1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
|
/* SPDX-License-Identifier: GPL-2.0-only */
/*
* Kernel-based Virtual Machine driver for Linux
*
* This header defines architecture specific interfaces, x86 version
*/
#ifndef _ASM_X86_KVM_HOST_H
#define _ASM_X86_KVM_HOST_H
#include <linux/types.h>
#include <linux/mm.h>
#include <linux/mmu_notifier.h>
#include <linux/tracepoint.h>
#include <linux/cpumask.h>
#include <linux/irq_work.h>
#include <linux/irq.h>
#include <linux/workqueue.h>
#include <linux/kvm.h>
#include <linux/kvm_para.h>
#include <linux/kvm_types.h>
#include <linux/perf_event.h>
#include <linux/pvclock_gtod.h>
#include <linux/clocksource.h>
#include <linux/irqbypass.h>
#include <linux/hyperv.h>
#include <linux/kfifo.h>
#include <asm/apic.h>
#include <asm/pvclock-abi.h>
#include <asm/desc.h>
#include <asm/mtrr.h>
#include <asm/msr-index.h>
#include <asm/asm.h>
#include <asm/kvm_page_track.h>
#include <asm/kvm_vcpu_regs.h>
#include <asm/hyperv-tlfs.h>
#define __KVM_HAVE_ARCH_VCPU_DEBUGFS
/*
* CONFIG_KVM_MAX_NR_VCPUS is defined iff CONFIG_KVM!=n, provide a dummy max if
* KVM is disabled (arbitrarily use the default from CONFIG_KVM_MAX_NR_VCPUS).
*/
#ifdef CONFIG_KVM_MAX_NR_VCPUS
#define KVM_MAX_VCPUS CONFIG_KVM_MAX_NR_VCPUS
#else
#define KVM_MAX_VCPUS 1024
#endif
/*
* In x86, the VCPU ID corresponds to the APIC ID, and APIC IDs
* might be larger than the actual number of VCPUs because the
* APIC ID encodes CPU topology information.
*
* In the worst case, we'll need less than one extra bit for the
* Core ID, and less than one extra bit for the Package (Die) ID,
* so ratio of 4 should be enough.
*/
#define KVM_VCPU_ID_RATIO 4
#define KVM_MAX_VCPU_IDS (KVM_MAX_VCPUS * KVM_VCPU_ID_RATIO)
/* memory slots that are not exposed to userspace */
#define KVM_INTERNAL_MEM_SLOTS 3
#define KVM_HALT_POLL_NS_DEFAULT 200000
#define KVM_IRQCHIP_NUM_PINS KVM_IOAPIC_NUM_PINS
#define KVM_DIRTY_LOG_MANUAL_CAPS (KVM_DIRTY_LOG_MANUAL_PROTECT_ENABLE | \
KVM_DIRTY_LOG_INITIALLY_SET)
#define KVM_BUS_LOCK_DETECTION_VALID_MODE (KVM_BUS_LOCK_DETECTION_OFF | \
KVM_BUS_LOCK_DETECTION_EXIT)
#define KVM_X86_NOTIFY_VMEXIT_VALID_BITS (KVM_X86_NOTIFY_VMEXIT_ENABLED | \
KVM_X86_NOTIFY_VMEXIT_USER)
/* x86-specific vcpu->requests bit members */
#define KVM_REQ_MIGRATE_TIMER KVM_ARCH_REQ(0)
#define KVM_REQ_REPORT_TPR_ACCESS KVM_ARCH_REQ(1)
#define KVM_REQ_TRIPLE_FAULT KVM_ARCH_REQ(2)
#define KVM_REQ_MMU_SYNC KVM_ARCH_REQ(3)
#define KVM_REQ_CLOCK_UPDATE KVM_ARCH_REQ(4)
#define KVM_REQ_LOAD_MMU_PGD KVM_ARCH_REQ(5)
#define KVM_REQ_EVENT KVM_ARCH_REQ(6)
#define KVM_REQ_APF_HALT KVM_ARCH_REQ(7)
#define KVM_REQ_STEAL_UPDATE KVM_ARCH_REQ(8)
#define KVM_REQ_NMI KVM_ARCH_REQ(9)
#define KVM_REQ_PMU KVM_ARCH_REQ(10)
#define KVM_REQ_PMI KVM_ARCH_REQ(11)
#ifdef CONFIG_KVM_SMM
#define KVM_REQ_SMI KVM_ARCH_REQ(12)
#endif
#define KVM_REQ_MASTERCLOCK_UPDATE KVM_ARCH_REQ(13)
#define KVM_REQ_MCLOCK_INPROGRESS \
KVM_ARCH_REQ_FLAGS(14, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_SCAN_IOAPIC \
KVM_ARCH_REQ_FLAGS(15, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_GLOBAL_CLOCK_UPDATE KVM_ARCH_REQ(16)
#define KVM_REQ_APIC_PAGE_RELOAD \
KVM_ARCH_REQ_FLAGS(17, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_HV_CRASH KVM_ARCH_REQ(18)
#define KVM_REQ_IOAPIC_EOI_EXIT KVM_ARCH_REQ(19)
#define KVM_REQ_HV_RESET KVM_ARCH_REQ(20)
#define KVM_REQ_HV_EXIT KVM_ARCH_REQ(21)
#define KVM_REQ_HV_STIMER KVM_ARCH_REQ(22)
#define KVM_REQ_LOAD_EOI_EXITMAP KVM_ARCH_REQ(23)
#define KVM_REQ_GET_NESTED_STATE_PAGES KVM_ARCH_REQ(24)
#define KVM_REQ_APICV_UPDATE \
KVM_ARCH_REQ_FLAGS(25, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_TLB_FLUSH_CURRENT KVM_ARCH_REQ(26)
#define KVM_REQ_TLB_FLUSH_GUEST \
KVM_ARCH_REQ_FLAGS(27, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_APF_READY KVM_ARCH_REQ(28)
#define KVM_REQ_MSR_FILTER_CHANGED KVM_ARCH_REQ(29)
#define KVM_REQ_UPDATE_CPU_DIRTY_LOGGING \
KVM_ARCH_REQ_FLAGS(30, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_MMU_FREE_OBSOLETE_ROOTS \
KVM_ARCH_REQ_FLAGS(31, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_HV_TLB_FLUSH \
KVM_ARCH_REQ_FLAGS(32, KVM_REQUEST_WAIT | KVM_REQUEST_NO_WAKEUP)
#define KVM_REQ_UPDATE_PROTECTED_GUEST_STATE KVM_ARCH_REQ(34)
#define CR0_RESERVED_BITS \
(~(unsigned long)(X86_CR0_PE | X86_CR0_MP | X86_CR0_EM | X86_CR0_TS \
| X86_CR0_ET | X86_CR0_NE | X86_CR0_WP | X86_CR0_AM \
| X86_CR0_NW | X86_CR0_CD | X86_CR0_PG))
#define CR4_RESERVED_BITS \
(~(unsigned long)(X86_CR4_VME | X86_CR4_PVI | X86_CR4_TSD | X86_CR4_DE\
| X86_CR4_PSE | X86_CR4_PAE | X86_CR4_MCE \
| X86_CR4_PGE | X86_CR4_PCE | X86_CR4_OSFXSR | X86_CR4_PCIDE \
| X86_CR4_OSXSAVE | X86_CR4_SMEP | X86_CR4_FSGSBASE \
| X86_CR4_OSXMMEXCPT | X86_CR4_LA57 | X86_CR4_VMXE \
| X86_CR4_SMAP | X86_CR4_PKE | X86_CR4_UMIP \
| X86_CR4_LAM_SUP))
#define CR8_RESERVED_BITS (~(unsigned long)X86_CR8_TPR)
#define INVALID_PAGE (~(hpa_t)0)
#define VALID_PAGE(x) ((x) != INVALID_PAGE)
/* KVM Hugepage definitions for x86 */
#define KVM_MAX_HUGEPAGE_LEVEL PG_LEVEL_1G
#define KVM_NR_PAGE_SIZES (KVM_MAX_HUGEPAGE_LEVEL - PG_LEVEL_4K + 1)
#define KVM_HPAGE_GFN_SHIFT(x) (((x) - 1) * 9)
#define KVM_HPAGE_SHIFT(x) (PAGE_SHIFT + KVM_HPAGE_GFN_SHIFT(x))
#define KVM_HPAGE_SIZE(x) (1UL << KVM_HPAGE_SHIFT(x))
#define KVM_HPAGE_MASK(x) (~(KVM_HPAGE_SIZE(x) - 1))
#define KVM_PAGES_PER_HPAGE(x) (KVM_HPAGE_SIZE(x) / PAGE_SIZE)
#define KVM_MEMSLOT_PAGES_TO_MMU_PAGES_RATIO 50
#define KVM_MIN_ALLOC_MMU_PAGES 64UL
#define KVM_MMU_HASH_SHIFT 12
#define KVM_NUM_MMU_PAGES (1 << KVM_MMU_HASH_SHIFT)
#define KVM_MIN_FREE_MMU_PAGES 5
#define KVM_REFILL_PAGES 25
#define KVM_MAX_CPUID_ENTRIES 256
#define KVM_NR_VAR_MTRR 8
#define ASYNC_PF_PER_VCPU 64
enum kvm_reg {
VCPU_REGS_RAX = __VCPU_REGS_RAX,
VCPU_REGS_RCX = __VCPU_REGS_RCX,
VCPU_REGS_RDX = __VCPU_REGS_RDX,
VCPU_REGS_RBX = __VCPU_REGS_RBX,
VCPU_REGS_RSP = __VCPU_REGS_RSP,
VCPU_REGS_RBP = __VCPU_REGS_RBP,
VCPU_REGS_RSI = __VCPU_REGS_RSI,
VCPU_REGS_RDI = __VCPU_REGS_RDI,
#ifdef CONFIG_X86_64
VCPU_REGS_R8 = __VCPU_REGS_R8,
VCPU_REGS_R9 = __VCPU_REGS_R9,
VCPU_REGS_R10 = __VCPU_REGS_R10,
VCPU_REGS_R11 = __VCPU_REGS_R11,
VCPU_REGS_R12 = __VCPU_REGS_R12,
VCPU_REGS_R13 = __VCPU_REGS_R13,
VCPU_REGS_R14 = __VCPU_REGS_R14,
VCPU_REGS_R15 = __VCPU_REGS_R15,
#endif
VCPU_REGS_RIP,
NR_VCPU_REGS,
VCPU_EXREG_PDPTR = NR_VCPU_REGS,
VCPU_EXREG_CR0,
VCPU_EXREG_CR3,
VCPU_EXREG_CR4,
VCPU_EXREG_RFLAGS,
VCPU_EXREG_SEGMENTS,
VCPU_EXREG_EXIT_INFO_1,
VCPU_EXREG_EXIT_INFO_2,
};
enum {
VCPU_SREG_ES,
VCPU_SREG_CS,
VCPU_SREG_SS,
VCPU_SREG_DS,
VCPU_SREG_FS,
VCPU_SREG_GS,
VCPU_SREG_TR,
VCPU_SREG_LDTR,
};
enum exit_fastpath_completion {
EXIT_FASTPATH_NONE,
EXIT_FASTPATH_REENTER_GUEST,
EXIT_FASTPATH_EXIT_HANDLED,
};
typedef enum exit_fastpath_completion fastpath_t;
struct x86_emulate_ctxt;
struct x86_exception;
union kvm_smram;
enum x86_intercept;
enum x86_intercept_stage;
#define KVM_NR_DB_REGS 4
#define DR6_BUS_LOCK (1 << 11)
#define DR6_BD (1 << 13)
#define DR6_BS (1 << 14)
#define DR6_BT (1 << 15)
#define DR6_RTM (1 << 16)
/*
* DR6_ACTIVE_LOW combines fixed-1 and active-low bits.
* We can regard all the bits in DR6_FIXED_1 as active_low bits;
* they will never be 0 for now, but when they are defined
* in the future it will require no code change.
*
* DR6_ACTIVE_LOW is also used as the init/reset value for DR6.
*/
#define DR6_ACTIVE_LOW 0xffff0ff0
#define DR6_VOLATILE 0x0001e80f
#define DR6_FIXED_1 (DR6_ACTIVE_LOW & ~DR6_VOLATILE)
#define DR7_BP_EN_MASK 0x000000ff
#define DR7_GE (1 << 9)
#define DR7_GD (1 << 13)
#define DR7_FIXED_1 0x00000400
#define DR7_VOLATILE 0xffff2bff
#define KVM_GUESTDBG_VALID_MASK \
(KVM_GUESTDBG_ENABLE | \
KVM_GUESTDBG_SINGLESTEP | \
KVM_GUESTDBG_USE_HW_BP | \
KVM_GUESTDBG_USE_SW_BP | \
KVM_GUESTDBG_INJECT_BP | \
KVM_GUESTDBG_INJECT_DB | \
KVM_GUESTDBG_BLOCKIRQ)
#define PFERR_PRESENT_MASK BIT(0)
#define PFERR_WRITE_MASK BIT(1)
#define PFERR_USER_MASK BIT(2)
#define PFERR_RSVD_MASK BIT(3)
#define PFERR_FETCH_MASK BIT(4)
#define PFERR_PK_MASK BIT(5)
#define PFERR_SGX_MASK BIT(15)
#define PFERR_GUEST_RMP_MASK BIT_ULL(31)
#define PFERR_GUEST_FINAL_MASK BIT_ULL(32)
#define PFERR_GUEST_PAGE_MASK BIT_ULL(33)
#define PFERR_GUEST_ENC_MASK BIT_ULL(34)
#define PFERR_GUEST_SIZEM_MASK BIT_ULL(35)
#define PFERR_GUEST_VMPL_MASK BIT_ULL(36)
/*
* IMPLICIT_ACCESS is a KVM-defined flag used to correctly perform SMAP checks
* when emulating instructions that triggers implicit access.
*/
#define PFERR_IMPLICIT_ACCESS BIT_ULL(48)
/*
* PRIVATE_ACCESS is a KVM-defined flag us to indicate that a fault occurred
* when the guest was accessing private memory.
*/
#define PFERR_PRIVATE_ACCESS BIT_ULL(49)
#define PFERR_SYNTHETIC_MASK (PFERR_IMPLICIT_ACCESS | PFERR_PRIVATE_ACCESS)
#define PFERR_NESTED_GUEST_PAGE (PFERR_GUEST_PAGE_MASK | \
PFERR_WRITE_MASK | \
PFERR_PRESENT_MASK)
/* apic attention bits */
#define KVM_APIC_CHECK_VAPIC 0
/*
* The following bit is set with PV-EOI, unset on EOI.
* We detect PV-EOI changes by guest by comparing
* this bit with PV-EOI in guest memory.
* See the implementation in apic_update_pv_eoi.
*/
#define KVM_APIC_PV_EOI_PENDING 1
struct kvm_kernel_irq_routing_entry;
/*
* kvm_mmu_page_role tracks the properties of a shadow page (where shadow page
* also includes TDP pages) to determine whether or not a page can be used in
* the given MMU context. This is a subset of the overall kvm_cpu_role to
* minimize the size of kvm_memory_slot.arch.gfn_write_track, i.e. allows
* allocating 2 bytes per gfn instead of 4 bytes per gfn.
*
* Upper-level shadow pages having gptes are tracked for write-protection via
* gfn_write_track. As above, gfn_write_track is a 16 bit counter, so KVM must
* not create more than 2^16-1 upper-level shadow pages at a single gfn,
* otherwise gfn_write_track will overflow and explosions will ensue.
*
* A unique shadow page (SP) for a gfn is created if and only if an existing SP
* cannot be reused. The ability to reuse a SP is tracked by its role, which
* incorporates various mode bits and properties of the SP. Roughly speaking,
* the number of unique SPs that can theoretically be created is 2^n, where n
* is the number of bits that are used to compute the role.
*
* But, even though there are 19 bits in the mask below, not all combinations
* of modes and flags are possible:
*
* - invalid shadow pages are not accounted, so the bits are effectively 18
*
* - quadrant will only be used if has_4_byte_gpte=1 (non-PAE paging);
* execonly and ad_disabled are only used for nested EPT which has
* has_4_byte_gpte=0. Therefore, 2 bits are always unused.
*
* - the 4 bits of level are effectively limited to the values 2/3/4/5,
* as 4k SPs are not tracked (allowed to go unsync). In addition non-PAE
* paging has exactly one upper level, making level completely redundant
* when has_4_byte_gpte=1.
*
* - on top of this, smep_andnot_wp and smap_andnot_wp are only set if
* cr0_wp=0, therefore these three bits only give rise to 5 possibilities.
*
* Therefore, the maximum number of possible upper-level shadow pages for a
* single gfn is a bit less than 2^13.
*/
union kvm_mmu_page_role {
u32 word;
struct {
unsigned level:4;
unsigned has_4_byte_gpte:1;
unsigned quadrant:2;
unsigned direct:1;
unsigned access:3;
unsigned invalid:1;
unsigned efer_nx:1;
unsigned cr0_wp:1;
unsigned smep_andnot_wp:1;
unsigned smap_andnot_wp:1;
unsigned ad_disabled:1;
unsigned guest_mode:1;
unsigned passthrough:1;
unsigned :5;
/*
* This is left at the top of the word so that
* kvm_memslots_for_spte_role can extract it with a
* simple shift. While there is room, give it a whole
* byte so it is also faster to load it from memory.
*/
unsigned smm:8;
};
};
/*
* kvm_mmu_extended_role complements kvm_mmu_page_role, tracking properties
* relevant to the current MMU configuration. When loading CR0, CR4, or EFER,
* including on nested transitions, if nothing in the full role changes then
* MMU re-configuration can be skipped. @valid bit is set on first usage so we
* don't treat all-zero structure as valid data.
*
* The properties that are tracked in the extended role but not the page role
* are for things that either (a) do not affect the validity of the shadow page
* or (b) are indirectly reflected in the shadow page's role. For example,
* CR4.PKE only affects permission checks for software walks of the guest page
* tables (because KVM doesn't support Protection Keys with shadow paging), and
* CR0.PG, CR4.PAE, and CR4.PSE are indirectly reflected in role.level.
*
* Note, SMEP and SMAP are not redundant with sm*p_andnot_wp in the page role.
* If CR0.WP=1, KVM can reuse shadow pages for the guest regardless of SMEP and
* SMAP, but the MMU's permission checks for software walks need to be SMEP and
* SMAP aware regardless of CR0.WP.
*/
union kvm_mmu_extended_role {
u32 word;
struct {
unsigned int valid:1;
unsigned int execonly:1;
unsigned int cr4_pse:1;
unsigned int cr4_pke:1;
unsigned int cr4_smap:1;
unsigned int cr4_smep:1;
unsigned int cr4_la57:1;
unsigned int efer_lma:1;
};
};
union kvm_cpu_role {
u64 as_u64;
struct {
union kvm_mmu_page_role base;
union kvm_mmu_extended_role ext;
};
};
struct kvm_rmap_head {
unsigned long val;
};
struct kvm_pio_request {
unsigned long linear_rip;
unsigned long count;
int in;
int port;
int size;
};
#define PT64_ROOT_MAX_LEVEL 5
struct rsvd_bits_validate {
u64 rsvd_bits_mask[2][PT64_ROOT_MAX_LEVEL];
u64 bad_mt_xwr;
};
struct kvm_mmu_root_info {
gpa_t pgd;
hpa_t hpa;
};
#define KVM_MMU_ROOT_INFO_INVALID \
((struct kvm_mmu_root_info) { .pgd = INVALID_PAGE, .hpa = INVALID_PAGE })
#define KVM_MMU_NUM_PREV_ROOTS 3
#define KVM_MMU_ROOT_CURRENT BIT(0)
#define KVM_MMU_ROOT_PREVIOUS(i) BIT(1+i)
#define KVM_MMU_ROOTS_ALL (BIT(1 + KVM_MMU_NUM_PREV_ROOTS) - 1)
#define KVM_HAVE_MMU_RWLOCK
struct kvm_mmu_page;
struct kvm_page_fault;
/*
* x86 supports 4 paging modes (5-level 64-bit, 4-level 64-bit, 3-level 32-bit,
* and 2-level 32-bit). The kvm_mmu structure abstracts the details of the
* current mmu mode.
*/
struct kvm_mmu {
unsigned long (*get_guest_pgd)(struct kvm_vcpu *vcpu);
u64 (*get_pdptr)(struct kvm_vcpu *vcpu, int index);
int (*page_fault)(struct kvm_vcpu *vcpu, struct kvm_page_fault *fault);
void (*inject_page_fault)(struct kvm_vcpu *vcpu,
struct x86_exception *fault);
gpa_t (*gva_to_gpa)(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
gpa_t gva_or_gpa, u64 access,
struct x86_exception *exception);
int (*sync_spte)(struct kvm_vcpu *vcpu,
struct kvm_mmu_page *sp, int i);
struct kvm_mmu_root_info root;
union kvm_cpu_role cpu_role;
union kvm_mmu_page_role root_role;
/*
* The pkru_mask indicates if protection key checks are needed. It
* consists of 16 domains indexed by page fault error code bits [4:1],
* with PFEC.RSVD replaced by ACC_USER_MASK from the page tables.
* Each domain has 2 bits which are ANDed with AD and WD from PKRU.
*/
u32 pkru_mask;
struct kvm_mmu_root_info prev_roots[KVM_MMU_NUM_PREV_ROOTS];
/*
* Bitmap; bit set = permission fault
* Byte index: page fault error code [4:1]
* Bit index: pte permissions in ACC_* format
*/
u8 permissions[16];
u64 *pae_root;
u64 *pml4_root;
u64 *pml5_root;
/*
* check zero bits on shadow page table entries, these
* bits include not only hardware reserved bits but also
* the bits spte never used.
*/
struct rsvd_bits_validate shadow_zero_check;
struct rsvd_bits_validate guest_rsvd_check;
u64 pdptrs[4]; /* pae */
};
enum pmc_type {
KVM_PMC_GP = 0,
KVM_PMC_FIXED,
};
struct kvm_pmc {
enum pmc_type type;
u8 idx;
bool is_paused;
bool intr;
/*
* Base value of the PMC counter, relative to the *consumed* count in
* the associated perf_event. This value includes counter updates from
* the perf_event and emulated_count since the last time the counter
* was reprogrammed, but it is *not* the current value as seen by the
* guest or userspace.
*
* The count is relative to the associated perf_event so that KVM
* doesn't need to reprogram the perf_event every time the guest writes
* to the counter.
*/
u64 counter;
/*
* PMC events triggered by KVM emulation that haven't been fully
* processed, i.e. haven't undergone overflow detection.
*/
u64 emulated_counter;
u64 eventsel;
struct perf_event *perf_event;
struct kvm_vcpu *vcpu;
/*
* only for creating or reusing perf_event,
* eventsel value for general purpose counters,
* ctrl value for fixed counters.
*/
u64 current_config;
};
/* More counters may conflict with other existing Architectural MSRs */
#define KVM_MAX(a, b) ((a) >= (b) ? (a) : (b))
#define KVM_MAX_NR_INTEL_GP_COUNTERS 8
#define KVM_MAX_NR_AMD_GP_COUNTERS 6
#define KVM_MAX_NR_GP_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_GP_COUNTERS, \
KVM_MAX_NR_AMD_GP_COUNTERS)
#define KVM_MAX_NR_INTEL_FIXED_COUTNERS 3
#define KVM_MAX_NR_AMD_FIXED_COUTNERS 0
#define KVM_MAX_NR_FIXED_COUNTERS KVM_MAX(KVM_MAX_NR_INTEL_FIXED_COUTNERS, \
KVM_MAX_NR_AMD_FIXED_COUTNERS)
struct kvm_pmu {
u8 version;
unsigned nr_arch_gp_counters;
unsigned nr_arch_fixed_counters;
unsigned available_event_types;
u64 fixed_ctr_ctrl;
u64 fixed_ctr_ctrl_rsvd;
u64 global_ctrl;
u64 global_status;
u64 counter_bitmask[2];
u64 global_ctrl_rsvd;
u64 global_status_rsvd;
u64 reserved_bits;
u64 raw_event_mask;
struct kvm_pmc gp_counters[KVM_MAX_NR_GP_COUNTERS];
struct kvm_pmc fixed_counters[KVM_MAX_NR_FIXED_COUNTERS];
/*
* Overlay the bitmap with a 64-bit atomic so that all bits can be
* set in a single access, e.g. to reprogram all counters when the PMU
* filter changes.
*/
union {
DECLARE_BITMAP(reprogram_pmi, X86_PMC_IDX_MAX);
atomic64_t __reprogram_pmi;
};
DECLARE_BITMAP(all_valid_pmc_idx, X86_PMC_IDX_MAX);
DECLARE_BITMAP(pmc_in_use, X86_PMC_IDX_MAX);
u64 ds_area;
u64 pebs_enable;
u64 pebs_enable_rsvd;
u64 pebs_data_cfg;
u64 pebs_data_cfg_rsvd;
/*
* If a guest counter is cross-mapped to host counter with different
* index, its PEBS capability will be temporarily disabled.
*
* The user should make sure that this mask is updated
* after disabling interrupts and before perf_guest_get_msrs();
*/
u64 host_cross_mapped_mask;
/*
* The gate to release perf_events not marked in
* pmc_in_use only once in a vcpu time slice.
*/
bool need_cleanup;
/*
* The total number of programmed perf_events and it helps to avoid
* redundant check before cleanup if guest don't use vPMU at all.
*/
u8 event_count;
};
struct kvm_pmu_ops;
enum {
KVM_DEBUGREG_BP_ENABLED = 1,
KVM_DEBUGREG_WONT_EXIT = 2,
};
struct kvm_mtrr {
u64 var[KVM_NR_VAR_MTRR * 2];
u64 fixed_64k;
u64 fixed_16k[2];
u64 fixed_4k[8];
u64 deftype;
};
/* Hyper-V SynIC timer */
struct kvm_vcpu_hv_stimer {
struct hrtimer timer;
int index;
union hv_stimer_config config;
u64 count;
u64 exp_time;
struct hv_message msg;
bool msg_pending;
};
/* Hyper-V synthetic interrupt controller (SynIC)*/
struct kvm_vcpu_hv_synic {
u64 version;
u64 control;
u64 msg_page;
u64 evt_page;
atomic64_t sint[HV_SYNIC_SINT_COUNT];
atomic_t sint_to_gsi[HV_SYNIC_SINT_COUNT];
DECLARE_BITMAP(auto_eoi_bitmap, 256);
DECLARE_BITMAP(vec_bitmap, 256);
bool active;
bool dont_zero_synic_pages;
};
/* The maximum number of entries on the TLB flush fifo. */
#define KVM_HV_TLB_FLUSH_FIFO_SIZE (16)
/*
* Note: the following 'magic' entry is made up by KVM to avoid putting
* anything besides GVA on the TLB flush fifo. It is theoretically possible
* to observe a request to flush 4095 PFNs starting from 0xfffffffffffff000
* which will look identical. KVM's action to 'flush everything' instead of
* flushing these particular addresses is, however, fully legitimate as
* flushing more than requested is always OK.
*/
#define KVM_HV_TLB_FLUSHALL_ENTRY ((u64)-1)
enum hv_tlb_flush_fifos {
HV_L1_TLB_FLUSH_FIFO,
HV_L2_TLB_FLUSH_FIFO,
HV_NR_TLB_FLUSH_FIFOS,
};
struct kvm_vcpu_hv_tlb_flush_fifo {
spinlock_t write_lock;
DECLARE_KFIFO(entries, u64, KVM_HV_TLB_FLUSH_FIFO_SIZE);
};
/* Hyper-V per vcpu emulation context */
struct kvm_vcpu_hv {
struct kvm_vcpu *vcpu;
u32 vp_index;
u64 hv_vapic;
s64 runtime_offset;
struct kvm_vcpu_hv_synic synic;
struct kvm_hyperv_exit exit;
struct kvm_vcpu_hv_stimer stimer[HV_SYNIC_STIMER_COUNT];
DECLARE_BITMAP(stimer_pending_bitmap, HV_SYNIC_STIMER_COUNT);
bool enforce_cpuid;
struct {
u32 features_eax; /* HYPERV_CPUID_FEATURES.EAX */
u32 features_ebx; /* HYPERV_CPUID_FEATURES.EBX */
u32 features_edx; /* HYPERV_CPUID_FEATURES.EDX */
u32 enlightenments_eax; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EAX */
u32 enlightenments_ebx; /* HYPERV_CPUID_ENLIGHTMENT_INFO.EBX */
u32 syndbg_cap_eax; /* HYPERV_CPUID_SYNDBG_PLATFORM_CAPABILITIES.EAX */
u32 nested_eax; /* HYPERV_CPUID_NESTED_FEATURES.EAX */
u32 nested_ebx; /* HYPERV_CPUID_NESTED_FEATURES.EBX */
} cpuid_cache;
struct kvm_vcpu_hv_tlb_flush_fifo tlb_flush_fifo[HV_NR_TLB_FLUSH_FIFOS];
/* Preallocated buffer for handling hypercalls passing sparse vCPU set */
u64 sparse_banks[HV_MAX_SPARSE_VCPU_BANKS];
struct hv_vp_assist_page vp_assist_page;
struct {
u64 pa_page_gpa;
u64 vm_id;
u32 vp_id;
} nested;
};
struct kvm_hypervisor_cpuid {
u32 base;
u32 limit;
};
#ifdef CONFIG_KVM_XEN
/* Xen HVM per vcpu emulation context */
struct kvm_vcpu_xen {
u64 hypercall_rip;
u32 current_runstate;
u8 upcall_vector;
struct gfn_to_pfn_cache vcpu_info_cache;
struct gfn_to_pfn_cache vcpu_time_info_cache;
struct gfn_to_pfn_cache runstate_cache;
struct gfn_to_pfn_cache runstate2_cache;
u64 last_steal;
u64 runstate_entry_time;
u64 runstate_times[4];
unsigned long evtchn_pending_sel;
u32 vcpu_id; /* The Xen / ACPI vCPU ID */
u32 timer_virq;
u64 timer_expires; /* In guest epoch */
atomic_t timer_pending;
struct hrtimer timer;
int poll_evtchn;
struct timer_list poll_timer;
struct kvm_hypervisor_cpuid cpuid;
};
#endif
struct kvm_queued_exception {
bool pending;
bool injected;
bool has_error_code;
u8 vector;
u32 error_code;
unsigned long payload;
bool has_payload;
};
struct kvm_vcpu_arch {
/*
* rip and regs accesses must go through
* kvm_{register,rip}_{read,write} functions.
*/
unsigned long regs[NR_VCPU_REGS];
u32 regs_avail;
u32 regs_dirty;
unsigned long cr0;
unsigned long cr0_guest_owned_bits;
unsigned long cr2;
unsigned long cr3;
unsigned long cr4;
unsigned long cr4_guest_owned_bits;
unsigned long cr4_guest_rsvd_bits;
unsigned long cr8;
u32 host_pkru;
u32 pkru;
u32 hflags;
u64 efer;
u64 apic_base;
struct kvm_lapic *apic; /* kernel irqchip context */
bool load_eoi_exitmap_pending;
DECLARE_BITMAP(ioapic_handled_vectors, 256);
unsigned long apic_attention;
int32_t apic_arb_prio;
int mp_state;
u64 ia32_misc_enable_msr;
u64 smbase;
u64 smi_count;
bool at_instruction_boundary;
bool tpr_access_reporting;
bool xfd_no_write_intercept;
u64 ia32_xss;
u64 microcode_version;
u64 arch_capabilities;
u64 perf_capabilities;
/*
* Paging state of the vcpu
*
* If the vcpu runs in guest mode with two level paging this still saves
* the paging mode of the l1 guest. This context is always used to
* handle faults.
*/
struct kvm_mmu *mmu;
/* Non-nested MMU for L1 */
struct kvm_mmu root_mmu;
/* L1 MMU when running nested */
struct kvm_mmu guest_mmu;
/*
* Paging state of an L2 guest (used for nested npt)
*
* This context will save all necessary information to walk page tables
* of an L2 guest. This context is only initialized for page table
* walking and not for faulting since we never handle l2 page faults on
* the host.
*/
struct kvm_mmu nested_mmu;
/*
* Pointer to the mmu context currently used for
* gva_to_gpa translations.
*/
struct kvm_mmu *walk_mmu;
struct kvm_mmu_memory_cache mmu_pte_list_desc_cache;
struct kvm_mmu_memory_cache mmu_shadow_page_cache;
struct kvm_mmu_memory_cache mmu_shadowed_info_cache;
struct kvm_mmu_memory_cache mmu_page_header_cache;
/*
* QEMU userspace and the guest each have their own FPU state.
* In vcpu_run, we switch between the user and guest FPU contexts.
* While running a VCPU, the VCPU thread will have the guest FPU
* context.
*
* Note that while the PKRU state lives inside the fpu registers,
* it is switched out separately at VMENTER and VMEXIT time. The
* "guest_fpstate" state here contains the guest FPU context, with the
* host PRKU bits.
*/
struct fpu_guest guest_fpu;
u64 xcr0;
u64 guest_supported_xcr0;
struct kvm_pio_request pio;
void *pio_data;
void *sev_pio_data;
unsigned sev_pio_count;
u8 event_exit_inst_len;
bool exception_from_userspace;
/* Exceptions to be injected to the guest. */
struct kvm_queued_exception exception;
/* Exception VM-Exits to be synthesized to L1. */
struct kvm_queued_exception exception_vmexit;
struct kvm_queued_interrupt {
bool injected;
bool soft;
u8 nr;
} interrupt;
int halt_request; /* real mode on Intel only */
int cpuid_nent;
struct kvm_cpuid_entry2 *cpuid_entries;
struct kvm_hypervisor_cpuid kvm_cpuid;
bool is_amd_compatible;
/*
* FIXME: Drop this macro and use KVM_NR_GOVERNED_FEATURES directly
* when "struct kvm_vcpu_arch" is no longer defined in an
* arch/x86/include/asm header. The max is mostly arbitrary, i.e.
* can be increased as necessary.
*/
#define KVM_MAX_NR_GOVERNED_FEATURES BITS_PER_LONG
/*
* Track whether or not the guest is allowed to use features that are
* governed by KVM, where "governed" means KVM needs to manage state
* and/or explicitly enable the feature in hardware. Typically, but
* not always, governed features can be used by the guest if and only
* if both KVM and userspace want to expose the feature to the guest.
*/
struct {
DECLARE_BITMAP(enabled, KVM_MAX_NR_GOVERNED_FEATURES);
} governed_features;
u64 reserved_gpa_bits;
int maxphyaddr;
/* emulate context */
struct x86_emulate_ctxt *emulate_ctxt;
bool emulate_regs_need_sync_to_vcpu;
bool emulate_regs_need_sync_from_vcpu;
int (*complete_userspace_io)(struct kvm_vcpu *vcpu);
gpa_t time;
struct pvclock_vcpu_time_info hv_clock;
unsigned int hw_tsc_khz;
struct gfn_to_pfn_cache pv_time;
/* set guest stopped flag in pvclock flags field */
bool pvclock_set_guest_stopped_request;
struct {
u8 preempted;
u64 msr_val;
u64 last_steal;
struct gfn_to_hva_cache cache;
} st;
u64 l1_tsc_offset;
u64 tsc_offset; /* current tsc offset */
u64 last_guest_tsc;
u64 last_host_tsc;
u64 tsc_offset_adjustment;
u64 this_tsc_nsec;
u64 this_tsc_write;
u64 this_tsc_generation;
bool tsc_catchup;
bool tsc_always_catchup;
s8 virtual_tsc_shift;
u32 virtual_tsc_mult;
u32 virtual_tsc_khz;
s64 ia32_tsc_adjust_msr;
u64 msr_ia32_power_ctl;
u64 l1_tsc_scaling_ratio;
u64 tsc_scaling_ratio; /* current scaling ratio */
atomic_t nmi_queued; /* unprocessed asynchronous NMIs */
/* Number of NMIs pending injection, not including hardware vNMIs. */
unsigned int nmi_pending;
bool nmi_injected; /* Trying to inject an NMI this entry */
bool smi_pending; /* SMI queued after currently running handler */
u8 handling_intr_from_guest;
struct kvm_mtrr mtrr_state;
u64 pat;
unsigned switch_db_regs;
unsigned long db[KVM_NR_DB_REGS];
unsigned long dr6;
unsigned long dr7;
unsigned long eff_db[KVM_NR_DB_REGS];
unsigned long guest_debug_dr7;
u64 msr_platform_info;
u64 msr_misc_features_enables;
u64 mcg_cap;
u64 mcg_status;
u64 mcg_ctl;
u64 mcg_ext_ctl;
u64 *mce_banks;
u64 *mci_ctl2_banks;
/* Cache MMIO info */
u64 mmio_gva;
unsigned mmio_access;
gfn_t mmio_gfn;
u64 mmio_gen;
struct kvm_pmu pmu;
/* used for guest single stepping over the given code position */
unsigned long singlestep_rip;
#ifdef CONFIG_KVM_HYPERV
bool hyperv_enabled;
struct kvm_vcpu_hv *hyperv;
#endif
#ifdef CONFIG_KVM_XEN
struct kvm_vcpu_xen xen;
#endif
cpumask_var_t wbinvd_dirty_mask;
unsigned long last_retry_eip;
unsigned long last_retry_addr;
struct {
bool halted;
gfn_t gfns[ASYNC_PF_PER_VCPU];
struct gfn_to_hva_cache data;
u64 msr_en_val; /* MSR_KVM_ASYNC_PF_EN */
u64 msr_int_val; /* MSR_KVM_ASYNC_PF_INT */
u16 vec;
u32 id;
bool send_user_only;
u32 host_apf_flags;
bool delivery_as_pf_vmexit;
bool pageready_pending;
} apf;
/* OSVW MSRs (AMD only) */
struct {
u64 length;
u64 status;
} osvw;
struct {
u64 msr_val;
struct gfn_to_hva_cache data;
} pv_eoi;
u64 msr_kvm_poll_control;
/* pv related host specific info */
struct {
bool pv_unhalted;
} pv;
int pending_ioapic_eoi;
int pending_external_vector;
/* be preempted when it's in kernel-mode(cpl=0) */
bool preempted_in_kernel;
/* Flush the L1 Data cache for L1TF mitigation on VMENTER */
bool l1tf_flush_l1d;
/* Host CPU on which VM-entry was most recently attempted */
int last_vmentry_cpu;
/* AMD MSRC001_0015 Hardware Configuration */
u64 msr_hwcr;
/* pv related cpuid info */
struct {
/*
* value of the eax register in the KVM_CPUID_FEATURES CPUID
* leaf.
*/
u32 features;
/*
* indicates whether pv emulation should be disabled if features
* are not present in the guest's cpuid
*/
bool enforce;
} pv_cpuid;
/* Protected Guests */
bool guest_state_protected;
/*
* Set when PDPTS were loaded directly by the userspace without
* reading the guest memory
*/
bool pdptrs_from_userspace;
#if IS_ENABLED(CONFIG_HYPERV)
hpa_t hv_root_tdp;
#endif
};
struct kvm_lpage_info {
int disallow_lpage;
};
struct kvm_arch_memory_slot {
struct kvm_rmap_head *rmap[KVM_NR_PAGE_SIZES];
struct kvm_lpage_info *lpage_info[KVM_NR_PAGE_SIZES - 1];
unsigned short *gfn_write_track;
};
/*
* Track the mode of the optimized logical map, as the rules for decoding the
* destination vary per mode. Enabling the optimized logical map requires all
* software-enabled local APIs to be in the same mode, each addressable APIC to
* be mapped to only one MDA, and each MDA to map to at most one APIC.
*/
enum kvm_apic_logical_mode {
/* All local APICs are software disabled. */
KVM_APIC_MODE_SW_DISABLED,
/* All software enabled local APICs in xAPIC cluster addressing mode. */
KVM_APIC_MODE_XAPIC_CLUSTER,
/* All software enabled local APICs in xAPIC flat addressing mode. */
KVM_APIC_MODE_XAPIC_FLAT,
/* All software enabled local APICs in x2APIC mode. */
KVM_APIC_MODE_X2APIC,
/*
* Optimized map disabled, e.g. not all local APICs in the same logical
* mode, same logical ID assigned to multiple APICs, etc.
*/
KVM_APIC_MODE_MAP_DISABLED,
};
struct kvm_apic_map {
struct rcu_head rcu;
enum kvm_apic_logical_mode logical_mode;
u32 max_apic_id;
union {
struct kvm_lapic *xapic_flat_map[8];
struct kvm_lapic *xapic_cluster_map[16][4];
};
struct kvm_lapic *phys_map[];
};
/* Hyper-V synthetic debugger (SynDbg)*/
struct kvm_hv_syndbg {
struct {
u64 control;
u64 status;
u64 send_page;
u64 recv_page;
u64 pending_page;
} control;
u64 options;
};
/* Current state of Hyper-V TSC page clocksource */
enum hv_tsc_page_status {
/* TSC page was not set up or disabled */
HV_TSC_PAGE_UNSET = 0,
/* TSC page MSR was written by the guest, update pending */
HV_TSC_PAGE_GUEST_CHANGED,
/* TSC page update was triggered from the host side */
HV_TSC_PAGE_HOST_CHANGED,
/* TSC page was properly set up and is currently active */
HV_TSC_PAGE_SET,
/* TSC page was set up with an inaccessible GPA */
HV_TSC_PAGE_BROKEN,
};
#ifdef CONFIG_KVM_HYPERV
/* Hyper-V emulation context */
struct kvm_hv {
struct mutex hv_lock;
u64 hv_guest_os_id;
u64 hv_hypercall;
u64 hv_tsc_page;
enum hv_tsc_page_status hv_tsc_page_status;
/* Hyper-v based guest crash (NT kernel bugcheck) parameters */
u64 hv_crash_param[HV_X64_MSR_CRASH_PARAMS];
u64 hv_crash_ctl;
struct ms_hyperv_tsc_page tsc_ref;
struct idr conn_to_evt;
u64 hv_reenlightenment_control;
u64 hv_tsc_emulation_control;
u64 hv_tsc_emulation_status;
u64 hv_invtsc_control;
/* How many vCPUs have VP index != vCPU index */
atomic_t num_mismatched_vp_indexes;
/*
* How many SynICs use 'AutoEOI' feature
* (protected by arch.apicv_update_lock)
*/
unsigned int synic_auto_eoi_used;
struct kvm_hv_syndbg hv_syndbg;
bool xsaves_xsavec_checked;
};
#endif
struct msr_bitmap_range {
u32 flags;
u32 nmsrs;
u32 base;
unsigned long *bitmap;
};
#ifdef CONFIG_KVM_XEN
/* Xen emulation context */
struct kvm_xen {
struct mutex xen_lock;
u32 xen_version;
bool long_mode;
bool runstate_update_flag;
u8 upcall_vector;
struct gfn_to_pfn_cache shinfo_cache;
struct idr evtchn_ports;
unsigned long poll_mask[BITS_TO_LONGS(KVM_MAX_VCPUS)];
};
#endif
enum kvm_irqchip_mode {
KVM_IRQCHIP_NONE,
KVM_IRQCHIP_KERNEL, /* created with KVM_CREATE_IRQCHIP */
KVM_IRQCHIP_SPLIT, /* created with KVM_CAP_SPLIT_IRQCHIP */
};
struct kvm_x86_msr_filter {
u8 count;
bool default_allow:1;
struct msr_bitmap_range ranges[16];
};
struct kvm_x86_pmu_event_filter {
__u32 action;
__u32 nevents;
__u32 fixed_counter_bitmap;
__u32 flags;
__u32 nr_includes;
__u32 nr_excludes;
__u64 *includes;
__u64 *excludes;
__u64 events[];
};
enum kvm_apicv_inhibit {
/********************************************************************/
/* INHIBITs that are relevant to both Intel's APICv and AMD's AVIC. */
/********************************************************************/
/*
* APIC acceleration is disabled by a module parameter
* and/or not supported in hardware.
*/
APICV_INHIBIT_REASON_DISABLED,
/*
* APIC acceleration is inhibited because AutoEOI feature is
* being used by a HyperV guest.
*/
APICV_INHIBIT_REASON_HYPERV,
/*
* APIC acceleration is inhibited because the userspace didn't yet
* enable the kernel/split irqchip.
*/
APICV_INHIBIT_REASON_ABSENT,
/* APIC acceleration is inhibited because KVM_GUESTDBG_BLOCKIRQ
* (out of band, debug measure of blocking all interrupts on this vCPU)
* was enabled, to avoid AVIC/APICv bypassing it.
*/
APICV_INHIBIT_REASON_BLOCKIRQ,
/*
* APICv is disabled because not all vCPUs have a 1:1 mapping between
* APIC ID and vCPU, _and_ KVM is not applying its x2APIC hotplug hack.
*/
APICV_INHIBIT_REASON_PHYSICAL_ID_ALIASED,
/*
* For simplicity, the APIC acceleration is inhibited
* first time either APIC ID or APIC base are changed by the guest
* from their reset values.
*/
APICV_INHIBIT_REASON_APIC_ID_MODIFIED,
APICV_INHIBIT_REASON_APIC_BASE_MODIFIED,
/******************************************************/
/* INHIBITs that are relevant only to the AMD's AVIC. */
/******************************************************/
/*
* AVIC is inhibited on a vCPU because it runs a nested guest.
*
* This is needed because unlike APICv, the peers of this vCPU
* cannot use the doorbell mechanism to signal interrupts via AVIC when
* a vCPU runs nested.
*/
APICV_INHIBIT_REASON_NESTED,
/*
* On SVM, the wait for the IRQ window is implemented with pending vIRQ,
* which cannot be injected when the AVIC is enabled, thus AVIC
* is inhibited while KVM waits for IRQ window.
*/
APICV_INHIBIT_REASON_IRQWIN,
/*
* PIT (i8254) 're-inject' mode, relies on EOI intercept,
* which AVIC doesn't support for edge triggered interrupts.
*/
APICV_INHIBIT_REASON_PIT_REINJ,
/*
* AVIC is disabled because SEV doesn't support it.
*/
APICV_INHIBIT_REASON_SEV,
/*
* AVIC is disabled because not all vCPUs with a valid LDR have a 1:1
* mapping between logical ID and vCPU.
*/
APICV_INHIBIT_REASON_LOGICAL_ID_ALIASED,
NR_APICV_INHIBIT_REASONS,
};
#define __APICV_INHIBIT_REASON(reason) \
{ BIT(APICV_INHIBIT_REASON_##reason), #reason }
#define APICV_INHIBIT_REASONS \
__APICV_INHIBIT_REASON(DISABLED), \
__APICV_INHIBIT_REASON(HYPERV), \
__APICV_INHIBIT_REASON(ABSENT), \
__APICV_INHIBIT_REASON(BLOCKIRQ), \
__APICV_INHIBIT_REASON(PHYSICAL_ID_ALIASED), \
__APICV_INHIBIT_REASON(APIC_ID_MODIFIED), \
__APICV_INHIBIT_REASON(APIC_BASE_MODIFIED), \
__APICV_INHIBIT_REASON(NESTED), \
__APICV_INHIBIT_REASON(IRQWIN), \
__APICV_INHIBIT_REASON(PIT_REINJ), \
__APICV_INHIBIT_REASON(SEV), \
__APICV_INHIBIT_REASON(LOGICAL_ID_ALIASED)
struct kvm_arch {
unsigned long n_used_mmu_pages;
unsigned long n_requested_mmu_pages;
unsigned long n_max_mmu_pages;
unsigned int indirect_shadow_pages;
u8 mmu_valid_gen;
u8 vm_type;
bool has_private_mem;
bool has_protected_state;
struct hlist_head mmu_page_hash[KVM_NUM_MMU_PAGES];
struct list_head active_mmu_pages;
struct list_head zapped_obsolete_pages;
/*
* A list of kvm_mmu_page structs that, if zapped, could possibly be
* replaced by an NX huge page. A shadow page is on this list if its
* existence disallows an NX huge page (nx_huge_page_disallowed is set)
* and there are no other conditions that prevent a huge page, e.g.
* the backing host page is huge, dirtly logging is not enabled for its
* memslot, etc... Note, zapping shadow pages on this list doesn't
* guarantee an NX huge page will be created in its stead, e.g. if the
* guest attempts to execute from the region then KVM obviously can't
* create an NX huge page (without hanging the guest).
*/
struct list_head possible_nx_huge_pages;
#ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
struct kvm_page_track_notifier_head track_notifier_head;
#endif
/*
* Protects marking pages unsync during page faults, as TDP MMU page
* faults only take mmu_lock for read. For simplicity, the unsync
* pages lock is always taken when marking pages unsync regardless of
* whether mmu_lock is held for read or write.
*/
spinlock_t mmu_unsync_pages_lock;
u64 shadow_mmio_value;
struct iommu_domain *iommu_domain;
bool iommu_noncoherent;
#define __KVM_HAVE_ARCH_NONCOHERENT_DMA
atomic_t noncoherent_dma_count;
#define __KVM_HAVE_ARCH_ASSIGNED_DEVICE
atomic_t assigned_device_count;
struct kvm_pic *vpic;
struct kvm_ioapic *vioapic;
struct kvm_pit *vpit;
atomic_t vapics_in_nmi_mode;
struct mutex apic_map_lock;
struct kvm_apic_map __rcu *apic_map;
atomic_t apic_map_dirty;
bool apic_access_memslot_enabled;
bool apic_access_memslot_inhibited;
/* Protects apicv_inhibit_reasons */
struct rw_semaphore apicv_update_lock;
unsigned long apicv_inhibit_reasons;
gpa_t wall_clock;
bool mwait_in_guest;
bool hlt_in_guest;
bool pause_in_guest;
bool cstate_in_guest;
unsigned long irq_sources_bitmap;
s64 kvmclock_offset;
/*
* This also protects nr_vcpus_matched_tsc which is read from a
* preemption-disabled region, so it must be a raw spinlock.
*/
raw_spinlock_t tsc_write_lock;
u64 last_tsc_nsec;
u64 last_tsc_write;
u32 last_tsc_khz;
u64 last_tsc_offset;
u64 cur_tsc_nsec;
u64 cur_tsc_write;
u64 cur_tsc_offset;
u64 cur_tsc_generation;
int nr_vcpus_matched_tsc;
u32 default_tsc_khz;
bool user_set_tsc;
u64 apic_bus_cycle_ns;
seqcount_raw_spinlock_t pvclock_sc;
bool use_master_clock;
u64 master_kernel_ns;
u64 master_cycle_now;
struct delayed_work kvmclock_update_work;
struct delayed_work kvmclock_sync_work;
struct kvm_xen_hvm_config xen_hvm_config;
/* reads protected by irq_srcu, writes by irq_lock */
struct hlist_head mask_notifier_list;
#ifdef CONFIG_KVM_HYPERV
struct kvm_hv hyperv;
#endif
#ifdef CONFIG_KVM_XEN
struct kvm_xen xen;
#endif
bool backwards_tsc_observed;
bool boot_vcpu_runs_old_kvmclock;
u32 bsp_vcpu_id;
u64 disabled_quirks;
enum kvm_irqchip_mode irqchip_mode;
u8 nr_reserved_ioapic_pins;
bool disabled_lapic_found;
bool x2apic_format;
bool x2apic_broadcast_quirk_disabled;
bool guest_can_read_msr_platform_info;
bool exception_payload_enabled;
bool triple_fault_event;
bool bus_lock_detection_enabled;
bool enable_pmu;
u32 notify_window;
u32 notify_vmexit_flags;
/*
* If exit_on_emulation_error is set, and the in-kernel instruction
* emulator fails to emulate an instruction, allow userspace
* the opportunity to look at it.
*/
bool exit_on_emulation_error;
/* Deflect RDMSR and WRMSR to user space when they trigger a #GP */
u32 user_space_msr_mask;
struct kvm_x86_msr_filter __rcu *msr_filter;
u32 hypercall_exit_enabled;
/* Guest can access the SGX PROVISIONKEY. */
bool sgx_provisioning_allowed;
struct kvm_x86_pmu_event_filter __rcu *pmu_event_filter;
struct task_struct *nx_huge_page_recovery_thread;
#ifdef CONFIG_X86_64
/* The number of TDP MMU pages across all roots. */
atomic64_t tdp_mmu_pages;
/*
* List of struct kvm_mmu_pages being used as roots.
* All struct kvm_mmu_pages in the list should have
* tdp_mmu_page set.
*
* For reads, this list is protected by:
* the MMU lock in read mode + RCU or
* the MMU lock in write mode
*
* For writes, this list is protected by tdp_mmu_pages_lock; see
* below for the details.
*
* Roots will remain in the list until their tdp_mmu_root_count
* drops to zero, at which point the thread that decremented the
* count to zero should removed the root from the list and clean
* it up, freeing the root after an RCU grace period.
*/
struct list_head tdp_mmu_roots;
/*
* Protects accesses to the following fields when the MMU lock
* is held in read mode:
* - tdp_mmu_roots (above)
* - the link field of kvm_mmu_page structs used by the TDP MMU
* - possible_nx_huge_pages;
* - the possible_nx_huge_page_link field of kvm_mmu_page structs used
* by the TDP MMU
* Because the lock is only taken within the MMU lock, strictly
* speaking it is redundant to acquire this lock when the thread
* holds the MMU lock in write mode. However it often simplifies
* the code to do so.
*/
spinlock_t tdp_mmu_pages_lock;
#endif /* CONFIG_X86_64 */
/*
* If set, at least one shadow root has been allocated. This flag
* is used as one input when determining whether certain memslot
* related allocations are necessary.
*/
bool shadow_root_allocated;
#ifdef CONFIG_KVM_EXTERNAL_WRITE_TRACKING
/*
* If set, the VM has (or had) an external write tracking user, and
* thus all write tracking metadata has been allocated, even if KVM
* itself isn't using write tracking.
*/
bool external_write_tracking_enabled;
#endif
#if IS_ENABLED(CONFIG_HYPERV)
hpa_t hv_root_tdp;
spinlock_t hv_root_tdp_lock;
struct hv_partition_assist_pg *hv_pa_pg;
#endif
/*
* VM-scope maximum vCPU ID. Used to determine the size of structures
* that increase along with the maximum vCPU ID, in which case, using
* the global KVM_MAX_VCPU_IDS may lead to significant memory waste.
*/
u32 max_vcpu_ids;
bool disable_nx_huge_pages;
/*
* Memory caches used to allocate shadow pages when performing eager
* page splitting. No need for a shadowed_info_cache since eager page
* splitting only allocates direct shadow pages.
*
* Protected by kvm->slots_lock.
*/
struct kvm_mmu_memory_cache split_shadow_page_cache;
struct kvm_mmu_memory_cache split_page_header_cache;
/*
* Memory cache used to allocate pte_list_desc structs while splitting
* huge pages. In the worst case, to split one huge page, 512
* pte_list_desc structs are needed to add each lower level leaf sptep
* to the rmap plus 1 to extend the parent_ptes rmap of the lower level
* page table.
*
* Protected by kvm->slots_lock.
*/
#define SPLIT_DESC_CACHE_MIN_NR_OBJECTS (SPTE_ENT_PER_PAGE + 1)
struct kvm_mmu_memory_cache split_desc_cache;
};
struct kvm_vm_stat {
struct kvm_vm_stat_generic generic;
u64 mmu_shadow_zapped;
u64 mmu_pte_write;
u64 mmu_pde_zapped;
u64 mmu_flooded;
u64 mmu_recycled;
u64 mmu_cache_miss;
u64 mmu_unsync;
union {
struct {
atomic64_t pages_4k;
atomic64_t pages_2m;
atomic64_t pages_1g;
};
atomic64_t pages[KVM_NR_PAGE_SIZES];
};
u64 nx_lpage_splits;
u64 max_mmu_page_hash_collisions;
u64 max_mmu_rmap_size;
};
struct kvm_vcpu_stat {
struct kvm_vcpu_stat_generic generic;
u64 pf_taken;
u64 pf_fixed;
u64 pf_emulate;
u64 pf_spurious;
u64 pf_fast;
u64 pf_mmio_spte_created;
u64 pf_guest;
u64 tlb_flush;
u64 invlpg;
u64 exits;
u64 io_exits;
u64 mmio_exits;
u64 signal_exits;
u64 irq_window_exits;
u64 nmi_window_exits;
u64 l1d_flush;
u64 halt_exits;
u64 request_irq_exits;
u64 irq_exits;
u64 host_state_reload;
u64 fpu_reload;
u64 insn_emulation;
u64 insn_emulation_fail;
u64 hypercalls;
u64 irq_injections;
u64 nmi_injections;
u64 req_event;
u64 nested_run;
u64 directed_yield_attempted;
u64 directed_yield_successful;
u64 preemption_reported;
u64 preemption_other;
u64 guest_mode;
u64 notify_window_exits;
};
struct x86_instruction_info;
struct msr_data {
bool host_initiated;
u32 index;
u64 data;
};
struct kvm_lapic_irq {
u32 vector;
u16 delivery_mode;
u16 dest_mode;
bool level;
u16 trig_mode;
u32 shorthand;
u32 dest_id;
bool msi_redir_hint;
};
static inline u16 kvm_lapic_irq_dest_mode(bool dest_mode_logical)
{
return dest_mode_logical ? APIC_DEST_LOGICAL : APIC_DEST_PHYSICAL;
}
struct kvm_x86_ops {
const char *name;
int (*check_processor_compatibility)(void);
int (*hardware_enable)(void);
void (*hardware_disable)(void);
void (*hardware_unsetup)(void);
bool (*has_emulated_msr)(struct kvm *kvm, u32 index);
void (*vcpu_after_set_cpuid)(struct kvm_vcpu *vcpu);
unsigned int vm_size;
int (*vm_init)(struct kvm *kvm);
void (*vm_destroy)(struct kvm *kvm);
/* Create, but do not attach this VCPU */
int (*vcpu_precreate)(struct kvm *kvm);
int (*vcpu_create)(struct kvm_vcpu *vcpu);
void (*vcpu_free)(struct kvm_vcpu *vcpu);
void (*vcpu_reset)(struct kvm_vcpu *vcpu, bool init_event);
void (*prepare_switch_to_guest)(struct kvm_vcpu *vcpu);
void (*vcpu_load)(struct kvm_vcpu *vcpu, int cpu);
void (*vcpu_put)(struct kvm_vcpu *vcpu);
void (*update_exception_bitmap)(struct kvm_vcpu *vcpu);
int (*get_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
int (*set_msr)(struct kvm_vcpu *vcpu, struct msr_data *msr);
u64 (*get_segment_base)(struct kvm_vcpu *vcpu, int seg);
void (*get_segment)(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
int (*get_cpl)(struct kvm_vcpu *vcpu);
void (*set_segment)(struct kvm_vcpu *vcpu,
struct kvm_segment *var, int seg);
void (*get_cs_db_l_bits)(struct kvm_vcpu *vcpu, int *db, int *l);
bool (*is_valid_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
void (*set_cr0)(struct kvm_vcpu *vcpu, unsigned long cr0);
void (*post_set_cr3)(struct kvm_vcpu *vcpu, unsigned long cr3);
bool (*is_valid_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
void (*set_cr4)(struct kvm_vcpu *vcpu, unsigned long cr4);
int (*set_efer)(struct kvm_vcpu *vcpu, u64 efer);
void (*get_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*set_idt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*get_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*set_gdt)(struct kvm_vcpu *vcpu, struct desc_ptr *dt);
void (*sync_dirty_debug_regs)(struct kvm_vcpu *vcpu);
void (*set_dr7)(struct kvm_vcpu *vcpu, unsigned long value);
void (*cache_reg)(struct kvm_vcpu *vcpu, enum kvm_reg reg);
unsigned long (*get_rflags)(struct kvm_vcpu *vcpu);
void (*set_rflags)(struct kvm_vcpu *vcpu, unsigned long rflags);
bool (*get_if_flag)(struct kvm_vcpu *vcpu);
void (*flush_tlb_all)(struct kvm_vcpu *vcpu);
void (*flush_tlb_current)(struct kvm_vcpu *vcpu);
#if IS_ENABLED(CONFIG_HYPERV)
int (*flush_remote_tlbs)(struct kvm *kvm);
int (*flush_remote_tlbs_range)(struct kvm *kvm, gfn_t gfn,
gfn_t nr_pages);
#endif
/*
* Flush any TLB entries associated with the given GVA.
* Does not need to flush GPA->HPA mappings.
* Can potentially get non-canonical addresses through INVLPGs, which
* the implementation may choose to ignore if appropriate.
*/
void (*flush_tlb_gva)(struct kvm_vcpu *vcpu, gva_t addr);
/*
* Flush any TLB entries created by the guest. Like tlb_flush_gva(),
* does not need to flush GPA->HPA mappings.
*/
void (*flush_tlb_guest)(struct kvm_vcpu *vcpu);
int (*vcpu_pre_run)(struct kvm_vcpu *vcpu);
enum exit_fastpath_completion (*vcpu_run)(struct kvm_vcpu *vcpu,
bool force_immediate_exit);
int (*handle_exit)(struct kvm_vcpu *vcpu,
enum exit_fastpath_completion exit_fastpath);
int (*skip_emulated_instruction)(struct kvm_vcpu *vcpu);
void (*update_emulated_instruction)(struct kvm_vcpu *vcpu);
void (*set_interrupt_shadow)(struct kvm_vcpu *vcpu, int mask);
u32 (*get_interrupt_shadow)(struct kvm_vcpu *vcpu);
void (*patch_hypercall)(struct kvm_vcpu *vcpu,
unsigned char *hypercall_addr);
void (*inject_irq)(struct kvm_vcpu *vcpu, bool reinjected);
void (*inject_nmi)(struct kvm_vcpu *vcpu);
void (*inject_exception)(struct kvm_vcpu *vcpu);
void (*cancel_injection)(struct kvm_vcpu *vcpu);
int (*interrupt_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
int (*nmi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
bool (*get_nmi_mask)(struct kvm_vcpu *vcpu);
void (*set_nmi_mask)(struct kvm_vcpu *vcpu, bool masked);
/* Whether or not a virtual NMI is pending in hardware. */
bool (*is_vnmi_pending)(struct kvm_vcpu *vcpu);
/*
* Attempt to pend a virtual NMI in hardware. Returns %true on success
* to allow using static_call_ret0 as the fallback.
*/
bool (*set_vnmi_pending)(struct kvm_vcpu *vcpu);
void (*enable_nmi_window)(struct kvm_vcpu *vcpu);
void (*enable_irq_window)(struct kvm_vcpu *vcpu);
void (*update_cr8_intercept)(struct kvm_vcpu *vcpu, int tpr, int irr);
const unsigned long required_apicv_inhibits;
bool allow_apicv_in_x2apic_without_x2apic_virtualization;
void (*refresh_apicv_exec_ctrl)(struct kvm_vcpu *vcpu);
void (*hwapic_irr_update)(struct kvm_vcpu *vcpu, int max_irr);
void (*hwapic_isr_update)(int isr);
void (*load_eoi_exitmap)(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap);
void (*set_virtual_apic_mode)(struct kvm_vcpu *vcpu);
void (*set_apic_access_page_addr)(struct kvm_vcpu *vcpu);
void (*deliver_interrupt)(struct kvm_lapic *apic, int delivery_mode,
int trig_mode, int vector);
int (*sync_pir_to_irr)(struct kvm_vcpu *vcpu);
int (*set_tss_addr)(struct kvm *kvm, unsigned int addr);
int (*set_identity_map_addr)(struct kvm *kvm, u64 ident_addr);
u8 (*get_mt_mask)(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio);
void (*load_mmu_pgd)(struct kvm_vcpu *vcpu, hpa_t root_hpa,
int root_level);
bool (*has_wbinvd_exit)(void);
u64 (*get_l2_tsc_offset)(struct kvm_vcpu *vcpu);
u64 (*get_l2_tsc_multiplier)(struct kvm_vcpu *vcpu);
void (*write_tsc_offset)(struct kvm_vcpu *vcpu);
void (*write_tsc_multiplier)(struct kvm_vcpu *vcpu);
/*
* Retrieve somewhat arbitrary exit information. Intended to
* be used only from within tracepoints or error paths.
*/
void (*get_exit_info)(struct kvm_vcpu *vcpu, u32 *reason,
u64 *info1, u64 *info2,
u32 *exit_int_info, u32 *exit_int_info_err_code);
int (*check_intercept)(struct kvm_vcpu *vcpu,
struct x86_instruction_info *info,
enum x86_intercept_stage stage,
struct x86_exception *exception);
void (*handle_exit_irqoff)(struct kvm_vcpu *vcpu);
/*
* Size of the CPU's dirty log buffer, i.e. VMX's PML buffer. A zero
* value indicates CPU dirty logging is unsupported or disabled.
*/
int cpu_dirty_log_size;
void (*update_cpu_dirty_logging)(struct kvm_vcpu *vcpu);
const struct kvm_x86_nested_ops *nested_ops;
void (*vcpu_blocking)(struct kvm_vcpu *vcpu);
void (*vcpu_unblocking)(struct kvm_vcpu *vcpu);
int (*pi_update_irte)(struct kvm *kvm, unsigned int host_irq,
uint32_t guest_irq, bool set);
void (*pi_start_assignment)(struct kvm *kvm);
void (*apicv_pre_state_restore)(struct kvm_vcpu *vcpu);
void (*apicv_post_state_restore)(struct kvm_vcpu *vcpu);
bool (*dy_apicv_has_pending_interrupt)(struct kvm_vcpu *vcpu);
int (*set_hv_timer)(struct kvm_vcpu *vcpu, u64 guest_deadline_tsc,
bool *expired);
void (*cancel_hv_timer)(struct kvm_vcpu *vcpu);
void (*setup_mce)(struct kvm_vcpu *vcpu);
#ifdef CONFIG_KVM_SMM
int (*smi_allowed)(struct kvm_vcpu *vcpu, bool for_injection);
int (*enter_smm)(struct kvm_vcpu *vcpu, union kvm_smram *smram);
int (*leave_smm)(struct kvm_vcpu *vcpu, const union kvm_smram *smram);
void (*enable_smi_window)(struct kvm_vcpu *vcpu);
#endif
int (*dev_get_attr)(u32 group, u64 attr, u64 *val);
int (*mem_enc_ioctl)(struct kvm *kvm, void __user *argp);
int (*mem_enc_register_region)(struct kvm *kvm, struct kvm_enc_region *argp);
int (*mem_enc_unregister_region)(struct kvm *kvm, struct kvm_enc_region *argp);
int (*vm_copy_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
int (*vm_move_enc_context_from)(struct kvm *kvm, unsigned int source_fd);
void (*guest_memory_reclaimed)(struct kvm *kvm);
int (*get_msr_feature)(struct kvm_msr_entry *entry);
int (*check_emulate_instruction)(struct kvm_vcpu *vcpu, int emul_type,
void *insn, int insn_len);
bool (*apic_init_signal_blocked)(struct kvm_vcpu *vcpu);
int (*enable_l2_tlb_flush)(struct kvm_vcpu *vcpu);
void (*migrate_timers)(struct kvm_vcpu *vcpu);
void (*msr_filter_changed)(struct kvm_vcpu *vcpu);
int (*complete_emulated_msr)(struct kvm_vcpu *vcpu, int err);
void (*vcpu_deliver_sipi_vector)(struct kvm_vcpu *vcpu, u8 vector);
/*
* Returns vCPU specific APICv inhibit reasons
*/
unsigned long (*vcpu_get_apicv_inhibit_reasons)(struct kvm_vcpu *vcpu);
gva_t (*get_untagged_addr)(struct kvm_vcpu *vcpu, gva_t gva, unsigned int flags);
void *(*alloc_apic_backing_page)(struct kvm_vcpu *vcpu);
int (*gmem_prepare)(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order);
void (*gmem_invalidate)(kvm_pfn_t start, kvm_pfn_t end);
int (*private_max_mapping_level)(struct kvm *kvm, kvm_pfn_t pfn);
};
struct kvm_x86_nested_ops {
void (*leave_nested)(struct kvm_vcpu *vcpu);
bool (*is_exception_vmexit)(struct kvm_vcpu *vcpu, u8 vector,
u32 error_code);
int (*check_events)(struct kvm_vcpu *vcpu);
bool (*has_events)(struct kvm_vcpu *vcpu, bool for_injection);
void (*triple_fault)(struct kvm_vcpu *vcpu);
int (*get_state)(struct kvm_vcpu *vcpu,
struct kvm_nested_state __user *user_kvm_nested_state,
unsigned user_data_size);
int (*set_state)(struct kvm_vcpu *vcpu,
struct kvm_nested_state __user *user_kvm_nested_state,
struct kvm_nested_state *kvm_state);
bool (*get_nested_state_pages)(struct kvm_vcpu *vcpu);
int (*write_log_dirty)(struct kvm_vcpu *vcpu, gpa_t l2_gpa);
int (*enable_evmcs)(struct kvm_vcpu *vcpu,
uint16_t *vmcs_version);
uint16_t (*get_evmcs_version)(struct kvm_vcpu *vcpu);
void (*hv_inject_synthetic_vmexit_post_tlb_flush)(struct kvm_vcpu *vcpu);
};
struct kvm_x86_init_ops {
int (*hardware_setup)(void);
unsigned int (*handle_intel_pt_intr)(void);
struct kvm_x86_ops *runtime_ops;
struct kvm_pmu_ops *pmu_ops;
};
struct kvm_arch_async_pf {
u32 token;
gfn_t gfn;
unsigned long cr3;
bool direct_map;
u64 error_code;
};
extern u32 __read_mostly kvm_nr_uret_msrs;
extern bool __read_mostly allow_smaller_maxphyaddr;
extern bool __read_mostly enable_apicv;
extern struct kvm_x86_ops kvm_x86_ops;
#define kvm_x86_call(func) static_call(kvm_x86_##func)
#define kvm_pmu_call(func) static_call(kvm_x86_pmu_##func)
#define KVM_X86_OP(func) \
DECLARE_STATIC_CALL(kvm_x86_##func, *(((struct kvm_x86_ops *)0)->func));
#define KVM_X86_OP_OPTIONAL KVM_X86_OP
#define KVM_X86_OP_OPTIONAL_RET0 KVM_X86_OP
#include <asm/kvm-x86-ops.h>
int kvm_x86_vendor_init(struct kvm_x86_init_ops *ops);
void kvm_x86_vendor_exit(void);
#define __KVM_HAVE_ARCH_VM_ALLOC
static inline struct kvm *kvm_arch_alloc_vm(void)
{
return __vmalloc(kvm_x86_ops.vm_size, GFP_KERNEL_ACCOUNT | __GFP_ZERO);
}
#define __KVM_HAVE_ARCH_VM_FREE
void kvm_arch_free_vm(struct kvm *kvm);
#if IS_ENABLED(CONFIG_HYPERV)
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS
static inline int kvm_arch_flush_remote_tlbs(struct kvm *kvm)
{
if (kvm_x86_ops.flush_remote_tlbs &&
!kvm_x86_call(flush_remote_tlbs)(kvm))
return 0;
else
return -ENOTSUPP;
}
#define __KVM_HAVE_ARCH_FLUSH_REMOTE_TLBS_RANGE
static inline int kvm_arch_flush_remote_tlbs_range(struct kvm *kvm, gfn_t gfn,
u64 nr_pages)
{
if (!kvm_x86_ops.flush_remote_tlbs_range)
return -EOPNOTSUPP;
return kvm_x86_call(flush_remote_tlbs_range)(kvm, gfn, nr_pages);
}
#endif /* CONFIG_HYPERV */
enum kvm_intr_type {
/* Values are arbitrary, but must be non-zero. */
KVM_HANDLING_IRQ = 1,
KVM_HANDLING_NMI,
};
/* Enable perf NMI and timer modes to work, and minimise false positives. */
#define kvm_arch_pmi_in_guest(vcpu) \
((vcpu) && (vcpu)->arch.handling_intr_from_guest && \
(!!in_nmi() == ((vcpu)->arch.handling_intr_from_guest == KVM_HANDLING_NMI)))
void __init kvm_mmu_x86_module_init(void);
int kvm_mmu_vendor_module_init(void);
void kvm_mmu_vendor_module_exit(void);
void kvm_mmu_destroy(struct kvm_vcpu *vcpu);
int kvm_mmu_create(struct kvm_vcpu *vcpu);
void kvm_mmu_init_vm(struct kvm *kvm);
void kvm_mmu_uninit_vm(struct kvm *kvm);
void kvm_mmu_init_memslot_memory_attributes(struct kvm *kvm,
struct kvm_memory_slot *slot);
void kvm_mmu_after_set_cpuid(struct kvm_vcpu *vcpu);
void kvm_mmu_reset_context(struct kvm_vcpu *vcpu);
void kvm_mmu_slot_remove_write_access(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
int start_level);
void kvm_mmu_slot_try_split_huge_pages(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
int target_level);
void kvm_mmu_try_split_huge_pages(struct kvm *kvm,
const struct kvm_memory_slot *memslot,
u64 start, u64 end,
int target_level);
void kvm_mmu_zap_collapsible_sptes(struct kvm *kvm,
const struct kvm_memory_slot *memslot);
void kvm_mmu_slot_leaf_clear_dirty(struct kvm *kvm,
const struct kvm_memory_slot *memslot);
void kvm_mmu_invalidate_mmio_sptes(struct kvm *kvm, u64 gen);
void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned long kvm_nr_mmu_pages);
void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
int load_pdptrs(struct kvm_vcpu *vcpu, unsigned long cr3);
int emulator_write_phys(struct kvm_vcpu *vcpu, gpa_t gpa,
const void *val, int bytes);
struct kvm_irq_mask_notifier {
void (*func)(struct kvm_irq_mask_notifier *kimn, bool masked);
int irq;
struct hlist_node link;
};
void kvm_register_irq_mask_notifier(struct kvm *kvm, int irq,
struct kvm_irq_mask_notifier *kimn);
void kvm_unregister_irq_mask_notifier(struct kvm *kvm, int irq,
struct kvm_irq_mask_notifier *kimn);
void kvm_fire_mask_notifiers(struct kvm *kvm, unsigned irqchip, unsigned pin,
bool mask);
extern bool tdp_enabled;
u64 vcpu_tsc_khz(struct kvm_vcpu *vcpu);
/*
* EMULTYPE_NO_DECODE - Set when re-emulating an instruction (after completing
* userspace I/O) to indicate that the emulation context
* should be reused as is, i.e. skip initialization of
* emulation context, instruction fetch and decode.
*
* EMULTYPE_TRAP_UD - Set when emulating an intercepted #UD from hardware.
* Indicates that only select instructions (tagged with
* EmulateOnUD) should be emulated (to minimize the emulator
* attack surface). See also EMULTYPE_TRAP_UD_FORCED.
*
* EMULTYPE_SKIP - Set when emulating solely to skip an instruction, i.e. to
* decode the instruction length. For use *only* by
* kvm_x86_ops.skip_emulated_instruction() implementations if
* EMULTYPE_COMPLETE_USER_EXIT is not set.
*
* EMULTYPE_ALLOW_RETRY_PF - Set when the emulator should resume the guest to
* retry native execution under certain conditions,
* Can only be set in conjunction with EMULTYPE_PF.
*
* EMULTYPE_TRAP_UD_FORCED - Set when emulating an intercepted #UD that was
* triggered by KVM's magic "force emulation" prefix,
* which is opt in via module param (off by default).
* Bypasses EmulateOnUD restriction despite emulating
* due to an intercepted #UD (see EMULTYPE_TRAP_UD).
* Used to test the full emulator from userspace.
*
* EMULTYPE_VMWARE_GP - Set when emulating an intercepted #GP for VMware
* backdoor emulation, which is opt in via module param.
* VMware backdoor emulation handles select instructions
* and reinjects the #GP for all other cases.
*
* EMULTYPE_PF - Set when emulating MMIO by way of an intercepted #PF, in which
* case the CR2/GPA value pass on the stack is valid.
*
* EMULTYPE_COMPLETE_USER_EXIT - Set when the emulator should update interruptibility
* state and inject single-step #DBs after skipping
* an instruction (after completing userspace I/O).
*
* EMULTYPE_WRITE_PF_TO_SP - Set when emulating an intercepted page fault that
* is attempting to write a gfn that contains one or
* more of the PTEs used to translate the write itself,
* and the owning page table is being shadowed by KVM.
* If emulation of the faulting instruction fails and
* this flag is set, KVM will exit to userspace instead
* of retrying emulation as KVM cannot make forward
* progress.
*
* If emulation fails for a write to guest page tables,
* KVM unprotects (zaps) the shadow page for the target
* gfn and resumes the guest to retry the non-emulatable
* instruction (on hardware). Unprotecting the gfn
* doesn't allow forward progress for a self-changing
* access because doing so also zaps the translation for
* the gfn, i.e. retrying the instruction will hit a
* !PRESENT fault, which results in a new shadow page
* and sends KVM back to square one.
*/
#define EMULTYPE_NO_DECODE (1 << 0)
#define EMULTYPE_TRAP_UD (1 << 1)
#define EMULTYPE_SKIP (1 << 2)
#define EMULTYPE_ALLOW_RETRY_PF (1 << 3)
#define EMULTYPE_TRAP_UD_FORCED (1 << 4)
#define EMULTYPE_VMWARE_GP (1 << 5)
#define EMULTYPE_PF (1 << 6)
#define EMULTYPE_COMPLETE_USER_EXIT (1 << 7)
#define EMULTYPE_WRITE_PF_TO_SP (1 << 8)
int kvm_emulate_instruction(struct kvm_vcpu *vcpu, int emulation_type);
int kvm_emulate_instruction_from_buffer(struct kvm_vcpu *vcpu,
void *insn, int insn_len);
void __kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu,
u64 *data, u8 ndata);
void kvm_prepare_emulation_failure_exit(struct kvm_vcpu *vcpu);
void kvm_enable_efer_bits(u64);
bool kvm_valid_efer(struct kvm_vcpu *vcpu, u64 efer);
int __kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data, bool host_initiated);
int kvm_get_msr(struct kvm_vcpu *vcpu, u32 index, u64 *data);
int kvm_set_msr(struct kvm_vcpu *vcpu, u32 index, u64 data);
int kvm_emulate_rdmsr(struct kvm_vcpu *vcpu);
int kvm_emulate_wrmsr(struct kvm_vcpu *vcpu);
int kvm_emulate_as_nop(struct kvm_vcpu *vcpu);
int kvm_emulate_invd(struct kvm_vcpu *vcpu);
int kvm_emulate_mwait(struct kvm_vcpu *vcpu);
int kvm_handle_invalid_op(struct kvm_vcpu *vcpu);
int kvm_emulate_monitor(struct kvm_vcpu *vcpu);
int kvm_fast_pio(struct kvm_vcpu *vcpu, int size, unsigned short port, int in);
int kvm_emulate_cpuid(struct kvm_vcpu *vcpu);
int kvm_emulate_halt(struct kvm_vcpu *vcpu);
int kvm_emulate_halt_noskip(struct kvm_vcpu *vcpu);
int kvm_emulate_ap_reset_hold(struct kvm_vcpu *vcpu);
int kvm_emulate_wbinvd(struct kvm_vcpu *vcpu);
void kvm_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
void kvm_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
int kvm_load_segment_descriptor(struct kvm_vcpu *vcpu, u16 selector, int seg);
void kvm_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector);
int kvm_task_switch(struct kvm_vcpu *vcpu, u16 tss_selector, int idt_index,
int reason, bool has_error_code, u32 error_code);
void kvm_post_set_cr0(struct kvm_vcpu *vcpu, unsigned long old_cr0, unsigned long cr0);
void kvm_post_set_cr4(struct kvm_vcpu *vcpu, unsigned long old_cr4, unsigned long cr4);
int kvm_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
int kvm_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3);
int kvm_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
int kvm_set_cr8(struct kvm_vcpu *vcpu, unsigned long cr8);
int kvm_set_dr(struct kvm_vcpu *vcpu, int dr, unsigned long val);
unsigned long kvm_get_dr(struct kvm_vcpu *vcpu, int dr);
unsigned long kvm_get_cr8(struct kvm_vcpu *vcpu);
void kvm_lmsw(struct kvm_vcpu *vcpu, unsigned long msw);
int kvm_emulate_xsetbv(struct kvm_vcpu *vcpu);
int kvm_get_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
int kvm_set_msr_common(struct kvm_vcpu *vcpu, struct msr_data *msr);
unsigned long kvm_get_rflags(struct kvm_vcpu *vcpu);
void kvm_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
int kvm_emulate_rdpmc(struct kvm_vcpu *vcpu);
void kvm_queue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_queue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
void kvm_queue_exception_p(struct kvm_vcpu *vcpu, unsigned nr, unsigned long payload);
void kvm_requeue_exception(struct kvm_vcpu *vcpu, unsigned nr);
void kvm_requeue_exception_e(struct kvm_vcpu *vcpu, unsigned nr, u32 error_code);
void kvm_inject_page_fault(struct kvm_vcpu *vcpu, struct x86_exception *fault);
void kvm_inject_emulated_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault);
bool kvm_require_cpl(struct kvm_vcpu *vcpu, int required_cpl);
bool kvm_require_dr(struct kvm_vcpu *vcpu, int dr);
static inline int __kvm_irq_line_state(unsigned long *irq_state,
int irq_source_id, int level)
{
/* Logical OR for level trig interrupt */
if (level)
__set_bit(irq_source_id, irq_state);
else
__clear_bit(irq_source_id, irq_state);
return !!(*irq_state);
}
int kvm_pic_set_irq(struct kvm_pic *pic, int irq, int irq_source_id, int level);
void kvm_pic_clear_all(struct kvm_pic *pic, int irq_source_id);
void kvm_inject_nmi(struct kvm_vcpu *vcpu);
int kvm_get_nr_pending_nmis(struct kvm_vcpu *vcpu);
void kvm_update_dr7(struct kvm_vcpu *vcpu);
int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn);
void kvm_mmu_free_roots(struct kvm *kvm, struct kvm_mmu *mmu,
ulong roots_to_free);
void kvm_mmu_free_guest_mode_roots(struct kvm *kvm, struct kvm_mmu *mmu);
gpa_t kvm_mmu_gva_to_gpa_read(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_write(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception);
gpa_t kvm_mmu_gva_to_gpa_system(struct kvm_vcpu *vcpu, gva_t gva,
struct x86_exception *exception);
bool kvm_apicv_activated(struct kvm *kvm);
bool kvm_vcpu_apicv_activated(struct kvm_vcpu *vcpu);
void __kvm_vcpu_update_apicv(struct kvm_vcpu *vcpu);
void __kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
enum kvm_apicv_inhibit reason, bool set);
void kvm_set_or_clear_apicv_inhibit(struct kvm *kvm,
enum kvm_apicv_inhibit reason, bool set);
static inline void kvm_set_apicv_inhibit(struct kvm *kvm,
enum kvm_apicv_inhibit reason)
{
kvm_set_or_clear_apicv_inhibit(kvm, reason, true);
}
static inline void kvm_clear_apicv_inhibit(struct kvm *kvm,
enum kvm_apicv_inhibit reason)
{
kvm_set_or_clear_apicv_inhibit(kvm, reason, false);
}
unsigned long __kvm_emulate_hypercall(struct kvm_vcpu *vcpu, unsigned long nr,
unsigned long a0, unsigned long a1,
unsigned long a2, unsigned long a3,
int op_64_bit, int cpl);
int kvm_emulate_hypercall(struct kvm_vcpu *vcpu);
int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa, u64 error_code,
void *insn, int insn_len);
void kvm_mmu_print_sptes(struct kvm_vcpu *vcpu, gpa_t gpa, const char *msg);
void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva);
void kvm_mmu_invalidate_addr(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
u64 addr, unsigned long roots);
void kvm_mmu_invpcid_gva(struct kvm_vcpu *vcpu, gva_t gva, unsigned long pcid);
void kvm_mmu_new_pgd(struct kvm_vcpu *vcpu, gpa_t new_pgd);
void kvm_configure_mmu(bool enable_tdp, int tdp_forced_root_level,
int tdp_max_root_level, int tdp_huge_page_level);
#ifdef CONFIG_KVM_PRIVATE_MEM
#define kvm_arch_has_private_mem(kvm) ((kvm)->arch.has_private_mem)
#else
#define kvm_arch_has_private_mem(kvm) false
#endif
static inline u16 kvm_read_ldt(void)
{
u16 ldt;
asm("sldt %0" : "=g"(ldt));
return ldt;
}
static inline void kvm_load_ldt(u16 sel)
{
asm("lldt %0" : : "rm"(sel));
}
#ifdef CONFIG_X86_64
static inline unsigned long read_msr(unsigned long msr)
{
u64 value;
rdmsrl(msr, value);
return value;
}
#endif
static inline void kvm_inject_gp(struct kvm_vcpu *vcpu, u32 error_code)
{
kvm_queue_exception_e(vcpu, GP_VECTOR, error_code);
}
#define TSS_IOPB_BASE_OFFSET 0x66
#define TSS_BASE_SIZE 0x68
#define TSS_IOPB_SIZE (65536 / 8)
#define TSS_REDIRECTION_SIZE (256 / 8)
#define RMODE_TSS_SIZE \
(TSS_BASE_SIZE + TSS_REDIRECTION_SIZE + TSS_IOPB_SIZE + 1)
enum {
TASK_SWITCH_CALL = 0,
TASK_SWITCH_IRET = 1,
TASK_SWITCH_JMP = 2,
TASK_SWITCH_GATE = 3,
};
#define HF_GUEST_MASK (1 << 0) /* VCPU is in guest-mode */
#ifdef CONFIG_KVM_SMM
#define HF_SMM_MASK (1 << 1)
#define HF_SMM_INSIDE_NMI_MASK (1 << 2)
# define KVM_MAX_NR_ADDRESS_SPACES 2
/* SMM is currently unsupported for guests with private memory. */
# define kvm_arch_nr_memslot_as_ids(kvm) (kvm_arch_has_private_mem(kvm) ? 1 : 2)
# define kvm_arch_vcpu_memslots_id(vcpu) ((vcpu)->arch.hflags & HF_SMM_MASK ? 1 : 0)
# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, (role).smm)
#else
# define kvm_memslots_for_spte_role(kvm, role) __kvm_memslots(kvm, 0)
#endif
int kvm_cpu_has_injectable_intr(struct kvm_vcpu *v);
int kvm_cpu_has_interrupt(struct kvm_vcpu *vcpu);
int kvm_cpu_has_extint(struct kvm_vcpu *v);
int kvm_arch_interrupt_allowed(struct kvm_vcpu *vcpu);
int kvm_cpu_get_interrupt(struct kvm_vcpu *v);
void kvm_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event);
int kvm_pv_send_ipi(struct kvm *kvm, unsigned long ipi_bitmap_low,
unsigned long ipi_bitmap_high, u32 min,
unsigned long icr, int op_64_bit);
int kvm_add_user_return_msr(u32 msr);
int kvm_find_user_return_msr(u32 msr);
int kvm_set_user_return_msr(unsigned index, u64 val, u64 mask);
static inline bool kvm_is_supported_user_return_msr(u32 msr)
{
return kvm_find_user_return_msr(msr) >= 0;
}
u64 kvm_scale_tsc(u64 tsc, u64 ratio);
u64 kvm_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc);
u64 kvm_calc_nested_tsc_offset(u64 l1_offset, u64 l2_offset, u64 l2_multiplier);
u64 kvm_calc_nested_tsc_multiplier(u64 l1_multiplier, u64 l2_multiplier);
unsigned long kvm_get_linear_rip(struct kvm_vcpu *vcpu);
bool kvm_is_linear_rip(struct kvm_vcpu *vcpu, unsigned long linear_rip);
void kvm_make_scan_ioapic_request(struct kvm *kvm);
void kvm_make_scan_ioapic_request_mask(struct kvm *kvm,
unsigned long *vcpu_bitmap);
bool kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work);
void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work);
void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
struct kvm_async_pf *work);
void kvm_arch_async_page_present_queued(struct kvm_vcpu *vcpu);
bool kvm_arch_can_dequeue_async_page_present(struct kvm_vcpu *vcpu);
extern bool kvm_find_async_pf_gfn(struct kvm_vcpu *vcpu, gfn_t gfn);
int kvm_skip_emulated_instruction(struct kvm_vcpu *vcpu);
int kvm_complete_insn_gp(struct kvm_vcpu *vcpu, int err);
void __user *__x86_set_memory_region(struct kvm *kvm, int id, gpa_t gpa,
u32 size);
bool kvm_vcpu_is_reset_bsp(struct kvm_vcpu *vcpu);
bool kvm_vcpu_is_bsp(struct kvm_vcpu *vcpu);
bool kvm_intr_is_single_vcpu(struct kvm *kvm, struct kvm_lapic_irq *irq,
struct kvm_vcpu **dest_vcpu);
void kvm_set_msi_irq(struct kvm *kvm, struct kvm_kernel_irq_routing_entry *e,
struct kvm_lapic_irq *irq);
static inline bool kvm_irq_is_postable(struct kvm_lapic_irq *irq)
{
/* We can only post Fixed and LowPrio IRQs */
return (irq->delivery_mode == APIC_DM_FIXED ||
irq->delivery_mode == APIC_DM_LOWEST);
}
static inline void kvm_arch_vcpu_blocking(struct kvm_vcpu *vcpu)
{
kvm_x86_call(vcpu_blocking)(vcpu);
}
static inline void kvm_arch_vcpu_unblocking(struct kvm_vcpu *vcpu)
{
kvm_x86_call(vcpu_unblocking)(vcpu);
}
static inline int kvm_cpu_get_apicid(int mps_cpu)
{
#ifdef CONFIG_X86_LOCAL_APIC
return default_cpu_present_to_apicid(mps_cpu);
#else
WARN_ON_ONCE(1);
return BAD_APICID;
#endif
}
int memslot_rmap_alloc(struct kvm_memory_slot *slot, unsigned long npages);
#define KVM_CLOCK_VALID_FLAGS \
(KVM_CLOCK_TSC_STABLE | KVM_CLOCK_REALTIME | KVM_CLOCK_HOST_TSC)
#define KVM_X86_VALID_QUIRKS \
(KVM_X86_QUIRK_LINT0_REENABLED | \
KVM_X86_QUIRK_CD_NW_CLEARED | \
KVM_X86_QUIRK_LAPIC_MMIO_HOLE | \
KVM_X86_QUIRK_OUT_7E_INC_RIP | \
KVM_X86_QUIRK_MISC_ENABLE_NO_MWAIT | \
KVM_X86_QUIRK_FIX_HYPERCALL_INSN | \
KVM_X86_QUIRK_MWAIT_NEVER_UD_FAULTS)
/*
* KVM previously used a u32 field in kvm_run to indicate the hypercall was
* initiated from long mode. KVM now sets bit 0 to indicate long mode, but the
* remaining 31 lower bits must be 0 to preserve ABI.
*/
#define KVM_EXIT_HYPERCALL_MBZ GENMASK_ULL(31, 1)
#endif /* _ASM_X86_KVM_HOST_H */
|