summaryrefslogtreecommitdiffstats
path: root/drivers/cxl/Makefile (follow)
Commit message (Collapse)AuthorAgeFilesLines
* cxl: Move cxl_core to new directoryBen Widawsky2021-08-061-3/+1
| | | | | | | | | | | | | | | | CXL core is growing, and it's already arguably unmanageable. To support future growth, move core functionality to a new directory and rename the file to represent just bus support. Future work will remove non-bus functionality. Note that mem.h is renamed to cxlmem.h to avoid a namespace collision with the global ARCH=um mem.h header. Reported-by: kernel test robot <lkp@intel.com> Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162792537866.368511.8915631504621088321.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* cxl/pmem: Add initial infrastructure for pmem supportDan Williams2021-06-161-0/+2
| | | | | | | | | | | | | | | | | | | | | | | Register an 'nvdimm-bridge' device to act as an anchor for a libnvdimm bus hierarchy. Also, flesh out the cxl_bus definition to allow a cxl_nvdimm_bridge_driver to attach to the bridge and trigger the nvdimm-bus registration. The creation of the bridge is gated on the detection of a PMEM capable address space registered to the root. The bridge indirection allows the libnvdimm module to remain unloaded on platforms without PMEM support. Given that the probing of ACPI0017 is asynchronous to CXL endpoint devices, and the expectation that CXL endpoint devices register other PMEM resources on the 'CXL' nvdimm bus, a workqueue is added. The workqueue is needed to run bus_rescan_devices() outside of the device_lock() of the nvdimm-bridge device to rendezvous nvdimm resources as they arrive. For now only the bus is taken online/offline in the workqueue. Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162379909706.2993820.14051258608641140169.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* cxl/acpi: Introduce the root of a cxl_port topologyDan Williams2021-06-101-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | While CXL builds upon the PCI software model for enumeration and endpoint control, a static platform component is required to bootstrap the CXL memory layout. Similar to how ACPI identifies root-level PCI memory resources, ACPI data enumerates the address space and interleave configuration for CXL Memory. In addition to identifying host bridges, ACPI is responsible for enumerating the CXL memory space that can be addressed by downstream decoders. This is similar to the requirement for ACPI to publish resources via the _CRS method for PCI host bridges. Specifically, ACPI publishes a table, CXL Early Discovery Table (CEDT), which includes a list of CXL Memory resources, CXL Fixed Memory Window Structures (CFMWS). For now, introduce the core infrastructure for a cxl_port hierarchy starting with a root level anchor represented by the ACPI0017 device. Follow on changes model support for the configurable decode capabilities of cxl_port instances, i.e. CXL switch support. Co-developed-by: Alison Schofield <alison.schofield@intel.com> Signed-off-by: Alison Schofield <alison.schofield@intel.com> Acked-by: Rafael J. Wysocki <rafael.j.wysocki@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162325449515.2293126.15303270193010154608.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* cxl: Rename mem to pciBen Widawsky2021-05-261-2/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | As the driver has undergone development, it's become clear that the majority [entirety?] of the current functionality in mem.c is actually a layer encapsulating functionality exposed through PCI based interactions. This layer can be used either in isolation or to provide functionality for higher level functionality. CXL capabilities exist in a parallel domain to PCIe. CXL devices are enumerable and controllable via "legacy" PCIe mechanisms; however, their CXL capabilities are a superset of PCIe. For example, a CXL device may be connected to a non-CXL capable PCIe root port, and therefore will not be able to participate in CXL.mem or CXL.cache operations, but can still be accessed through PCIe mechanisms for CXL.io operations. To properly represent the PCI nature of this driver, and in preparation for introducing a new driver for the CXL.mem / HDM decoder (Host-managed Device Memory) capabilities of a CXL memory expander, rename mem.c to pci.c so that mem.c is available for this new driver. The result of the change is that there is a clear layering distinction in the driver, and a systems administrator may load only the cxl_pci module and gain access to such operations as, firmware update, offline provisioning of devices, and error collection. In addition to freeing up the file name for another purpose, there are two primary reasons this is useful, 1. Acting upon devices which don't have full CXL capabilities. This may happen for instance if the CXL device is connected in a CXL unaware part of the platform topology. 2. Userspace-first provisioning for devices without kernel driver interference. This may be useful when provisioning a new device in a specific manner that might otherwise be blocked or prevented by the real CXL mem driver. Reviewed-by: Dan Williams <dan.j.williams@intel.com> Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Link: https://lore.kernel.org/r/20210526174413.802913-1-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* cxl/core: Rename bus.c to core.cDan Williams2021-05-151-2/+2
| | | | | | | | | | | | | In preparation for more generic shared functionality across endpoint consumers of core cxl resources, and platform-firmware producers of those resources, rename bus.c to core.c. In addition to the central rendezvous for interleave coordination, the core will also define common routines like CXL register block mapping. Acked-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Link: https://lore.kernel.org/r/162096972018.1865304.11079951161445408423.stgit@dwillia2-desk3.amr.corp.intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* cxl/mem: Register CXL memX devicesDan Williams2021-02-171-0/+3
| | | | | | | | | | | | | | | | | | | | | | Create the /sys/bus/cxl hierarchy to enumerate: * Memory Devices (per-endpoint control devices) * Memory Address Space Devices (platform address ranges with interleaving, performance, and persistence attributes) * Memory Regions (active provisioned memory from an address space device that is in use as System RAM or delegated to libnvdimm as Persistent Memory regions). For now, only the per-endpoint control devices are registered on the 'cxl' bus. However, going forward it will provide a mechanism to coordinate cross-device interleave. Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> (v2) Link: https://lore.kernel.org/r/20210217040958.1354670-4-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>
* cxl/mem: Introduce a driver for CXL-2.0-Type-3 endpointsDan Williams2021-02-171-0/+4
The CXL.mem protocol allows a device to act as a provider of "System RAM" and/or "Persistent Memory" that is fully coherent as if the memory was attached to the typical CPU memory controller. With the CXL-2.0 specification a PCI endpoint can implement a "Type-3" device interface and give the operating system control over "Host Managed Device Memory". See section 2.3 Type 3 CXL Device. The memory range exported by the device may optionally be described by the platform firmware memory map, or by infrastructure like LIBNVDIMM to provision persistent memory capacity from one, or more, CXL.mem devices. A pre-requisite for Linux-managed memory-capacity provisioning is this cxl_mem driver that can speak the mailbox protocol defined in section 8.2.8.4 Mailbox Registers. For now just land the initial driver boiler-plate and Documentation/ infrastructure. Signed-off-by: Ben Widawsky <ben.widawsky@intel.com> Reviewed-by: Jonathan Cameron <Jonathan.Cameron@huawei.com> Acked-by: David Rientjes <rientjes@google.com> (v1) Cc: Jonathan Corbet <corbet@lwn.net> Link: https://www.computeexpresslink.org/download-the-specification Link: https://lore.kernel.org/r/20210217040958.1354670-2-ben.widawsky@intel.com Signed-off-by: Dan Williams <dan.j.williams@intel.com>