summaryrefslogtreecommitdiffstats
path: root/arch/sparc/mm/init_64.c
blob: 051f7340179389a85bf3fe89e019e7ab5c60c816 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
// SPDX-License-Identifier: GPL-2.0
/*
 *  arch/sparc64/mm/init.c
 *
 *  Copyright (C) 1996-1999 David S. Miller (davem@caip.rutgers.edu)
 *  Copyright (C) 1997-1999 Jakub Jelinek (jj@sunsite.mff.cuni.cz)
 */
 
#include <linux/extable.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/string.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/mm.h>
#include <linux/hugetlb.h>
#include <linux/initrd.h>
#include <linux/swap.h>
#include <linux/pagemap.h>
#include <linux/poison.h>
#include <linux/fs.h>
#include <linux/seq_file.h>
#include <linux/kprobes.h>
#include <linux/cache.h>
#include <linux/sort.h>
#include <linux/ioport.h>
#include <linux/percpu.h>
#include <linux/memblock.h>
#include <linux/mmzone.h>
#include <linux/gfp.h>

#include <asm/head.h>
#include <asm/page.h>
#include <asm/pgalloc.h>
#include <asm/pgtable.h>
#include <asm/oplib.h>
#include <asm/iommu.h>
#include <asm/io.h>
#include <linux/uaccess.h>
#include <asm/mmu_context.h>
#include <asm/tlbflush.h>
#include <asm/dma.h>
#include <asm/starfire.h>
#include <asm/tlb.h>
#include <asm/spitfire.h>
#include <asm/sections.h>
#include <asm/tsb.h>
#include <asm/hypervisor.h>
#include <asm/prom.h>
#include <asm/mdesc.h>
#include <asm/cpudata.h>
#include <asm/setup.h>
#include <asm/irq.h>

#include "init_64.h"

unsigned long kern_linear_pte_xor[4] __read_mostly;
static unsigned long page_cache4v_flag;

/* A bitmap, two bits for every 256MB of physical memory.  These two
 * bits determine what page size we use for kernel linear
 * translations.  They form an index into kern_linear_pte_xor[].  The
 * value in the indexed slot is XOR'd with the TLB miss virtual
 * address to form the resulting TTE.  The mapping is:
 *
 *	0	==>	4MB
 *	1	==>	256MB
 *	2	==>	2GB
 *	3	==>	16GB
 *
 * All sun4v chips support 256MB pages.  Only SPARC-T4 and later
 * support 2GB pages, and hopefully future cpus will support the 16GB
 * pages as well.  For slots 2 and 3, we encode a 256MB TTE xor there
 * if these larger page sizes are not supported by the cpu.
 *
 * It would be nice to determine this from the machine description
 * 'cpu' properties, but we need to have this table setup before the
 * MDESC is initialized.
 */

#ifndef CONFIG_DEBUG_PAGEALLOC
/* A special kernel TSB for 4MB, 256MB, 2GB and 16GB linear mappings.
 * Space is allocated for this right after the trap table in
 * arch/sparc64/kernel/head.S
 */
extern struct tsb swapper_4m_tsb[KERNEL_TSB4M_NENTRIES];
#endif
extern struct tsb swapper_tsb[KERNEL_TSB_NENTRIES];

static unsigned long cpu_pgsz_mask;

#define MAX_BANKS	1024

static struct linux_prom64_registers pavail[MAX_BANKS];
static int pavail_ents;

u64 numa_latency[MAX_NUMNODES][MAX_NUMNODES];

static int cmp_p64(const void *a, const void *b)
{
	const struct linux_prom64_registers *x = a, *y = b;

	if (x->phys_addr > y->phys_addr)
		return 1;
	if (x->phys_addr < y->phys_addr)
		return -1;
	return 0;
}

static void __init read_obp_memory(const char *property,
				   struct linux_prom64_registers *regs,
				   int *num_ents)
{
	phandle node = prom_finddevice("/memory");
	int prop_size = prom_getproplen(node, property);
	int ents, ret, i;

	ents = prop_size / sizeof(struct linux_prom64_registers);
	if (ents > MAX_BANKS) {
		prom_printf("The machine has more %s property entries than "
			    "this kernel can support (%d).\n",
			    property, MAX_BANKS);
		prom_halt();
	}

	ret = prom_getproperty(node, property, (char *) regs, prop_size);
	if (ret == -1) {
		prom_printf("Couldn't get %s property from /memory.\n",
				property);
		prom_halt();
	}

	/* Sanitize what we got from the firmware, by page aligning
	 * everything.
	 */
	for (i = 0; i < ents; i++) {
		unsigned long base, size;

		base = regs[i].phys_addr;
		size = regs[i].reg_size;

		size &= PAGE_MASK;
		if (base & ~PAGE_MASK) {
			unsigned long new_base = PAGE_ALIGN(base);

			size -= new_base - base;
			if ((long) size < 0L)
				size = 0UL;
			base = new_base;
		}
		if (size == 0UL) {
			/* If it is empty, simply get rid of it.
			 * This simplifies the logic of the other
			 * functions that process these arrays.
			 */
			memmove(&regs[i], &regs[i + 1],
				(ents - i - 1) * sizeof(regs[0]));
			i--;
			ents--;
			continue;
		}
		regs[i].phys_addr = base;
		regs[i].reg_size = size;
	}

	*num_ents = ents;

	sort(regs, ents, sizeof(struct linux_prom64_registers),
	     cmp_p64, NULL);
}

/* Kernel physical address base and size in bytes.  */
unsigned long kern_base __read_mostly;
unsigned long kern_size __read_mostly;

/* Initial ramdisk setup */
extern unsigned long sparc_ramdisk_image64;
extern unsigned int sparc_ramdisk_image;
extern unsigned int sparc_ramdisk_size;

struct page *mem_map_zero __read_mostly;
EXPORT_SYMBOL(mem_map_zero);

unsigned int sparc64_highest_unlocked_tlb_ent __read_mostly;

unsigned long sparc64_kern_pri_context __read_mostly;
unsigned long sparc64_kern_pri_nuc_bits __read_mostly;
unsigned long sparc64_kern_sec_context __read_mostly;

int num_kernel_image_mappings;

#ifdef CONFIG_DEBUG_DCFLUSH
atomic_t dcpage_flushes = ATOMIC_INIT(0);
#ifdef CONFIG_SMP
atomic_t dcpage_flushes_xcall = ATOMIC_INIT(0);
#endif
#endif

inline void flush_dcache_page_impl(struct page *page)
{
	BUG_ON(tlb_type == hypervisor);
#ifdef CONFIG_DEBUG_DCFLUSH
	atomic_inc(&dcpage_flushes);
#endif

#ifdef DCACHE_ALIASING_POSSIBLE
	__flush_dcache_page(page_address(page),
			    ((tlb_type == spitfire) &&
			     page_mapping(page) != NULL));
#else
	if (page_mapping(page) != NULL &&
	    tlb_type == spitfire)
		__flush_icache_page(__pa(page_address(page)));
#endif
}

#define PG_dcache_dirty		PG_arch_1
#define PG_dcache_cpu_shift	32UL
#define PG_dcache_cpu_mask	\
	((1UL<<ilog2(roundup_pow_of_two(NR_CPUS)))-1UL)

#define dcache_dirty_cpu(page) \
	(((page)->flags >> PG_dcache_cpu_shift) & PG_dcache_cpu_mask)

static inline void set_dcache_dirty(struct page *page, int this_cpu)
{
	unsigned long mask = this_cpu;
	unsigned long non_cpu_bits;

	non_cpu_bits = ~(PG_dcache_cpu_mask << PG_dcache_cpu_shift);
	mask = (mask << PG_dcache_cpu_shift) | (1UL << PG_dcache_dirty);

	__asm__ __volatile__("1:\n\t"
			     "ldx	[%2], %%g7\n\t"
			     "and	%%g7, %1, %%g1\n\t"
			     "or	%%g1, %0, %%g1\n\t"
			     "casx	[%2], %%g7, %%g1\n\t"
			     "cmp	%%g7, %%g1\n\t"
			     "bne,pn	%%xcc, 1b\n\t"
			     " nop"
			     : /* no outputs */
			     : "r" (mask), "r" (non_cpu_bits), "r" (&page->flags)
			     : "g1", "g7");
}

static inline void clear_dcache_dirty_cpu(struct page *page, unsigned long cpu)
{
	unsigned long mask = (1UL << PG_dcache_dirty);

	__asm__ __volatile__("! test_and_clear_dcache_dirty\n"
			     "1:\n\t"
			     "ldx	[%2], %%g7\n\t"
			     "srlx	%%g7, %4, %%g1\n\t"
			     "and	%%g1, %3, %%g1\n\t"
			     "cmp	%%g1, %0\n\t"
			     "bne,pn	%%icc, 2f\n\t"
			     " andn	%%g7, %1, %%g1\n\t"
			     "casx	[%2], %%g7, %%g1\n\t"
			     "cmp	%%g7, %%g1\n\t"
			     "bne,pn	%%xcc, 1b\n\t"
			     " nop\n"
			     "2:"
			     : /* no outputs */
			     : "r" (cpu), "r" (mask), "r" (&page->flags),
			       "i" (PG_dcache_cpu_mask),
			       "i" (PG_dcache_cpu_shift)
			     : "g1", "g7");
}

static inline void tsb_insert(struct tsb *ent, unsigned long tag, unsigned long pte)
{
	unsigned long tsb_addr = (unsigned long) ent;

	if (tlb_type == cheetah_plus || tlb_type == hypervisor)
		tsb_addr = __pa(tsb_addr);

	__tsb_insert(tsb_addr, tag, pte);
}

unsigned long _PAGE_ALL_SZ_BITS __read_mostly;

static void flush_dcache(unsigned long pfn)
{
	struct page *page;

	page = pfn_to_page(pfn);
	if (page) {
		unsigned long pg_flags;

		pg_flags = page->flags;
		if (pg_flags & (1UL << PG_dcache_dirty)) {
			int cpu = ((pg_flags >> PG_dcache_cpu_shift) &
				   PG_dcache_cpu_mask);
			int this_cpu = get_cpu();

			/* This is just to optimize away some function calls
			 * in the SMP case.
			 */
			if (cpu == this_cpu)
				flush_dcache_page_impl(page);
			else
				smp_flush_dcache_page_impl(page, cpu);

			clear_dcache_dirty_cpu(page, cpu);

			put_cpu();
		}
	}
}

/* mm->context.lock must be held */
static void __update_mmu_tsb_insert(struct mm_struct *mm, unsigned long tsb_index,
				    unsigned long tsb_hash_shift, unsigned long address,
				    unsigned long tte)
{
	struct tsb *tsb = mm->context.tsb_block[tsb_index].tsb;
	unsigned long tag;

	if (unlikely(!tsb))
		return;

	tsb += ((address >> tsb_hash_shift) &
		(mm->context.tsb_block[tsb_index].tsb_nentries - 1UL));
	tag = (address >> 22UL);
	tsb_insert(tsb, tag, tte);
}

#ifdef CONFIG_HUGETLB_PAGE
static void __init add_huge_page_size(unsigned long size)
{
	unsigned int order;

	if (size_to_hstate(size))
		return;

	order = ilog2(size) - PAGE_SHIFT;
	hugetlb_add_hstate(order);
}

static int __init hugetlbpage_init(void)
{
	add_huge_page_size(1UL << HPAGE_64K_SHIFT);
	add_huge_page_size(1UL << HPAGE_SHIFT);
	add_huge_page_size(1UL << HPAGE_256MB_SHIFT);
	add_huge_page_size(1UL << HPAGE_2GB_SHIFT);

	return 0;
}

arch_initcall(hugetlbpage_init);

static void __init pud_huge_patch(void)
{
	struct pud_huge_patch_entry *p;
	unsigned long addr;

	p = &__pud_huge_patch;
	addr = p->addr;
	*(unsigned int *)addr = p->insn;

	__asm__ __volatile__("flush %0" : : "r" (addr));
}

static int __init setup_hugepagesz(char *string)
{
	unsigned long long hugepage_size;
	unsigned int hugepage_shift;
	unsigned short hv_pgsz_idx;
	unsigned int hv_pgsz_mask;
	int rc = 0;

	hugepage_size = memparse(string, &string);
	hugepage_shift = ilog2(hugepage_size);

	switch (hugepage_shift) {
	case HPAGE_16GB_SHIFT:
		hv_pgsz_mask = HV_PGSZ_MASK_16GB;
		hv_pgsz_idx = HV_PGSZ_IDX_16GB;
		pud_huge_patch();
		break;
	case HPAGE_2GB_SHIFT:
		hv_pgsz_mask = HV_PGSZ_MASK_2GB;
		hv_pgsz_idx = HV_PGSZ_IDX_2GB;
		break;
	case HPAGE_256MB_SHIFT:
		hv_pgsz_mask = HV_PGSZ_MASK_256MB;
		hv_pgsz_idx = HV_PGSZ_IDX_256MB;
		break;
	case HPAGE_SHIFT:
		hv_pgsz_mask = HV_PGSZ_MASK_4MB;
		hv_pgsz_idx = HV_PGSZ_IDX_4MB;
		break;
	case HPAGE_64K_SHIFT:
		hv_pgsz_mask = HV_PGSZ_MASK_64K;
		hv_pgsz_idx = HV_PGSZ_IDX_64K;
		break;
	default:
		hv_pgsz_mask = 0;
	}

	if ((hv_pgsz_mask & cpu_pgsz_mask) == 0U) {
		hugetlb_bad_size();
		pr_err("hugepagesz=%llu not supported by MMU.\n",
			hugepage_size);
		goto out;
	}

	add_huge_page_size(hugepage_size);
	rc = 1;

out:
	return rc;
}
__setup("hugepagesz=", setup_hugepagesz);
#endif	/* CONFIG_HUGETLB_PAGE */

void update_mmu_cache(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
{
	struct mm_struct *mm;
	unsigned long flags;
	bool is_huge_tsb;
	pte_t pte = *ptep;

	if (tlb_type != hypervisor) {
		unsigned long pfn = pte_pfn(pte);

		if (pfn_valid(pfn))
			flush_dcache(pfn);
	}

	mm = vma->vm_mm;

	/* Don't insert a non-valid PTE into the TSB, we'll deadlock.  */
	if (!pte_accessible(mm, pte))
		return;

	spin_lock_irqsave(&mm->context.lock, flags);

	is_huge_tsb = false;
#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
	if (mm->context.hugetlb_pte_count || mm->context.thp_pte_count) {
		unsigned long hugepage_size = PAGE_SIZE;

		if (is_vm_hugetlb_page(vma))
			hugepage_size = huge_page_size(hstate_vma(vma));

		if (hugepage_size >= PUD_SIZE) {
			unsigned long mask = 0x1ffc00000UL;

			/* Transfer bits [32:22] from address to resolve
			 * at 4M granularity.
			 */
			pte_val(pte) &= ~mask;
			pte_val(pte) |= (address & mask);
		} else if (hugepage_size >= PMD_SIZE) {
			/* We are fabricating 8MB pages using 4MB
			 * real hw pages.
			 */
			pte_val(pte) |= (address & (1UL << REAL_HPAGE_SHIFT));
		}

		if (hugepage_size >= PMD_SIZE) {
			__update_mmu_tsb_insert(mm, MM_TSB_HUGE,
				REAL_HPAGE_SHIFT, address, pte_val(pte));
			is_huge_tsb = true;
		}
	}
#endif
	if (!is_huge_tsb)
		__update_mmu_tsb_insert(mm, MM_TSB_BASE, PAGE_SHIFT,
					address, pte_val(pte));

	spin_unlock_irqrestore(&mm->context.lock, flags);
}

void flush_dcache_page(struct page *page)
{
	struct address_space *mapping;
	int this_cpu;

	if (tlb_type == hypervisor)
		return;

	/* Do not bother with the expensive D-cache flush if it
	 * is merely the zero page.  The 'bigcore' testcase in GDB
	 * causes this case to run millions of times.
	 */
	if (page == ZERO_PAGE(0))
		return;

	this_cpu = get_cpu();

	mapping = page_mapping(page);
	if (mapping && !mapping_mapped(mapping)) {
		int dirty = test_bit(PG_dcache_dirty, &page->flags);
		if (dirty) {
			int dirty_cpu = dcache_dirty_cpu(page);

			if (dirty_cpu == this_cpu)
				goto out;
			smp_flush_dcache_page_impl(page, dirty_cpu);
		}
		set_dcache_dirty(page, this_cpu);
	} else {
		/* We could delay the flush for the !page_mapping
		 * case too.  But that case is for exec env/arg
		 * pages and those are %99 certainly going to get
		 * faulted into the tlb (and thus flushed) anyways.
		 */
		flush_dcache_page_impl(page);
	}

out:
	put_cpu();
}
EXPORT_SYMBOL(flush_dcache_page);

void __kprobes flush_icache_range(unsigned long start, unsigned long end)
{
	/* Cheetah and Hypervisor platform cpus have coherent I-cache. */
	if (tlb_type == spitfire) {
		unsigned long kaddr;

		/* This code only runs on Spitfire cpus so this is
		 * why we can assume _PAGE_PADDR_4U.
		 */
		for (kaddr = start; kaddr < end; kaddr += PAGE_SIZE) {
			unsigned long paddr, mask = _PAGE_PADDR_4U;

			if (kaddr >= PAGE_OFFSET)
				paddr = kaddr & mask;
			else {
				pgd_t *pgdp = pgd_offset_k(kaddr);
				pud_t *pudp = pud_offset(pgdp, kaddr);
				pmd_t *pmdp = pmd_offset(pudp, kaddr);
				pte_t *ptep = pte_offset_kernel(pmdp, kaddr);

				paddr = pte_val(*ptep) & mask;
			}
			__flush_icache_page(paddr);
		}
	}
}
EXPORT_SYMBOL(flush_icache_range);

void mmu_info(struct seq_file *m)
{
	static const char *pgsz_strings[] = {
		"8K", "64K", "512K", "4MB", "32MB",
		"256MB", "2GB", "16GB",
	};
	int i, printed;

	if (tlb_type == cheetah)
		seq_printf(m, "MMU Type\t: Cheetah\n");
	else if (tlb_type == cheetah_plus)
		seq_printf(m, "MMU Type\t: Cheetah+\n");
	else if (tlb_type == spitfire)
		seq_printf(m, "MMU Type\t: Spitfire\n");
	else if (tlb_type == hypervisor)
		seq_printf(m, "MMU Type\t: Hypervisor (sun4v)\n");
	else
		seq_printf(m, "MMU Type\t: ???\n");

	seq_printf(m, "MMU PGSZs\t: ");
	printed = 0;
	for (i = 0; i < ARRAY_SIZE(pgsz_strings); i++) {
		if (cpu_pgsz_mask & (1UL << i)) {
			seq_printf(m, "%s%s",
				   printed ? "," : "", pgsz_strings[i]);
			printed++;
		}
	}
	seq_putc(m, '\n');

#ifdef CONFIG_DEBUG_DCFLUSH
	seq_printf(m, "DCPageFlushes\t: %d\n",
		   atomic_read(&dcpage_flushes));
#ifdef CONFIG_SMP
	seq_printf(m, "DCPageFlushesXC\t: %d\n",
		   atomic_read(&dcpage_flushes_xcall));
#endif /* CONFIG_SMP */
#endif /* CONFIG_DEBUG_DCFLUSH */
}

struct linux_prom_translation prom_trans[512] __read_mostly;
unsigned int prom_trans_ents __read_mostly;

unsigned long kern_locked_tte_data;

/* The obp translations are saved based on 8k pagesize, since obp can
 * use a mixture of pagesizes. Misses to the LOW_OBP_ADDRESS ->
 * HI_OBP_ADDRESS range are handled in ktlb.S.
 */
static inline int in_obp_range(unsigned long vaddr)
{
	return (vaddr >= LOW_OBP_ADDRESS &&
		vaddr < HI_OBP_ADDRESS);
}

static int cmp_ptrans(const void *a, const void *b)
{
	const struct linux_prom_translation *x = a, *y = b;

	if (x->virt > y->virt)
		return 1;
	if (x->virt < y->virt)
		return -1;
	return 0;
}

/* Read OBP translations property into 'prom_trans[]'.  */
static void __init read_obp_translations(void)
{
	int n, node, ents, first, last, i;

	node = prom_finddevice("/virtual-memory");
	n = prom_getproplen(node, "translations");
	if (unlikely(n == 0 || n == -1)) {
		prom_printf("prom_mappings: Couldn't get size.\n");
		prom_halt();
	}
	if (unlikely(n > sizeof(prom_trans))) {
		prom_printf("prom_mappings: Size %d is too big.\n", n);
		prom_halt();
	}

	if ((n = prom_getproperty(node, "translations",
				  (char *)&prom_trans[0],
				  sizeof(prom_trans))) == -1) {
		prom_printf("prom_mappings: Couldn't get property.\n");
		prom_halt();
	}

	n = n / sizeof(struct linux_prom_translation);

	ents = n;

	sort(prom_trans, ents, sizeof(struct linux_prom_translation),
	     cmp_ptrans, NULL);

	/* Now kick out all the non-OBP entries.  */
	for (i = 0; i < ents; i++) {
		if (in_obp_range(prom_trans[i].virt))
			break;
	}
	first = i;
	for (; i < ents; i++) {
		if (!in_obp_range(prom_trans[i].virt))
			break;
	}
	last = i;

	for (i = 0; i < (last - first); i++) {
		struct linux_prom_translation *src = &prom_trans[i + first];
		struct linux_prom_translation *dest = &prom_trans[i];

		*dest = *src;
	}
	for (; i < ents; i++) {
		struct linux_prom_translation *dest = &prom_trans[i];
		dest->virt = dest->size = dest->data = 0x0UL;
	}

	prom_trans_ents = last - first;

	if (tlb_type == spitfire) {
		/* Clear diag TTE bits. */
		for (i = 0; i < prom_trans_ents; i++)
			prom_trans[i].data &= ~0x0003fe0000000000UL;
	}

	/* Force execute bit on.  */
	for (i = 0; i < prom_trans_ents; i++)
		prom_trans[i].data |= (tlb_type == hypervisor ?
				       _PAGE_EXEC_4V : _PAGE_EXEC_4U);
}

static void __init hypervisor_tlb_lock(unsigned long vaddr,
				       unsigned long pte,
				       unsigned long mmu)
{
	unsigned long ret = sun4v_mmu_map_perm_addr(vaddr, 0, pte, mmu);

	if (ret != 0) {
		prom_printf("hypervisor_tlb_lock[%lx:%x:%lx:%lx]: "
			    "errors with %lx\n", vaddr, 0, pte, mmu, ret);
		prom_halt();
	}
}

static unsigned long kern_large_tte(unsigned long paddr);

static void __init remap_kernel(void)
{
	unsigned long phys_page, tte_vaddr, tte_data;
	int i, tlb_ent = sparc64_highest_locked_tlbent();

	tte_vaddr = (unsigned long) KERNBASE;
	phys_page = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
	tte_data = kern_large_tte(phys_page);

	kern_locked_tte_data = tte_data;

	/* Now lock us into the TLBs via Hypervisor or OBP. */
	if (tlb_type == hypervisor) {
		for (i = 0; i < num_kernel_image_mappings; i++) {
			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_DMMU);
			hypervisor_tlb_lock(tte_vaddr, tte_data, HV_MMU_IMMU);
			tte_vaddr += 0x400000;
			tte_data += 0x400000;
		}
	} else {
		for (i = 0; i < num_kernel_image_mappings; i++) {
			prom_dtlb_load(tlb_ent - i, tte_data, tte_vaddr);
			prom_itlb_load(tlb_ent - i, tte_data, tte_vaddr);
			tte_vaddr += 0x400000;
			tte_data += 0x400000;
		}
		sparc64_highest_unlocked_tlb_ent = tlb_ent - i;
	}
	if (tlb_type == cheetah_plus) {
		sparc64_kern_pri_context = (CTX_CHEETAH_PLUS_CTX0 |
					    CTX_CHEETAH_PLUS_NUC);
		sparc64_kern_pri_nuc_bits = CTX_CHEETAH_PLUS_NUC;
		sparc64_kern_sec_context = CTX_CHEETAH_PLUS_CTX0;
	}
}


static void __init inherit_prom_mappings(void)
{
	/* Now fixup OBP's idea about where we really are mapped. */
	printk("Remapping the kernel... ");
	remap_kernel();
	printk("done.\n");
}

void prom_world(int enter)
{
	if (!enter)
		set_fs(get_fs());

	__asm__ __volatile__("flushw");
}

void __flush_dcache_range(unsigned long start, unsigned long end)
{
	unsigned long va;

	if (tlb_type == spitfire) {
		int n = 0;

		for (va = start; va < end; va += 32) {
			spitfire_put_dcache_tag(va & 0x3fe0, 0x0);
			if (++n >= 512)
				break;
		}
	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
		start = __pa(start);
		end = __pa(end);
		for (va = start; va < end; va += 32)
			__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
					     "membar #Sync"
					     : /* no outputs */
					     : "r" (va),
					       "i" (ASI_DCACHE_INVALIDATE));
	}
}
EXPORT_SYMBOL(__flush_dcache_range);

/* get_new_mmu_context() uses "cache + 1".  */
DEFINE_SPINLOCK(ctx_alloc_lock);
unsigned long tlb_context_cache = CTX_FIRST_VERSION;
#define MAX_CTX_NR	(1UL << CTX_NR_BITS)
#define CTX_BMAP_SLOTS	BITS_TO_LONGS(MAX_CTX_NR)
DECLARE_BITMAP(mmu_context_bmap, MAX_CTX_NR);
DEFINE_PER_CPU(struct mm_struct *, per_cpu_secondary_mm) = {0};

static void mmu_context_wrap(void)
{
	unsigned long old_ver = tlb_context_cache & CTX_VERSION_MASK;
	unsigned long new_ver, new_ctx, old_ctx;
	struct mm_struct *mm;
	int cpu;

	bitmap_zero(mmu_context_bmap, 1 << CTX_NR_BITS);

	/* Reserve kernel context */
	set_bit(0, mmu_context_bmap);

	new_ver = (tlb_context_cache & CTX_VERSION_MASK) + CTX_FIRST_VERSION;
	if (unlikely(new_ver == 0))
		new_ver = CTX_FIRST_VERSION;
	tlb_context_cache = new_ver;

	/*
	 * Make sure that any new mm that are added into per_cpu_secondary_mm,
	 * are going to go through get_new_mmu_context() path.
	 */
	mb();

	/*
	 * Updated versions to current on those CPUs that had valid secondary
	 * contexts
	 */
	for_each_online_cpu(cpu) {
		/*
		 * If a new mm is stored after we took this mm from the array,
		 * it will go into get_new_mmu_context() path, because we
		 * already bumped the version in tlb_context_cache.
		 */
		mm = per_cpu(per_cpu_secondary_mm, cpu);

		if (unlikely(!mm || mm == &init_mm))
			continue;

		old_ctx = mm->context.sparc64_ctx_val;
		if (likely((old_ctx & CTX_VERSION_MASK) == old_ver)) {
			new_ctx = (old_ctx & ~CTX_VERSION_MASK) | new_ver;
			set_bit(new_ctx & CTX_NR_MASK, mmu_context_bmap);
			mm->context.sparc64_ctx_val = new_ctx;
		}
	}
}

/* Caller does TLB context flushing on local CPU if necessary.
 * The caller also ensures that CTX_VALID(mm->context) is false.
 *
 * We must be careful about boundary cases so that we never
 * let the user have CTX 0 (nucleus) or we ever use a CTX
 * version of zero (and thus NO_CONTEXT would not be caught
 * by version mis-match tests in mmu_context.h).
 *
 * Always invoked with interrupts disabled.
 */
void get_new_mmu_context(struct mm_struct *mm)
{
	unsigned long ctx, new_ctx;
	unsigned long orig_pgsz_bits;

	spin_lock(&ctx_alloc_lock);
retry:
	/* wrap might have happened, test again if our context became valid */
	if (unlikely(CTX_VALID(mm->context)))
		goto out;
	orig_pgsz_bits = (mm->context.sparc64_ctx_val & CTX_PGSZ_MASK);
	ctx = (tlb_context_cache + 1) & CTX_NR_MASK;
	new_ctx = find_next_zero_bit(mmu_context_bmap, 1 << CTX_NR_BITS, ctx);
	if (new_ctx >= (1 << CTX_NR_BITS)) {
		new_ctx = find_next_zero_bit(mmu_context_bmap, ctx, 1);
		if (new_ctx >= ctx) {
			mmu_context_wrap();
			goto retry;
		}
	}
	if (mm->context.sparc64_ctx_val)
		cpumask_clear(mm_cpumask(mm));
	mmu_context_bmap[new_ctx>>6] |= (1UL << (new_ctx & 63));
	new_ctx |= (tlb_context_cache & CTX_VERSION_MASK);
	tlb_context_cache = new_ctx;
	mm->context.sparc64_ctx_val = new_ctx | orig_pgsz_bits;
out:
	spin_unlock(&ctx_alloc_lock);
}

static int numa_enabled = 1;
static int numa_debug;

static int __init early_numa(char *p)
{
	if (!p)
		return 0;

	if (strstr(p, "off"))
		numa_enabled = 0;

	if (strstr(p, "debug"))
		numa_debug = 1;

	return 0;
}
early_param("numa", early_numa);

#define numadbg(f, a...) \
do {	if (numa_debug) \
		printk(KERN_INFO f, ## a); \
} while (0)

static void __init find_ramdisk(unsigned long phys_base)
{
#ifdef CONFIG_BLK_DEV_INITRD
	if (sparc_ramdisk_image || sparc_ramdisk_image64) {
		unsigned long ramdisk_image;

		/* Older versions of the bootloader only supported a
		 * 32-bit physical address for the ramdisk image
		 * location, stored at sparc_ramdisk_image.  Newer
		 * SILO versions set sparc_ramdisk_image to zero and
		 * provide a full 64-bit physical address at
		 * sparc_ramdisk_image64.
		 */
		ramdisk_image = sparc_ramdisk_image;
		if (!ramdisk_image)
			ramdisk_image = sparc_ramdisk_image64;

		/* Another bootloader quirk.  The bootloader normalizes
		 * the physical address to KERNBASE, so we have to
		 * factor that back out and add in the lowest valid
		 * physical page address to get the true physical address.
		 */
		ramdisk_image -= KERNBASE;
		ramdisk_image += phys_base;

		numadbg("Found ramdisk at physical address 0x%lx, size %u\n",
			ramdisk_image, sparc_ramdisk_size);

		initrd_start = ramdisk_image;
		initrd_end = ramdisk_image + sparc_ramdisk_size;

		memblock_reserve(initrd_start, sparc_ramdisk_size);

		initrd_start += PAGE_OFFSET;
		initrd_end += PAGE_OFFSET;
	}
#endif
}

struct node_mem_mask {
	unsigned long mask;
	unsigned long match;
};
static struct node_mem_mask node_masks[MAX_NUMNODES];
static int num_node_masks;

#ifdef CONFIG_NEED_MULTIPLE_NODES

struct mdesc_mlgroup {
	u64	node;
	u64	latency;
	u64	match;
	u64	mask;
};

static struct mdesc_mlgroup *mlgroups;
static int num_mlgroups;

int numa_cpu_lookup_table[NR_CPUS];
cpumask_t numa_cpumask_lookup_table[MAX_NUMNODES];

struct mdesc_mblock {
	u64	base;
	u64	size;
	u64	offset; /* RA-to-PA */
};
static struct mdesc_mblock *mblocks;
static int num_mblocks;

static struct mdesc_mblock * __init addr_to_mblock(unsigned long addr)
{
	struct mdesc_mblock *m = NULL;
	int i;

	for (i = 0; i < num_mblocks; i++) {
		m = &mblocks[i];

		if (addr >= m->base &&
		    addr < (m->base + m->size)) {
			break;
		}
	}

	return m;
}

static u64 __init memblock_nid_range_sun4u(u64 start, u64 end, int *nid)
{
	int prev_nid, new_nid;

	prev_nid = -1;
	for ( ; start < end; start += PAGE_SIZE) {
		for (new_nid = 0; new_nid < num_node_masks; new_nid++) {
			struct node_mem_mask *p = &node_masks[new_nid];

			if ((start & p->mask) == p->match) {
				if (prev_nid == -1)
					prev_nid = new_nid;
				break;
			}
		}

		if (new_nid == num_node_masks) {
			prev_nid = 0;
			WARN_ONCE(1, "addr[%Lx] doesn't match a NUMA node rule. Some memory will be owned by node 0.",
				  start);
			break;
		}

		if (prev_nid != new_nid)
			break;
	}
	*nid = prev_nid;

	return start > end ? end : start;
}

static u64 __init memblock_nid_range(u64 start, u64 end, int *nid)
{
	u64 ret_end, pa_start, m_mask, m_match, m_end;
	struct mdesc_mblock *mblock;
	int _nid, i;

	if (tlb_type != hypervisor)
		return memblock_nid_range_sun4u(start, end, nid);

	mblock = addr_to_mblock(start);
	if (!mblock) {
		WARN_ONCE(1, "memblock_nid_range: Can't find mblock addr[%Lx]",
			  start);

		_nid = 0;
		ret_end = end;
		goto done;
	}

	pa_start = start + mblock->offset;
	m_match = 0;
	m_mask = 0;

	for (_nid = 0; _nid < num_node_masks; _nid++) {
		struct node_mem_mask *const m = &node_masks[_nid];

		if ((pa_start & m->mask) == m->match) {
			m_match = m->match;
			m_mask = m->mask;
			break;
		}
	}

	if (num_node_masks == _nid) {
		/* We could not find NUMA group, so default to 0, but lets
		 * search for latency group, so we could calculate the correct
		 * end address that we return
		 */
		_nid = 0;

		for (i = 0; i < num_mlgroups; i++) {
			struct mdesc_mlgroup *const m = &mlgroups[i];

			if ((pa_start & m->mask) == m->match) {
				m_match = m->match;
				m_mask = m->mask;
				break;
			}
		}

		if (i == num_mlgroups) {
			WARN_ONCE(1, "memblock_nid_range: Can't find latency group addr[%Lx]",
				  start);

			ret_end = end;
			goto done;
		}
	}

	/*
	 * Each latency group has match and mask, and each memory block has an
	 * offset.  An address belongs to a latency group if its address matches
	 * the following formula: ((addr + offset) & mask) == match
	 * It is, however, slow to check every single page if it matches a
	 * particular latency group. As optimization we calculate end value by
	 * using bit arithmetics.
	 */
	m_end = m_match + (1ul << __ffs(m_mask)) - mblock->offset;
	m_end += pa_start & ~((1ul << fls64(m_mask)) - 1);
	ret_end = m_end > end ? end : m_end;

done:
	*nid = _nid;
	return ret_end;
}
#endif

/* This must be invoked after performing all of the necessary
 * memblock_set_node() calls for 'nid'.  We need to be able to get
 * correct data from get_pfn_range_for_nid().
 */
static void __init allocate_node_data(int nid)
{
	struct pglist_data *p;
	unsigned long start_pfn, end_pfn;
#ifdef CONFIG_NEED_MULTIPLE_NODES
	unsigned long paddr;

	paddr = memblock_alloc_try_nid(sizeof(struct pglist_data), SMP_CACHE_BYTES, nid);
	if (!paddr) {
		prom_printf("Cannot allocate pglist_data for nid[%d]\n", nid);
		prom_halt();
	}
	NODE_DATA(nid) = __va(paddr);
	memset(NODE_DATA(nid), 0, sizeof(struct pglist_data));

	NODE_DATA(nid)->node_id = nid;
#endif

	p = NODE_DATA(nid);

	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
	p->node_start_pfn = start_pfn;
	p->node_spanned_pages = end_pfn - start_pfn;
}

static void init_node_masks_nonnuma(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
	int i;
#endif

	numadbg("Initializing tables for non-numa.\n");

	node_masks[0].mask = 0;
	node_masks[0].match = 0;
	num_node_masks = 1;

#ifdef CONFIG_NEED_MULTIPLE_NODES
	for (i = 0; i < NR_CPUS; i++)
		numa_cpu_lookup_table[i] = 0;

	cpumask_setall(&numa_cpumask_lookup_table[0]);
#endif
}

#ifdef CONFIG_NEED_MULTIPLE_NODES
struct pglist_data *node_data[MAX_NUMNODES];

EXPORT_SYMBOL(numa_cpu_lookup_table);
EXPORT_SYMBOL(numa_cpumask_lookup_table);
EXPORT_SYMBOL(node_data);

static int scan_pio_for_cfg_handle(struct mdesc_handle *md, u64 pio,
				   u32 cfg_handle)
{
	u64 arc;

	mdesc_for_each_arc(arc, md, pio, MDESC_ARC_TYPE_FWD) {
		u64 target = mdesc_arc_target(md, arc);
		const u64 *val;

		val = mdesc_get_property(md, target,
					 "cfg-handle", NULL);
		if (val && *val == cfg_handle)
			return 0;
	}
	return -ENODEV;
}

static int scan_arcs_for_cfg_handle(struct mdesc_handle *md, u64 grp,
				    u32 cfg_handle)
{
	u64 arc, candidate, best_latency = ~(u64)0;

	candidate = MDESC_NODE_NULL;
	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
		u64 target = mdesc_arc_target(md, arc);
		const char *name = mdesc_node_name(md, target);
		const u64 *val;

		if (strcmp(name, "pio-latency-group"))
			continue;

		val = mdesc_get_property(md, target, "latency", NULL);
		if (!val)
			continue;

		if (*val < best_latency) {
			candidate = target;
			best_latency = *val;
		}
	}

	if (candidate == MDESC_NODE_NULL)
		return -ENODEV;

	return scan_pio_for_cfg_handle(md, candidate, cfg_handle);
}

int of_node_to_nid(struct device_node *dp)
{
	const struct linux_prom64_registers *regs;
	struct mdesc_handle *md;
	u32 cfg_handle;
	int count, nid;
	u64 grp;

	/* This is the right thing to do on currently supported
	 * SUN4U NUMA platforms as well, as the PCI controller does
	 * not sit behind any particular memory controller.
	 */
	if (!mlgroups)
		return -1;

	regs = of_get_property(dp, "reg", NULL);
	if (!regs)
		return -1;

	cfg_handle = (regs->phys_addr >> 32UL) & 0x0fffffff;

	md = mdesc_grab();

	count = 0;
	nid = -1;
	mdesc_for_each_node_by_name(md, grp, "group") {
		if (!scan_arcs_for_cfg_handle(md, grp, cfg_handle)) {
			nid = count;
			break;
		}
		count++;
	}

	mdesc_release(md);

	return nid;
}

static void __init add_node_ranges(void)
{
	struct memblock_region *reg;
	unsigned long prev_max;

memblock_resized:
	prev_max = memblock.memory.max;

	for_each_memblock(memory, reg) {
		unsigned long size = reg->size;
		unsigned long start, end;

		start = reg->base;
		end = start + size;
		while (start < end) {
			unsigned long this_end;
			int nid;

			this_end = memblock_nid_range(start, end, &nid);

			numadbg("Setting memblock NUMA node nid[%d] "
				"start[%lx] end[%lx]\n",
				nid, start, this_end);

			memblock_set_node(start, this_end - start,
					  &memblock.memory, nid);
			if (memblock.memory.max != prev_max)
				goto memblock_resized;
			start = this_end;
		}
	}
}

static int __init grab_mlgroups(struct mdesc_handle *md)
{
	unsigned long paddr;
	int count = 0;
	u64 node;

	mdesc_for_each_node_by_name(md, node, "memory-latency-group")
		count++;
	if (!count)
		return -ENOENT;

	paddr = memblock_alloc(count * sizeof(struct mdesc_mlgroup),
			  SMP_CACHE_BYTES);
	if (!paddr)
		return -ENOMEM;

	mlgroups = __va(paddr);
	num_mlgroups = count;

	count = 0;
	mdesc_for_each_node_by_name(md, node, "memory-latency-group") {
		struct mdesc_mlgroup *m = &mlgroups[count++];
		const u64 *val;

		m->node = node;

		val = mdesc_get_property(md, node, "latency", NULL);
		m->latency = *val;
		val = mdesc_get_property(md, node, "address-match", NULL);
		m->match = *val;
		val = mdesc_get_property(md, node, "address-mask", NULL);
		m->mask = *val;

		numadbg("MLGROUP[%d]: node[%llx] latency[%llx] "
			"match[%llx] mask[%llx]\n",
			count - 1, m->node, m->latency, m->match, m->mask);
	}

	return 0;
}

static int __init grab_mblocks(struct mdesc_handle *md)
{
	unsigned long paddr;
	int count = 0;
	u64 node;

	mdesc_for_each_node_by_name(md, node, "mblock")
		count++;
	if (!count)
		return -ENOENT;

	paddr = memblock_alloc(count * sizeof(struct mdesc_mblock),
			  SMP_CACHE_BYTES);
	if (!paddr)
		return -ENOMEM;

	mblocks = __va(paddr);
	num_mblocks = count;

	count = 0;
	mdesc_for_each_node_by_name(md, node, "mblock") {
		struct mdesc_mblock *m = &mblocks[count++];
		const u64 *val;

		val = mdesc_get_property(md, node, "base", NULL);
		m->base = *val;
		val = mdesc_get_property(md, node, "size", NULL);
		m->size = *val;
		val = mdesc_get_property(md, node,
					 "address-congruence-offset", NULL);

		/* The address-congruence-offset property is optional.
		 * Explicity zero it be identifty this.
		 */
		if (val)
			m->offset = *val;
		else
			m->offset = 0UL;

		numadbg("MBLOCK[%d]: base[%llx] size[%llx] offset[%llx]\n",
			count - 1, m->base, m->size, m->offset);
	}

	return 0;
}

static void __init numa_parse_mdesc_group_cpus(struct mdesc_handle *md,
					       u64 grp, cpumask_t *mask)
{
	u64 arc;

	cpumask_clear(mask);

	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_BACK) {
		u64 target = mdesc_arc_target(md, arc);
		const char *name = mdesc_node_name(md, target);
		const u64 *id;

		if (strcmp(name, "cpu"))
			continue;
		id = mdesc_get_property(md, target, "id", NULL);
		if (*id < nr_cpu_ids)
			cpumask_set_cpu(*id, mask);
	}
}

static struct mdesc_mlgroup * __init find_mlgroup(u64 node)
{
	int i;

	for (i = 0; i < num_mlgroups; i++) {
		struct mdesc_mlgroup *m = &mlgroups[i];
		if (m->node == node)
			return m;
	}
	return NULL;
}

int __node_distance(int from, int to)
{
	if ((from >= MAX_NUMNODES) || (to >= MAX_NUMNODES)) {
		pr_warn("Returning default NUMA distance value for %d->%d\n",
			from, to);
		return (from == to) ? LOCAL_DISTANCE : REMOTE_DISTANCE;
	}
	return numa_latency[from][to];
}

static int __init find_best_numa_node_for_mlgroup(struct mdesc_mlgroup *grp)
{
	int i;

	for (i = 0; i < MAX_NUMNODES; i++) {
		struct node_mem_mask *n = &node_masks[i];

		if ((grp->mask == n->mask) && (grp->match == n->match))
			break;
	}
	return i;
}

static void __init find_numa_latencies_for_group(struct mdesc_handle *md,
						 u64 grp, int index)
{
	u64 arc;

	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
		int tnode;
		u64 target = mdesc_arc_target(md, arc);
		struct mdesc_mlgroup *m = find_mlgroup(target);

		if (!m)
			continue;
		tnode = find_best_numa_node_for_mlgroup(m);
		if (tnode == MAX_NUMNODES)
			continue;
		numa_latency[index][tnode] = m->latency;
	}
}

static int __init numa_attach_mlgroup(struct mdesc_handle *md, u64 grp,
				      int index)
{
	struct mdesc_mlgroup *candidate = NULL;
	u64 arc, best_latency = ~(u64)0;
	struct node_mem_mask *n;

	mdesc_for_each_arc(arc, md, grp, MDESC_ARC_TYPE_FWD) {
		u64 target = mdesc_arc_target(md, arc);
		struct mdesc_mlgroup *m = find_mlgroup(target);
		if (!m)
			continue;
		if (m->latency < best_latency) {
			candidate = m;
			best_latency = m->latency;
		}
	}
	if (!candidate)
		return -ENOENT;

	if (num_node_masks != index) {
		printk(KERN_ERR "Inconsistent NUMA state, "
		       "index[%d] != num_node_masks[%d]\n",
		       index, num_node_masks);
		return -EINVAL;
	}

	n = &node_masks[num_node_masks++];

	n->mask = candidate->mask;
	n->match = candidate->match;

	numadbg("NUMA NODE[%d]: mask[%lx] match[%lx] (latency[%llx])\n",
		index, n->mask, n->match, candidate->latency);

	return 0;
}

static int __init numa_parse_mdesc_group(struct mdesc_handle *md, u64 grp,
					 int index)
{
	cpumask_t mask;
	int cpu;

	numa_parse_mdesc_group_cpus(md, grp, &mask);

	for_each_cpu(cpu, &mask)
		numa_cpu_lookup_table[cpu] = index;
	cpumask_copy(&numa_cpumask_lookup_table[index], &mask);

	if (numa_debug) {
		printk(KERN_INFO "NUMA GROUP[%d]: cpus [ ", index);
		for_each_cpu(cpu, &mask)
			printk("%d ", cpu);
		printk("]\n");
	}

	return numa_attach_mlgroup(md, grp, index);
}

static int __init numa_parse_mdesc(void)
{
	struct mdesc_handle *md = mdesc_grab();
	int i, j, err, count;
	u64 node;

	node = mdesc_node_by_name(md, MDESC_NODE_NULL, "latency-groups");
	if (node == MDESC_NODE_NULL) {
		mdesc_release(md);
		return -ENOENT;
	}

	err = grab_mblocks(md);
	if (err < 0)
		goto out;

	err = grab_mlgroups(md);
	if (err < 0)
		goto out;

	count = 0;
	mdesc_for_each_node_by_name(md, node, "group") {
		err = numa_parse_mdesc_group(md, node, count);
		if (err < 0)
			break;
		count++;
	}

	count = 0;
	mdesc_for_each_node_by_name(md, node, "group") {
		find_numa_latencies_for_group(md, node, count);
		count++;
	}

	/* Normalize numa latency matrix according to ACPI SLIT spec. */
	for (i = 0; i < MAX_NUMNODES; i++) {
		u64 self_latency = numa_latency[i][i];

		for (j = 0; j < MAX_NUMNODES; j++) {
			numa_latency[i][j] =
				(numa_latency[i][j] * LOCAL_DISTANCE) /
				self_latency;
		}
	}

	add_node_ranges();

	for (i = 0; i < num_node_masks; i++) {
		allocate_node_data(i);
		node_set_online(i);
	}

	err = 0;
out:
	mdesc_release(md);
	return err;
}

static int __init numa_parse_jbus(void)
{
	unsigned long cpu, index;

	/* NUMA node id is encoded in bits 36 and higher, and there is
	 * a 1-to-1 mapping from CPU ID to NUMA node ID.
	 */
	index = 0;
	for_each_present_cpu(cpu) {
		numa_cpu_lookup_table[cpu] = index;
		cpumask_copy(&numa_cpumask_lookup_table[index], cpumask_of(cpu));
		node_masks[index].mask = ~((1UL << 36UL) - 1UL);
		node_masks[index].match = cpu << 36UL;

		index++;
	}
	num_node_masks = index;

	add_node_ranges();

	for (index = 0; index < num_node_masks; index++) {
		allocate_node_data(index);
		node_set_online(index);
	}

	return 0;
}

static int __init numa_parse_sun4u(void)
{
	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
		unsigned long ver;

		__asm__ ("rdpr %%ver, %0" : "=r" (ver));
		if ((ver >> 32UL) == __JALAPENO_ID ||
		    (ver >> 32UL) == __SERRANO_ID)
			return numa_parse_jbus();
	}
	return -1;
}

static int __init bootmem_init_numa(void)
{
	int i, j;
	int err = -1;

	numadbg("bootmem_init_numa()\n");

	/* Some sane defaults for numa latency values */
	for (i = 0; i < MAX_NUMNODES; i++) {
		for (j = 0; j < MAX_NUMNODES; j++)
			numa_latency[i][j] = (i == j) ?
				LOCAL_DISTANCE : REMOTE_DISTANCE;
	}

	if (numa_enabled) {
		if (tlb_type == hypervisor)
			err = numa_parse_mdesc();
		else
			err = numa_parse_sun4u();
	}
	return err;
}

#else

static int bootmem_init_numa(void)
{
	return -1;
}

#endif

static void __init bootmem_init_nonnuma(void)
{
	unsigned long top_of_ram = memblock_end_of_DRAM();
	unsigned long total_ram = memblock_phys_mem_size();

	numadbg("bootmem_init_nonnuma()\n");

	printk(KERN_INFO "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
	       top_of_ram, total_ram);
	printk(KERN_INFO "Memory hole size: %ldMB\n",
	       (top_of_ram - total_ram) >> 20);

	init_node_masks_nonnuma();
	memblock_set_node(0, (phys_addr_t)ULLONG_MAX, &memblock.memory, 0);
	allocate_node_data(0);
	node_set_online(0);
}

static unsigned long __init bootmem_init(unsigned long phys_base)
{
	unsigned long end_pfn;

	end_pfn = memblock_end_of_DRAM() >> PAGE_SHIFT;
	max_pfn = max_low_pfn = end_pfn;
	min_low_pfn = (phys_base >> PAGE_SHIFT);

	if (bootmem_init_numa() < 0)
		bootmem_init_nonnuma();

	/* Dump memblock with node info. */
	memblock_dump_all();

	/* XXX cpu notifier XXX */

	sparse_memory_present_with_active_regions(MAX_NUMNODES);
	sparse_init();

	return end_pfn;
}

static struct linux_prom64_registers pall[MAX_BANKS] __initdata;
static int pall_ents __initdata;

static unsigned long max_phys_bits = 40;

bool kern_addr_valid(unsigned long addr)
{
	pgd_t *pgd;
	pud_t *pud;
	pmd_t *pmd;
	pte_t *pte;

	if ((long)addr < 0L) {
		unsigned long pa = __pa(addr);

		if ((pa >> max_phys_bits) != 0UL)
			return false;

		return pfn_valid(pa >> PAGE_SHIFT);
	}

	if (addr >= (unsigned long) KERNBASE &&
	    addr < (unsigned long)&_end)
		return true;

	pgd = pgd_offset_k(addr);
	if (pgd_none(*pgd))
		return 0;

	pud = pud_offset(pgd, addr);
	if (pud_none(*pud))
		return 0;

	if (pud_large(*pud))
		return pfn_valid(pud_pfn(*pud));

	pmd = pmd_offset(pud, addr);
	if (pmd_none(*pmd))
		return 0;

	if (pmd_large(*pmd))
		return pfn_valid(pmd_pfn(*pmd));

	pte = pte_offset_kernel(pmd, addr);
	if (pte_none(*pte))
		return 0;

	return pfn_valid(pte_pfn(*pte));
}
EXPORT_SYMBOL(kern_addr_valid);

static unsigned long __ref kernel_map_hugepud(unsigned long vstart,
					      unsigned long vend,
					      pud_t *pud)
{
	const unsigned long mask16gb = (1UL << 34) - 1UL;
	u64 pte_val = vstart;

	/* Each PUD is 8GB */
	if ((vstart & mask16gb) ||
	    (vend - vstart <= mask16gb)) {
		pte_val ^= kern_linear_pte_xor[2];
		pud_val(*pud) = pte_val | _PAGE_PUD_HUGE;

		return vstart + PUD_SIZE;
	}

	pte_val ^= kern_linear_pte_xor[3];
	pte_val |= _PAGE_PUD_HUGE;

	vend = vstart + mask16gb + 1UL;
	while (vstart < vend) {
		pud_val(*pud) = pte_val;

		pte_val += PUD_SIZE;
		vstart += PUD_SIZE;
		pud++;
	}
	return vstart;
}

static bool kernel_can_map_hugepud(unsigned long vstart, unsigned long vend,
				   bool guard)
{
	if (guard && !(vstart & ~PUD_MASK) && (vend - vstart) >= PUD_SIZE)
		return true;

	return false;
}

static unsigned long __ref kernel_map_hugepmd(unsigned long vstart,
					      unsigned long vend,
					      pmd_t *pmd)
{
	const unsigned long mask256mb = (1UL << 28) - 1UL;
	const unsigned long mask2gb = (1UL << 31) - 1UL;
	u64 pte_val = vstart;

	/* Each PMD is 8MB */
	if ((vstart & mask256mb) ||
	    (vend - vstart <= mask256mb)) {
		pte_val ^= kern_linear_pte_xor[0];
		pmd_val(*pmd) = pte_val | _PAGE_PMD_HUGE;

		return vstart + PMD_SIZE;
	}

	if ((vstart & mask2gb) ||
	    (vend - vstart <= mask2gb)) {
		pte_val ^= kern_linear_pte_xor[1];
		pte_val |= _PAGE_PMD_HUGE;
		vend = vstart + mask256mb + 1UL;
	} else {
		pte_val ^= kern_linear_pte_xor[2];
		pte_val |= _PAGE_PMD_HUGE;
		vend = vstart + mask2gb + 1UL;
	}

	while (vstart < vend) {
		pmd_val(*pmd) = pte_val;

		pte_val += PMD_SIZE;
		vstart += PMD_SIZE;
		pmd++;
	}

	return vstart;
}

static bool kernel_can_map_hugepmd(unsigned long vstart, unsigned long vend,
				   bool guard)
{
	if (guard && !(vstart & ~PMD_MASK) && (vend - vstart) >= PMD_SIZE)
		return true;

	return false;
}

static unsigned long __ref kernel_map_range(unsigned long pstart,
					    unsigned long pend, pgprot_t prot,
					    bool use_huge)
{
	unsigned long vstart = PAGE_OFFSET + pstart;
	unsigned long vend = PAGE_OFFSET + pend;
	unsigned long alloc_bytes = 0UL;

	if ((vstart & ~PAGE_MASK) || (vend & ~PAGE_MASK)) {
		prom_printf("kernel_map: Unaligned physmem[%lx:%lx]\n",
			    vstart, vend);
		prom_halt();
	}

	while (vstart < vend) {
		unsigned long this_end, paddr = __pa(vstart);
		pgd_t *pgd = pgd_offset_k(vstart);
		pud_t *pud;
		pmd_t *pmd;
		pte_t *pte;

		if (pgd_none(*pgd)) {
			pud_t *new;

			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
			alloc_bytes += PAGE_SIZE;
			pgd_populate(&init_mm, pgd, new);
		}
		pud = pud_offset(pgd, vstart);
		if (pud_none(*pud)) {
			pmd_t *new;

			if (kernel_can_map_hugepud(vstart, vend, use_huge)) {
				vstart = kernel_map_hugepud(vstart, vend, pud);
				continue;
			}
			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
			alloc_bytes += PAGE_SIZE;
			pud_populate(&init_mm, pud, new);
		}

		pmd = pmd_offset(pud, vstart);
		if (pmd_none(*pmd)) {
			pte_t *new;

			if (kernel_can_map_hugepmd(vstart, vend, use_huge)) {
				vstart = kernel_map_hugepmd(vstart, vend, pmd);
				continue;
			}
			new = __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, PAGE_SIZE);
			alloc_bytes += PAGE_SIZE;
			pmd_populate_kernel(&init_mm, pmd, new);
		}

		pte = pte_offset_kernel(pmd, vstart);
		this_end = (vstart + PMD_SIZE) & PMD_MASK;
		if (this_end > vend)
			this_end = vend;

		while (vstart < this_end) {
			pte_val(*pte) = (paddr | pgprot_val(prot));

			vstart += PAGE_SIZE;
			paddr += PAGE_SIZE;
			pte++;
		}
	}

	return alloc_bytes;
}

static void __init flush_all_kernel_tsbs(void)
{
	int i;

	for (i = 0; i < KERNEL_TSB_NENTRIES; i++) {
		struct tsb *ent = &swapper_tsb[i];

		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
	}
#ifndef CONFIG_DEBUG_PAGEALLOC
	for (i = 0; i < KERNEL_TSB4M_NENTRIES; i++) {
		struct tsb *ent = &swapper_4m_tsb[i];

		ent->tag = (1UL << TSB_TAG_INVALID_BIT);
	}
#endif
}

extern unsigned int kvmap_linear_patch[1];

static void __init kernel_physical_mapping_init(void)
{
	unsigned long i, mem_alloced = 0UL;
	bool use_huge = true;

#ifdef CONFIG_DEBUG_PAGEALLOC
	use_huge = false;
#endif
	for (i = 0; i < pall_ents; i++) {
		unsigned long phys_start, phys_end;

		phys_start = pall[i].phys_addr;
		phys_end = phys_start + pall[i].reg_size;

		mem_alloced += kernel_map_range(phys_start, phys_end,
						PAGE_KERNEL, use_huge);
	}

	printk("Allocated %ld bytes for kernel page tables.\n",
	       mem_alloced);

	kvmap_linear_patch[0] = 0x01000000; /* nop */
	flushi(&kvmap_linear_patch[0]);

	flush_all_kernel_tsbs();

	__flush_tlb_all();
}

#ifdef CONFIG_DEBUG_PAGEALLOC
void __kernel_map_pages(struct page *page, int numpages, int enable)
{
	unsigned long phys_start = page_to_pfn(page) << PAGE_SHIFT;
	unsigned long phys_end = phys_start + (numpages * PAGE_SIZE);

	kernel_map_range(phys_start, phys_end,
			 (enable ? PAGE_KERNEL : __pgprot(0)), false);

	flush_tsb_kernel_range(PAGE_OFFSET + phys_start,
			       PAGE_OFFSET + phys_end);

	/* we should perform an IPI and flush all tlbs,
	 * but that can deadlock->flush only current cpu.
	 */
	__flush_tlb_kernel_range(PAGE_OFFSET + phys_start,
				 PAGE_OFFSET + phys_end);
}
#endif

unsigned long __init find_ecache_flush_span(unsigned long size)
{
	int i;

	for (i = 0; i < pavail_ents; i++) {
		if (pavail[i].reg_size >= size)
			return pavail[i].phys_addr;
	}

	return ~0UL;
}

unsigned long PAGE_OFFSET;
EXPORT_SYMBOL(PAGE_OFFSET);

unsigned long VMALLOC_END   = 0x0000010000000000UL;
EXPORT_SYMBOL(VMALLOC_END);

unsigned long sparc64_va_hole_top =    0xfffff80000000000UL;
unsigned long sparc64_va_hole_bottom = 0x0000080000000000UL;

static void __init setup_page_offset(void)
{
	if (tlb_type == cheetah || tlb_type == cheetah_plus) {
		/* Cheetah/Panther support a full 64-bit virtual
		 * address, so we can use all that our page tables
		 * support.
		 */
		sparc64_va_hole_top =    0xfff0000000000000UL;
		sparc64_va_hole_bottom = 0x0010000000000000UL;

		max_phys_bits = 42;
	} else if (tlb_type == hypervisor) {
		switch (sun4v_chip_type) {
		case SUN4V_CHIP_NIAGARA1:
		case SUN4V_CHIP_NIAGARA2:
			/* T1 and T2 support 48-bit virtual addresses.  */
			sparc64_va_hole_top =    0xffff800000000000UL;
			sparc64_va_hole_bottom = 0x0000800000000000UL;

			max_phys_bits = 39;
			break;
		case SUN4V_CHIP_NIAGARA3:
			/* T3 supports 48-bit virtual addresses.  */
			sparc64_va_hole_top =    0xffff800000000000UL;
			sparc64_va_hole_bottom = 0x0000800000000000UL;

			max_phys_bits = 43;
			break;
		case SUN4V_CHIP_NIAGARA4:
		case SUN4V_CHIP_NIAGARA5:
		case SUN4V_CHIP_SPARC64X:
		case SUN4V_CHIP_SPARC_M6:
			/* T4 and later support 52-bit virtual addresses.  */
			sparc64_va_hole_top =    0xfff8000000000000UL;
			sparc64_va_hole_bottom = 0x0008000000000000UL;
			max_phys_bits = 47;
			break;
		case SUN4V_CHIP_SPARC_M7:
		case SUN4V_CHIP_SPARC_SN:
			/* M7 and later support 52-bit virtual addresses.  */
			sparc64_va_hole_top =    0xfff8000000000000UL;
			sparc64_va_hole_bottom = 0x0008000000000000UL;
			max_phys_bits = 49;
			break;
		case SUN4V_CHIP_SPARC_M8:
		default:
			/* M8 and later support 54-bit virtual addresses.
			 * However, restricting M8 and above VA bits to 53
			 * as 4-level page table cannot support more than
			 * 53 VA bits.
			 */
			sparc64_va_hole_top =    0xfff0000000000000UL;
			sparc64_va_hole_bottom = 0x0010000000000000UL;
			max_phys_bits = 51;
			break;
		}
	}

	if (max_phys_bits > MAX_PHYS_ADDRESS_BITS) {
		prom_printf("MAX_PHYS_ADDRESS_BITS is too small, need %lu\n",
			    max_phys_bits);
		prom_halt();
	}

	PAGE_OFFSET = sparc64_va_hole_top;
	VMALLOC_END = ((sparc64_va_hole_bottom >> 1) +
		       (sparc64_va_hole_bottom >> 2));

	pr_info("MM: PAGE_OFFSET is 0x%016lx (max_phys_bits == %lu)\n",
		PAGE_OFFSET, max_phys_bits);
	pr_info("MM: VMALLOC [0x%016lx --> 0x%016lx]\n",
		VMALLOC_START, VMALLOC_END);
	pr_info("MM: VMEMMAP [0x%016lx --> 0x%016lx]\n",
		VMEMMAP_BASE, VMEMMAP_BASE << 1);
}

static void __init tsb_phys_patch(void)
{
	struct tsb_ldquad_phys_patch_entry *pquad;
	struct tsb_phys_patch_entry *p;

	pquad = &__tsb_ldquad_phys_patch;
	while (pquad < &__tsb_ldquad_phys_patch_end) {
		unsigned long addr = pquad->addr;

		if (tlb_type == hypervisor)
			*(unsigned int *) addr = pquad->sun4v_insn;
		else
			*(unsigned int *) addr = pquad->sun4u_insn;
		wmb();
		__asm__ __volatile__("flush	%0"
				     : /* no outputs */
				     : "r" (addr));

		pquad++;
	}

	p = &__tsb_phys_patch;
	while (p < &__tsb_phys_patch_end) {
		unsigned long addr = p->addr;

		*(unsigned int *) addr = p->insn;
		wmb();
		__asm__ __volatile__("flush	%0"
				     : /* no outputs */
				     : "r" (addr));

		p++;
	}
}

/* Don't mark as init, we give this to the Hypervisor.  */
#ifndef CONFIG_DEBUG_PAGEALLOC
#define NUM_KTSB_DESCR	2
#else
#define NUM_KTSB_DESCR	1
#endif
static struct hv_tsb_descr ktsb_descr[NUM_KTSB_DESCR];

/* The swapper TSBs are loaded with a base sequence of:
 *
 *	sethi	%uhi(SYMBOL), REG1
 *	sethi	%hi(SYMBOL), REG2
 *	or	REG1, %ulo(SYMBOL), REG1
 *	or	REG2, %lo(SYMBOL), REG2
 *	sllx	REG1, 32, REG1
 *	or	REG1, REG2, REG1
 *
 * When we use physical addressing for the TSB accesses, we patch the
 * first four instructions in the above sequence.
 */

static void patch_one_ktsb_phys(unsigned int *start, unsigned int *end, unsigned long pa)
{
	unsigned long high_bits, low_bits;

	high_bits = (pa >> 32) & 0xffffffff;
	low_bits = (pa >> 0) & 0xffffffff;

	while (start < end) {
		unsigned int *ia = (unsigned int *)(unsigned long)*start;

		ia[0] = (ia[0] & ~0x3fffff) | (high_bits >> 10);
		__asm__ __volatile__("flush	%0" : : "r" (ia));

		ia[1] = (ia[1] & ~0x3fffff) | (low_bits >> 10);
		__asm__ __volatile__("flush	%0" : : "r" (ia + 1));

		ia[2] = (ia[2] & ~0x1fff) | (high_bits & 0x3ff);
		__asm__ __volatile__("flush	%0" : : "r" (ia + 2));

		ia[3] = (ia[3] & ~0x1fff) | (low_bits & 0x3ff);
		__asm__ __volatile__("flush	%0" : : "r" (ia + 3));

		start++;
	}
}

static void ktsb_phys_patch(void)
{
	extern unsigned int __swapper_tsb_phys_patch;
	extern unsigned int __swapper_tsb_phys_patch_end;
	unsigned long ktsb_pa;

	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);
	patch_one_ktsb_phys(&__swapper_tsb_phys_patch,
			    &__swapper_tsb_phys_patch_end, ktsb_pa);
#ifndef CONFIG_DEBUG_PAGEALLOC
	{
	extern unsigned int __swapper_4m_tsb_phys_patch;
	extern unsigned int __swapper_4m_tsb_phys_patch_end;
	ktsb_pa = (kern_base +
		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));
	patch_one_ktsb_phys(&__swapper_4m_tsb_phys_patch,
			    &__swapper_4m_tsb_phys_patch_end, ktsb_pa);
	}
#endif
}

static void __init sun4v_ktsb_init(void)
{
	unsigned long ktsb_pa;

	/* First KTSB for PAGE_SIZE mappings.  */
	ktsb_pa = kern_base + ((unsigned long)&swapper_tsb[0] - KERNBASE);

	switch (PAGE_SIZE) {
	case 8 * 1024:
	default:
		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_8K;
		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_8K;
		break;

	case 64 * 1024:
		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_64K;
		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_64K;
		break;

	case 512 * 1024:
		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_512K;
		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_512K;
		break;

	case 4 * 1024 * 1024:
		ktsb_descr[0].pgsz_idx = HV_PGSZ_IDX_4MB;
		ktsb_descr[0].pgsz_mask = HV_PGSZ_MASK_4MB;
		break;
	}

	ktsb_descr[0].assoc = 1;
	ktsb_descr[0].num_ttes = KERNEL_TSB_NENTRIES;
	ktsb_descr[0].ctx_idx = 0;
	ktsb_descr[0].tsb_base = ktsb_pa;
	ktsb_descr[0].resv = 0;

#ifndef CONFIG_DEBUG_PAGEALLOC
	/* Second KTSB for 4MB/256MB/2GB/16GB mappings.  */
	ktsb_pa = (kern_base +
		   ((unsigned long)&swapper_4m_tsb[0] - KERNBASE));

	ktsb_descr[1].pgsz_idx = HV_PGSZ_IDX_4MB;
	ktsb_descr[1].pgsz_mask = ((HV_PGSZ_MASK_4MB |
				    HV_PGSZ_MASK_256MB |
				    HV_PGSZ_MASK_2GB |
				    HV_PGSZ_MASK_16GB) &
				   cpu_pgsz_mask);
	ktsb_descr[1].assoc = 1;
	ktsb_descr[1].num_ttes = KERNEL_TSB4M_NENTRIES;
	ktsb_descr[1].ctx_idx = 0;
	ktsb_descr[1].tsb_base = ktsb_pa;
	ktsb_descr[1].resv = 0;
#endif
}

void sun4v_ktsb_register(void)
{
	unsigned long pa, ret;

	pa = kern_base + ((unsigned long)&ktsb_descr[0] - KERNBASE);

	ret = sun4v_mmu_tsb_ctx0(NUM_KTSB_DESCR, pa);
	if (ret != 0) {
		prom_printf("hypervisor_mmu_tsb_ctx0[%lx]: "
			    "errors with %lx\n", pa, ret);
		prom_halt();
	}
}

static void __init sun4u_linear_pte_xor_finalize(void)
{
#ifndef CONFIG_DEBUG_PAGEALLOC
	/* This is where we would add Panther support for
	 * 32MB and 256MB pages.
	 */
#endif
}

static void __init sun4v_linear_pte_xor_finalize(void)
{
	unsigned long pagecv_flag;

	/* Bit 9 of TTE is no longer CV bit on M7 processor and it instead
	 * enables MCD error. Do not set bit 9 on M7 processor.
	 */
	switch (sun4v_chip_type) {
	case SUN4V_CHIP_SPARC_M7:
	case SUN4V_CHIP_SPARC_M8:
	case SUN4V_CHIP_SPARC_SN:
		pagecv_flag = 0x00;
		break;
	default:
		pagecv_flag = _PAGE_CV_4V;
		break;
	}
#ifndef CONFIG_DEBUG_PAGEALLOC
	if (cpu_pgsz_mask & HV_PGSZ_MASK_256MB) {
		kern_linear_pte_xor[1] = (_PAGE_VALID | _PAGE_SZ256MB_4V) ^
			PAGE_OFFSET;
		kern_linear_pte_xor[1] |= (_PAGE_CP_4V | pagecv_flag |
					   _PAGE_P_4V | _PAGE_W_4V);
	} else {
		kern_linear_pte_xor[1] = kern_linear_pte_xor[0];
	}

	if (cpu_pgsz_mask & HV_PGSZ_MASK_2GB) {
		kern_linear_pte_xor[2] = (_PAGE_VALID | _PAGE_SZ2GB_4V) ^
			PAGE_OFFSET;
		kern_linear_pte_xor[2] |= (_PAGE_CP_4V | pagecv_flag |
					   _PAGE_P_4V | _PAGE_W_4V);
	} else {
		kern_linear_pte_xor[2] = kern_linear_pte_xor[1];
	}

	if (cpu_pgsz_mask & HV_PGSZ_MASK_16GB) {
		kern_linear_pte_xor[3] = (_PAGE_VALID | _PAGE_SZ16GB_4V) ^
			PAGE_OFFSET;
		kern_linear_pte_xor[3] |= (_PAGE_CP_4V | pagecv_flag |
					   _PAGE_P_4V | _PAGE_W_4V);
	} else {
		kern_linear_pte_xor[3] = kern_linear_pte_xor[2];
	}
#endif
}

/* paging_init() sets up the page tables */

static unsigned long last_valid_pfn;

static void sun4u_pgprot_init(void);
static void sun4v_pgprot_init(void);

static phys_addr_t __init available_memory(void)
{
	phys_addr_t available = 0ULL;
	phys_addr_t pa_start, pa_end;
	u64 i;

	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
				&pa_end, NULL)
		available = available + (pa_end  - pa_start);

	return available;
}

#define _PAGE_CACHE_4U	(_PAGE_CP_4U | _PAGE_CV_4U)
#define _PAGE_CACHE_4V	(_PAGE_CP_4V | _PAGE_CV_4V)
#define __DIRTY_BITS_4U	 (_PAGE_MODIFIED_4U | _PAGE_WRITE_4U | _PAGE_W_4U)
#define __DIRTY_BITS_4V	 (_PAGE_MODIFIED_4V | _PAGE_WRITE_4V | _PAGE_W_4V)
#define __ACCESS_BITS_4U (_PAGE_ACCESSED_4U | _PAGE_READ_4U | _PAGE_R)
#define __ACCESS_BITS_4V (_PAGE_ACCESSED_4V | _PAGE_READ_4V | _PAGE_R)

/* We need to exclude reserved regions. This exclusion will include
 * vmlinux and initrd. To be more precise the initrd size could be used to
 * compute a new lower limit because it is freed later during initialization.
 */
static void __init reduce_memory(phys_addr_t limit_ram)
{
	phys_addr_t avail_ram = available_memory();
	phys_addr_t pa_start, pa_end;
	u64 i;

	if (limit_ram >= avail_ram)
		return;

	for_each_free_mem_range(i, NUMA_NO_NODE, MEMBLOCK_NONE, &pa_start,
				&pa_end, NULL) {
		phys_addr_t region_size = pa_end - pa_start;
		phys_addr_t clip_start = pa_start;

		avail_ram = avail_ram - region_size;
		/* Are we consuming too much? */
		if (avail_ram < limit_ram) {
			phys_addr_t give_back = limit_ram - avail_ram;

			region_size = region_size - give_back;
			clip_start = clip_start + give_back;
		}

		memblock_remove(clip_start, region_size);

		if (avail_ram <= limit_ram)
			break;
		i = 0UL;
	}
}

void __init paging_init(void)
{
	unsigned long end_pfn, shift, phys_base;
	unsigned long real_end, i;

	setup_page_offset();

	/* These build time checkes make sure that the dcache_dirty_cpu()
	 * page->flags usage will work.
	 *
	 * When a page gets marked as dcache-dirty, we store the
	 * cpu number starting at bit 32 in the page->flags.  Also,
	 * functions like clear_dcache_dirty_cpu use the cpu mask
	 * in 13-bit signed-immediate instruction fields.
	 */

	/*
	 * Page flags must not reach into upper 32 bits that are used
	 * for the cpu number
	 */
	BUILD_BUG_ON(NR_PAGEFLAGS > 32);

	/*
	 * The bit fields placed in the high range must not reach below
	 * the 32 bit boundary. Otherwise we cannot place the cpu field
	 * at the 32 bit boundary.
	 */
	BUILD_BUG_ON(SECTIONS_WIDTH + NODES_WIDTH + ZONES_WIDTH +
		ilog2(roundup_pow_of_two(NR_CPUS)) > 32);

	BUILD_BUG_ON(NR_CPUS > 4096);

	kern_base = (prom_boot_mapping_phys_low >> ILOG2_4MB) << ILOG2_4MB;
	kern_size = (unsigned long)&_end - (unsigned long)KERNBASE;

	/* Invalidate both kernel TSBs.  */
	memset(swapper_tsb, 0x40, sizeof(swapper_tsb));
#ifndef CONFIG_DEBUG_PAGEALLOC
	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
#endif

	/* TTE.cv bit on sparc v9 occupies the same position as TTE.mcde
	 * bit on M7 processor. This is a conflicting usage of the same
	 * bit. Enabling TTE.cv on M7 would turn on Memory Corruption
	 * Detection error on all pages and this will lead to problems
	 * later. Kernel does not run with MCD enabled and hence rest
	 * of the required steps to fully configure memory corruption
	 * detection are not taken. We need to ensure TTE.mcde is not
	 * set on M7 processor. Compute the value of cacheability
	 * flag for use later taking this into consideration.
	 */
	switch (sun4v_chip_type) {
	case SUN4V_CHIP_SPARC_M7:
	case SUN4V_CHIP_SPARC_M8:
	case SUN4V_CHIP_SPARC_SN:
		page_cache4v_flag = _PAGE_CP_4V;
		break;
	default:
		page_cache4v_flag = _PAGE_CACHE_4V;
		break;
	}

	if (tlb_type == hypervisor)
		sun4v_pgprot_init();
	else
		sun4u_pgprot_init();

	if (tlb_type == cheetah_plus ||
	    tlb_type == hypervisor) {
		tsb_phys_patch();
		ktsb_phys_patch();
	}

	if (tlb_type == hypervisor)
		sun4v_patch_tlb_handlers();

	/* Find available physical memory...
	 *
	 * Read it twice in order to work around a bug in openfirmware.
	 * The call to grab this table itself can cause openfirmware to
	 * allocate memory, which in turn can take away some space from
	 * the list of available memory.  Reading it twice makes sure
	 * we really do get the final value.
	 */
	read_obp_translations();
	read_obp_memory("reg", &pall[0], &pall_ents);
	read_obp_memory("available", &pavail[0], &pavail_ents);
	read_obp_memory("available", &pavail[0], &pavail_ents);

	phys_base = 0xffffffffffffffffUL;
	for (i = 0; i < pavail_ents; i++) {
		phys_base = min(phys_base, pavail[i].phys_addr);
		memblock_add(pavail[i].phys_addr, pavail[i].reg_size);
	}

	memblock_reserve(kern_base, kern_size);

	find_ramdisk(phys_base);

	if (cmdline_memory_size)
		reduce_memory(cmdline_memory_size);

	memblock_allow_resize();
	memblock_dump_all();

	set_bit(0, mmu_context_bmap);

	shift = kern_base + PAGE_OFFSET - ((unsigned long)KERNBASE);

	real_end = (unsigned long)_end;
	num_kernel_image_mappings = DIV_ROUND_UP(real_end - KERNBASE, 1 << ILOG2_4MB);
	printk("Kernel: Using %d locked TLB entries for main kernel image.\n",
	       num_kernel_image_mappings);

	/* Set kernel pgd to upper alias so physical page computations
	 * work.
	 */
	init_mm.pgd += ((shift) / (sizeof(pgd_t)));
	
	memset(swapper_pg_dir, 0, sizeof(swapper_pg_dir));

	inherit_prom_mappings();
	
	/* Ok, we can use our TLB miss and window trap handlers safely.  */
	setup_tba();

	__flush_tlb_all();

	prom_build_devicetree();
	of_populate_present_mask();
#ifndef CONFIG_SMP
	of_fill_in_cpu_data();
#endif

	if (tlb_type == hypervisor) {
		sun4v_mdesc_init();
		mdesc_populate_present_mask(cpu_all_mask);
#ifndef CONFIG_SMP
		mdesc_fill_in_cpu_data(cpu_all_mask);
#endif
		mdesc_get_page_sizes(cpu_all_mask, &cpu_pgsz_mask);

		sun4v_linear_pte_xor_finalize();

		sun4v_ktsb_init();
		sun4v_ktsb_register();
	} else {
		unsigned long impl, ver;

		cpu_pgsz_mask = (HV_PGSZ_MASK_8K | HV_PGSZ_MASK_64K |
				 HV_PGSZ_MASK_512K | HV_PGSZ_MASK_4MB);

		__asm__ __volatile__("rdpr %%ver, %0" : "=r" (ver));
		impl = ((ver >> 32) & 0xffff);
		if (impl == PANTHER_IMPL)
			cpu_pgsz_mask |= (HV_PGSZ_MASK_32MB |
					  HV_PGSZ_MASK_256MB);

		sun4u_linear_pte_xor_finalize();
	}

	/* Flush the TLBs and the 4M TSB so that the updated linear
	 * pte XOR settings are realized for all mappings.
	 */
	__flush_tlb_all();
#ifndef CONFIG_DEBUG_PAGEALLOC
	memset(swapper_4m_tsb, 0x40, sizeof(swapper_4m_tsb));
#endif
	__flush_tlb_all();

	/* Setup bootmem... */
	last_valid_pfn = end_pfn = bootmem_init(phys_base);

	kernel_physical_mapping_init();

	{
		unsigned long max_zone_pfns[MAX_NR_ZONES];

		memset(max_zone_pfns, 0, sizeof(max_zone_pfns));

		max_zone_pfns[ZONE_NORMAL] = end_pfn;

		free_area_init_nodes(max_zone_pfns);
	}

	printk("Booting Linux...\n");
}

int page_in_phys_avail(unsigned long paddr)
{
	int i;

	paddr &= PAGE_MASK;

	for (i = 0; i < pavail_ents; i++) {
		unsigned long start, end;

		start = pavail[i].phys_addr;
		end = start + pavail[i].reg_size;

		if (paddr >= start && paddr < end)
			return 1;
	}
	if (paddr >= kern_base && paddr < (kern_base + kern_size))
		return 1;
#ifdef CONFIG_BLK_DEV_INITRD
	if (paddr >= __pa(initrd_start) &&
	    paddr < __pa(PAGE_ALIGN(initrd_end)))
		return 1;
#endif

	return 0;
}

static void __init register_page_bootmem_info(void)
{
#ifdef CONFIG_NEED_MULTIPLE_NODES
	int i;

	for_each_online_node(i)
		if (NODE_DATA(i)->node_spanned_pages)
			register_page_bootmem_info_node(NODE_DATA(i));
#endif
}
void __init mem_init(void)
{
	high_memory = __va(last_valid_pfn << PAGE_SHIFT);

	free_all_bootmem();

	/*
	 * Must be done after boot memory is put on freelist, because here we
	 * might set fields in deferred struct pages that have not yet been
	 * initialized, and free_all_bootmem() initializes all the reserved
	 * deferred pages for us.
	 */
	register_page_bootmem_info();

	/*
	 * Set up the zero page, mark it reserved, so that page count
	 * is not manipulated when freeing the page from user ptes.
	 */
	mem_map_zero = alloc_pages(GFP_KERNEL|__GFP_ZERO, 0);
	if (mem_map_zero == NULL) {
		prom_printf("paging_init: Cannot alloc zero page.\n");
		prom_halt();
	}
	mark_page_reserved(mem_map_zero);

	mem_init_print_info(NULL);

	if (tlb_type == cheetah || tlb_type == cheetah_plus)
		cheetah_ecache_flush_init();
}

void free_initmem(void)
{
	unsigned long addr, initend;
	int do_free = 1;

	/* If the physical memory maps were trimmed by kernel command
	 * line options, don't even try freeing this initmem stuff up.
	 * The kernel image could have been in the trimmed out region
	 * and if so the freeing below will free invalid page structs.
	 */
	if (cmdline_memory_size)
		do_free = 0;

	/*
	 * The init section is aligned to 8k in vmlinux.lds. Page align for >8k pagesizes.
	 */
	addr = PAGE_ALIGN((unsigned long)(__init_begin));
	initend = (unsigned long)(__init_end) & PAGE_MASK;
	for (; addr < initend; addr += PAGE_SIZE) {
		unsigned long page;

		page = (addr +
			((unsigned long) __va(kern_base)) -
			((unsigned long) KERNBASE));
		memset((void *)addr, POISON_FREE_INITMEM, PAGE_SIZE);

		if (do_free)
			free_reserved_page(virt_to_page(page));
	}
}

#ifdef CONFIG_BLK_DEV_INITRD
void free_initrd_mem(unsigned long start, unsigned long end)
{
	free_reserved_area((void *)start, (void *)end, POISON_FREE_INITMEM,
			   "initrd");
}
#endif

pgprot_t PAGE_KERNEL __read_mostly;
EXPORT_SYMBOL(PAGE_KERNEL);

pgprot_t PAGE_KERNEL_LOCKED __read_mostly;
pgprot_t PAGE_COPY __read_mostly;

pgprot_t PAGE_SHARED __read_mostly;
EXPORT_SYMBOL(PAGE_SHARED);

unsigned long pg_iobits __read_mostly;

unsigned long _PAGE_IE __read_mostly;
EXPORT_SYMBOL(_PAGE_IE);

unsigned long _PAGE_E __read_mostly;
EXPORT_SYMBOL(_PAGE_E);

unsigned long _PAGE_CACHE __read_mostly;
EXPORT_SYMBOL(_PAGE_CACHE);

#ifdef CONFIG_SPARSEMEM_VMEMMAP
int __meminit vmemmap_populate(unsigned long vstart, unsigned long vend,
			       int node)
{
	unsigned long pte_base;

	pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4U |
		    _PAGE_CP_4U | _PAGE_CV_4U |
		    _PAGE_P_4U | _PAGE_W_4U);
	if (tlb_type == hypervisor)
		pte_base = (_PAGE_VALID | _PAGE_SZ4MB_4V |
			    page_cache4v_flag | _PAGE_P_4V | _PAGE_W_4V);

	pte_base |= _PAGE_PMD_HUGE;

	vstart = vstart & PMD_MASK;
	vend = ALIGN(vend, PMD_SIZE);
	for (; vstart < vend; vstart += PMD_SIZE) {
		pgd_t *pgd = vmemmap_pgd_populate(vstart, node);
		unsigned long pte;
		pud_t *pud;
		pmd_t *pmd;

		if (!pgd)
			return -ENOMEM;

		pud = vmemmap_pud_populate(pgd, vstart, node);
		if (!pud)
			return -ENOMEM;

		pmd = pmd_offset(pud, vstart);
		pte = pmd_val(*pmd);
		if (!(pte & _PAGE_VALID)) {
			void *block = vmemmap_alloc_block(PMD_SIZE, node);

			if (!block)
				return -ENOMEM;

			pmd_val(*pmd) = pte_base | __pa(block);
		}
	}

	return 0;
}

void vmemmap_free(unsigned long start, unsigned long end)
{
}
#endif /* CONFIG_SPARSEMEM_VMEMMAP */

static void prot_init_common(unsigned long page_none,
			     unsigned long page_shared,
			     unsigned long page_copy,
			     unsigned long page_readonly,
			     unsigned long page_exec_bit)
{
	PAGE_COPY = __pgprot(page_copy);
	PAGE_SHARED = __pgprot(page_shared);

	protection_map[0x0] = __pgprot(page_none);
	protection_map[0x1] = __pgprot(page_readonly & ~page_exec_bit);
	protection_map[0x2] = __pgprot(page_copy & ~page_exec_bit);
	protection_map[0x3] = __pgprot(page_copy & ~page_exec_bit);
	protection_map[0x4] = __pgprot(page_readonly);
	protection_map[0x5] = __pgprot(page_readonly);
	protection_map[0x6] = __pgprot(page_copy);
	protection_map[0x7] = __pgprot(page_copy);
	protection_map[0x8] = __pgprot(page_none);
	protection_map[0x9] = __pgprot(page_readonly & ~page_exec_bit);
	protection_map[0xa] = __pgprot(page_shared & ~page_exec_bit);
	protection_map[0xb] = __pgprot(page_shared & ~page_exec_bit);
	protection_map[0xc] = __pgprot(page_readonly);
	protection_map[0xd] = __pgprot(page_readonly);
	protection_map[0xe] = __pgprot(page_shared);
	protection_map[0xf] = __pgprot(page_shared);
}

static void __init sun4u_pgprot_init(void)
{
	unsigned long page_none, page_shared, page_copy, page_readonly;
	unsigned long page_exec_bit;
	int i;

	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
				_PAGE_CACHE_4U | _PAGE_P_4U |
				__ACCESS_BITS_4U | __DIRTY_BITS_4U |
				_PAGE_EXEC_4U);
	PAGE_KERNEL_LOCKED = __pgprot (_PAGE_PRESENT_4U | _PAGE_VALID |
				       _PAGE_CACHE_4U | _PAGE_P_4U |
				       __ACCESS_BITS_4U | __DIRTY_BITS_4U |
				       _PAGE_EXEC_4U | _PAGE_L_4U);

	_PAGE_IE = _PAGE_IE_4U;
	_PAGE_E = _PAGE_E_4U;
	_PAGE_CACHE = _PAGE_CACHE_4U;

	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4U | __DIRTY_BITS_4U |
		     __ACCESS_BITS_4U | _PAGE_E_4U);

#ifdef CONFIG_DEBUG_PAGEALLOC
	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
#else
	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4U) ^
		PAGE_OFFSET;
#endif
	kern_linear_pte_xor[0] |= (_PAGE_CP_4U | _PAGE_CV_4U |
				   _PAGE_P_4U | _PAGE_W_4U);

	for (i = 1; i < 4; i++)
		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];

	_PAGE_ALL_SZ_BITS =  (_PAGE_SZ4MB_4U | _PAGE_SZ512K_4U |
			      _PAGE_SZ64K_4U | _PAGE_SZ8K_4U |
			      _PAGE_SZ32MB_4U | _PAGE_SZ256MB_4U);


	page_none = _PAGE_PRESENT_4U | _PAGE_ACCESSED_4U | _PAGE_CACHE_4U;
	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
		       __ACCESS_BITS_4U | _PAGE_WRITE_4U | _PAGE_EXEC_4U);
	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
		       __ACCESS_BITS_4U | _PAGE_EXEC_4U);
	page_readonly   = (_PAGE_VALID | _PAGE_PRESENT_4U | _PAGE_CACHE_4U |
			   __ACCESS_BITS_4U | _PAGE_EXEC_4U);

	page_exec_bit = _PAGE_EXEC_4U;

	prot_init_common(page_none, page_shared, page_copy, page_readonly,
			 page_exec_bit);
}

static void __init sun4v_pgprot_init(void)
{
	unsigned long page_none, page_shared, page_copy, page_readonly;
	unsigned long page_exec_bit;
	int i;

	PAGE_KERNEL = __pgprot (_PAGE_PRESENT_4V | _PAGE_VALID |
				page_cache4v_flag | _PAGE_P_4V |
				__ACCESS_BITS_4V | __DIRTY_BITS_4V |
				_PAGE_EXEC_4V);
	PAGE_KERNEL_LOCKED = PAGE_KERNEL;

	_PAGE_IE = _PAGE_IE_4V;
	_PAGE_E = _PAGE_E_4V;
	_PAGE_CACHE = page_cache4v_flag;

#ifdef CONFIG_DEBUG_PAGEALLOC
	kern_linear_pte_xor[0] = _PAGE_VALID ^ PAGE_OFFSET;
#else
	kern_linear_pte_xor[0] = (_PAGE_VALID | _PAGE_SZ4MB_4V) ^
		PAGE_OFFSET;
#endif
	kern_linear_pte_xor[0] |= (page_cache4v_flag | _PAGE_P_4V |
				   _PAGE_W_4V);

	for (i = 1; i < 4; i++)
		kern_linear_pte_xor[i] = kern_linear_pte_xor[0];

	pg_iobits = (_PAGE_VALID | _PAGE_PRESENT_4V | __DIRTY_BITS_4V |
		     __ACCESS_BITS_4V | _PAGE_E_4V);

	_PAGE_ALL_SZ_BITS = (_PAGE_SZ16GB_4V | _PAGE_SZ2GB_4V |
			     _PAGE_SZ256MB_4V | _PAGE_SZ32MB_4V |
			     _PAGE_SZ4MB_4V | _PAGE_SZ512K_4V |
			     _PAGE_SZ64K_4V | _PAGE_SZ8K_4V);

	page_none = _PAGE_PRESENT_4V | _PAGE_ACCESSED_4V | page_cache4v_flag;
	page_shared = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
		       __ACCESS_BITS_4V | _PAGE_WRITE_4V | _PAGE_EXEC_4V);
	page_copy   = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
		       __ACCESS_BITS_4V | _PAGE_EXEC_4V);
	page_readonly = (_PAGE_VALID | _PAGE_PRESENT_4V | page_cache4v_flag |
			 __ACCESS_BITS_4V | _PAGE_EXEC_4V);

	page_exec_bit = _PAGE_EXEC_4V;

	prot_init_common(page_none, page_shared, page_copy, page_readonly,
			 page_exec_bit);
}

unsigned long pte_sz_bits(unsigned long sz)
{
	if (tlb_type == hypervisor) {
		switch (sz) {
		case 8 * 1024:
		default:
			return _PAGE_SZ8K_4V;
		case 64 * 1024:
			return _PAGE_SZ64K_4V;
		case 512 * 1024:
			return _PAGE_SZ512K_4V;
		case 4 * 1024 * 1024:
			return _PAGE_SZ4MB_4V;
		}
	} else {
		switch (sz) {
		case 8 * 1024:
		default:
			return _PAGE_SZ8K_4U;
		case 64 * 1024:
			return _PAGE_SZ64K_4U;
		case 512 * 1024:
			return _PAGE_SZ512K_4U;
		case 4 * 1024 * 1024:
			return _PAGE_SZ4MB_4U;
		}
	}
}

pte_t mk_pte_io(unsigned long page, pgprot_t prot, int space, unsigned long page_size)
{
	pte_t pte;

	pte_val(pte)  = page | pgprot_val(pgprot_noncached(prot));
	pte_val(pte) |= (((unsigned long)space) << 32);
	pte_val(pte) |= pte_sz_bits(page_size);

	return pte;
}

static unsigned long kern_large_tte(unsigned long paddr)
{
	unsigned long val;

	val = (_PAGE_VALID | _PAGE_SZ4MB_4U |
	       _PAGE_CP_4U | _PAGE_CV_4U | _PAGE_P_4U |
	       _PAGE_EXEC_4U | _PAGE_L_4U | _PAGE_W_4U);
	if (tlb_type == hypervisor)
		val = (_PAGE_VALID | _PAGE_SZ4MB_4V |
		       page_cache4v_flag | _PAGE_P_4V |
		       _PAGE_EXEC_4V | _PAGE_W_4V);

	return val | paddr;
}

/* If not locked, zap it. */
void __flush_tlb_all(void)
{
	unsigned long pstate;
	int i;

	__asm__ __volatile__("flushw\n\t"
			     "rdpr	%%pstate, %0\n\t"
			     "wrpr	%0, %1, %%pstate"
			     : "=r" (pstate)
			     : "i" (PSTATE_IE));
	if (tlb_type == hypervisor) {
		sun4v_mmu_demap_all();
	} else if (tlb_type == spitfire) {
		for (i = 0; i < 64; i++) {
			/* Spitfire Errata #32 workaround */
			/* NOTE: Always runs on spitfire, so no
			 *       cheetah+ page size encodings.
			 */
			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
					     "flush	%%g6"
					     : /* No outputs */
					     : "r" (0),
					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));

			if (!(spitfire_get_dtlb_data(i) & _PAGE_L_4U)) {
				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
						     "membar #Sync"
						     : /* no outputs */
						     : "r" (TLB_TAG_ACCESS), "i" (ASI_DMMU));
				spitfire_put_dtlb_data(i, 0x0UL);
			}

			/* Spitfire Errata #32 workaround */
			/* NOTE: Always runs on spitfire, so no
			 *       cheetah+ page size encodings.
			 */
			__asm__ __volatile__("stxa	%0, [%1] %2\n\t"
					     "flush	%%g6"
					     : /* No outputs */
					     : "r" (0),
					     "r" (PRIMARY_CONTEXT), "i" (ASI_DMMU));

			if (!(spitfire_get_itlb_data(i) & _PAGE_L_4U)) {
				__asm__ __volatile__("stxa %%g0, [%0] %1\n\t"
						     "membar #Sync"
						     : /* no outputs */
						     : "r" (TLB_TAG_ACCESS), "i" (ASI_IMMU));
				spitfire_put_itlb_data(i, 0x0UL);
			}
		}
	} else if (tlb_type == cheetah || tlb_type == cheetah_plus) {
		cheetah_flush_dtlb_all();
		cheetah_flush_itlb_all();
	}
	__asm__ __volatile__("wrpr	%0, 0, %%pstate"
			     : : "r" (pstate));
}

pte_t *pte_alloc_one_kernel(struct mm_struct *mm,
			    unsigned long address)
{
	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	pte_t *pte = NULL;

	if (page)
		pte = (pte_t *) page_address(page);

	return pte;
}

pgtable_t pte_alloc_one(struct mm_struct *mm,
			unsigned long address)
{
	struct page *page = alloc_page(GFP_KERNEL | __GFP_ZERO);
	if (!page)
		return NULL;
	if (!pgtable_page_ctor(page)) {
		free_hot_cold_page(page, 0);
		return NULL;
	}
	return (pte_t *) page_address(page);
}

void pte_free_kernel(struct mm_struct *mm, pte_t *pte)
{
	free_page((unsigned long)pte);
}

static void __pte_free(pgtable_t pte)
{
	struct page *page = virt_to_page(pte);

	pgtable_page_dtor(page);
	__free_page(page);
}

void pte_free(struct mm_struct *mm, pgtable_t pte)
{
	__pte_free(pte);
}

void pgtable_free(void *table, bool is_page)
{
	if (is_page)
		__pte_free(table);
	else
		kmem_cache_free(pgtable_cache, table);
}

#ifdef CONFIG_TRANSPARENT_HUGEPAGE
void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
			  pmd_t *pmd)
{
	unsigned long pte, flags;
	struct mm_struct *mm;
	pmd_t entry = *pmd;

	if (!pmd_large(entry) || !pmd_young(entry))
		return;

	pte = pmd_val(entry);

	/* Don't insert a non-valid PMD into the TSB, we'll deadlock.  */
	if (!(pte & _PAGE_VALID))
		return;

	/* We are fabricating 8MB pages using 4MB real hw pages.  */
	pte |= (addr & (1UL << REAL_HPAGE_SHIFT));

	mm = vma->vm_mm;

	spin_lock_irqsave(&mm->context.lock, flags);

	if (mm->context.tsb_block[MM_TSB_HUGE].tsb != NULL)
		__update_mmu_tsb_insert(mm, MM_TSB_HUGE, REAL_HPAGE_SHIFT,
					addr, pte);

	spin_unlock_irqrestore(&mm->context.lock, flags);
}
#endif /* CONFIG_TRANSPARENT_HUGEPAGE */

#if defined(CONFIG_HUGETLB_PAGE) || defined(CONFIG_TRANSPARENT_HUGEPAGE)
static void context_reload(void *__data)
{
	struct mm_struct *mm = __data;

	if (mm == current->mm)
		load_secondary_context(mm);
}

void hugetlb_setup(struct pt_regs *regs)
{
	struct mm_struct *mm = current->mm;
	struct tsb_config *tp;

	if (faulthandler_disabled() || !mm) {
		const struct exception_table_entry *entry;

		entry = search_exception_tables(regs->tpc);
		if (entry) {
			regs->tpc = entry->fixup;
			regs->tnpc = regs->tpc + 4;
			return;
		}
		pr_alert("Unexpected HugeTLB setup in atomic context.\n");
		die_if_kernel("HugeTSB in atomic", regs);
	}

	tp = &mm->context.tsb_block[MM_TSB_HUGE];
	if (likely(tp->tsb == NULL))
		tsb_grow(mm, MM_TSB_HUGE, 0);

	tsb_context_switch(mm);
	smp_tsb_sync(mm);

	/* On UltraSPARC-III+ and later, configure the second half of
	 * the Data-TLB for huge pages.
	 */
	if (tlb_type == cheetah_plus) {
		bool need_context_reload = false;
		unsigned long ctx;

		spin_lock_irq(&ctx_alloc_lock);
		ctx = mm->context.sparc64_ctx_val;
		ctx &= ~CTX_PGSZ_MASK;
		ctx |= CTX_PGSZ_BASE << CTX_PGSZ0_SHIFT;
		ctx |= CTX_PGSZ_HUGE << CTX_PGSZ1_SHIFT;

		if (ctx != mm->context.sparc64_ctx_val) {
			/* When changing the page size fields, we
			 * must perform a context flush so that no
			 * stale entries match.  This flush must
			 * occur with the original context register
			 * settings.
			 */
			do_flush_tlb_mm(mm);

			/* Reload the context register of all processors
			 * also executing in this address space.
			 */
			mm->context.sparc64_ctx_val = ctx;
			need_context_reload = true;
		}
		spin_unlock_irq(&ctx_alloc_lock);

		if (need_context_reload)
			on_each_cpu(context_reload, mm, 0);
	}
}
#endif

static struct resource code_resource = {
	.name	= "Kernel code",
	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};

static struct resource data_resource = {
	.name	= "Kernel data",
	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};

static struct resource bss_resource = {
	.name	= "Kernel bss",
	.flags	= IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
};

static inline resource_size_t compute_kern_paddr(void *addr)
{
	return (resource_size_t) (addr - KERNBASE + kern_base);
}

static void __init kernel_lds_init(void)
{
	code_resource.start = compute_kern_paddr(_text);
	code_resource.end   = compute_kern_paddr(_etext - 1);
	data_resource.start = compute_kern_paddr(_etext);
	data_resource.end   = compute_kern_paddr(_edata - 1);
	bss_resource.start  = compute_kern_paddr(__bss_start);
	bss_resource.end    = compute_kern_paddr(_end - 1);
}

static int __init report_memory(void)
{
	int i;
	struct resource *res;

	kernel_lds_init();

	for (i = 0; i < pavail_ents; i++) {
		res = kzalloc(sizeof(struct resource), GFP_KERNEL);

		if (!res) {
			pr_warn("Failed to allocate source.\n");
			break;
		}

		res->name = "System RAM";
		res->start = pavail[i].phys_addr;
		res->end = pavail[i].phys_addr + pavail[i].reg_size - 1;
		res->flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM;

		if (insert_resource(&iomem_resource, res) < 0) {
			pr_warn("Resource insertion failed.\n");
			break;
		}

		insert_resource(res, &code_resource);
		insert_resource(res, &data_resource);
		insert_resource(res, &bss_resource);
	}

	return 0;
}
arch_initcall(report_memory);

#ifdef CONFIG_SMP
#define do_flush_tlb_kernel_range	smp_flush_tlb_kernel_range
#else
#define do_flush_tlb_kernel_range	__flush_tlb_kernel_range
#endif

void flush_tlb_kernel_range(unsigned long start, unsigned long end)
{
	if (start < HI_OBP_ADDRESS && end > LOW_OBP_ADDRESS) {
		if (start < LOW_OBP_ADDRESS) {
			flush_tsb_kernel_range(start, LOW_OBP_ADDRESS);
			do_flush_tlb_kernel_range(start, LOW_OBP_ADDRESS);
		}
		if (end > HI_OBP_ADDRESS) {
			flush_tsb_kernel_range(HI_OBP_ADDRESS, end);
			do_flush_tlb_kernel_range(HI_OBP_ADDRESS, end);
		}
	} else {
		flush_tsb_kernel_range(start, end);
		do_flush_tlb_kernel_range(start, end);
	}
}