1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
|
/*
* arch/arm/mach-orion/addr-map.c
*
* Address map functions for Marvell Orion System On Chip
*
* Maintainer: Tzachi Perelstein <tzachi@marvell.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/mbus.h>
#include <asm/hardware.h>
#include "common.h"
/*
* The Orion has fully programable address map. There's a separate address
* map for each of the device _master_ interfaces, e.g. CPU, PCI, PCIE, USB,
* Gigabit Ethernet, DMA/XOR engines, etc. Each interface has its own
* address decode windows that allow it to access any of the Orion resources.
*
* CPU address decoding --
* Linux assumes that it is the boot loader that already setup the access to
* DDR and internal registers.
* Setup access to PCI and PCI-E IO/MEM space is issued by core.c.
* Setup access to various devices located on the device bus interface (e.g.
* flashes, RTC, etc) should be issued by machine-setup.c according to
* specific board population (by using orion_setup_cpu_win()).
*
* Non-CPU Masters address decoding --
* Unlike the CPU, we setup the access from Orion's master interfaces to DDR
* banks only (the typical use case).
* Setup access for each master to DDR is issued by common.c.
*
* Note: although orion_setbits() and orion_clrbits() are not atomic
* no locking is necessary here since code in this file is only called
* at boot time when there is no concurrency issues.
*/
/*
* Generic Address Decode Windows bit settings
*/
#define TARGET_DDR 0
#define TARGET_PCI 3
#define TARGET_PCIE 4
#define TARGET_DEV_BUS 1
#define ATTR_DDR_CS(n) (((n) ==0) ? 0xe : \
((n) == 1) ? 0xd : \
((n) == 2) ? 0xb : \
((n) == 3) ? 0x7 : 0xf)
#define ATTR_PCIE_MEM 0x59
#define ATTR_PCIE_IO 0x51
#define ATTR_PCI_MEM 0x59
#define ATTR_PCI_IO 0x51
#define ATTR_DEV_CS0 0x1e
#define ATTR_DEV_CS1 0x1d
#define ATTR_DEV_CS2 0x1b
#define ATTR_DEV_BOOT 0xf
#define WIN_EN 1
/*
* Helpers to get DDR banks info
*/
#define DDR_BASE_CS(n) ORION_DDR_REG(0x1500 + ((n) * 8))
#define DDR_SIZE_CS(n) ORION_DDR_REG(0x1504 + ((n) * 8))
#define DDR_MAX_CS 4
#define DDR_REG_TO_SIZE(reg) (((reg) | 0xffffff) + 1)
#define DDR_REG_TO_BASE(reg) ((reg) & 0xff000000)
#define DDR_BANK_EN 1
/*
* CPU Address Decode Windows registers
*/
#define CPU_WIN_CTRL(n) ORION_BRIDGE_REG(0x000 | ((n) << 4))
#define CPU_WIN_BASE(n) ORION_BRIDGE_REG(0x004 | ((n) << 4))
#define CPU_WIN_REMAP_LO(n) ORION_BRIDGE_REG(0x008 | ((n) << 4))
#define CPU_WIN_REMAP_HI(n) ORION_BRIDGE_REG(0x00c | ((n) << 4))
#define CPU_MAX_WIN 8
/*
* Use this CPU address decode windows allocation
*/
#define CPU_WIN_PCIE_IO 0
#define CPU_WIN_PCI_IO 1
#define CPU_WIN_PCIE_MEM 2
#define CPU_WIN_PCI_MEM 3
#define CPU_WIN_DEV_BOOT 4
#define CPU_WIN_DEV_CS0 5
#define CPU_WIN_DEV_CS1 6
#define CPU_WIN_DEV_CS2 7
/*
* Gigabit Ethernet Address Decode Windows registers
*/
#define ETH_WIN_BASE(win) ORION_ETH_REG(0x200 + ((win) * 8))
#define ETH_WIN_SIZE(win) ORION_ETH_REG(0x204 + ((win) * 8))
#define ETH_WIN_REMAP(win) ORION_ETH_REG(0x280 + ((win) * 4))
#define ETH_WIN_EN ORION_ETH_REG(0x290)
#define ETH_WIN_PROT ORION_ETH_REG(0x294)
#define ETH_MAX_WIN 6
#define ETH_MAX_REMAP_WIN 4
struct mbus_dram_target_info orion_mbus_dram_info;
static int __init orion_cpu_win_can_remap(u32 win)
{
u32 dev, rev;
orion_pcie_id(&dev, &rev);
if ((dev == MV88F5281_DEV_ID && win < 4)
|| (dev == MV88F5182_DEV_ID && win < 2)
|| (dev == MV88F5181_DEV_ID && win < 2))
return 1;
return 0;
}
void __init orion_setup_cpu_win(enum orion_target target, u32 base, u32 size, int remap)
{
u32 win, attr, ctrl;
switch (target) {
case ORION_PCIE_IO:
target = TARGET_PCIE;
attr = ATTR_PCIE_IO;
win = CPU_WIN_PCIE_IO;
break;
case ORION_PCI_IO:
target = TARGET_PCI;
attr = ATTR_PCI_IO;
win = CPU_WIN_PCI_IO;
break;
case ORION_PCIE_MEM:
target = TARGET_PCIE;
attr = ATTR_PCIE_MEM;
win = CPU_WIN_PCIE_MEM;
break;
case ORION_PCI_MEM:
target = TARGET_PCI;
attr = ATTR_PCI_MEM;
win = CPU_WIN_PCI_MEM;
break;
case ORION_DEV_BOOT:
target = TARGET_DEV_BUS;
attr = ATTR_DEV_BOOT;
win = CPU_WIN_DEV_BOOT;
break;
case ORION_DEV0:
target = TARGET_DEV_BUS;
attr = ATTR_DEV_CS0;
win = CPU_WIN_DEV_CS0;
break;
case ORION_DEV1:
target = TARGET_DEV_BUS;
attr = ATTR_DEV_CS1;
win = CPU_WIN_DEV_CS1;
break;
case ORION_DEV2:
target = TARGET_DEV_BUS;
attr = ATTR_DEV_CS2;
win = CPU_WIN_DEV_CS2;
break;
case ORION_DDR:
case ORION_REGS:
/*
* Must be mapped by bootloader.
*/
default:
target = attr = win = -1;
BUG();
}
base &= 0xffff0000;
ctrl = (((size - 1) & 0xffff0000) | (attr << 8) |
(target << 4) | WIN_EN);
orion_write(CPU_WIN_BASE(win), base);
orion_write(CPU_WIN_CTRL(win), ctrl);
if (orion_cpu_win_can_remap(win)) {
if (remap >= 0) {
orion_write(CPU_WIN_REMAP_LO(win), remap & 0xffff0000);
orion_write(CPU_WIN_REMAP_HI(win), 0);
} else {
orion_write(CPU_WIN_REMAP_LO(win), base);
orion_write(CPU_WIN_REMAP_HI(win), 0);
}
}
}
void __init orion_setup_cpu_wins(void)
{
int i;
int cs;
/*
* First, disable and clear windows
*/
for (i = 0; i < CPU_MAX_WIN; i++) {
orion_write(CPU_WIN_BASE(i), 0);
orion_write(CPU_WIN_CTRL(i), 0);
if (orion_cpu_win_can_remap(i)) {
orion_write(CPU_WIN_REMAP_LO(i), 0);
orion_write(CPU_WIN_REMAP_HI(i), 0);
}
}
/*
* Setup windows for PCI+PCIe IO+MEM space.
*/
orion_setup_cpu_win(ORION_PCIE_IO, ORION_PCIE_IO_PHYS_BASE,
ORION_PCIE_IO_SIZE, ORION_PCIE_IO_BUS_BASE);
orion_setup_cpu_win(ORION_PCI_IO, ORION_PCI_IO_PHYS_BASE,
ORION_PCI_IO_SIZE, ORION_PCI_IO_BUS_BASE);
orion_setup_cpu_win(ORION_PCIE_MEM, ORION_PCIE_MEM_PHYS_BASE,
ORION_PCIE_MEM_SIZE, -1);
orion_setup_cpu_win(ORION_PCI_MEM, ORION_PCI_MEM_PHYS_BASE,
ORION_PCI_MEM_SIZE, -1);
/*
* Setup MBUS dram target info.
*/
orion_mbus_dram_info.mbus_dram_target_id = TARGET_DDR;
for (i = 0, cs = 0; i < 4; i++) {
u32 base = readl(DDR_BASE_CS(i));
u32 size = readl(DDR_SIZE_CS(i));
/*
* Chip select enabled?
*/
if (size & 1) {
struct mbus_dram_window *w;
w = &orion_mbus_dram_info.cs[cs++];
w->cs_index = i;
w->mbus_attr = 0xf & ~(1 << i);
w->base = base & 0xff000000;
w->size = (size | 0x00ffffff) + 1;
}
}
orion_mbus_dram_info.num_cs = cs;
}
void __init orion_setup_eth_wins(void)
{
int i;
/*
* First, disable and clear windows
*/
for (i = 0; i < ETH_MAX_WIN; i++) {
orion_write(ETH_WIN_BASE(i), 0);
orion_write(ETH_WIN_SIZE(i), 0);
orion_setbits(ETH_WIN_EN, 1 << i);
orion_clrbits(ETH_WIN_PROT, 0x3 << (i * 2));
if (i < ETH_MAX_REMAP_WIN)
orion_write(ETH_WIN_REMAP(i), 0);
}
/*
* Setup windows for DDR banks.
*/
for (i = 0; i < DDR_MAX_CS; i++) {
u32 base, size;
size = orion_read(DDR_SIZE_CS(i));
base = orion_read(DDR_BASE_CS(i));
if (size & DDR_BANK_EN) {
base = DDR_REG_TO_BASE(base);
size = DDR_REG_TO_SIZE(size);
orion_write(ETH_WIN_SIZE(i), (size-1) & 0xffff0000);
orion_write(ETH_WIN_BASE(i), (base & 0xffff0000) |
(ATTR_DDR_CS(i) << 8) |
TARGET_DDR);
orion_clrbits(ETH_WIN_EN, 1 << i);
orion_setbits(ETH_WIN_PROT, 0x3 << (i * 2));
}
}
}
|