1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
|
// SPDX-License-Identifier: GPL-2.0-or-later
#include <linux/kernel.h>
#include <linux/ioport.h>
#include <linux/bitmap.h>
#include <linux/pci.h>
#include <asm/opal.h>
#include "pci.h"
/*
* The majority of the complexity in supporting SR-IOV on PowerNV comes from
* the need to put the MMIO space for each VF into a separate PE. Internally
* the PHB maps MMIO addresses to a specific PE using the "Memory BAR Table".
* The MBT historically only applied to the 64bit MMIO window of the PHB
* so it's common to see it referred to as the "M64BT".
*
* An MBT entry stores the mapped range as an <base>,<mask> pair. This forces
* the address range that we want to map to be power-of-two sized and aligned.
* For conventional PCI devices this isn't really an issue since PCI device BARs
* have the same requirement.
*
* For a SR-IOV BAR things are a little more awkward since size and alignment
* are not coupled. The alignment is set based on the per-VF BAR size, but
* the total BAR area is: number-of-vfs * per-vf-size. The number of VFs
* isn't necessarily a power of two, so neither is the total size. To fix that
* we need to finesse (read: hack) the Linux BAR allocator so that it will
* allocate the SR-IOV BARs in a way that lets us map them using the MBT.
*
* The changes to size and alignment that we need to do depend on the "mode"
* of MBT entry that we use. We only support SR-IOV on PHB3 (IODA2) and above,
* so as a baseline we can assume that we have the following BAR modes
* available:
*
* NB: $PE_COUNT is the number of PEs that the PHB supports.
*
* a) A segmented BAR that splits the mapped range into $PE_COUNT equally sized
* segments. The n'th segment is mapped to the n'th PE.
* b) An un-segmented BAR that maps the whole address range to a specific PE.
*
*
* We prefer to use mode a) since it only requires one MBT entry per SR-IOV BAR
* For comparison b) requires one entry per-VF per-BAR, or:
* (num-vfs * num-sriov-bars) in total. To use a) we need the size of each segment
* to equal the size of the per-VF BAR area. So:
*
* new_size = per-vf-size * number-of-PEs
*
* The alignment for the SR-IOV BAR also needs to be changed from per-vf-size
* to "new_size", calculated above. Implementing this is a convoluted process
* which requires several hooks in the PCI core:
*
* 1. In pcibios_device_add() we call pnv_pci_ioda_fixup_iov().
*
* At this point the device has been probed and the device's BARs are sized,
* but no resource allocations have been done. The SR-IOV BARs are sized
* based on the maximum number of VFs supported by the device and we need
* to increase that to new_size.
*
* 2. Later, when Linux actually assigns resources it tries to make the resource
* allocations for each PCI bus as compact as possible. As a part of that it
* sorts the BARs on a bus by their required alignment, which is calculated
* using pci_resource_alignment().
*
* For IOV resources this goes:
* pci_resource_alignment()
* pci_sriov_resource_alignment()
* pcibios_sriov_resource_alignment()
* pnv_pci_iov_resource_alignment()
*
* Our hook overrides the default alignment, equal to the per-vf-size, with
* new_size computed above.
*
* 3. When userspace enables VFs for a device:
*
* sriov_enable()
* pcibios_sriov_enable()
* pnv_pcibios_sriov_enable()
*
* This is where we actually allocate PE numbers for each VF and setup the
* MBT mapping for each SR-IOV BAR. In steps 1) and 2) we setup an "arena"
* where each MBT segment is equal in size to the VF BAR so we can shift
* around the actual SR-IOV BAR location within this arena. We need this
* ability because the PE space is shared by all devices on the same PHB.
* When using mode a) described above segment 0 in maps to PE#0 which might
* be already being used by another device on the PHB.
*
* As a result we need allocate a contigious range of PE numbers, then shift
* the address programmed into the SR-IOV BAR of the PF so that the address
* of VF0 matches up with the segment corresponding to the first allocated
* PE number. This is handled in pnv_pci_vf_resource_shift().
*
* Once all that is done we return to the PCI core which then enables VFs,
* scans them and creates pci_devs for each. The init process for a VF is
* largely the same as a normal device, but the VF is inserted into the IODA
* PE that we allocated for it rather than the PE associated with the bus.
*
* 4. When userspace disables VFs we unwind the above in
* pnv_pcibios_sriov_disable(). Fortunately this is relatively simple since
* we don't need to validate anything, just tear down the mappings and
* move SR-IOV resource back to its "proper" location.
*
* That's how mode a) works. In theory mode b) (single PE mapping) is less work
* since we can map each individual VF with a separate BAR. However, there's a
* few limitations:
*
* 1) For IODA2 mode b) has a minimum alignment requirement of 32MB. This makes
* it only usable for devices with very large per-VF BARs. Such devices are
* similar to Big Foot. They definitely exist, but I've never seen one.
*
* 2) The number of MBT entries that we have is limited. PHB3 and PHB4 only
* 16 total and some are needed for. Most SR-IOV capable network cards can support
* more than 16 VFs on each port.
*
* We use b) when using a) would use more than 1/4 of the entire 64 bit MMIO
* window of the PHB.
*
*
*
* PHB4 (IODA3) added a few new features that would be useful for SR-IOV. It
* allowed the MBT to map 32bit MMIO space in addition to 64bit which allows
* us to support SR-IOV BARs in the 32bit MMIO window. This is useful since
* the Linux BAR allocation will place any BAR marked as non-prefetchable into
* the non-prefetchable bridge window, which is 32bit only. It also added two
* new modes:
*
* c) A segmented BAR similar to a), but each segment can be individually
* mapped to any PE. This is matches how the 32bit MMIO window worked on
* IODA1&2.
*
* d) A segmented BAR with 8, 64, or 128 segments. This works similarly to a),
* but with fewer segments and configurable base PE.
*
* i.e. The n'th segment maps to the (n + base)'th PE.
*
* The base PE is also required to be a multiple of the window size.
*
* Unfortunately, the OPAL API doesn't currently (as of skiboot v6.6) allow us
* to exploit any of the IODA3 features.
*/
static void pnv_pci_ioda_fixup_iov_resources(struct pci_dev *pdev)
{
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
struct resource *res;
int i;
resource_size_t vf_bar_sz;
struct pnv_iov_data *iov;
int mul;
iov = kzalloc(sizeof(*iov), GFP_KERNEL);
if (!iov)
goto disable_iov;
pdev->dev.archdata.iov_data = iov;
mul = phb->ioda.total_pe_num;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || res->parent)
continue;
if (!pnv_pci_is_m64_flags(res->flags)) {
dev_warn(&pdev->dev, "Don't support SR-IOV with non M64 VF BAR%d: %pR. \n",
i, res);
goto disable_iov;
}
vf_bar_sz = pci_iov_resource_size(pdev, i + PCI_IOV_RESOURCES);
/*
* Generally, one segmented M64 BAR maps one IOV BAR. However,
* if a VF BAR is too large we end up wasting a lot of space.
* If each VF needs more than 1/4 of the default m64 segment
* then each VF BAR should be mapped in single-PE mode to reduce
* the amount of space required. This does however limit the
* number of VFs we can support.
*
* The 1/4 limit is arbitrary and can be tweaked.
*/
if (vf_bar_sz > (phb->ioda.m64_segsize >> 2)) {
/*
* On PHB3, the minimum size alignment of M64 BAR in
* single mode is 32MB. If this VF BAR is smaller than
* 32MB, but still too large for a segmented window
* then we can't map it and need to disable SR-IOV for
* this device.
*/
if (vf_bar_sz < SZ_32M) {
pci_err(pdev, "VF BAR%d: %pR can't be mapped in single PE mode\n",
i, res);
goto disable_iov;
}
iov->m64_single_mode[i] = true;
continue;
}
/*
* This BAR can be mapped with one segmented window, so adjust
* te resource size to accommodate.
*/
pci_dbg(pdev, " Fixing VF BAR%d: %pR to\n", i, res);
res->end = res->start + vf_bar_sz * mul - 1;
pci_dbg(pdev, " %pR\n", res);
pci_info(pdev, "VF BAR%d: %pR (expanded to %d VFs for PE alignment)",
i, res, mul);
iov->need_shift = true;
}
return;
disable_iov:
/* Save ourselves some MMIO space by disabling the unusable BARs */
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
res->flags = 0;
res->end = res->start - 1;
}
pdev->dev.archdata.iov_data = NULL;
kfree(iov);
}
void pnv_pci_ioda_fixup_iov(struct pci_dev *pdev)
{
if (pdev->is_virtfn) {
struct pnv_ioda_pe *pe = pnv_ioda_get_pe(pdev);
/*
* VF PEs are single-device PEs so their pdev pointer needs to
* be set. The pdev doesn't exist when the PE is allocated (in
* (pcibios_sriov_enable()) so we fix it up here.
*/
pe->pdev = pdev;
WARN_ON(!(pe->flags & PNV_IODA_PE_VF));
} else if (pdev->is_physfn) {
/*
* For PFs adjust their allocated IOV resources to match what
* the PHB can support using its M64 BAR table.
*/
pnv_pci_ioda_fixup_iov_resources(pdev);
}
}
resource_size_t pnv_pci_iov_resource_alignment(struct pci_dev *pdev,
int resno)
{
resource_size_t align = pci_iov_resource_size(pdev, resno);
struct pnv_phb *phb = pci_bus_to_pnvhb(pdev->bus);
struct pnv_iov_data *iov = pnv_iov_get(pdev);
/*
* iov can be null if we have an SR-IOV device with IOV BAR that can't
* be placed in the m64 space (i.e. The BAR is 32bit or non-prefetch).
* In that case we don't allow VFs to be enabled since one of their
* BARs would not be placed in the correct PE.
*/
if (!iov)
return align;
/*
* If we're using single mode then we can just use the native VF BAR
* alignment. We validated that it's possible to use a single PE
* window above when we did the fixup.
*/
if (iov->m64_single_mode[resno - PCI_IOV_RESOURCES])
return align;
/*
* On PowerNV platform, IOV BAR is mapped by M64 BAR to enable the
* SR-IOV. While from hardware perspective, the range mapped by M64
* BAR should be size aligned.
*
* This function returns the total IOV BAR size if M64 BAR is in
* Shared PE mode or just VF BAR size if not.
* If the M64 BAR is in Single PE mode, return the VF BAR size or
* M64 segment size if IOV BAR size is less.
*/
return phb->ioda.total_pe_num * align;
}
static int pnv_pci_vf_release_m64(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_iov_data *iov;
struct pnv_phb *phb;
int window_id;
phb = pci_bus_to_pnvhb(pdev->bus);
iov = pnv_iov_get(pdev);
for_each_set_bit(window_id, iov->used_m64_bar_mask, MAX_M64_BARS) {
opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
window_id,
0);
clear_bit(window_id, &phb->ioda.m64_bar_alloc);
}
return 0;
}
/*
* PHB3 and beyond support segmented windows. The window's address range
* is subdivided into phb->ioda.total_pe_num segments and there's a 1-1
* mapping between PEs and segments.
*/
static int64_t pnv_ioda_map_m64_segmented(struct pnv_phb *phb,
int window_id,
resource_size_t start,
resource_size_t size)
{
int64_t rc;
rc = opal_pci_set_phb_mem_window(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
window_id,
start,
0, /* unused */
size);
if (rc)
goto out;
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
window_id,
OPAL_ENABLE_M64_SPLIT);
out:
if (rc)
pr_err("Failed to map M64 window #%d: %lld\n", window_id, rc);
return rc;
}
static int64_t pnv_ioda_map_m64_single(struct pnv_phb *phb,
int pe_num,
int window_id,
resource_size_t start,
resource_size_t size)
{
int64_t rc;
/*
* The API for setting up m64 mmio windows seems to have been designed
* with P7-IOC in mind. For that chip each M64 BAR (window) had a fixed
* split of 8 equally sized segments each of which could individually
* assigned to a PE.
*
* The problem with this is that the API doesn't have any way to
* communicate the number of segments we want on a BAR. This wasn't
* a problem for p7-ioc since you didn't have a choice, but the
* single PE windows added in PHB3 don't map cleanly to this API.
*
* As a result we've got this slightly awkward process where we
* call opal_pci_map_pe_mmio_window() to put the single in single
* PE mode, and set the PE for the window before setting the address
* bounds. We need to do it this way because the single PE windows
* for PHB3 have different alignment requirements on PHB3.
*/
rc = opal_pci_map_pe_mmio_window(phb->opal_id,
pe_num,
OPAL_M64_WINDOW_TYPE,
window_id,
0);
if (rc)
goto out;
/*
* NB: In single PE mode the window needs to be aligned to 32MB
*/
rc = opal_pci_set_phb_mem_window(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
window_id,
start,
0, /* ignored by FW, m64 is 1-1 */
size);
if (rc)
goto out;
/*
* Now actually enable it. We specified the BAR should be in "non-split"
* mode so FW will validate that the BAR is in single PE mode.
*/
rc = opal_pci_phb_mmio_enable(phb->opal_id,
OPAL_M64_WINDOW_TYPE,
window_id,
OPAL_ENABLE_M64_NON_SPLIT);
out:
if (rc)
pr_err("Error mapping single PE BAR\n");
return rc;
}
static int pnv_pci_alloc_m64_bar(struct pnv_phb *phb, struct pnv_iov_data *iov)
{
int win;
do {
win = find_next_zero_bit(&phb->ioda.m64_bar_alloc,
phb->ioda.m64_bar_idx + 1, 0);
if (win >= phb->ioda.m64_bar_idx + 1)
return -1;
} while (test_and_set_bit(win, &phb->ioda.m64_bar_alloc));
set_bit(win, iov->used_m64_bar_mask);
return win;
}
static int pnv_pci_vf_assign_m64(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_iov_data *iov;
struct pnv_phb *phb;
int win;
struct resource *res;
int i, j;
int64_t rc;
resource_size_t size, start;
int base_pe_num;
phb = pci_bus_to_pnvhb(pdev->bus);
iov = pnv_iov_get(pdev);
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &pdev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
/* don't need single mode? map everything in one go! */
if (!iov->m64_single_mode[i]) {
win = pnv_pci_alloc_m64_bar(phb, iov);
if (win < 0)
goto m64_failed;
size = resource_size(res);
start = res->start;
rc = pnv_ioda_map_m64_segmented(phb, win, start, size);
if (rc)
goto m64_failed;
continue;
}
/* otherwise map each VF with single PE BARs */
size = pci_iov_resource_size(pdev, PCI_IOV_RESOURCES + i);
base_pe_num = iov->vf_pe_arr[0].pe_number;
for (j = 0; j < num_vfs; j++) {
win = pnv_pci_alloc_m64_bar(phb, iov);
if (win < 0)
goto m64_failed;
start = res->start + size * j;
rc = pnv_ioda_map_m64_single(phb, win,
base_pe_num + j,
start,
size);
if (rc)
goto m64_failed;
}
}
return 0;
m64_failed:
pnv_pci_vf_release_m64(pdev, num_vfs);
return -EBUSY;
}
static void pnv_ioda_release_vf_PE(struct pci_dev *pdev)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe, *pe_n;
phb = pci_bus_to_pnvhb(pdev->bus);
if (!pdev->is_physfn)
return;
/* FIXME: Use pnv_ioda_release_pe()? */
list_for_each_entry_safe(pe, pe_n, &phb->ioda.pe_list, list) {
if (pe->parent_dev != pdev)
continue;
pnv_pci_ioda2_release_pe_dma(pe);
/* Remove from list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_del(&pe->list);
mutex_unlock(&phb->ioda.pe_list_mutex);
pnv_ioda_deconfigure_pe(phb, pe);
pnv_ioda_free_pe(pe);
}
}
static int pnv_pci_vf_resource_shift(struct pci_dev *dev, int offset)
{
struct resource *res, res2;
struct pnv_iov_data *iov;
resource_size_t size;
u16 num_vfs;
int i;
if (!dev->is_physfn)
return -EINVAL;
iov = pnv_iov_get(dev);
/*
* "offset" is in VFs. The M64 windows are sized so that when they
* are segmented, each segment is the same size as the IOV BAR.
* Each segment is in a separate PE, and the high order bits of the
* address are the PE number. Therefore, each VF's BAR is in a
* separate PE, and changing the IOV BAR start address changes the
* range of PEs the VFs are in.
*/
num_vfs = iov->num_vfs;
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
if (iov->m64_single_mode[i])
continue;
/*
* The actual IOV BAR range is determined by the start address
* and the actual size for num_vfs VFs BAR. This check is to
* make sure that after shifting, the range will not overlap
* with another device.
*/
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
res2.flags = res->flags;
res2.start = res->start + (size * offset);
res2.end = res2.start + (size * num_vfs) - 1;
if (res2.end > res->end) {
dev_err(&dev->dev, "VF BAR%d: %pR would extend past %pR (trying to enable %d VFs shifted by %d)\n",
i, &res2, res, num_vfs, offset);
return -EBUSY;
}
}
/*
* Since M64 BAR shares segments among all possible 256 PEs,
* we have to shift the beginning of PF IOV BAR to make it start from
* the segment which belongs to the PE number assigned to the first VF.
* This creates a "hole" in the /proc/iomem which could be used for
* allocating other resources so we reserve this area below and
* release when IOV is released.
*/
for (i = 0; i < PCI_SRIOV_NUM_BARS; i++) {
res = &dev->resource[i + PCI_IOV_RESOURCES];
if (!res->flags || !res->parent)
continue;
if (iov->m64_single_mode[i])
continue;
size = pci_iov_resource_size(dev, i + PCI_IOV_RESOURCES);
res2 = *res;
res->start += size * offset;
dev_info(&dev->dev, "VF BAR%d: %pR shifted to %pR (%sabling %d VFs shifted by %d)\n",
i, &res2, res, (offset > 0) ? "En" : "Dis",
num_vfs, offset);
if (offset < 0) {
devm_release_resource(&dev->dev, &iov->holes[i]);
memset(&iov->holes[i], 0, sizeof(iov->holes[i]));
}
pci_update_resource(dev, i + PCI_IOV_RESOURCES);
if (offset > 0) {
iov->holes[i].start = res2.start;
iov->holes[i].end = res2.start + size * offset - 1;
iov->holes[i].flags = IORESOURCE_BUS;
iov->holes[i].name = "pnv_iov_reserved";
devm_request_resource(&dev->dev, res->parent,
&iov->holes[i]);
}
}
return 0;
}
static void pnv_pci_sriov_disable(struct pci_dev *pdev)
{
u16 num_vfs, base_pe;
struct pnv_iov_data *iov;
iov = pnv_iov_get(pdev);
if (WARN_ON(!iov))
return;
num_vfs = iov->num_vfs;
base_pe = iov->vf_pe_arr[0].pe_number;
/* Release VF PEs */
pnv_ioda_release_vf_PE(pdev);
/* Un-shift the IOV BARs if we need to */
if (iov->need_shift)
pnv_pci_vf_resource_shift(pdev, -base_pe);
/* Release M64 windows */
pnv_pci_vf_release_m64(pdev, num_vfs);
}
static void pnv_ioda_setup_vf_PE(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_phb *phb;
struct pnv_ioda_pe *pe;
int pe_num;
u16 vf_index;
struct pnv_iov_data *iov;
struct pci_dn *pdn;
if (!pdev->is_physfn)
return;
phb = pci_bus_to_pnvhb(pdev->bus);
pdn = pci_get_pdn(pdev);
iov = pnv_iov_get(pdev);
/* Reserve PE for each VF */
for (vf_index = 0; vf_index < num_vfs; vf_index++) {
int vf_devfn = pci_iov_virtfn_devfn(pdev, vf_index);
int vf_bus = pci_iov_virtfn_bus(pdev, vf_index);
struct pci_dn *vf_pdn;
pe = &iov->vf_pe_arr[vf_index];
pe->phb = phb;
pe->flags = PNV_IODA_PE_VF;
pe->pbus = NULL;
pe->parent_dev = pdev;
pe->mve_number = -1;
pe->rid = (vf_bus << 8) | vf_devfn;
pe_num = pe->pe_number;
pe_info(pe, "VF %04d:%02d:%02d.%d associated with PE#%x\n",
pci_domain_nr(pdev->bus), pdev->bus->number,
PCI_SLOT(vf_devfn), PCI_FUNC(vf_devfn), pe_num);
if (pnv_ioda_configure_pe(phb, pe)) {
/* XXX What do we do here ? */
pnv_ioda_free_pe(pe);
pe->pdev = NULL;
continue;
}
/* Put PE to the list */
mutex_lock(&phb->ioda.pe_list_mutex);
list_add_tail(&pe->list, &phb->ioda.pe_list);
mutex_unlock(&phb->ioda.pe_list_mutex);
/* associate this pe to its pdn */
list_for_each_entry(vf_pdn, &pdn->parent->child_list, list) {
if (vf_pdn->busno == vf_bus &&
vf_pdn->devfn == vf_devfn) {
vf_pdn->pe_number = pe_num;
break;
}
}
pnv_pci_ioda2_setup_dma_pe(phb, pe);
}
}
static int pnv_pci_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
struct pnv_ioda_pe *base_pe;
struct pnv_iov_data *iov;
struct pnv_phb *phb;
int ret;
u16 i;
phb = pci_bus_to_pnvhb(pdev->bus);
iov = pnv_iov_get(pdev);
/*
* There's a calls to IODA2 PE setup code littered throughout. We could
* probably fix that, but we'd still have problems due to the
* restriction inherent on IODA1 PHBs.
*
* NB: We class IODA3 as IODA2 since they're very similar.
*/
if (phb->type != PNV_PHB_IODA2) {
pci_err(pdev, "SR-IOV is not supported on this PHB\n");
return -ENXIO;
}
if (!iov) {
dev_info(&pdev->dev, "don't support this SRIOV device with non 64bit-prefetchable IOV BAR\n");
return -ENOSPC;
}
/* allocate a contiguous block of PEs for our VFs */
base_pe = pnv_ioda_alloc_pe(phb, num_vfs);
if (!base_pe) {
pci_err(pdev, "Unable to allocate PEs for %d VFs\n", num_vfs);
return -EBUSY;
}
iov->vf_pe_arr = base_pe;
iov->num_vfs = num_vfs;
/* Assign M64 window accordingly */
ret = pnv_pci_vf_assign_m64(pdev, num_vfs);
if (ret) {
dev_info(&pdev->dev, "Not enough M64 window resources\n");
goto m64_failed;
}
/*
* When using one M64 BAR to map one IOV BAR, we need to shift
* the IOV BAR according to the PE# allocated to the VFs.
* Otherwise, the PE# for the VF will conflict with others.
*/
if (iov->need_shift) {
ret = pnv_pci_vf_resource_shift(pdev, base_pe->pe_number);
if (ret)
goto shift_failed;
}
/* Setup VF PEs */
pnv_ioda_setup_vf_PE(pdev, num_vfs);
return 0;
shift_failed:
pnv_pci_vf_release_m64(pdev, num_vfs);
m64_failed:
for (i = 0; i < num_vfs; i++)
pnv_ioda_free_pe(&iov->vf_pe_arr[i]);
return ret;
}
int pnv_pcibios_sriov_disable(struct pci_dev *pdev)
{
pnv_pci_sriov_disable(pdev);
/* Release PCI data */
remove_sriov_vf_pdns(pdev);
return 0;
}
int pnv_pcibios_sriov_enable(struct pci_dev *pdev, u16 num_vfs)
{
/* Allocate PCI data */
add_sriov_vf_pdns(pdev);
return pnv_pci_sriov_enable(pdev, num_vfs);
}
|