summaryrefslogtreecommitdiffstats
path: root/arch/powerpc/kernel/process.c
blob: bb6ac471a784e70918d25a450e31ecba3f352881 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
/*
 *  Derived from "arch/i386/kernel/process.c"
 *    Copyright (C) 1995  Linus Torvalds
 *
 *  Updated and modified by Cort Dougan (cort@cs.nmt.edu) and
 *  Paul Mackerras (paulus@cs.anu.edu.au)
 *
 *  PowerPC version
 *    Copyright (C) 1995-1996 Gary Thomas (gdt@linuxppc.org)
 *
 *  This program is free software; you can redistribute it and/or
 *  modify it under the terms of the GNU General Public License
 *  as published by the Free Software Foundation; either version
 *  2 of the License, or (at your option) any later version.
 */

#include <linux/errno.h>
#include <linux/sched.h>
#include <linux/sched/debug.h>
#include <linux/sched/task.h>
#include <linux/sched/task_stack.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/smp.h>
#include <linux/stddef.h>
#include <linux/unistd.h>
#include <linux/ptrace.h>
#include <linux/slab.h>
#include <linux/user.h>
#include <linux/elf.h>
#include <linux/prctl.h>
#include <linux/init_task.h>
#include <linux/export.h>
#include <linux/kallsyms.h>
#include <linux/mqueue.h>
#include <linux/hardirq.h>
#include <linux/utsname.h>
#include <linux/ftrace.h>
#include <linux/kernel_stat.h>
#include <linux/personality.h>
#include <linux/random.h>
#include <linux/hw_breakpoint.h>
#include <linux/uaccess.h>
#include <linux/elf-randomize.h>
#include <linux/pkeys.h>

#include <asm/pgtable.h>
#include <asm/io.h>
#include <asm/processor.h>
#include <asm/mmu.h>
#include <asm/prom.h>
#include <asm/machdep.h>
#include <asm/time.h>
#include <asm/runlatch.h>
#include <asm/syscalls.h>
#include <asm/switch_to.h>
#include <asm/tm.h>
#include <asm/debug.h>
#ifdef CONFIG_PPC64
#include <asm/firmware.h>
#include <asm/hw_irq.h>
#endif
#include <asm/code-patching.h>
#include <asm/exec.h>
#include <asm/livepatch.h>
#include <asm/cpu_has_feature.h>
#include <asm/asm-prototypes.h>

#include <linux/kprobes.h>
#include <linux/kdebug.h>

/* Transactional Memory debug */
#ifdef TM_DEBUG_SW
#define TM_DEBUG(x...) printk(KERN_INFO x)
#else
#define TM_DEBUG(x...) do { } while(0)
#endif

extern unsigned long _get_SP(void);

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
/*
 * Are we running in "Suspend disabled" mode? If so we have to block any
 * sigreturn that would get us into suspended state, and we also warn in some
 * other paths that we should never reach with suspend disabled.
 */
bool tm_suspend_disabled __ro_after_init = false;

static void check_if_tm_restore_required(struct task_struct *tsk)
{
	/*
	 * If we are saving the current thread's registers, and the
	 * thread is in a transactional state, set the TIF_RESTORE_TM
	 * bit so that we know to restore the registers before
	 * returning to userspace.
	 */
	if (tsk == current && tsk->thread.regs &&
	    MSR_TM_ACTIVE(tsk->thread.regs->msr) &&
	    !test_thread_flag(TIF_RESTORE_TM)) {
		tsk->thread.ckpt_regs.msr = tsk->thread.regs->msr;
		set_thread_flag(TIF_RESTORE_TM);
	}
}

static inline bool msr_tm_active(unsigned long msr)
{
	return MSR_TM_ACTIVE(msr);
}

static bool tm_active_with_fp(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_FP);
}

static bool tm_active_with_altivec(struct task_struct *tsk)
{
	return msr_tm_active(tsk->thread.regs->msr) &&
		(tsk->thread.ckpt_regs.msr & MSR_VEC);
}
#else
static inline bool msr_tm_active(unsigned long msr) { return false; }
static inline void check_if_tm_restore_required(struct task_struct *tsk) { }
static inline bool tm_active_with_fp(struct task_struct *tsk) { return false; }
static inline bool tm_active_with_altivec(struct task_struct *tsk) { return false; }
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

bool strict_msr_control;
EXPORT_SYMBOL(strict_msr_control);

static int __init enable_strict_msr_control(char *str)
{
	strict_msr_control = true;
	pr_info("Enabling strict facility control\n");

	return 0;
}
early_param("ppc_strict_facility_enable", enable_strict_msr_control);

unsigned long msr_check_and_set(unsigned long bits)
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr | bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr |= MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);

	return newmsr;
}
EXPORT_SYMBOL_GPL(msr_check_and_set);

void __msr_check_and_clear(unsigned long bits)
{
	unsigned long oldmsr = mfmsr();
	unsigned long newmsr;

	newmsr = oldmsr & ~bits;

#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX) && (bits & MSR_FP))
		newmsr &= ~MSR_VSX;
#endif

	if (oldmsr != newmsr)
		mtmsr_isync(newmsr);
}
EXPORT_SYMBOL(__msr_check_and_clear);

#ifdef CONFIG_PPC_FPU
static void __giveup_fpu(struct task_struct *tsk)
{
	unsigned long msr;

	save_fpu(tsk);
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_FP;
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr &= ~MSR_VSX;
#endif
	tsk->thread.regs->msr = msr;
}

void giveup_fpu(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP);
	__giveup_fpu(tsk);
	msr_check_and_clear(MSR_FP);
}
EXPORT_SYMBOL(giveup_fpu);

/*
 * Make sure the floating-point register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_fp_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		/*
		 * We need to disable preemption here because if we didn't,
		 * another process could get scheduled after the regs->msr
		 * test but before we have finished saving the FP registers
		 * to the thread_struct.  That process could take over the
		 * FPU, and then when we get scheduled again we would store
		 * bogus values for the remaining FP registers.
		 */
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_FP) {
			/*
			 * This should only ever be called for current or
			 * for a stopped child process.  Since we save away
			 * the FP register state on context switch,
			 * there is something wrong if a stopped child appears
			 * to still have its FP state in the CPU registers.
			 */
			BUG_ON(tsk != current);
			giveup_fpu(tsk);
		}
		preempt_enable();
	}
}
EXPORT_SYMBOL_GPL(flush_fp_to_thread);

void enable_kernel_fp(void)
{
	unsigned long cpumsr;

	WARN_ON(preemptible());

	cpumsr = msr_check_and_set(MSR_FP);

	if (current->thread.regs && (current->thread.regs->msr & MSR_FP)) {
		check_if_tm_restore_required(current);
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
		__giveup_fpu(current);
	}
}
EXPORT_SYMBOL(enable_kernel_fp);

static int restore_fp(struct task_struct *tsk)
{
	if (tsk->thread.load_fp || tm_active_with_fp(tsk)) {
		load_fp_state(&current->thread.fp_state);
		current->thread.load_fp++;
		return 1;
	}
	return 0;
}
#else
static int restore_fp(struct task_struct *tsk) { return 0; }
#endif /* CONFIG_PPC_FPU */

#ifdef CONFIG_ALTIVEC
#define loadvec(thr) ((thr).load_vec)

static void __giveup_altivec(struct task_struct *tsk)
{
	unsigned long msr;

	save_altivec(tsk);
	msr = tsk->thread.regs->msr;
	msr &= ~MSR_VEC;
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr &= ~MSR_VSX;
#endif
	tsk->thread.regs->msr = msr;
}

void giveup_altivec(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_VEC);
	__giveup_altivec(tsk);
	msr_check_and_clear(MSR_VEC);
}
EXPORT_SYMBOL(giveup_altivec);

void enable_kernel_altivec(void)
{
	unsigned long cpumsr;

	WARN_ON(preemptible());

	cpumsr = msr_check_and_set(MSR_VEC);

	if (current->thread.regs && (current->thread.regs->msr & MSR_VEC)) {
		check_if_tm_restore_required(current);
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
		__giveup_altivec(current);
	}
}
EXPORT_SYMBOL(enable_kernel_altivec);

/*
 * Make sure the VMX/Altivec register state in the
 * the thread_struct is up to date for task tsk.
 */
void flush_altivec_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_VEC) {
			BUG_ON(tsk != current);
			giveup_altivec(tsk);
		}
		preempt_enable();
	}
}
EXPORT_SYMBOL_GPL(flush_altivec_to_thread);

static int restore_altivec(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
		(tsk->thread.load_vec || tm_active_with_altivec(tsk))) {
		load_vr_state(&tsk->thread.vr_state);
		tsk->thread.used_vr = 1;
		tsk->thread.load_vec++;

		return 1;
	}
	return 0;
}
#else
#define loadvec(thr) 0
static inline int restore_altivec(struct task_struct *tsk) { return 0; }
#endif /* CONFIG_ALTIVEC */

#ifdef CONFIG_VSX
static void __giveup_vsx(struct task_struct *tsk)
{
	unsigned long msr = tsk->thread.regs->msr;

	/*
	 * We should never be ssetting MSR_VSX without also setting
	 * MSR_FP and MSR_VEC
	 */
	WARN_ON((msr & MSR_VSX) && !((msr & MSR_FP) && (msr & MSR_VEC)));

	/* __giveup_fpu will clear MSR_VSX */
	if (msr & MSR_FP)
		__giveup_fpu(tsk);
	if (msr & MSR_VEC)
		__giveup_altivec(tsk);
}

static void giveup_vsx(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);
	__giveup_vsx(tsk);
	msr_check_and_clear(MSR_FP|MSR_VEC|MSR_VSX);
}

void enable_kernel_vsx(void)
{
	unsigned long cpumsr;

	WARN_ON(preemptible());

	cpumsr = msr_check_and_set(MSR_FP|MSR_VEC|MSR_VSX);

	if (current->thread.regs &&
	    (current->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP))) {
		check_if_tm_restore_required(current);
		/*
		 * If a thread has already been reclaimed then the
		 * checkpointed registers are on the CPU but have definitely
		 * been saved by the reclaim code. Don't need to and *cannot*
		 * giveup as this would save  to the 'live' structure not the
		 * checkpointed structure.
		 */
		if(!msr_tm_active(cpumsr) && msr_tm_active(current->thread.regs->msr))
			return;
		__giveup_vsx(current);
	}
}
EXPORT_SYMBOL(enable_kernel_vsx);

void flush_vsx_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & (MSR_VSX|MSR_VEC|MSR_FP)) {
			BUG_ON(tsk != current);
			giveup_vsx(tsk);
		}
		preempt_enable();
	}
}
EXPORT_SYMBOL_GPL(flush_vsx_to_thread);

static int restore_vsx(struct task_struct *tsk)
{
	if (cpu_has_feature(CPU_FTR_VSX)) {
		tsk->thread.used_vsr = 1;
		return 1;
	}

	return 0;
}
#else
static inline int restore_vsx(struct task_struct *tsk) { return 0; }
#endif /* CONFIG_VSX */

#ifdef CONFIG_SPE
void giveup_spe(struct task_struct *tsk)
{
	check_if_tm_restore_required(tsk);

	msr_check_and_set(MSR_SPE);
	__giveup_spe(tsk);
	msr_check_and_clear(MSR_SPE);
}
EXPORT_SYMBOL(giveup_spe);

void enable_kernel_spe(void)
{
	WARN_ON(preemptible());

	msr_check_and_set(MSR_SPE);

	if (current->thread.regs && (current->thread.regs->msr & MSR_SPE)) {
		check_if_tm_restore_required(current);
		__giveup_spe(current);
	}
}
EXPORT_SYMBOL(enable_kernel_spe);

void flush_spe_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		if (tsk->thread.regs->msr & MSR_SPE) {
			BUG_ON(tsk != current);
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
			giveup_spe(tsk);
		}
		preempt_enable();
	}
}
#endif /* CONFIG_SPE */

static unsigned long msr_all_available;

static int __init init_msr_all_available(void)
{
#ifdef CONFIG_PPC_FPU
	msr_all_available |= MSR_FP;
#endif
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		msr_all_available |= MSR_VEC;
#endif
#ifdef CONFIG_VSX
	if (cpu_has_feature(CPU_FTR_VSX))
		msr_all_available |= MSR_VSX;
#endif
#ifdef CONFIG_SPE
	if (cpu_has_feature(CPU_FTR_SPE))
		msr_all_available |= MSR_SPE;
#endif

	return 0;
}
early_initcall(init_msr_all_available);

void giveup_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);
	check_if_tm_restore_required(tsk);

	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

#ifdef CONFIG_PPC_FPU
	if (usermsr & MSR_FP)
		__giveup_fpu(tsk);
#endif
#ifdef CONFIG_ALTIVEC
	if (usermsr & MSR_VEC)
		__giveup_altivec(tsk);
#endif
#ifdef CONFIG_SPE
	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);
#endif

	msr_check_and_clear(msr_all_available);
}
EXPORT_SYMBOL(giveup_all);

void restore_math(struct pt_regs *regs)
{
	unsigned long msr;

	if (!msr_tm_active(regs->msr) &&
		!current->thread.load_fp && !loadvec(current->thread))
		return;

	msr = regs->msr;
	msr_check_and_set(msr_all_available);

	/*
	 * Only reload if the bit is not set in the user MSR, the bit BEING set
	 * indicates that the registers are hot
	 */
	if ((!(msr & MSR_FP)) && restore_fp(current))
		msr |= MSR_FP | current->thread.fpexc_mode;

	if ((!(msr & MSR_VEC)) && restore_altivec(current))
		msr |= MSR_VEC;

	if ((msr & (MSR_FP | MSR_VEC)) == (MSR_FP | MSR_VEC) &&
			restore_vsx(current)) {
		msr |= MSR_VSX;
	}

	msr_check_and_clear(msr_all_available);

	regs->msr = msr;
}

static void save_all(struct task_struct *tsk)
{
	unsigned long usermsr;

	if (!tsk->thread.regs)
		return;

	usermsr = tsk->thread.regs->msr;

	if ((usermsr & msr_all_available) == 0)
		return;

	msr_check_and_set(msr_all_available);

	WARN_ON((usermsr & MSR_VSX) && !((usermsr & MSR_FP) && (usermsr & MSR_VEC)));

	if (usermsr & MSR_FP)
		save_fpu(tsk);

	if (usermsr & MSR_VEC)
		save_altivec(tsk);

	if (usermsr & MSR_SPE)
		__giveup_spe(tsk);

	msr_check_and_clear(msr_all_available);
	thread_pkey_regs_save(&tsk->thread);
}

void flush_all_to_thread(struct task_struct *tsk)
{
	if (tsk->thread.regs) {
		preempt_disable();
		BUG_ON(tsk != current);
		save_all(tsk);

#ifdef CONFIG_SPE
		if (tsk->thread.regs->msr & MSR_SPE)
			tsk->thread.spefscr = mfspr(SPRN_SPEFSCR);
#endif

		preempt_enable();
	}
}
EXPORT_SYMBOL(flush_all_to_thread);

#ifdef CONFIG_PPC_ADV_DEBUG_REGS
void do_send_trap(struct pt_regs *regs, unsigned long address,
		  unsigned long error_code, int breakpt)
{
	current->thread.trap_nr = TRAP_HWBKPT;
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	/* Deliver the signal to userspace */
	force_sig_ptrace_errno_trap(breakpt, /* breakpoint or watchpoint id */
				    (void __user *)address);
}
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
void do_break (struct pt_regs *regs, unsigned long address,
		    unsigned long error_code)
{
	siginfo_t info;

	current->thread.trap_nr = TRAP_HWBKPT;
	if (notify_die(DIE_DABR_MATCH, "dabr_match", regs, error_code,
			11, SIGSEGV) == NOTIFY_STOP)
		return;

	if (debugger_break_match(regs))
		return;

	/* Clear the breakpoint */
	hw_breakpoint_disable();

	/* Deliver the signal to userspace */
	clear_siginfo(&info);
	info.si_signo = SIGTRAP;
	info.si_errno = 0;
	info.si_code = TRAP_HWBKPT;
	info.si_addr = (void __user *)address;
	force_sig_info(SIGTRAP, &info, current);
}
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

static DEFINE_PER_CPU(struct arch_hw_breakpoint, current_brk);

#ifdef CONFIG_PPC_ADV_DEBUG_REGS
/*
 * Set the debug registers back to their default "safe" values.
 */
static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->debug.iac1 = thread->debug.iac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	thread->debug.iac3 = thread->debug.iac4 = 0;
#endif
	thread->debug.dac1 = thread->debug.dac2 = 0;
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	thread->debug.dvc1 = thread->debug.dvc2 = 0;
#endif
	thread->debug.dbcr0 = 0;
#ifdef CONFIG_BOOKE
	/*
	 * Force User/Supervisor bits to b11 (user-only MSR[PR]=1)
	 */
	thread->debug.dbcr1 = DBCR1_IAC1US | DBCR1_IAC2US |
			DBCR1_IAC3US | DBCR1_IAC4US;
	/*
	 * Force Data Address Compare User/Supervisor bits to be User-only
	 * (0b11 MSR[PR]=1) and set all other bits in DBCR2 register to be 0.
	 */
	thread->debug.dbcr2 = DBCR2_DAC1US | DBCR2_DAC2US;
#else
	thread->debug.dbcr1 = 0;
#endif
}

static void prime_debug_regs(struct debug_reg *debug)
{
	/*
	 * We could have inherited MSR_DE from userspace, since
	 * it doesn't get cleared on exception entry.  Make sure
	 * MSR_DE is clear before we enable any debug events.
	 */
	mtmsr(mfmsr() & ~MSR_DE);

	mtspr(SPRN_IAC1, debug->iac1);
	mtspr(SPRN_IAC2, debug->iac2);
#if CONFIG_PPC_ADV_DEBUG_IACS > 2
	mtspr(SPRN_IAC3, debug->iac3);
	mtspr(SPRN_IAC4, debug->iac4);
#endif
	mtspr(SPRN_DAC1, debug->dac1);
	mtspr(SPRN_DAC2, debug->dac2);
#if CONFIG_PPC_ADV_DEBUG_DVCS > 0
	mtspr(SPRN_DVC1, debug->dvc1);
	mtspr(SPRN_DVC2, debug->dvc2);
#endif
	mtspr(SPRN_DBCR0, debug->dbcr0);
	mtspr(SPRN_DBCR1, debug->dbcr1);
#ifdef CONFIG_BOOKE
	mtspr(SPRN_DBCR2, debug->dbcr2);
#endif
}
/*
 * Unless neither the old or new thread are making use of the
 * debug registers, set the debug registers from the values
 * stored in the new thread.
 */
void switch_booke_debug_regs(struct debug_reg *new_debug)
{
	if ((current->thread.debug.dbcr0 & DBCR0_IDM)
		|| (new_debug->dbcr0 & DBCR0_IDM))
			prime_debug_regs(new_debug);
}
EXPORT_SYMBOL_GPL(switch_booke_debug_regs);
#else	/* !CONFIG_PPC_ADV_DEBUG_REGS */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
static void set_breakpoint(struct arch_hw_breakpoint *brk)
{
	preempt_disable();
	__set_breakpoint(brk);
	preempt_enable();
}

static void set_debug_reg_defaults(struct thread_struct *thread)
{
	thread->hw_brk.address = 0;
	thread->hw_brk.type = 0;
	if (ppc_breakpoint_available())
		set_breakpoint(&thread->hw_brk);
}
#endif /* !CONFIG_HAVE_HW_BREAKPOINT */
#endif	/* CONFIG_PPC_ADV_DEBUG_REGS */

#ifdef CONFIG_PPC_ADV_DEBUG_REGS
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	mtspr(SPRN_DAC1, dabr);
#ifdef CONFIG_PPC_47x
	isync();
#endif
	return 0;
}
#elif defined(CONFIG_PPC_BOOK3S)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	mtspr(SPRN_DABR, dabr);
	if (cpu_has_feature(CPU_FTR_DABRX))
		mtspr(SPRN_DABRX, dabrx);
	return 0;
}
#elif defined(CONFIG_PPC_8xx)
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	unsigned long addr = dabr & ~HW_BRK_TYPE_DABR;
	unsigned long lctrl1 = 0x90000000; /* compare type: equal on E & F */
	unsigned long lctrl2 = 0x8e000002; /* watchpoint 1 on cmp E | F */

	if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_READ)
		lctrl1 |= 0xa0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == HW_BRK_TYPE_WRITE)
		lctrl1 |= 0xf0000;
	else if ((dabr & HW_BRK_TYPE_RDWR) == 0)
		lctrl2 = 0;

	mtspr(SPRN_LCTRL2, 0);
	mtspr(SPRN_CMPE, addr);
	mtspr(SPRN_CMPF, addr + 4);
	mtspr(SPRN_LCTRL1, lctrl1);
	mtspr(SPRN_LCTRL2, lctrl2);

	return 0;
}
#else
static inline int __set_dabr(unsigned long dabr, unsigned long dabrx)
{
	return -EINVAL;
}
#endif

static inline int set_dabr(struct arch_hw_breakpoint *brk)
{
	unsigned long dabr, dabrx;

	dabr = brk->address | (brk->type & HW_BRK_TYPE_DABR);
	dabrx = ((brk->type >> 3) & 0x7);

	if (ppc_md.set_dabr)
		return ppc_md.set_dabr(dabr, dabrx);

	return __set_dabr(dabr, dabrx);
}

static inline int set_dawr(struct arch_hw_breakpoint *brk)
{
	unsigned long dawr, dawrx, mrd;

	dawr = brk->address;

	dawrx  = (brk->type & (HW_BRK_TYPE_READ | HW_BRK_TYPE_WRITE)) \
		                   << (63 - 58); //* read/write bits */
	dawrx |= ((brk->type & (HW_BRK_TYPE_TRANSLATE)) >> 2) \
		                   << (63 - 59); //* translate */
	dawrx |= (brk->type & (HW_BRK_TYPE_PRIV_ALL)) \
		                   >> 3; //* PRIM bits */
	/* dawr length is stored in field MDR bits 48:53.  Matches range in
	   doublewords (64 bits) baised by -1 eg. 0b000000=1DW and
	   0b111111=64DW.
	   brk->len is in bytes.
	   This aligns up to double word size, shifts and does the bias.
	*/
	mrd = ((brk->len + 7) >> 3) - 1;
	dawrx |= (mrd & 0x3f) << (63 - 53);

	if (ppc_md.set_dawr)
		return ppc_md.set_dawr(dawr, dawrx);
	mtspr(SPRN_DAWR, dawr);
	mtspr(SPRN_DAWRX, dawrx);
	return 0;
}

void __set_breakpoint(struct arch_hw_breakpoint *brk)
{
	memcpy(this_cpu_ptr(&current_brk), brk, sizeof(*brk));

	if (cpu_has_feature(CPU_FTR_DAWR))
		// Power8 or later
		set_dawr(brk);
	else if (!cpu_has_feature(CPU_FTR_ARCH_207S))
		// Power7 or earlier
		set_dabr(brk);
	else
		// Shouldn't happen due to higher level checks
		WARN_ON_ONCE(1);
}

/* Check if we have DAWR or DABR hardware */
bool ppc_breakpoint_available(void)
{
	if (cpu_has_feature(CPU_FTR_DAWR))
		return true; /* POWER8 DAWR */
	if (cpu_has_feature(CPU_FTR_ARCH_207S))
		return false; /* POWER9 with DAWR disabled */
	/* DABR: Everything but POWER8 and POWER9 */
	return true;
}
EXPORT_SYMBOL_GPL(ppc_breakpoint_available);

static inline bool hw_brk_match(struct arch_hw_breakpoint *a,
			      struct arch_hw_breakpoint *b)
{
	if (a->address != b->address)
		return false;
	if (a->type != b->type)
		return false;
	if (a->len != b->len)
		return false;
	return true;
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM

static inline bool tm_enabled(struct task_struct *tsk)
{
	return tsk && tsk->thread.regs && (tsk->thread.regs->msr & MSR_TM);
}

static void tm_reclaim_thread(struct thread_struct *thr, uint8_t cause)
{
	/*
	 * Use the current MSR TM suspended bit to track if we have
	 * checkpointed state outstanding.
	 * On signal delivery, we'd normally reclaim the checkpointed
	 * state to obtain stack pointer (see:get_tm_stackpointer()).
	 * This will then directly return to userspace without going
	 * through __switch_to(). However, if the stack frame is bad,
	 * we need to exit this thread which calls __switch_to() which
	 * will again attempt to reclaim the already saved tm state.
	 * Hence we need to check that we've not already reclaimed
	 * this state.
	 * We do this using the current MSR, rather tracking it in
	 * some specific thread_struct bit, as it has the additional
	 * benefit of checking for a potential TM bad thing exception.
	 */
	if (!MSR_TM_SUSPENDED(mfmsr()))
		return;

	giveup_all(container_of(thr, struct task_struct, thread));

	tm_reclaim(thr, cause);

	/*
	 * If we are in a transaction and FP is off then we can't have
	 * used FP inside that transaction. Hence the checkpointed
	 * state is the same as the live state. We need to copy the
	 * live state to the checkpointed state so that when the
	 * transaction is restored, the checkpointed state is correct
	 * and the aborted transaction sees the correct state. We use
	 * ckpt_regs.msr here as that's what tm_reclaim will use to
	 * determine if it's going to write the checkpointed state or
	 * not. So either this will write the checkpointed registers,
	 * or reclaim will. Similarly for VMX.
	 */
	if ((thr->ckpt_regs.msr & MSR_FP) == 0)
		memcpy(&thr->ckfp_state, &thr->fp_state,
		       sizeof(struct thread_fp_state));
	if ((thr->ckpt_regs.msr & MSR_VEC) == 0)
		memcpy(&thr->ckvr_state, &thr->vr_state,
		       sizeof(struct thread_vr_state));
}

void tm_reclaim_current(uint8_t cause)
{
	tm_enable();
	tm_reclaim_thread(&current->thread, cause);
}

static inline void tm_reclaim_task(struct task_struct *tsk)
{
	/* We have to work out if we're switching from/to a task that's in the
	 * middle of a transaction.
	 *
	 * In switching we need to maintain a 2nd register state as
	 * oldtask->thread.ckpt_regs.  We tm_reclaim(oldproc); this saves the
	 * checkpointed (tbegin) state in ckpt_regs, ckfp_state and
	 * ckvr_state
	 *
	 * We also context switch (save) TFHAR/TEXASR/TFIAR in here.
	 */
	struct thread_struct *thr = &tsk->thread;

	if (!thr->regs)
		return;

	if (!MSR_TM_ACTIVE(thr->regs->msr))
		goto out_and_saveregs;

	WARN_ON(tm_suspend_disabled);

	TM_DEBUG("--- tm_reclaim on pid %d (NIP=%lx, "
		 "ccr=%lx, msr=%lx, trap=%lx)\n",
		 tsk->pid, thr->regs->nip,
		 thr->regs->ccr, thr->regs->msr,
		 thr->regs->trap);

	tm_reclaim_thread(thr, TM_CAUSE_RESCHED);

	TM_DEBUG("--- tm_reclaim on pid %d complete\n",
		 tsk->pid);

out_and_saveregs:
	/* Always save the regs here, even if a transaction's not active.
	 * This context-switches a thread's TM info SPRs.  We do it here to
	 * be consistent with the restore path (in recheckpoint) which
	 * cannot happen later in _switch().
	 */
	tm_save_sprs(thr);
}

extern void __tm_recheckpoint(struct thread_struct *thread);

void tm_recheckpoint(struct thread_struct *thread)
{
	unsigned long flags;

	if (!(thread->regs->msr & MSR_TM))
		return;

	/* We really can't be interrupted here as the TEXASR registers can't
	 * change and later in the trecheckpoint code, we have a userspace R1.
	 * So let's hard disable over this region.
	 */
	local_irq_save(flags);
	hard_irq_disable();

	/* The TM SPRs are restored here, so that TEXASR.FS can be set
	 * before the trecheckpoint and no explosion occurs.
	 */
	tm_restore_sprs(thread);

	__tm_recheckpoint(thread);

	local_irq_restore(flags);
}

static inline void tm_recheckpoint_new_task(struct task_struct *new)
{
	if (!cpu_has_feature(CPU_FTR_TM))
		return;

	/* Recheckpoint the registers of the thread we're about to switch to.
	 *
	 * If the task was using FP, we non-lazily reload both the original and
	 * the speculative FP register states.  This is because the kernel
	 * doesn't see if/when a TM rollback occurs, so if we take an FP
	 * unavailable later, we are unable to determine which set of FP regs
	 * need to be restored.
	 */
	if (!tm_enabled(new))
		return;

	if (!MSR_TM_ACTIVE(new->thread.regs->msr)){
		tm_restore_sprs(&new->thread);
		return;
	}
	/* Recheckpoint to restore original checkpointed register state. */
	TM_DEBUG("*** tm_recheckpoint of pid %d (new->msr 0x%lx)\n",
		 new->pid, new->thread.regs->msr);

	tm_recheckpoint(&new->thread);

	/*
	 * The checkpointed state has been restored but the live state has
	 * not, ensure all the math functionality is turned off to trigger
	 * restore_math() to reload.
	 */
	new->thread.regs->msr &= ~(MSR_FP | MSR_VEC | MSR_VSX);

	TM_DEBUG("*** tm_recheckpoint of pid %d complete "
		 "(kernel msr 0x%lx)\n",
		 new->pid, mfmsr());
}

static inline void __switch_to_tm(struct task_struct *prev,
		struct task_struct *new)
{
	if (cpu_has_feature(CPU_FTR_TM)) {
		if (tm_enabled(prev) || tm_enabled(new))
			tm_enable();

		if (tm_enabled(prev)) {
			prev->thread.load_tm++;
			tm_reclaim_task(prev);
			if (!MSR_TM_ACTIVE(prev->thread.regs->msr) && prev->thread.load_tm == 0)
				prev->thread.regs->msr &= ~MSR_TM;
		}

		tm_recheckpoint_new_task(new);
	}
}

/*
 * This is called if we are on the way out to userspace and the
 * TIF_RESTORE_TM flag is set.  It checks if we need to reload
 * FP and/or vector state and does so if necessary.
 * If userspace is inside a transaction (whether active or
 * suspended) and FP/VMX/VSX instructions have ever been enabled
 * inside that transaction, then we have to keep them enabled
 * and keep the FP/VMX/VSX state loaded while ever the transaction
 * continues.  The reason is that if we didn't, and subsequently
 * got a FP/VMX/VSX unavailable interrupt inside a transaction,
 * we don't know whether it's the same transaction, and thus we
 * don't know which of the checkpointed state and the transactional
 * state to use.
 */
void restore_tm_state(struct pt_regs *regs)
{
	unsigned long msr_diff;

	/*
	 * This is the only moment we should clear TIF_RESTORE_TM as
	 * it is here that ckpt_regs.msr and pt_regs.msr become the same
	 * again, anything else could lead to an incorrect ckpt_msr being
	 * saved and therefore incorrect signal contexts.
	 */
	clear_thread_flag(TIF_RESTORE_TM);
	if (!MSR_TM_ACTIVE(regs->msr))
		return;

	msr_diff = current->thread.ckpt_regs.msr & ~regs->msr;
	msr_diff &= MSR_FP | MSR_VEC | MSR_VSX;

	/* Ensure that restore_math() will restore */
	if (msr_diff & MSR_FP)
		current->thread.load_fp = 1;
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) && msr_diff & MSR_VEC)
		current->thread.load_vec = 1;
#endif
	restore_math(regs);

	regs->msr |= msr_diff;
}

#else
#define tm_recheckpoint_new_task(new)
#define __switch_to_tm(prev, new)
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

static inline void save_sprs(struct thread_struct *t)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC))
		t->vrsave = mfspr(SPRN_VRSAVE);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR))
		t->dscr = mfspr(SPRN_DSCR);

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		t->bescr = mfspr(SPRN_BESCR);
		t->ebbhr = mfspr(SPRN_EBBHR);
		t->ebbrr = mfspr(SPRN_EBBRR);

		t->fscr = mfspr(SPRN_FSCR);

		/*
		 * Note that the TAR is not available for use in the kernel.
		 * (To provide this, the TAR should be backed up/restored on
		 * exception entry/exit instead, and be in pt_regs.  FIXME,
		 * this should be in pt_regs anyway (for debug).)
		 */
		t->tar = mfspr(SPRN_TAR);
	}
#endif

	thread_pkey_regs_save(t);
}

static inline void restore_sprs(struct thread_struct *old_thread,
				struct thread_struct *new_thread)
{
#ifdef CONFIG_ALTIVEC
	if (cpu_has_feature(CPU_FTR_ALTIVEC) &&
	    old_thread->vrsave != new_thread->vrsave)
		mtspr(SPRN_VRSAVE, new_thread->vrsave);
#endif
#ifdef CONFIG_PPC_BOOK3S_64
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		u64 dscr = get_paca()->dscr_default;
		if (new_thread->dscr_inherit)
			dscr = new_thread->dscr;

		if (old_thread->dscr != dscr)
			mtspr(SPRN_DSCR, dscr);
	}

	if (cpu_has_feature(CPU_FTR_ARCH_207S)) {
		if (old_thread->bescr != new_thread->bescr)
			mtspr(SPRN_BESCR, new_thread->bescr);
		if (old_thread->ebbhr != new_thread->ebbhr)
			mtspr(SPRN_EBBHR, new_thread->ebbhr);
		if (old_thread->ebbrr != new_thread->ebbrr)
			mtspr(SPRN_EBBRR, new_thread->ebbrr);

		if (old_thread->fscr != new_thread->fscr)
			mtspr(SPRN_FSCR, new_thread->fscr);

		if (old_thread->tar != new_thread->tar)
			mtspr(SPRN_TAR, new_thread->tar);
	}

	if (cpu_has_feature(CPU_FTR_P9_TIDR) &&
	    old_thread->tidr != new_thread->tidr)
		mtspr(SPRN_TIDR, new_thread->tidr);
#endif

	thread_pkey_regs_restore(new_thread, old_thread);
}

#ifdef CONFIG_PPC_BOOK3S_64
#define CP_SIZE 128
static const u8 dummy_copy_buffer[CP_SIZE] __attribute__((aligned(CP_SIZE)));
#endif

struct task_struct *__switch_to(struct task_struct *prev,
	struct task_struct *new)
{
	struct thread_struct *new_thread, *old_thread;
	struct task_struct *last;
#ifdef CONFIG_PPC_BOOK3S_64
	struct ppc64_tlb_batch *batch;
#endif

	new_thread = &new->thread;
	old_thread = &current->thread;

	WARN_ON(!irqs_disabled());

#ifdef CONFIG_PPC_BOOK3S_64
	batch = this_cpu_ptr(&ppc64_tlb_batch);
	if (batch->active) {
		current_thread_info()->local_flags |= _TLF_LAZY_MMU;
		if (batch->index)
			__flush_tlb_pending(batch);
		batch->active = 0;
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

#ifdef CONFIG_PPC_ADV_DEBUG_REGS
	switch_booke_debug_regs(&new->thread.debug);
#else
/*
 * For PPC_BOOK3S_64, we use the hw-breakpoint interfaces that would
 * schedule DABR
 */
#ifndef CONFIG_HAVE_HW_BREAKPOINT
	if (unlikely(!hw_brk_match(this_cpu_ptr(&current_brk), &new->thread.hw_brk)))
		__set_breakpoint(&new->thread.hw_brk);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
#endif

	/*
	 * We need to save SPRs before treclaim/trecheckpoint as these will
	 * change a number of them.
	 */
	save_sprs(&prev->thread);

	/* Save FPU, Altivec, VSX and SPE state */
	giveup_all(prev);

	__switch_to_tm(prev, new);

	if (!radix_enabled()) {
		/*
		 * We can't take a PMU exception inside _switch() since there
		 * is a window where the kernel stack SLB and the kernel stack
		 * are out of sync. Hard disable here.
		 */
		hard_irq_disable();
	}

	/*
	 * Call restore_sprs() before calling _switch(). If we move it after
	 * _switch() then we miss out on calling it for new tasks. The reason
	 * for this is we manually create a stack frame for new tasks that
	 * directly returns through ret_from_fork() or
	 * ret_from_kernel_thread(). See copy_thread() for details.
	 */
	restore_sprs(old_thread, new_thread);

	last = _switch(old_thread, new_thread);

#ifdef CONFIG_PPC_BOOK3S_64
	if (current_thread_info()->local_flags & _TLF_LAZY_MMU) {
		current_thread_info()->local_flags &= ~_TLF_LAZY_MMU;
		batch = this_cpu_ptr(&ppc64_tlb_batch);
		batch->active = 1;
	}

	if (current_thread_info()->task->thread.regs) {
		restore_math(current_thread_info()->task->thread.regs);

		/*
		 * The copy-paste buffer can only store into foreign real
		 * addresses, so unprivileged processes can not see the
		 * data or use it in any way unless they have foreign real
		 * mappings. If the new process has the foreign real address
		 * mappings, we must issue a cp_abort to clear any state and
		 * prevent snooping, corruption or a covert channel.
		 */
		if (current_thread_info()->task->thread.used_vas)
			asm volatile(PPC_CP_ABORT);
	}
#endif /* CONFIG_PPC_BOOK3S_64 */

	return last;
}

static int instructions_to_print = 16;

static void show_instructions(struct pt_regs *regs)
{
	int i;
	unsigned long pc = regs->nip - (instructions_to_print * 3 / 4 *
			sizeof(int));

	printk("Instruction dump:");

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8))
			pr_cont("\n");

#if !defined(CONFIG_BOOKE)
		/* If executing with the IMMU off, adjust pc rather
		 * than print XXXXXXXX.
		 */
		if (!(regs->msr & MSR_IR))
			pc = (unsigned long)phys_to_virt(pc);
#endif

		if (!__kernel_text_address(pc) ||
		     probe_kernel_address((unsigned int __user *)pc, instr)) {
			pr_cont("XXXXXXXX ");
		} else {
			if (regs->nip == pc)
				pr_cont("<%08x> ", instr);
			else
				pr_cont("%08x ", instr);
		}

		pc += sizeof(int);
	}

	pr_cont("\n");
}

void show_user_instructions(struct pt_regs *regs)
{
	unsigned long pc;
	int i;

	pc = regs->nip - (instructions_to_print * 3 / 4 * sizeof(int));

	/*
	 * Make sure the NIP points at userspace, not kernel text/data or
	 * elsewhere.
	 */
	if (!__access_ok(pc, instructions_to_print * sizeof(int), USER_DS)) {
		pr_info("%s[%d]: Bad NIP, not dumping instructions.\n",
			current->comm, current->pid);
		return;
	}

	pr_info("%s[%d]: code: ", current->comm, current->pid);

	for (i = 0; i < instructions_to_print; i++) {
		int instr;

		if (!(i % 8) && (i > 0)) {
			pr_cont("\n");
			pr_info("%s[%d]: code: ", current->comm, current->pid);
		}

		if (probe_kernel_address((unsigned int __user *)pc, instr)) {
			pr_cont("XXXXXXXX ");
		} else {
			if (regs->nip == pc)
				pr_cont("<%08x> ", instr);
			else
				pr_cont("%08x ", instr);
		}

		pc += sizeof(int);
	}

	pr_cont("\n");
}

struct regbit {
	unsigned long bit;
	const char *name;
};

static struct regbit msr_bits[] = {
#if defined(CONFIG_PPC64) && !defined(CONFIG_BOOKE)
	{MSR_SF,	"SF"},
	{MSR_HV,	"HV"},
#endif
	{MSR_VEC,	"VEC"},
	{MSR_VSX,	"VSX"},
#ifdef CONFIG_BOOKE
	{MSR_CE,	"CE"},
#endif
	{MSR_EE,	"EE"},
	{MSR_PR,	"PR"},
	{MSR_FP,	"FP"},
	{MSR_ME,	"ME"},
#ifdef CONFIG_BOOKE
	{MSR_DE,	"DE"},
#else
	{MSR_SE,	"SE"},
	{MSR_BE,	"BE"},
#endif
	{MSR_IR,	"IR"},
	{MSR_DR,	"DR"},
	{MSR_PMM,	"PMM"},
#ifndef CONFIG_BOOKE
	{MSR_RI,	"RI"},
	{MSR_LE,	"LE"},
#endif
	{0,		NULL}
};

static void print_bits(unsigned long val, struct regbit *bits, const char *sep)
{
	const char *s = "";

	for (; bits->bit; ++bits)
		if (val & bits->bit) {
			pr_cont("%s%s", s, bits->name);
			s = sep;
		}
}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
static struct regbit msr_tm_bits[] = {
	{MSR_TS_T,	"T"},
	{MSR_TS_S,	"S"},
	{MSR_TM,	"E"},
	{0,		NULL}
};

static void print_tm_bits(unsigned long val)
{
/*
 * This only prints something if at least one of the TM bit is set.
 * Inside the TM[], the output means:
 *   E: Enabled		(bit 32)
 *   S: Suspended	(bit 33)
 *   T: Transactional	(bit 34)
 */
	if (val & (MSR_TM | MSR_TS_S | MSR_TS_T)) {
		pr_cont(",TM[");
		print_bits(val, msr_tm_bits, "");
		pr_cont("]");
	}
}
#else
static void print_tm_bits(unsigned long val) {}
#endif

static void print_msr_bits(unsigned long val)
{
	pr_cont("<");
	print_bits(val, msr_bits, ",");
	print_tm_bits(val);
	pr_cont(">");
}

#ifdef CONFIG_PPC64
#define REG		"%016lx"
#define REGS_PER_LINE	4
#define LAST_VOLATILE	13
#else
#define REG		"%08lx"
#define REGS_PER_LINE	8
#define LAST_VOLATILE	12
#endif

void show_regs(struct pt_regs * regs)
{
	int i, trap;

	show_regs_print_info(KERN_DEFAULT);

	printk("NIP:  "REG" LR: "REG" CTR: "REG"\n",
	       regs->nip, regs->link, regs->ctr);
	printk("REGS: %px TRAP: %04lx   %s  (%s)\n",
	       regs, regs->trap, print_tainted(), init_utsname()->release);
	printk("MSR:  "REG" ", regs->msr);
	print_msr_bits(regs->msr);
	pr_cont("  CR: %08lx  XER: %08lx\n", regs->ccr, regs->xer);
	trap = TRAP(regs);
	if ((TRAP(regs) != 0xc00) && cpu_has_feature(CPU_FTR_CFAR))
		pr_cont("CFAR: "REG" ", regs->orig_gpr3);
	if (trap == 0x200 || trap == 0x300 || trap == 0x600)
#if defined(CONFIG_4xx) || defined(CONFIG_BOOKE)
		pr_cont("DEAR: "REG" ESR: "REG" ", regs->dar, regs->dsisr);
#else
		pr_cont("DAR: "REG" DSISR: %08lx ", regs->dar, regs->dsisr);
#endif
#ifdef CONFIG_PPC64
	pr_cont("IRQMASK: %lx ", regs->softe);
#endif
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	if (MSR_TM_ACTIVE(regs->msr))
		pr_cont("\nPACATMSCRATCH: %016llx ", get_paca()->tm_scratch);
#endif

	for (i = 0;  i < 32;  i++) {
		if ((i % REGS_PER_LINE) == 0)
			pr_cont("\nGPR%02d: ", i);
		pr_cont(REG " ", regs->gpr[i]);
		if (i == LAST_VOLATILE && !FULL_REGS(regs))
			break;
	}
	pr_cont("\n");
#ifdef CONFIG_KALLSYMS
	/*
	 * Lookup NIP late so we have the best change of getting the
	 * above info out without failing
	 */
	printk("NIP ["REG"] %pS\n", regs->nip, (void *)regs->nip);
	printk("LR ["REG"] %pS\n", regs->link, (void *)regs->link);
#endif
	show_stack(current, (unsigned long *) regs->gpr[1]);
	if (!user_mode(regs))
		show_instructions(regs);
}

void flush_thread(void)
{
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	flush_ptrace_hw_breakpoint(current);
#else /* CONFIG_HAVE_HW_BREAKPOINT */
	set_debug_reg_defaults(&current->thread);
#endif /* CONFIG_HAVE_HW_BREAKPOINT */
}

int set_thread_uses_vas(void)
{
#ifdef CONFIG_PPC_BOOK3S_64
	if (!cpu_has_feature(CPU_FTR_ARCH_300))
		return -EINVAL;

	current->thread.used_vas = 1;

	/*
	 * Even a process that has no foreign real address mapping can use
	 * an unpaired COPY instruction (to no real effect). Issue CP_ABORT
	 * to clear any pending COPY and prevent a covert channel.
	 *
	 * __switch_to() will issue CP_ABORT on future context switches.
	 */
	asm volatile(PPC_CP_ABORT);

#endif /* CONFIG_PPC_BOOK3S_64 */
	return 0;
}

#ifdef CONFIG_PPC64
/**
 * Assign a TIDR (thread ID) for task @t and set it in the thread
 * structure. For now, we only support setting TIDR for 'current' task.
 *
 * Since the TID value is a truncated form of it PID, it is possible
 * (but unlikely) for 2 threads to have the same TID. In the unlikely event
 * that 2 threads share the same TID and are waiting, one of the following
 * cases will happen:
 *
 * 1. The correct thread is running, the wrong thread is not
 * In this situation, the correct thread is woken and proceeds to pass it's
 * condition check.
 *
 * 2. Neither threads are running
 * In this situation, neither thread will be woken. When scheduled, the waiting
 * threads will execute either a wait, which will return immediately, followed
 * by a condition check, which will pass for the correct thread and fail
 * for the wrong thread, or they will execute the condition check immediately.
 *
 * 3. The wrong thread is running, the correct thread is not
 * The wrong thread will be woken, but will fail it's condition check and
 * re-execute wait. The correct thread, when scheduled, will execute either
 * it's condition check (which will pass), or wait, which returns immediately
 * when called the first time after the thread is scheduled, followed by it's
 * condition check (which will pass).
 *
 * 4. Both threads are running
 * Both threads will be woken. The wrong thread will fail it's condition check
 * and execute another wait, while the correct thread will pass it's condition
 * check.
 *
 * @t: the task to set the thread ID for
 */
int set_thread_tidr(struct task_struct *t)
{
	if (!cpu_has_feature(CPU_FTR_P9_TIDR))
		return -EINVAL;

	if (t != current)
		return -EINVAL;

	if (t->thread.tidr)
		return 0;

	t->thread.tidr = (u16)task_pid_nr(t);
	mtspr(SPRN_TIDR, t->thread.tidr);

	return 0;
}
EXPORT_SYMBOL_GPL(set_thread_tidr);

#endif /* CONFIG_PPC64 */

void
release_thread(struct task_struct *t)
{
}

/*
 * this gets called so that we can store coprocessor state into memory and
 * copy the current task into the new thread.
 */
int arch_dup_task_struct(struct task_struct *dst, struct task_struct *src)
{
	flush_all_to_thread(src);
	/*
	 * Flush TM state out so we can copy it.  __switch_to_tm() does this
	 * flush but it removes the checkpointed state from the current CPU and
	 * transitions the CPU out of TM mode.  Hence we need to call
	 * tm_recheckpoint_new_task() (on the same task) to restore the
	 * checkpointed state back and the TM mode.
	 *
	 * Can't pass dst because it isn't ready. Doesn't matter, passing
	 * dst is only important for __switch_to()
	 */
	__switch_to_tm(src, src);

	*dst = *src;

	clear_task_ebb(dst);

	return 0;
}

static void setup_ksp_vsid(struct task_struct *p, unsigned long sp)
{
#ifdef CONFIG_PPC_BOOK3S_64
	unsigned long sp_vsid;
	unsigned long llp = mmu_psize_defs[mmu_linear_psize].sllp;

	if (radix_enabled())
		return;

	if (mmu_has_feature(MMU_FTR_1T_SEGMENT))
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_1T)
			<< SLB_VSID_SHIFT_1T;
	else
		sp_vsid = get_kernel_vsid(sp, MMU_SEGSIZE_256M)
			<< SLB_VSID_SHIFT;
	sp_vsid |= SLB_VSID_KERNEL | llp;
	p->thread.ksp_vsid = sp_vsid;
#endif
}

/*
 * Copy a thread..
 */

/*
 * Copy architecture-specific thread state
 */
int copy_thread(unsigned long clone_flags, unsigned long usp,
		unsigned long kthread_arg, struct task_struct *p)
{
	struct pt_regs *childregs, *kregs;
	extern void ret_from_fork(void);
	extern void ret_from_kernel_thread(void);
	void (*f)(void);
	unsigned long sp = (unsigned long)task_stack_page(p) + THREAD_SIZE;
	struct thread_info *ti = task_thread_info(p);

	klp_init_thread_info(ti);

	/* Copy registers */
	sp -= sizeof(struct pt_regs);
	childregs = (struct pt_regs *) sp;
	if (unlikely(p->flags & PF_KTHREAD)) {
		/* kernel thread */
		memset(childregs, 0, sizeof(struct pt_regs));
		childregs->gpr[1] = sp + sizeof(struct pt_regs);
		/* function */
		if (usp)
			childregs->gpr[14] = ppc_function_entry((void *)usp);
#ifdef CONFIG_PPC64
		clear_tsk_thread_flag(p, TIF_32BIT);
		childregs->softe = IRQS_ENABLED;
#endif
		childregs->gpr[15] = kthread_arg;
		p->thread.regs = NULL;	/* no user register state */
		ti->flags |= _TIF_RESTOREALL;
		f = ret_from_kernel_thread;
	} else {
		/* user thread */
		struct pt_regs *regs = current_pt_regs();
		CHECK_FULL_REGS(regs);
		*childregs = *regs;
		if (usp)
			childregs->gpr[1] = usp;
		p->thread.regs = childregs;
		childregs->gpr[3] = 0;  /* Result from fork() */
		if (clone_flags & CLONE_SETTLS) {
#ifdef CONFIG_PPC64
			if (!is_32bit_task())
				childregs->gpr[13] = childregs->gpr[6];
			else
#endif
				childregs->gpr[2] = childregs->gpr[6];
		}

		f = ret_from_fork;
	}
	childregs->msr &= ~(MSR_FP|MSR_VEC|MSR_VSX);
	sp -= STACK_FRAME_OVERHEAD;

	/*
	 * The way this works is that at some point in the future
	 * some task will call _switch to switch to the new task.
	 * That will pop off the stack frame created below and start
	 * the new task running at ret_from_fork.  The new task will
	 * do some house keeping and then return from the fork or clone
	 * system call, using the stack frame created above.
	 */
	((unsigned long *)sp)[0] = 0;
	sp -= sizeof(struct pt_regs);
	kregs = (struct pt_regs *) sp;
	sp -= STACK_FRAME_OVERHEAD;
	p->thread.ksp = sp;
#ifdef CONFIG_PPC32
	p->thread.ksp_limit = (unsigned long)task_stack_page(p) +
				_ALIGN_UP(sizeof(struct thread_info), 16);
#endif
#ifdef CONFIG_HAVE_HW_BREAKPOINT
	p->thread.ptrace_bps[0] = NULL;
#endif

	p->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	p->thread.vr_save_area = NULL;
#endif

	setup_ksp_vsid(p, sp);

#ifdef CONFIG_PPC64 
	if (cpu_has_feature(CPU_FTR_DSCR)) {
		p->thread.dscr_inherit = current->thread.dscr_inherit;
		p->thread.dscr = mfspr(SPRN_DSCR);
	}
	if (cpu_has_feature(CPU_FTR_HAS_PPR))
		p->thread.ppr = INIT_PPR;

	p->thread.tidr = 0;
#endif
	kregs->nip = ppc_function_entry(f);
	return 0;
}

/*
 * Set up a thread for executing a new program
 */
void start_thread(struct pt_regs *regs, unsigned long start, unsigned long sp)
{
#ifdef CONFIG_PPC64
	unsigned long load_addr = regs->gpr[2];	/* saved by ELF_PLAT_INIT */
#endif

	/*
	 * If we exec out of a kernel thread then thread.regs will not be
	 * set.  Do it now.
	 */
	if (!current->thread.regs) {
		struct pt_regs *regs = task_stack_page(current) + THREAD_SIZE;
		current->thread.regs = regs - 1;
	}

#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	/*
	 * Clear any transactional state, we're exec()ing. The cause is
	 * not important as there will never be a recheckpoint so it's not
	 * user visible.
	 */
	if (MSR_TM_SUSPENDED(mfmsr()))
		tm_reclaim_current(0);
#endif

	memset(regs->gpr, 0, sizeof(regs->gpr));
	regs->ctr = 0;
	regs->link = 0;
	regs->xer = 0;
	regs->ccr = 0;
	regs->gpr[1] = sp;

	/*
	 * We have just cleared all the nonvolatile GPRs, so make
	 * FULL_REGS(regs) return true.  This is necessary to allow
	 * ptrace to examine the thread immediately after exec.
	 */
	regs->trap &= ~1UL;

#ifdef CONFIG_PPC32
	regs->mq = 0;
	regs->nip = start;
	regs->msr = MSR_USER;
#else
	if (!is_32bit_task()) {
		unsigned long entry;

		if (is_elf2_task()) {
			/* Look ma, no function descriptors! */
			entry = start;

			/*
			 * Ulrich says:
			 *   The latest iteration of the ABI requires that when
			 *   calling a function (at its global entry point),
			 *   the caller must ensure r12 holds the entry point
			 *   address (so that the function can quickly
			 *   establish addressability).
			 */
			regs->gpr[12] = start;
			/* Make sure that's restored on entry to userspace. */
			set_thread_flag(TIF_RESTOREALL);
		} else {
			unsigned long toc;

			/* start is a relocated pointer to the function
			 * descriptor for the elf _start routine.  The first
			 * entry in the function descriptor is the entry
			 * address of _start and the second entry is the TOC
			 * value we need to use.
			 */
			__get_user(entry, (unsigned long __user *)start);
			__get_user(toc, (unsigned long __user *)start+1);

			/* Check whether the e_entry function descriptor entries
			 * need to be relocated before we can use them.
			 */
			if (load_addr != 0) {
				entry += load_addr;
				toc   += load_addr;
			}
			regs->gpr[2] = toc;
		}
		regs->nip = entry;
		regs->msr = MSR_USER64;
	} else {
		regs->nip = start;
		regs->gpr[2] = 0;
		regs->msr = MSR_USER32;
	}
#endif
#ifdef CONFIG_VSX
	current->thread.used_vsr = 0;
#endif
	current->thread.load_fp = 0;
	memset(&current->thread.fp_state, 0, sizeof(current->thread.fp_state));
	current->thread.fp_save_area = NULL;
#ifdef CONFIG_ALTIVEC
	memset(&current->thread.vr_state, 0, sizeof(current->thread.vr_state));
	current->thread.vr_state.vscr.u[3] = 0x00010000; /* Java mode disabled */
	current->thread.vr_save_area = NULL;
	current->thread.vrsave = 0;
	current->thread.used_vr = 0;
	current->thread.load_vec = 0;
#endif /* CONFIG_ALTIVEC */
#ifdef CONFIG_SPE
	memset(current->thread.evr, 0, sizeof(current->thread.evr));
	current->thread.acc = 0;
	current->thread.spefscr = 0;
	current->thread.used_spe = 0;
#endif /* CONFIG_SPE */
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
	current->thread.tm_tfhar = 0;
	current->thread.tm_texasr = 0;
	current->thread.tm_tfiar = 0;
	current->thread.load_tm = 0;
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */

	thread_pkey_regs_init(&current->thread);
}
EXPORT_SYMBOL(start_thread);

#define PR_FP_ALL_EXCEPT (PR_FP_EXC_DIV | PR_FP_EXC_OVF | PR_FP_EXC_UND \
		| PR_FP_EXC_RES | PR_FP_EXC_INV)

int set_fpexc_mode(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	/* This is a bit hairy.  If we are an SPE enabled  processor
	 * (have embedded fp) we store the IEEE exception enable flags in
	 * fpexc_mode.  fpexc_mode is also used for setting FP exception
	 * mode (asyn, precise, disabled) for 'Classic' FP. */
	if (val & PR_FP_EXC_SW_ENABLE) {
#ifdef CONFIG_SPE
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
			tsk->thread.fpexc_mode = val &
				(PR_FP_EXC_SW_ENABLE | PR_FP_ALL_EXCEPT);
			return 0;
		} else {
			return -EINVAL;
		}
#else
		return -EINVAL;
#endif
	}

	/* on a CONFIG_SPE this does not hurt us.  The bits that
	 * __pack_fe01 use do not overlap with bits used for
	 * PR_FP_EXC_SW_ENABLE.  Additionally, the MSR[FE0,FE1] bits
	 * on CONFIG_SPE implementations are reserved so writing to
	 * them does not change anything */
	if (val > PR_FP_EXC_PRECISE)
		return -EINVAL;
	tsk->thread.fpexc_mode = __pack_fe01(val);
	if (regs != NULL && (regs->msr & MSR_FP) != 0)
		regs->msr = (regs->msr & ~(MSR_FE0|MSR_FE1))
			| tsk->thread.fpexc_mode;
	return 0;
}

int get_fpexc_mode(struct task_struct *tsk, unsigned long adr)
{
	unsigned int val;

	if (tsk->thread.fpexc_mode & PR_FP_EXC_SW_ENABLE)
#ifdef CONFIG_SPE
		if (cpu_has_feature(CPU_FTR_SPE)) {
			/*
			 * When the sticky exception bits are set
			 * directly by userspace, it must call prctl
			 * with PR_GET_FPEXC (with PR_FP_EXC_SW_ENABLE
			 * in the existing prctl settings) or
			 * PR_SET_FPEXC (with PR_FP_EXC_SW_ENABLE in
			 * the bits being set).  <fenv.h> functions
			 * saving and restoring the whole
			 * floating-point environment need to do so
			 * anyway to restore the prctl settings from
			 * the saved environment.
			 */
			tsk->thread.spefscr_last = mfspr(SPRN_SPEFSCR);
			val = tsk->thread.fpexc_mode;
		} else
			return -EINVAL;
#else
		return -EINVAL;
#endif
	else
		val = __unpack_fe01(tsk->thread.fpexc_mode);
	return put_user(val, (unsigned int __user *) adr);
}

int set_endian(struct task_struct *tsk, unsigned int val)
{
	struct pt_regs *regs = tsk->thread.regs;

	if ((val == PR_ENDIAN_LITTLE && !cpu_has_feature(CPU_FTR_REAL_LE)) ||
	    (val == PR_ENDIAN_PPC_LITTLE && !cpu_has_feature(CPU_FTR_PPC_LE)))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (val == PR_ENDIAN_BIG)
		regs->msr &= ~MSR_LE;
	else if (val == PR_ENDIAN_LITTLE || val == PR_ENDIAN_PPC_LITTLE)
		regs->msr |= MSR_LE;
	else
		return -EINVAL;

	return 0;
}

int get_endian(struct task_struct *tsk, unsigned long adr)
{
	struct pt_regs *regs = tsk->thread.regs;
	unsigned int val;

	if (!cpu_has_feature(CPU_FTR_PPC_LE) &&
	    !cpu_has_feature(CPU_FTR_REAL_LE))
		return -EINVAL;

	if (regs == NULL)
		return -EINVAL;

	if (regs->msr & MSR_LE) {
		if (cpu_has_feature(CPU_FTR_REAL_LE))
			val = PR_ENDIAN_LITTLE;
		else
			val = PR_ENDIAN_PPC_LITTLE;
	} else
		val = PR_ENDIAN_BIG;

	return put_user(val, (unsigned int __user *)adr);
}

int set_unalign_ctl(struct task_struct *tsk, unsigned int val)
{
	tsk->thread.align_ctl = val;
	return 0;
}

int get_unalign_ctl(struct task_struct *tsk, unsigned long adr)
{
	return put_user(tsk->thread.align_ctl, (unsigned int __user *)adr);
}

static inline int valid_irq_stack(unsigned long sp, struct task_struct *p,
				  unsigned long nbytes)
{
	unsigned long stack_page;
	unsigned long cpu = task_cpu(p);

	/*
	 * Avoid crashing if the stack has overflowed and corrupted
	 * task_cpu(p), which is in the thread_info struct.
	 */
	if (cpu < NR_CPUS && cpu_possible(cpu)) {
		stack_page = (unsigned long) hardirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;

		stack_page = (unsigned long) softirq_ctx[cpu];
		if (sp >= stack_page + sizeof(struct thread_struct)
		    && sp <= stack_page + THREAD_SIZE - nbytes)
			return 1;
	}
	return 0;
}

int validate_sp(unsigned long sp, struct task_struct *p,
		       unsigned long nbytes)
{
	unsigned long stack_page = (unsigned long)task_stack_page(p);

	if (sp >= stack_page + sizeof(struct thread_struct)
	    && sp <= stack_page + THREAD_SIZE - nbytes)
		return 1;

	return valid_irq_stack(sp, p, nbytes);
}

EXPORT_SYMBOL(validate_sp);

unsigned long get_wchan(struct task_struct *p)
{
	unsigned long ip, sp;
	int count = 0;

	if (!p || p == current || p->state == TASK_RUNNING)
		return 0;

	sp = p->thread.ksp;
	if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD))
		return 0;

	do {
		sp = *(unsigned long *)sp;
		if (!validate_sp(sp, p, STACK_FRAME_OVERHEAD) ||
		    p->state == TASK_RUNNING)
			return 0;
		if (count > 0) {
			ip = ((unsigned long *)sp)[STACK_FRAME_LR_SAVE];
			if (!in_sched_functions(ip))
				return ip;
		}
	} while (count++ < 16);
	return 0;
}

static int kstack_depth_to_print = CONFIG_PRINT_STACK_DEPTH;

void show_stack(struct task_struct *tsk, unsigned long *stack)
{
	unsigned long sp, ip, lr, newsp;
	int count = 0;
	int firstframe = 1;
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
	int curr_frame = current->curr_ret_stack;
	extern void return_to_handler(void);
	unsigned long rth = (unsigned long)return_to_handler;
#endif

	sp = (unsigned long) stack;
	if (tsk == NULL)
		tsk = current;
	if (sp == 0) {
		if (tsk == current)
			sp = current_stack_pointer();
		else
			sp = tsk->thread.ksp;
	}

	lr = 0;
	printk("Call Trace:\n");
	do {
		if (!validate_sp(sp, tsk, STACK_FRAME_OVERHEAD))
			return;

		stack = (unsigned long *) sp;
		newsp = stack[0];
		ip = stack[STACK_FRAME_LR_SAVE];
		if (!firstframe || ip != lr) {
			printk("["REG"] ["REG"] %pS", sp, ip, (void *)ip);
#ifdef CONFIG_FUNCTION_GRAPH_TRACER
			if ((ip == rth) && curr_frame >= 0) {
				pr_cont(" (%pS)",
				       (void *)current->ret_stack[curr_frame].ret);
				curr_frame--;
			}
#endif
			if (firstframe)
				pr_cont(" (unreliable)");
			pr_cont("\n");
		}
		firstframe = 0;

		/*
		 * See if this is an exception frame.
		 * We look for the "regshere" marker in the current frame.
		 */
		if (validate_sp(sp, tsk, STACK_INT_FRAME_SIZE)
		    && stack[STACK_FRAME_MARKER] == STACK_FRAME_REGS_MARKER) {
			struct pt_regs *regs = (struct pt_regs *)
				(sp + STACK_FRAME_OVERHEAD);
			lr = regs->link;
			printk("--- interrupt: %lx at %pS\n    LR = %pS\n",
			       regs->trap, (void *)regs->nip, (void *)lr);
			firstframe = 1;
		}

		sp = newsp;
	} while (count++ < kstack_depth_to_print);
}

#ifdef CONFIG_PPC64
/* Called with hard IRQs off */
void notrace __ppc64_runlatch_on(void)
{
	struct thread_info *ti = current_thread_info();

	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		/*
		 * Least significant bit (RUN) is the only writable bit of
		 * the CTRL register, so we can avoid mfspr. 2.06 is not the
		 * earliest ISA where this is the case, but it's convenient.
		 */
		mtspr(SPRN_CTRLT, CTRL_RUNLATCH);
	} else {
		unsigned long ctrl;

		/*
		 * Some architectures (e.g., Cell) have writable fields other
		 * than RUN, so do the read-modify-write.
		 */
		ctrl = mfspr(SPRN_CTRLF);
		ctrl |= CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}

	ti->local_flags |= _TLF_RUNLATCH;
}

/* Called with hard IRQs off */
void notrace __ppc64_runlatch_off(void)
{
	struct thread_info *ti = current_thread_info();

	ti->local_flags &= ~_TLF_RUNLATCH;

	if (cpu_has_feature(CPU_FTR_ARCH_206)) {
		mtspr(SPRN_CTRLT, 0);
	} else {
		unsigned long ctrl;

		ctrl = mfspr(SPRN_CTRLF);
		ctrl &= ~CTRL_RUNLATCH;
		mtspr(SPRN_CTRLT, ctrl);
	}
}
#endif /* CONFIG_PPC64 */

unsigned long arch_align_stack(unsigned long sp)
{
	if (!(current->personality & ADDR_NO_RANDOMIZE) && randomize_va_space)
		sp -= get_random_int() & ~PAGE_MASK;
	return sp & ~0xf;
}

static inline unsigned long brk_rnd(void)
{
        unsigned long rnd = 0;

	/* 8MB for 32bit, 1GB for 64bit */
	if (is_32bit_task())
		rnd = (get_random_long() % (1UL<<(23-PAGE_SHIFT)));
	else
		rnd = (get_random_long() % (1UL<<(30-PAGE_SHIFT)));

	return rnd << PAGE_SHIFT;
}

unsigned long arch_randomize_brk(struct mm_struct *mm)
{
	unsigned long base = mm->brk;
	unsigned long ret;

#ifdef CONFIG_PPC_BOOK3S_64
	/*
	 * If we are using 1TB segments and we are allowed to randomise
	 * the heap, we can put it above 1TB so it is backed by a 1TB
	 * segment. Otherwise the heap will be in the bottom 1TB
	 * which always uses 256MB segments and this may result in a
	 * performance penalty. We don't need to worry about radix. For
	 * radix, mmu_highuser_ssize remains unchanged from 256MB.
	 */
	if (!is_32bit_task() && (mmu_highuser_ssize == MMU_SEGSIZE_1T))
		base = max_t(unsigned long, mm->brk, 1UL << SID_SHIFT_1T);
#endif

	ret = PAGE_ALIGN(base + brk_rnd());

	if (ret < mm->brk)
		return mm->brk;

	return ret;
}