UL) /* LO1 FracN numerator avoid region (in Hz) */ -#define MT2063_LO2_FRACN_AVOID (199999UL) /* LO2 FracN numerator avoid region (in Hz) */ -#define MT2063_MIN_FIN_FREQ (44000000UL) /* Minimum input frequency (in Hz) */ -#define MT2063_MAX_FIN_FREQ (1100000000UL) /* Maximum input frequency (in Hz) */ -#define MT2063_MIN_FOUT_FREQ (36000000UL) /* Minimum output frequency (in Hz) */ -#define MT2063_MAX_FOUT_FREQ (57000000UL) /* Maximum output frequency (in Hz) */ -#define MT2063_MIN_DNC_FREQ (1293000000UL) /* Minimum LO2 frequency (in Hz) */ -#define MT2063_MAX_DNC_FREQ (1614000000UL) /* Maximum LO2 frequency (in Hz) */ -#define MT2063_MIN_UPC_FREQ (1396000000UL) /* Minimum LO1 frequency (in Hz) */ -#define MT2063_MAX_UPC_FREQ (2750000000UL) /* Maximum LO1 frequency (in Hz) */ - -/* - * Define the supported Part/Rev codes for the MT2063 - */ -#define MT2063_B0 (0x9B) -#define MT2063_B1 (0x9C) -#define MT2063_B2 (0x9D) -#define MT2063_B3 (0x9E) - -/** - * mt2063_lockStatus - Checks to see if LO1 and LO2 are locked - * - * @state: struct mt2063_state pointer - * - * This function returns 0, if no lock, 1 if locked and a value < 1 if error - */ -static unsigned int mt2063_lockStatus(struct mt2063_state *state) -{ - const u32 nMaxWait = 100; /* wait a maximum of 100 msec */ - const u32 nPollRate = 2; /* poll status bits every 2 ms */ - const u32 nMaxLoops = nMaxWait / nPollRate; - const u8 LO1LK = 0x80; - u8 LO2LK = 0x08; - u32 status; - u32 nDelays = 0; - - dprintk(2, "\n"); - - /* LO2 Lock bit was in a different place for B0 version */ - if (state->tuner_id == MT2063_B0) - LO2LK = 0x40; - - do { - status = mt2063_read(state, MT2063_REG_LO_STATUS, - &state->reg[MT2063_REG_LO_STATUS], 1); - - if (status < 0) - return status; - - if ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) == - (LO1LK | LO2LK)) { - return TUNER_STATUS_LOCKED | TUNER_STATUS_STEREO; - } - msleep(nPollRate); /* Wait between retries */ - } while (++nDelays < nMaxLoops); - - /* - * Got no lock or partial lock - */ - return 0; -} - -/* - * Constants for setting receiver modes. - * (6 modes defined at this time, enumerated by mt2063_delivery_sys) - * (DNC1GC & DNC2GC are the values, which are used, when the specific - * DNC Output is selected, the other is always off) - * - * enum mt2063_delivery_sys - * -------------+---------------------------------------------- - * Mode 0 : | MT2063_CABLE_QAM - * Mode 1 : | MT2063_CABLE_ANALOG - * Mode 2 : | MT2063_OFFAIR_COFDM - * Mode 3 : | MT2063_OFFAIR_COFDM_SAWLESS - * Mode 4 : | MT2063_OFFAIR_ANALOG - * Mode 5 : | MT2063_OFFAIR_8VSB - * --------------+---------------------------------------------- - * - * |<---------- Mode -------------->| - * Reg Field | 0 | 1 | 2 | 3 | 4 | 5 | - * ------------+-----+-----+-----+-----+-----+-----+ - * RFAGCen | OFF | OFF | OFF | OFF | OFF | OFF - * LNARin | 0 | 0 | 3 | 3 | 3 | 3 - * FIFFQen | 1 | 1 | 1 | 1 | 1 | 1 - * FIFFq | 0 | 0 | 0 | 0 | 0 | 0 - * DNC1gc | 0 | 0 | 0 | 0 | 0 | 0 - * DNC2gc | 0 | 0 | 0 | 0 | 0 | 0 - * GCU Auto | 1 | 1 | 1 | 1 | 1 | 1 - * LNA max Atn | 31 | 31 | 31 | 31 | 31 | 31 - * LNA Target | 44 | 43 | 43 | 43 | 43 | 43 - * ign RF Ovl | 0 | 0 | 0 | 0 | 0 | 0 - * RF max Atn | 31 | 31 | 31 | 31 | 31 | 31 - * PD1 Target | 36 | 36 | 38 | 38 | 36 | 38 - * ign FIF Ovl | 0 | 0 | 0 | 0 | 0 | 0 - * FIF max Atn | 5 | 5 | 5 | 5 | 5 | 5 - * PD2 Target | 40 | 33 | 42 | 42 | 33 | 42 - */ - -enum mt2063_delivery_sys { - MT2063_CABLE_QAM = 0, - MT2063_CABLE_ANALOG, - MT2063_OFFAIR_COFDM, - MT2063_OFFAIR_COFDM_SAWLESS, - MT2063_OFFAIR_ANALOG, - MT2063_OFFAIR_8VSB, - MT2063_NUM_RCVR_MODES -}; - -static const char *mt2063_mode_name[] = { - [MT2063_CABLE_QAM] = "digital cable", - [MT2063_CABLE_ANALOG] = "analog cable", - [MT2063_OFFAIR_COFDM] = "digital offair", - [MT2063_OFFAIR_COFDM_SAWLESS] = "digital offair without SAW", - [MT2063_OFFAIR_ANALOG] = "analog offair", - [MT2063_OFFAIR_8VSB] = "analog offair 8vsb", -}; - -static const u8 RFAGCEN[] = { 0, 0, 0, 0, 0, 0 }; -static const u8 LNARIN[] = { 0, 0, 3, 3, 3, 3 }; -static const u8 FIFFQEN[] = { 1, 1, 1, 1, 1, 1 }; -static const u8 FIFFQ[] = { 0, 0, 0, 0, 0, 0 }; -static const u8 DNC1GC[] = { 0, 0, 0, 0, 0, 0 }; -static const u8 DNC2GC[] = { 0, 0, 0, 0, 0, 0 }; -static const u8 ACLNAMAX[] = { 31, 31, 31, 31, 31, 31 }; -static const u8 LNATGT[] = { 44, 43, 43, 43, 43, 43 }; -static const u8 RFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; -static const u8 ACRFMAX[] = { 31, 31, 31, 31, 31, 31 }; -static const u8 PD1TGT[] = { 36, 36, 38, 38, 36, 38 }; -static const u8 FIFOVDIS[] = { 0, 0, 0, 0, 0, 0 }; -static const u8 ACFIFMAX[] = { 29, 29, 29, 29, 29, 29 }; -static const u8 PD2TGT[] = { 40, 33, 38, 42, 30, 38 }; - -/* - * mt2063_set_dnc_output_enable() - */ -static u32 mt2063_get_dnc_output_enable(struct mt2063_state *state, - enum MT2063_DNC_Output_Enable *pValue) -{ - dprintk(2, "\n"); - - if ((state->reg[MT2063_REG_DNC_GAIN] & 0x03) == 0x03) { /* if DNC1 is off */ - if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ - *pValue = MT2063_DNC_NONE; - else - *pValue = MT2063_DNC_2; - } else { /* DNC1 is on */ - if ((state->reg[MT2063_REG_VGA_GAIN] & 0x03) == 0x03) /* if DNC2 is off */ - *pValue = MT2063_DNC_1; - else - *pValue = MT2063_DNC_BOTH; - } - return 0; -} - -/* - * mt2063_set_dnc_output_enable() - */ -static u32 mt2063_set_dnc_output_enable(struct mt2063_state *state, - enum MT2063_DNC_Output_Enable nValue) -{ - u32 status = 0; /* Status to be returned */ - u8 val = 0; - - dprintk(2, "\n"); - - /* selects, which DNC output is used */ - switch (nValue) { - case MT2063_DNC_NONE: - val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ - if (state->reg[MT2063_REG_DNC_GAIN] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_DNC_GAIN, - val); - - val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ - if (state->reg[MT2063_REG_VGA_GAIN] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_VGA_GAIN, - val); - - val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ - if (state->reg[MT2063_REG_RSVD_20] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_RSVD_20, - val); - - break; - case MT2063_DNC_1: - val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ - if (state->reg[MT2063_REG_DNC_GAIN] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_DNC_GAIN, - val); - - val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | 0x03; /* Set DNC2GC=3 */ - if (state->reg[MT2063_REG_VGA_GAIN] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_VGA_GAIN, - val); - - val = (state->reg[MT2063_REG_RSVD_20] & ~0x40); /* Set PD2MUX=0 */ - if (state->reg[MT2063_REG_RSVD_20] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_RSVD_20, - val); - - break; - case MT2063_DNC_2: - val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | 0x03; /* Set DNC1GC=3 */ - if (state->reg[MT2063_REG_DNC_GAIN] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_DNC_GAIN, - val); - - val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ - if (state->reg[MT2063_REG_VGA_GAIN] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_VGA_GAIN, - val); - - val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ - if (state->reg[MT2063_REG_RSVD_20] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_RSVD_20, - val); - - break; - case MT2063_DNC_BOTH: - val = (state->reg[MT2063_REG_DNC_GAIN] & 0xFC) | (DNC1GC[state->rcvr_mode] & 0x03); /* Set DNC1GC=x */ - if (state->reg[MT2063_REG_DNC_GAIN] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_DNC_GAIN, - val); - - val = (state->reg[MT2063_REG_VGA_GAIN] & 0xFC) | (DNC2GC[state->rcvr_mode] & 0x03); /* Set DNC2GC=x */ - if (state->reg[MT2063_REG_VGA_GAIN] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_VGA_GAIN, - val); - - val = (state->reg[MT2063_REG_RSVD_20] | 0x40); /* Set PD2MUX=1 */ - if (state->reg[MT2063_REG_RSVD_20] != - val) - status |= - mt2063_setreg(state, - MT2063_REG_RSVD_20, - val); - - break; - default: - break; - } - - return status; -} - -/* - * MT2063_SetReceiverMode() - Set the MT2063 receiver mode, according with - * the selected enum mt2063_delivery_sys type. - * - * (DNC1GC & DNC2GC are the values, which are used, when the specific - * DNC Output is selected, the other is always off) - * - * @state: ptr to mt2063_state structure - * @Mode: desired reciever delivery system - * - * Note: Register cache must be valid for it to work - */ - -static u32 MT2063_SetReceiverMode(struct mt2063_state *state, - enum mt2063_delivery_sys Mode) -{ - u32 status = 0; /* Status to be returned */ - u8 val; - u32 longval; - - dprintk(2, "\n"); - - if (Mode >= MT2063_NUM_RCVR_MODES) - status = -ERANGE; - - /* RFAGCen */ - if (status >= 0) { - val = - (state-> - reg[MT2063_REG_PD1_TGT] & (u8) ~0x40) | (RFAGCEN[Mode] - ? 0x40 : - 0x00); - if (state->reg[MT2063_REG_PD1_TGT] != val) - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); - } - - /* LNARin */ - if (status >= 0) { - u8 val = (state->reg[MT2063_REG_CTRL_2C] & (u8) ~0x03) | - (LNARIN[Mode] & 0x03); - if (state->reg[MT2063_REG_CTRL_2C] != val) - status |= mt2063_setreg(state, MT2063_REG_CTRL_2C, val); - } - - /* FIFFQEN and FIFFQ */ - if (status >= 0) { - val = - (state-> - reg[MT2063_REG_FIFF_CTRL2] & (u8) ~0xF0) | - (FIFFQEN[Mode] << 7) | (FIFFQ[Mode] << 4); - if (state->reg[MT2063_REG_FIFF_CTRL2] != val) { - status |= - mt2063_setreg(state, MT2063_REG_FIFF_CTRL2, val); - /* trigger FIFF calibration, needed after changing FIFFQ */ - val = - (state->reg[MT2063_REG_FIFF_CTRL] | (u8) 0x01); - status |= - mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); - val = - (state-> - reg[MT2063_REG_FIFF_CTRL] & (u8) ~0x01); - status |= - mt2063_setreg(state, MT2063_REG_FIFF_CTRL, val); - } - } - - /* DNC1GC & DNC2GC */ - status |= mt2063_get_dnc_output_enable(state, &longval); - status |= mt2063_set_dnc_output_enable(state, longval); - - /* acLNAmax */ - if (status >= 0) { - u8 val = (state->reg[MT2063_REG_LNA_OV] & (u8) ~0x1F) | - (ACLNAMAX[Mode] & 0x1F); - if (state->reg[MT2063_REG_LNA_OV] != val) - status |= mt2063_setreg(state, MT2063_REG_LNA_OV, val); - } - - /* LNATGT */ - if (status >= 0) { - u8 val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x3F) | - (LNATGT[Mode] & 0x3F); - if (state->reg[MT2063_REG_LNA_TGT] != val) - status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); - } - - /* ACRF */ - if (status >= 0) { - u8 val = (state->reg[MT2063_REG_RF_OV] & (u8) ~0x1F) | - (ACRFMAX[Mode] & 0x1F); - if (state->reg[MT2063_REG_RF_OV] != val) - status |= mt2063_setreg(state, MT2063_REG_RF_OV, val); - } - - /* PD1TGT */ - if (status >= 0) { - u8 val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x3F) | - (PD1TGT[Mode] & 0x3F); - if (state->reg[MT2063_REG_PD1_TGT] != val) - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); - } - - /* FIFATN */ - if (status >= 0) { - u8 val = ACFIFMAX[Mode]; - if (state->reg[MT2063_REG_PART_REV] != MT2063_B3 && val > 5) - val = 5; - val = (state->reg[MT2063_REG_FIF_OV] & (u8) ~0x1F) | - (val & 0x1F); - if (state->reg[MT2063_REG_FIF_OV] != val) - status |= mt2063_setreg(state, MT2063_REG_FIF_OV, val); - } - - /* PD2TGT */ - if (status >= 0) { - u8 val = (state->reg[MT2063_REG_PD2_TGT] & (u8) ~0x3F) | - (PD2TGT[Mode] & 0x3F); - if (state->reg[MT2063_REG_PD2_TGT] != val) - status |= mt2063_setreg(state, MT2063_REG_PD2_TGT, val); - } - - /* Ignore ATN Overload */ - if (status >= 0) { - val = (state->reg[MT2063_REG_LNA_TGT] & (u8) ~0x80) | - (RFOVDIS[Mode] ? 0x80 : 0x00); - if (state->reg[MT2063_REG_LNA_TGT] != val) - status |= mt2063_setreg(state, MT2063_REG_LNA_TGT, val); - } - - /* Ignore FIF Overload */ - if (status >= 0) { - val = (state->reg[MT2063_REG_PD1_TGT] & (u8) ~0x80) | - (FIFOVDIS[Mode] ? 0x80 : 0x00); - if (state->reg[MT2063_REG_PD1_TGT] != val) - status |= mt2063_setreg(state, MT2063_REG_PD1_TGT, val); - } - - if (status >= 0) { - state->rcvr_mode = Mode; - dprintk(1, "mt2063 mode changed to %s\n", - mt2063_mode_name[state->rcvr_mode]); - } - - return status; -} - -/* - * MT2063_ClearPowerMaskBits () - Clears the power-down mask bits for various - * sections of the MT2063 - * - * @Bits: Mask bits to be cleared. - * - * See definition of MT2063_Mask_Bits type for description - * of each of the power bits. - */ -static u32 MT2063_ClearPowerMaskBits(struct mt2063_state *state, - enum MT2063_Mask_Bits Bits) -{ - u32 status = 0; - - dprintk(2, "\n"); - Bits = (enum MT2063_Mask_Bits)(Bits & MT2063_ALL_SD); /* Only valid bits for this tuner */ - if ((Bits & 0xFF00) != 0) { - state->reg[MT2063_REG_PWR_2] &= ~(u8) (Bits >> 8); - status |= - mt2063_write(state, - MT2063_REG_PWR_2, - &state->reg[MT2063_REG_PWR_2], 1); - } - if ((Bits & 0xFF) != 0) { - state->reg[MT2063_REG_PWR_1] &= ~(u8) (Bits & 0xFF); - status |= - mt2063_write(state, - MT2063_REG_PWR_1, - &state->reg[MT2063_REG_PWR_1], 1); - } - - return status; -} - -/* - * MT2063_SoftwareShutdown() - Enables or disables software shutdown function. - * When Shutdown is 1, any section whose power - * mask is set will be shutdown. - */ -static u32 MT2063_SoftwareShutdown(struct mt2063_state *state, u8 Shutdown) -{ - u32 status; - - dprintk(2, "\n"); - if (Shutdown == 1) - state->reg[MT2063_REG_PWR_1] |= 0x04; - else - state->reg[MT2063_REG_PWR_1] &= ~0x04; - - status = mt2063_write(state, - MT2063_REG_PWR_1, - &state->reg[MT2063_REG_PWR_1], 1); - - if (Shutdown != 1) { - state->reg[MT2063_REG_BYP_CTRL] = - (state->reg[MT2063_REG_BYP_CTRL] & 0x9F) | 0x40; - status |= - mt2063_write(state, - MT2063_REG_BYP_CTRL, - &state->reg[MT2063_REG_BYP_CTRL], - 1); - state->reg[MT2063_REG_BYP_CTRL] = - (state->reg[MT2063_REG_BYP_CTRL] & 0x9F); - status |= - mt2063_write(state, - MT2063_REG_BYP_CTRL, - &state->reg[MT2063_REG_BYP_CTRL], - 1); - } - - return status; -} - -static u32 MT2063_Round_fLO(u32 f_LO, u32 f_LO_Step, u32 f_ref) -{ - return f_ref * (f_LO / f_ref) - + f_LO_Step * (((f_LO % f_ref) + (f_LO_Step / 2)) / f_LO_Step); -} - -/** - * fLO_FractionalTerm() - Calculates the portion contributed by FracN / denom. - * This function preserves maximum precision without - * risk of overflow. It accurately calculates - * f_ref * num / denom to within 1 HZ with fixed math. - * - * @num : Fractional portion of the multiplier - * @denom: denominator portion of the ratio - * @f_Ref: SRO frequency. - * - * This calculation handles f_ref as two separate 14-bit fields. - * Therefore, a maximum value of 2^28-1 may safely be used for f_ref. - * This is the genesis of the magic number "14" and the magic mask value of - * 0x03FFF. - * - * This routine successfully handles denom values up to and including 2^18. - * Returns: f_ref * num / denom - */ -static u32 MT2063_fLO_FractionalTerm(u32 f_ref, u32 num, u32 denom) -{ - u32 t1 = (f_ref >> 14) * num; - u32 term1 = t1 / denom; - u32 loss = t1 % denom; - u32 term2 = - (((f_ref & 0x00003FFF) * num + (loss << 14)) + (denom / 2)) / denom; - return (term1 << 14) + term2; -} - -/* - * CalcLO1Mult()- Calculates Integer divider value and the numerator - * value for a FracN PLL. - * - * This function assumes that the f_LO and f_Ref are - * evenly divisible by f_LO_Step. - * - * @Div: OUTPUT: Whole number portion of the multiplier - * @FracN: OUTPUT: Fractional portion of the multiplier - * @f_LO: desired LO frequency. - * @f_LO_Step: Minimum step size for the LO (in Hz). - * @f_Ref: SRO frequency. - * @f_Avoid: Range of PLL frequencies to avoid near integer multiples - * of f_Ref (in Hz). - * - * Returns: Recalculated LO frequency. - */ -static u32 MT2063_CalcLO1Mult(u32 *Div, - u32 *FracN, - u32 f_LO, - u32 f_LO_Step, u32 f_Ref) -{ - /* Calculate the whole number portion of the divider */ - *Div = f_LO / f_Ref; - - /* Calculate the numerator value (round to nearest f_LO_Step) */ - *FracN = - (64 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + - (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); - - return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, 64); -} - -/** - * CalcLO2Mult() - Calculates Integer divider value and the numerator - * value for a FracN PLL. - * - * This function assumes that the f_LO and f_Ref are - * evenly divisible by f_LO_Step. - * - * @Div: OUTPUT: Whole number portion of the multiplier - * @FracN: OUTPUT: Fractional portion of the multiplier - * @f_LO: desired LO frequency. - * @f_LO_Step: Minimum step size for the LO (in Hz). - * @f_Ref: SRO frequency. - * @f_Avoid: Range of PLL frequencies to avoid near - * integer multiples of f_Ref (in Hz). - * - * Returns: Recalculated LO frequency. - */ -static u32 MT2063_CalcLO2Mult(u32 *Div, - u32 *FracN, - u32 f_LO, - u32 f_LO_Step, u32 f_Ref) -{ - /* Calculate the whole number portion of the divider */ - *Div = f_LO / f_Ref; - - /* Calculate the numerator value (round to nearest f_LO_Step) */ - *FracN = - (8191 * (((f_LO % f_Ref) + (f_LO_Step / 2)) / f_LO_Step) + - (f_Ref / f_LO_Step / 2)) / (f_Ref / f_LO_Step); - - return (f_Ref * (*Div)) + MT2063_fLO_FractionalTerm(f_Ref, *FracN, - 8191); -} - -/* - * FindClearTuneFilter() - Calculate the corrrect ClearTune filter to be - * used for a given input frequency. - * - * @state: ptr to tuner data structure - * @f_in: RF input center frequency (in Hz). - * - * Returns: ClearTune filter number (0-31) - */ -static u32 FindClearTuneFilter(struct mt2063_state *state, u32 f_in) -{ - u32 RFBand; - u32 idx; /* index loop */ - - /* - ** Find RF Band setting - */ - RFBand = 31; /* def when f_in > all */ - for (idx = 0; idx < 31; ++idx) { - if (state->CTFiltMax[idx] >= f_in) { - RFBand = idx; - break; - } - } - return RFBand; -} - -/* - * MT2063_Tune() - Change the tuner's tuned frequency to RFin. - */ -static u32 MT2063_Tune(struct mt2063_state *state, u32 f_in) -{ /* RF input center frequency */ - - u32 status = 0; - u32 LO1; /* 1st LO register value */ - u32 Num1; /* Numerator for LO1 reg. value */ - u32 f_IF1; /* 1st IF requested */ - u32 LO2; /* 2nd LO register value */ - u32 Num2; /* Numerator for LO2 reg. value */ - u32 ofLO1, ofLO2; /* last time's LO frequencies */ - u8 fiffc = 0x80; /* FIFF center freq from tuner */ - u32 fiffof; /* Offset from FIFF center freq */ - const u8 LO1LK = 0x80; /* Mask for LO1 Lock bit */ - u8 LO2LK = 0x08; /* Mask for LO2 Lock bit */ - u8 val; - u32 RFBand; - - dprintk(2, "\n"); - /* Check the input and output frequency ranges */ - if ((f_in < MT2063_MIN_FIN_FREQ) || (f_in > MT2063_MAX_FIN_FREQ)) - return -EINVAL; - - if ((state->AS_Data.f_out < MT2063_MIN_FOUT_FREQ) - || (state->AS_Data.f_out > MT2063_MAX_FOUT_FREQ)) - return -EINVAL; - - /* - * Save original LO1 and LO2 register values - */ - ofLO1 = state->AS_Data.f_LO1; - ofLO2 = state->AS_Data.f_LO2; - - /* - * Find and set RF Band setting - */ - if (state->ctfilt_sw == 1) { - val = (state->reg[MT2063_REG_CTUNE_CTRL] | 0x08); - if (state->reg[MT2063_REG_CTUNE_CTRL] != val) { - status |= - mt2063_setreg(state, MT2063_REG_CTUNE_CTRL, val); - } - val = state->reg[MT2063_REG_CTUNE_OV]; - RFBand = FindClearTuneFilter(state, f_in); - state->reg[MT2063_REG_CTUNE_OV] = - (u8) ((state->reg[MT2063_REG_CTUNE_OV] & ~0x1F) - | RFBand); - if (state->reg[MT2063_REG_CTUNE_OV] != val) { - status |= - mt2063_setreg(state, MT2063_REG_CTUNE_OV, val); - } - } - - /* - * Read the FIFF Center Frequency from the tuner - */ - if (status >= 0) { - status |= - mt2063_read(state, - MT2063_REG_FIFFC, - &state->reg[MT2063_REG_FIFFC], 1); - fiffc = state->reg[MT2063_REG_FIFFC]; - } - /* - * Assign in the requested values - */ - state->AS_Data.f_in = f_in; - /* Request a 1st IF such that LO1 is on a step size */ - state->AS_Data.f_if1_Request = - MT2063_Round_fLO(state->AS_Data.f_if1_Request + f_in, - state->AS_Data.f_LO1_Step, - state->AS_Data.f_ref) - f_in; - - /* - * Calculate frequency settings. f_IF1_FREQ + f_in is the - * desired LO1 frequency - */ - MT2063_ResetExclZones(&state->AS_Data); - - f_IF1 = MT2063_ChooseFirstIF(&state->AS_Data); - - state->AS_Data.f_LO1 = - MT2063_Round_fLO(f_IF1 + f_in, state->AS_Data.f_LO1_Step, - state->AS_Data.f_ref); - - state->AS_Data.f_LO2 = - MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); - - /* - * Check for any LO spurs in the output bandwidth and adjust - * the LO settings to avoid them if needed - */ - status |= MT2063_AvoidSpurs(&state->AS_Data); - /* - * MT_AvoidSpurs spurs may have changed the LO1 & LO2 values. - * Recalculate the LO frequencies and the values to be placed - * in the tuning registers. - */ - state->AS_Data.f_LO1 = - MT2063_CalcLO1Mult(&LO1, &Num1, state->AS_Data.f_LO1, - state->AS_Data.f_LO1_Step, state->AS_Data.f_ref); - state->AS_Data.f_LO2 = - MT2063_Round_fLO(state->AS_Data.f_LO1 - state->AS_Data.f_out - f_in, - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); - state->AS_Data.f_LO2 = - MT2063_CalcLO2Mult(&LO2, &Num2, state->AS_Data.f_LO2, - state->AS_Data.f_LO2_Step, state->AS_Data.f_ref); - - /* - * Check the upconverter and downconverter frequency ranges - */ - if ((state->AS_Data.f_LO1 < MT2063_MIN_UPC_FREQ) - || (state->AS_Data.f_LO1 > MT2063_MAX_UPC_FREQ)) - status |= MT2063_UPC_RANGE; - if ((state->AS_Data.f_LO2 < MT2063_MIN_DNC_FREQ) - || (state->AS_Data.f_LO2 > MT2063_MAX_DNC_FREQ)) - status |= MT2063_DNC_RANGE; - /* LO2 Lock bit was in a different place for B0 version */ - if (state->tuner_id == MT2063_B0) - LO2LK = 0x40; - - /* - * If we have the same LO frequencies and we're already locked, - * then skip re-programming the LO registers. - */ - if ((ofLO1 != state->AS_Data.f_LO1) - || (ofLO2 != state->AS_Data.f_LO2) - || ((state->reg[MT2063_REG_LO_STATUS] & (LO1LK | LO2LK)) != - (LO1LK | LO2LK))) { - /* - * Calculate the FIFFOF register value - * - * IF1_Actual - * FIFFOF = ------------ - 8 * FIFFC - 4992 - * f_ref/64 - */ - fiffof = - (state->AS_Data.f_LO1 - - f_in) / (state->AS_Data.f_ref / 64) - 8 * (u32) fiffc - - 4992; - if (fiffof > 0xFF) - fiffof = 0xFF; - - /* - * Place all of the calculated values into the local tuner - * register fields. - */ - if (status >= 0) { - state->reg[MT2063_REG_LO1CQ_1] = (u8) (LO1 & 0xFF); /* DIV1q */ - state->reg[MT2063_REG_LO1CQ_2] = (u8) (Num1 & 0x3F); /* NUM1q */ - state->reg[MT2063_REG_LO2CQ_1] = (u8) (((LO2 & 0x7F) << 1) /* DIV2q */ - |(Num2 >> 12)); /* NUM2q (hi) */ - state->reg[MT2063_REG_LO2CQ_2] = (u8) ((Num2 & 0x0FF0) >> 4); /* NUM2q (mid) */ - state->reg[MT2063_REG_LO2CQ_3] = (u8) (0xE0 | (Num2 & 0x000F)); /* NUM2q (lo) */ - - /* - * Now write out the computed register values - * IMPORTANT: There is a required order for writing - * (0x05 must follow all the others). - */ - status |= mt2063_write(state, MT2063_REG_LO1CQ_1, &state->reg[MT2063_REG_LO1CQ_1], 5); /* 0x01 - 0x05 */ - if (state->tuner_id == MT2063_B0) { - /* Re-write the one-shot bits to trigger the tune operation */ - status |= mt2063_write(state, MT2063_REG_LO2CQ_3, &state->reg[MT2063_REG_LO2CQ_3], 1); /* 0x05 */ - } - /* Write out the FIFF offset only if it's changing */ - if (state->reg[MT2063_REG_FIFF_OFFSET] != - (u8) fiffof) { - state->reg[MT2063_REG_FIFF_OFFSET] = - (u8) fiffof; - status |= - mt2063_write(state, - MT2063_REG_FIFF_OFFSET, - &state-> - reg[MT2063_REG_FIFF_OFFSET], - 1); - } - } - - /* - * Check for LO's locking - */ - - if (status < 0) - return status; - - status = mt2063_lockStatus(state); - if (status < 0) - return status; - if (!status) - return -EINVAL; /* Couldn't lock */ - - /* - * If we locked OK, assign calculated data to mt2063_state structure - */ - state->f_IF1_actual = state->AS_Data.f_LO1 - f_in; - } - - return status; -} - -static const u8 MT2063B0_defaults[] = { - /* Reg, Value */ - 0x19, 0x05, - 0x1B, 0x1D, - 0x1C, 0x1F, - 0x1D, 0x0F, - 0x1E, 0x3F, - 0x1F, 0x0F, - 0x20, 0x3F, - 0x22, 0x21, - 0x23, 0x3F, - 0x24, 0x20, - 0x25, 0x3F, - 0x27, 0xEE, - 0x2C, 0x27, /* bit at 0x20 is cleared below */ - 0x30, 0x03, - 0x2C, 0x07, /* bit at 0x20 is cleared here */ - 0x2D, 0x87, - 0x2E, 0xAA, - 0x28, 0xE1, /* Set the FIFCrst bit here */ - 0x28, 0xE0, /* Clear the FIFCrst bit here */ - 0x00 -}; - -/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ -static const u8 MT2063B1_defaults[] = { - /* Reg, Value */ - 0x05, 0xF0, - 0x11, 0x10, /* New Enable AFCsd */ - 0x19, 0x05, - 0x1A, 0x6C, - 0x1B, 0x24, - 0x1C, 0x28, - 0x1D, 0x8F, - 0x1E, 0x14, - 0x1F, 0x8F, - 0x20, 0x57, - 0x22, 0x21, /* New - ver 1.03 */ - 0x23, 0x3C, /* New - ver 1.10 */ - 0x24, 0x20, /* New - ver 1.03 */ - 0x2C, 0x24, /* bit at 0x20 is cleared below */ - 0x2D, 0x87, /* FIFFQ=0 */ - 0x2F, 0xF3, - 0x30, 0x0C, /* New - ver 1.11 */ - 0x31, 0x1B, /* New - ver 1.11 */ - 0x2C, 0x04, /* bit at 0x20 is cleared here */ - 0x28, 0xE1, /* Set the FIFCrst bit here */ - 0x28, 0xE0, /* Clear the FIFCrst bit here */ - 0x00 -}; - -/* writing 0x05 0xf0 sw-resets all registers, so we write only needed changes */ -static const u8 MT2063B3_defaults[] = { - /* Reg, Value */ - 0x05, 0xF0, - 0x19, 0x3D, - 0x2C, 0x24, /* bit at 0x20 is cleared below */ - 0x2C, 0x04, /* bit at 0x20 is cleared here */ - 0x28, 0xE1, /* Set the FIFCrst bit here */ - 0x28, 0xE0, /* Clear the FIFCrst bit here */ - 0x00 -}; - -static int mt2063_init(struct dvb_frontend *fe) -{ - u32 status; - struct mt2063_state *state = fe->tuner_priv; - u8 all_resets = 0xF0; /* reset/load bits */ - const u8 *def = NULL; - char *step; - u32 FCRUN; - s32 maxReads; - u32 fcu_osc; - u32 i; - - dprintk(2, "\n"); - - state->rcvr_mode = MT2063_CABLE_QAM; - - /* Read the Part/Rev code from the tuner */ - status = mt2063_read(state, MT2063_REG_PART_REV, - &state->reg[MT2063_REG_PART_REV], 1); - if (status < 0) { - printk(KERN_ERR "Can't read mt2063 part ID\n"); - return status; - } - - /* Check the part/rev code */ - switch (state->reg[MT2063_REG_PART_REV]) { - case MT2063_B0: - step = "B0"; - break; - case MT2063_B1: - step = "B1"; - break; - case MT2063_B2: - step = "B2"; - break; - case MT2063_B3: - step = "B3"; - break; - default: - printk(KERN_ERR "mt2063: Unknown mt2063 device ID (0x%02x)\n", - state->reg[MT2063_REG_PART_REV]); - return -ENODEV; /* Wrong tuner Part/Rev code */ - } - - /* Check the 2nd byte of the Part/Rev code from the tuner */ - status = mt2063_read(state, MT2063_REG_RSVD_3B, - &state->reg[MT2063_REG_RSVD_3B], 1); - - /* b7 != 0 ==> NOT MT2063 */ - if (status < 0 || ((state->reg[MT2063_REG_RSVD_3B] & 0x80) != 0x00)) { - printk(KERN_ERR "mt2063: Unknown part ID (0x%02x%02x)\n", - state->reg[MT2063_REG_PART_REV], - state->reg[MT2063_REG_RSVD_3B]); - return -ENODEV; /* Wrong tuner Part/Rev code */ - } - - printk(KERN_INFO "mt2063: detected a mt2063 %s\n", step); - - /* Reset the tuner */ - status = mt2063_write(state, MT2063_REG_LO2CQ_3, &all_resets, 1); - if (status < 0) - return status; - - /* change all of the default values that vary from the HW reset values */ - /* def = (state->reg[PART_REV] == MT2063_B0) ? MT2063B0_defaults : MT2063B1_defaults; */ - switch (state->reg[MT2063_REG_PART_REV]) { - case MT2063_B3: - def = MT2063B3_defaults; - break; - - case MT2063_B1: - def = MT2063B1_defaults; - break; - - case MT2063_B0: - def = MT2063B0_defaults; - break; - - default: - return -ENODEV; - break; - } - - while (status >= 0 && *def) { - u8 reg = *def++; - u8 val = *def++; - status = mt2063_write(state, reg, &val, 1); - } - if (status < 0) - return status; - - /* Wait for FIFF location to complete. */ - FCRUN = 1; - maxReads = 10; - while (status >= 0 && (FCRUN != 0) && (maxReads-- > 0)) { - msleep(2); - status = mt2063_read(state, - MT2063_REG_XO_STATUS, - &state-> - reg[MT2063_REG_XO_STATUS], 1); - FCRUN = (state->reg[MT2063_REG_XO_STATUS] & 0x40) >> 6; - } - - if (FCRUN != 0 || status < 0) - return -ENODEV; - - status = mt2063_read(state, - MT2063_REG_FIFFC, - &state->reg[MT2063_REG_FIFFC], 1); - if (status < 0) - return status; - - /* Read back all the registers from the tuner */ - status = mt2063_read(state, - MT2063_REG_PART_REV, - state->reg, MT2063_REG_END_REGS); - if (status < 0) - return status; - - /* Initialize the tuner state. */ - state->tuner_id = state->reg[MT2063_REG_PART_REV]; - state->AS_Data.f_ref = MT2063_REF_FREQ; - state->AS_Data.f_if1_Center = (state->AS_Data.f_ref / 8) * - ((u32) state->reg[MT2063_REG_FIFFC] + 640); - state->AS_Data.f_if1_bw = MT2063_IF1_BW; - state->AS_Data.f_out = 43750000UL; - state->AS_Data.f_out_bw = 6750000UL; - state->AS_Data.f_zif_bw = MT2063_ZIF_BW; - state->AS_Data.f_LO1_Step = state->AS_Data.f_ref / 64; - state->AS_Data.f_LO2_Step = MT2063_TUNE_STEP_SIZE; - state->AS_Data.maxH1 = MT2063_MAX_HARMONICS_1; - state->AS_Data.maxH2 = MT2063_MAX_HARMONICS_2; - state->AS_Data.f_min_LO_Separation = MT2063_MIN_LO_SEP; - state->AS_Data.f_if1_Request = state->AS_Data.f_if1_Center; - state->AS_Data.f_LO1 = 2181000000UL; - state->AS_Data.f_LO2 = 1486249786UL; - state->f_IF1_actual = state->AS_Data.f_if1_Center; - state->AS_Data.f_in = state->AS_Data.f_LO1 - state->f_IF1_actual; - state->AS_Data.f_LO1_FracN_Avoid = MT2063_LO1_FRACN_AVOID; - state->AS_Data.f_LO2_FracN_Avoid = MT2063_LO2_FRACN_AVOID; - state->num_regs = MT2063_REG_END_REGS; - state->AS_Data.avoidDECT = MT2063_AVOID_BOTH; - state->ctfilt_sw = 0; - - state->CTFiltMax[0] = 69230000; - state->CTFiltMax[1] = 105770000; - state->CTFiltMax[2] = 140350000; - state->CTFiltMax[3] = 177110000; - state->CTFiltMax[4] = 212860000; - state->CTFiltMax[5] = 241130000; - state->CTFiltMax[6] = 274370000; - state->CTFiltMax[7] = 309820000; - state->CTFiltMax[8] = 342450000; - state->CTFiltMax[9] = 378870000; - state->CTFiltMax[10] = 416210000; - state->CTFiltMax[11] = 456500000; - state->CTFiltMax[12] = 495790000; - state->CTFiltMax[13] = 534530000; - state->CTFiltMax[14] = 572610000; - state->CTFiltMax[15] = 598970000; - state->CTFiltMax[16] = 635910000; - state->CTFiltMax[17] = 672130000; - state->CTFiltMax[18] = 714840000; - state->CTFiltMax[19] = 739660000; - state->CTFiltMax[20] = 770410000; - state->CTFiltMax[21] = 814660000; - state->CTFiltMax[22] = 846950000; - state->CTFiltMax[23] = 867820000; - state->CTFiltMax[24] = 915980000; - state->CTFiltMax[25] = 947450000; - state->CTFiltMax[26] = 983110000; - state->CTFiltMax[27] = 1021630000; - state->CTFiltMax[28] = 1061870000; - state->CTFiltMax[29] = 1098330000; - state->CTFiltMax[30] = 1138990000; - - /* - ** Fetch the FCU osc value and use it and the fRef value to - ** scale all of the Band Max values - */ - - state->reg[MT2063_REG_CTUNE_CTRL] = 0x0A; - status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, - &state->reg[MT2063_REG_CTUNE_CTRL], 1); - if (status < 0) - return status; - - /* Read the ClearTune filter calibration value */ - status = mt2063_read(state, MT2063_REG_FIFFC, - &state->reg[MT2063_REG_FIFFC], 1); - if (status < 0) - return status; - - fcu_osc = state->reg[MT2063_REG_FIFFC]; - - state->reg[MT2063_REG_CTUNE_CTRL] = 0x00; - status = mt2063_write(state, MT2063_REG_CTUNE_CTRL, - &state->reg[MT2063_REG_CTUNE_CTRL], 1); - if (status < 0) - return status; - - /* Adjust each of the values in the ClearTune filter cross-over table */ - for (i = 0; i < 31; i++) - state->CTFiltMax[i] = (state->CTFiltMax[i] / 768) * (fcu_osc + 640); - - status = MT2063_SoftwareShutdown(state, 1); - if (status < 0) - return status; - status = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); - if (status < 0) - return status; - - state->init = true; - - return 0; -} - -static int mt2063_get_status(struct dvb_frontend *fe, u32 *tuner_status) -{ - struct mt2063_state *state = fe->tuner_priv; - int status; - - dprintk(2, "\n"); - - if (!state->init) - return -ENODEV; - - *tuner_status = 0; - status = mt2063_lockStatus(state); - if (status < 0) - return status; - if (status) - *tuner_status = TUNER_STATUS_LOCKED; - - dprintk(1, "Tuner status: %d", *tuner_status); - - return 0; -} - -static int mt2063_release(struct dvb_frontend *fe) -{ - struct mt2063_state *state = fe->tuner_priv; - - dprintk(2, "\n"); - - fe->tuner_priv = NULL; - kfree(state); - - return 0; -} - -static int mt2063_set_analog_params(struct dvb_frontend *fe, - struct analog_parameters *params) -{ - struct mt2063_state *state = fe->tuner_priv; - s32 pict_car; - s32 pict2chanb_vsb; - s32 ch_bw; - s32 if_mid; - s32 rcvr_mode; - int status; - - dprintk(2, "\n"); - - if (!state->init) { - status = mt2063_init(fe); - if (status < 0) - return status; - } - - switch (params->mode) { - case V4L2_TUNER_RADIO: - pict_car = 38900000; - ch_bw = 8000000; - pict2chanb_vsb = -(ch_bw / 2); - rcvr_mode = MT2063_OFFAIR_ANALOG; - break; - case V4L2_TUNER_ANALOG_TV: - rcvr_mode = MT2063_CABLE_ANALOG; - if (params->std & ~V4L2_STD_MN) { - pict_car = 38900000; - ch_bw = 6000000; - pict2chanb_vsb = -1250000; - } else if (params->std & V4L2_STD_PAL_G) { - pict_car = 38900000; - ch_bw = 7000000; - pict2chanb_vsb = -1250000; - } else { /* PAL/SECAM standards */ - pict_car = 38900000; - ch_bw = 8000000; - pict2chanb_vsb = -1250000; - } - break; - default: - return -EINVAL; - } - if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); - - state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ - state->AS_Data.f_out = if_mid; - state->AS_Data.f_out_bw = ch_bw + 750000; - status = MT2063_SetReceiverMode(state, rcvr_mode); - if (status < 0) - return status; - - dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", - params->frequency, ch_bw, pict2chanb_vsb); - - status = MT2063_Tune(state, (params->frequency + (pict2chanb_vsb + (ch_bw / 2)))); - if (status < 0) - return status; - - state->frequency = params->frequency; - return 0; -} - -/* - * As defined on EN 300 429, the DVB-C roll-off factor is 0.15. - * So, the amount of the needed bandwith is given by: - * Bw = Symbol_rate * (1 + 0.15) - * As such, the maximum symbol rate supported by 6 MHz is given by: - * max_symbol_rate = 6 MHz / 1.15 = 5217391 Bauds - */ -#define MAX_SYMBOL_RATE_6MHz 5217391 - -static int mt2063_set_params(struct dvb_frontend *fe) -{ - struct dtv_frontend_properties *c = &fe->dtv_property_cache; - struct mt2063_state *state = fe->tuner_priv; - int status; - s32 pict_car; - s32 pict2chanb_vsb; - s32 ch_bw; - s32 if_mid; - s32 rcvr_mode; - - if (!state->init) { - status = mt2063_init(fe); - if (status < 0) - return status; - } - - dprintk(2, "\n"); - - if (c->bandwidth_hz == 0) - return -EINVAL; - if (c->bandwidth_hz <= 6000000) - ch_bw = 6000000; - else if (c->bandwidth_hz <= 7000000) - ch_bw = 7000000; - else - ch_bw = 8000000; - - switch (c->delivery_system) { - case SYS_DVBT: - rcvr_mode = MT2063_OFFAIR_COFDM; - pict_car = 36125000; - pict2chanb_vsb = -(ch_bw / 2); - break; - case SYS_DVBC_ANNEX_A: - case SYS_DVBC_ANNEX_C: - rcvr_mode = MT2063_CABLE_QAM; - pict_car = 36125000; - pict2chanb_vsb = -(ch_bw / 2); - break; - default: - return -EINVAL; - } - if_mid = pict_car - (pict2chanb_vsb + (ch_bw / 2)); - - state->AS_Data.f_LO2_Step = 125000; /* FIXME: probably 5000 for FM */ - state->AS_Data.f_out = if_mid; - state->AS_Data.f_out_bw = ch_bw + 750000; - status = MT2063_SetReceiverMode(state, rcvr_mode); - if (status < 0) - return status; - - dprintk(1, "Tuning to frequency: %d, bandwidth %d, foffset %d\n", - c->frequency, ch_bw, pict2chanb_vsb); - - status = MT2063_Tune(state, (c->frequency + (pict2chanb_vsb + (ch_bw / 2)))); - - if (status < 0) - return status; - - state->frequency = c->frequency; - return 0; -} - -static int mt2063_get_if_frequency(struct dvb_frontend *fe, u32 *freq) -{ - struct mt2063_state *state = fe->tuner_priv; - - dprintk(2, "\n"); - - if (!state->init) - return -ENODEV; - - *freq = state->AS_Data.f_out; - - dprintk(1, "IF frequency: %d\n", *freq); - - return 0; -} - -static int mt2063_get_bandwidth(struct dvb_frontend *fe, u32 *bw) -{ - struct mt2063_state *state = fe->tuner_priv; - - dprintk(2, "\n"); - - if (!state->init) - return -ENODEV; - - *bw = state->AS_Data.f_out_bw - 750000; - - dprintk(1, "bandwidth: %d\n", *bw); - - return 0; -} - -static struct dvb_tuner_ops mt2063_ops = { - .info = { - .name = "MT2063 Silicon Tuner", - .frequency_min = 45000000, - .frequency_max = 865000000, - .frequency_step = 0, - }, - - .init = mt2063_init, - .sleep = MT2063_Sleep, - .get_status = mt2063_get_status, - .set_analog_params = mt2063_set_analog_params, - .set_params = mt2063_set_params, - .get_if_frequency = mt2063_get_if_frequency, - .get_bandwidth = mt2063_get_bandwidth, - .release = mt2063_release, -}; - -struct dvb_frontend *mt2063_attach(struct dvb_frontend *fe, - struct mt2063_config *config, - struct i2c_adapter *i2c) -{ - struct mt2063_state *state = NULL; - - dprintk(2, "\n"); - - state = kzalloc(sizeof(struct mt2063_state), GFP_KERNEL); - if (state == NULL) - goto error; - - state->config = config; - state->i2c = i2c; - state->frontend = fe; - state->reference = config->refclock / 1000; /* kHz */ - fe->tuner_priv = state; - fe->ops.tuner_ops = mt2063_ops; - - printk(KERN_INFO "%s: Attaching MT2063\n", __func__); - return fe; - -error: - kfree(state); - return NULL; -} -EXPORT_SYMBOL_GPL(mt2063_attach); - -/* - * Ancillary routines visible outside mt2063 - * FIXME: Remove them in favor of using standard tuner callbacks - */ -unsigned int tuner_MT2063_SoftwareShutdown(struct dvb_frontend *fe) -{ - struct mt2063_state *state = fe->tuner_priv; - int err = 0; - - dprintk(2, "\n"); - - err = MT2063_SoftwareShutdown(state, 1); - if (err < 0) - printk(KERN_ERR "%s: Couldn't shutdown\n", __func__); - - return err; -} -EXPORT_SYMBOL_GPL(tuner_MT2063_SoftwareShutdown); - -unsigned int tuner_MT2063_ClearPowerMaskBits(struct dvb_frontend *fe) -{ - struct mt2063_state *state = fe->tuner_priv; - int err = 0; - - dprintk(2, "\n"); - - err = MT2063_ClearPowerMaskBits(state, MT2063_ALL_SD); - if (err < 0) - printk(KERN_ERR "%s: Invalid parameter\n", __func__); - - return err; -} -EXPORT_SYMBOL_GPL(tuner_MT2063_ClearPowerMaskBits); - -MODULE_AUTHOR("Mauro Carvalho Chehab <mchehab@redhat.com>"); -MODULE_DESCRIPTION("MT2063 Silicon tuner"); -MODULE_LICENSE("GPL"); |