summaryrefslogtreecommitdiffstats
path: root/arch/x86/kernel/fpu/core.c
blob: 65fc87760011d7a24ca7d2893182a868c3a18dc2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
// SPDX-License-Identifier: GPL-2.0-only
/*
 *  Copyright (C) 1994 Linus Torvalds
 *
 *  Pentium III FXSR, SSE support
 *  General FPU state handling cleanups
 *	Gareth Hughes <gareth@valinux.com>, May 2000
 */
#include <asm/fpu/internal.h>
#include <asm/fpu/regset.h>
#include <asm/fpu/signal.h>
#include <asm/fpu/types.h>
#include <asm/traps.h>
#include <asm/irq_regs.h>

#include <linux/hardirq.h>
#include <linux/pkeys.h>

#include "xstate.h"

#define CREATE_TRACE_POINTS
#include <asm/trace/fpu.h>

/*
 * Represents the initial FPU state. It's mostly (but not completely) zeroes,
 * depending on the FPU hardware format:
 */
union fpregs_state init_fpstate __ro_after_init;

/*
 * Track whether the kernel is using the FPU state
 * currently.
 *
 * This flag is used:
 *
 *   - by IRQ context code to potentially use the FPU
 *     if it's unused.
 *
 *   - to debug kernel_fpu_begin()/end() correctness
 */
static DEFINE_PER_CPU(bool, in_kernel_fpu);

/*
 * Track which context is using the FPU on the CPU:
 */
DEFINE_PER_CPU(struct fpu *, fpu_fpregs_owner_ctx);

static bool kernel_fpu_disabled(void)
{
	return this_cpu_read(in_kernel_fpu);
}

static bool interrupted_kernel_fpu_idle(void)
{
	return !kernel_fpu_disabled();
}

/*
 * Were we in user mode (or vm86 mode) when we were
 * interrupted?
 *
 * Doing kernel_fpu_begin/end() is ok if we are running
 * in an interrupt context from user mode - we'll just
 * save the FPU state as required.
 */
static bool interrupted_user_mode(void)
{
	struct pt_regs *regs = get_irq_regs();
	return regs && user_mode(regs);
}

/*
 * Can we use the FPU in kernel mode with the
 * whole "kernel_fpu_begin/end()" sequence?
 *
 * It's always ok in process context (ie "not interrupt")
 * but it is sometimes ok even from an irq.
 */
bool irq_fpu_usable(void)
{
	return !in_interrupt() ||
		interrupted_user_mode() ||
		interrupted_kernel_fpu_idle();
}
EXPORT_SYMBOL(irq_fpu_usable);

/*
 * Save the FPU register state in fpu->state. The register state is
 * preserved.
 *
 * Must be called with fpregs_lock() held.
 *
 * The legacy FNSAVE instruction clears all FPU state unconditionally, so
 * register state has to be reloaded. That might be a pointless exercise
 * when the FPU is going to be used by another task right after that. But
 * this only affects 20+ years old 32bit systems and avoids conditionals all
 * over the place.
 *
 * FXSAVE and all XSAVE variants preserve the FPU register state.
 */
void save_fpregs_to_fpstate(struct fpu *fpu)
{
	if (likely(use_xsave())) {
		os_xsave(&fpu->state.xsave);

		/*
		 * AVX512 state is tracked here because its use is
		 * known to slow the max clock speed of the core.
		 */
		if (fpu->state.xsave.header.xfeatures & XFEATURE_MASK_AVX512)
			fpu->avx512_timestamp = jiffies;
		return;
	}

	if (likely(use_fxsr())) {
		fxsave(&fpu->state.fxsave);
		return;
	}

	/*
	 * Legacy FPU register saving, FNSAVE always clears FPU registers,
	 * so we have to reload them from the memory state.
	 */
	asm volatile("fnsave %[fp]; fwait" : [fp] "=m" (fpu->state.fsave));
	frstor(&fpu->state.fsave);
}

void restore_fpregs_from_fpstate(union fpregs_state *fpstate, u64 mask)
{
	/*
	 * AMD K7/K8 and later CPUs up to Zen don't save/restore
	 * FDP/FIP/FOP unless an exception is pending. Clear the x87 state
	 * here by setting it to fixed values.  "m" is a random variable
	 * that should be in L1.
	 */
	if (unlikely(static_cpu_has_bug(X86_BUG_FXSAVE_LEAK))) {
		asm volatile(
			"fnclex\n\t"
			"emms\n\t"
			"fildl %P[addr]"	/* set F?P to defined value */
			: : [addr] "m" (fpstate));
	}

	if (use_xsave()) {
		os_xrstor(&fpstate->xsave, mask);
	} else {
		if (use_fxsr())
			fxrstor(&fpstate->fxsave);
		else
			frstor(&fpstate->fsave);
	}
}

#if IS_ENABLED(CONFIG_KVM)
void fpu_swap_kvm_fpu(struct fpu *save, struct fpu *rstor, u64 restore_mask)
{
	fpregs_lock();

	if (save) {
		if (test_thread_flag(TIF_NEED_FPU_LOAD)) {
			memcpy(&save->state, &current->thread.fpu.state,
			       fpu_kernel_xstate_size);
		} else {
			save_fpregs_to_fpstate(save);
		}
	}

	if (rstor) {
		restore_mask &= xfeatures_mask_fpstate();
		restore_fpregs_from_fpstate(&rstor->state, restore_mask);
	}

	fpregs_mark_activate();
	fpregs_unlock();
}
EXPORT_SYMBOL_GPL(fpu_swap_kvm_fpu);

int fpu_copy_kvm_uabi_to_fpstate(struct fpu *fpu, const void *buf, u64 xcr0,
				 u32 *vpkru)
{
	union fpregs_state *kstate = &fpu->state;
	const union fpregs_state *ustate = buf;
	struct pkru_state *xpkru;
	int ret;

	if (!cpu_feature_enabled(X86_FEATURE_XSAVE)) {
		if (ustate->xsave.header.xfeatures & ~XFEATURE_MASK_FPSSE)
			return -EINVAL;
		if (ustate->fxsave.mxcsr & ~mxcsr_feature_mask)
			return -EINVAL;
		memcpy(&kstate->fxsave, &ustate->fxsave, sizeof(ustate->fxsave));
		return 0;
	}

	if (ustate->xsave.header.xfeatures & ~xcr0)
		return -EINVAL;

	ret = copy_uabi_from_kernel_to_xstate(&kstate->xsave, ustate);
	if (ret)
		return ret;

	/* Retrieve PKRU if not in init state */
	if (kstate->xsave.header.xfeatures & XFEATURE_MASK_PKRU) {
		xpkru = get_xsave_addr(&kstate->xsave, XFEATURE_PKRU);
		*vpkru = xpkru->pkru;
	}

	/* Ensure that XCOMP_BV is set up for XSAVES */
	xstate_init_xcomp_bv(&kstate->xsave, xfeatures_mask_uabi());
	return 0;
}
EXPORT_SYMBOL_GPL(fpu_copy_kvm_uabi_to_fpstate);
#endif /* CONFIG_KVM */

void kernel_fpu_begin_mask(unsigned int kfpu_mask)
{
	preempt_disable();

	WARN_ON_FPU(!irq_fpu_usable());
	WARN_ON_FPU(this_cpu_read(in_kernel_fpu));

	this_cpu_write(in_kernel_fpu, true);

	if (!(current->flags & PF_KTHREAD) &&
	    !test_thread_flag(TIF_NEED_FPU_LOAD)) {
		set_thread_flag(TIF_NEED_FPU_LOAD);
		save_fpregs_to_fpstate(&current->thread.fpu);
	}
	__cpu_invalidate_fpregs_state();

	/* Put sane initial values into the control registers. */
	if (likely(kfpu_mask & KFPU_MXCSR) && boot_cpu_has(X86_FEATURE_XMM))
		ldmxcsr(MXCSR_DEFAULT);

	if (unlikely(kfpu_mask & KFPU_387) && boot_cpu_has(X86_FEATURE_FPU))
		asm volatile ("fninit");
}
EXPORT_SYMBOL_GPL(kernel_fpu_begin_mask);

void kernel_fpu_end(void)
{
	WARN_ON_FPU(!this_cpu_read(in_kernel_fpu));

	this_cpu_write(in_kernel_fpu, false);
	preempt_enable();
}
EXPORT_SYMBOL_GPL(kernel_fpu_end);

/*
 * Sync the FPU register state to current's memory register state when the
 * current task owns the FPU. The hardware register state is preserved.
 */
void fpu_sync_fpstate(struct fpu *fpu)
{
	WARN_ON_FPU(fpu != &current->thread.fpu);

	fpregs_lock();
	trace_x86_fpu_before_save(fpu);

	if (!test_thread_flag(TIF_NEED_FPU_LOAD))
		save_fpregs_to_fpstate(fpu);

	trace_x86_fpu_after_save(fpu);
	fpregs_unlock();
}

static inline unsigned int init_fpstate_copy_size(void)
{
	if (!use_xsave())
		return fpu_kernel_xstate_size;

	/* XSAVE(S) just needs the legacy and the xstate header part */
	return sizeof(init_fpstate.xsave);
}

static inline void fpstate_init_fxstate(struct fxregs_state *fx)
{
	fx->cwd = 0x37f;
	fx->mxcsr = MXCSR_DEFAULT;
}

/*
 * Legacy x87 fpstate state init:
 */
static inline void fpstate_init_fstate(struct fregs_state *fp)
{
	fp->cwd = 0xffff037fu;
	fp->swd = 0xffff0000u;
	fp->twd = 0xffffffffu;
	fp->fos = 0xffff0000u;
}

/*
 * Used in two places:
 * 1) Early boot to setup init_fpstate for non XSAVE systems
 * 2) fpu_init_fpstate_user() which is invoked from KVM
 */
void fpstate_init_user(union fpregs_state *state)
{
	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
		fpstate_init_soft(&state->soft);
		return;
	}

	xstate_init_xcomp_bv(&state->xsave, xfeatures_mask_uabi());

	if (cpu_feature_enabled(X86_FEATURE_FXSR))
		fpstate_init_fxstate(&state->fxsave);
	else
		fpstate_init_fstate(&state->fsave);
}

#if IS_ENABLED(CONFIG_KVM)
void fpu_init_fpstate_user(struct fpu *fpu)
{
	fpstate_init_user(&fpu->state);
}
EXPORT_SYMBOL_GPL(fpu_init_fpstate_user);
#endif

/* Clone current's FPU state on fork */
int fpu_clone(struct task_struct *dst)
{
	struct fpu *src_fpu = &current->thread.fpu;
	struct fpu *dst_fpu = &dst->thread.fpu;

	/* The new task's FPU state cannot be valid in the hardware. */
	dst_fpu->last_cpu = -1;

	if (!cpu_feature_enabled(X86_FEATURE_FPU))
		return 0;

	/*
	 * Enforce reload for user space tasks and prevent kernel threads
	 * from trying to save the FPU registers on context switch.
	 */
	set_tsk_thread_flag(dst, TIF_NEED_FPU_LOAD);

	/*
	 * No FPU state inheritance for kernel threads and IO
	 * worker threads.
	 */
	if (dst->flags & (PF_KTHREAD | PF_IO_WORKER)) {
		/* Clear out the minimal state */
		memcpy(&dst_fpu->state, &init_fpstate,
		       init_fpstate_copy_size());
		return 0;
	}

	/*
	 * If the FPU registers are not owned by current just memcpy() the
	 * state.  Otherwise save the FPU registers directly into the
	 * child's FPU context, without any memory-to-memory copying.
	 */
	fpregs_lock();
	if (test_thread_flag(TIF_NEED_FPU_LOAD))
		memcpy(&dst_fpu->state, &src_fpu->state, fpu_kernel_xstate_size);

	else
		save_fpregs_to_fpstate(dst_fpu);
	fpregs_unlock();

	trace_x86_fpu_copy_src(src_fpu);
	trace_x86_fpu_copy_dst(dst_fpu);

	return 0;
}

/*
 * Drops current FPU state: deactivates the fpregs and
 * the fpstate. NOTE: it still leaves previous contents
 * in the fpregs in the eager-FPU case.
 *
 * This function can be used in cases where we know that
 * a state-restore is coming: either an explicit one,
 * or a reschedule.
 */
void fpu__drop(struct fpu *fpu)
{
	preempt_disable();

	if (fpu == &current->thread.fpu) {
		/* Ignore delayed exceptions from user space */
		asm volatile("1: fwait\n"
			     "2:\n"
			     _ASM_EXTABLE(1b, 2b));
		fpregs_deactivate(fpu);
	}

	trace_x86_fpu_dropped(fpu);

	preempt_enable();
}

/*
 * Clear FPU registers by setting them up from the init fpstate.
 * Caller must do fpregs_[un]lock() around it.
 */
static inline void restore_fpregs_from_init_fpstate(u64 features_mask)
{
	if (use_xsave())
		os_xrstor(&init_fpstate.xsave, features_mask);
	else if (use_fxsr())
		fxrstor(&init_fpstate.fxsave);
	else
		frstor(&init_fpstate.fsave);

	pkru_write_default();
}

/*
 * Reset current->fpu memory state to the init values.
 */
static void fpu_reset_fpstate(void)
{
	struct fpu *fpu = &current->thread.fpu;

	fpregs_lock();
	fpu__drop(fpu);
	/*
	 * This does not change the actual hardware registers. It just
	 * resets the memory image and sets TIF_NEED_FPU_LOAD so a
	 * subsequent return to usermode will reload the registers from the
	 * task's memory image.
	 *
	 * Do not use fpstate_init() here. Just copy init_fpstate which has
	 * the correct content already except for PKRU.
	 *
	 * PKRU handling does not rely on the xstate when restoring for
	 * user space as PKRU is eagerly written in switch_to() and
	 * flush_thread().
	 */
	memcpy(&fpu->state, &init_fpstate, init_fpstate_copy_size());
	set_thread_flag(TIF_NEED_FPU_LOAD);
	fpregs_unlock();
}

/*
 * Reset current's user FPU states to the init states.  current's
 * supervisor states, if any, are not modified by this function.  The
 * caller guarantees that the XSTATE header in memory is intact.
 */
void fpu__clear_user_states(struct fpu *fpu)
{
	WARN_ON_FPU(fpu != &current->thread.fpu);

	fpregs_lock();
	if (!cpu_feature_enabled(X86_FEATURE_FPU)) {
		fpu_reset_fpstate();
		fpregs_unlock();
		return;
	}

	/*
	 * Ensure that current's supervisor states are loaded into their
	 * corresponding registers.
	 */
	if (xfeatures_mask_supervisor() &&
	    !fpregs_state_valid(fpu, smp_processor_id())) {
		os_xrstor(&fpu->state.xsave, xfeatures_mask_supervisor());
	}

	/* Reset user states in registers. */
	restore_fpregs_from_init_fpstate(xfeatures_mask_restore_user());

	/*
	 * Now all FPU registers have their desired values.  Inform the FPU
	 * state machine that current's FPU registers are in the hardware
	 * registers. The memory image does not need to be updated because
	 * any operation relying on it has to save the registers first when
	 * current's FPU is marked active.
	 */
	fpregs_mark_activate();
	fpregs_unlock();
}

void fpu_flush_thread(void)
{
	fpu_reset_fpstate();
}
/*
 * Load FPU context before returning to userspace.
 */
void switch_fpu_return(void)
{
	if (!static_cpu_has(X86_FEATURE_FPU))
		return;

	fpregs_restore_userregs();
}
EXPORT_SYMBOL_GPL(switch_fpu_return);

#ifdef CONFIG_X86_DEBUG_FPU
/*
 * If current FPU state according to its tracking (loaded FPU context on this
 * CPU) is not valid then we must have TIF_NEED_FPU_LOAD set so the context is
 * loaded on return to userland.
 */
void fpregs_assert_state_consistent(void)
{
	struct fpu *fpu = &current->thread.fpu;

	if (test_thread_flag(TIF_NEED_FPU_LOAD))
		return;

	WARN_ON_FPU(!fpregs_state_valid(fpu, smp_processor_id()));
}
EXPORT_SYMBOL_GPL(fpregs_assert_state_consistent);
#endif

void fpregs_mark_activate(void)
{
	struct fpu *fpu = &current->thread.fpu;

	fpregs_activate(fpu);
	fpu->last_cpu = smp_processor_id();
	clear_thread_flag(TIF_NEED_FPU_LOAD);
}

/*
 * x87 math exception handling:
 */

int fpu__exception_code(struct fpu *fpu, int trap_nr)
{
	int err;

	if (trap_nr == X86_TRAP_MF) {
		unsigned short cwd, swd;
		/*
		 * (~cwd & swd) will mask out exceptions that are not set to unmasked
		 * status.  0x3f is the exception bits in these regs, 0x200 is the
		 * C1 reg you need in case of a stack fault, 0x040 is the stack
		 * fault bit.  We should only be taking one exception at a time,
		 * so if this combination doesn't produce any single exception,
		 * then we have a bad program that isn't synchronizing its FPU usage
		 * and it will suffer the consequences since we won't be able to
		 * fully reproduce the context of the exception.
		 */
		if (boot_cpu_has(X86_FEATURE_FXSR)) {
			cwd = fpu->state.fxsave.cwd;
			swd = fpu->state.fxsave.swd;
		} else {
			cwd = (unsigned short)fpu->state.fsave.cwd;
			swd = (unsigned short)fpu->state.fsave.swd;
		}

		err = swd & ~cwd;
	} else {
		/*
		 * The SIMD FPU exceptions are handled a little differently, as there
		 * is only a single status/control register.  Thus, to determine which
		 * unmasked exception was caught we must mask the exception mask bits
		 * at 0x1f80, and then use these to mask the exception bits at 0x3f.
		 */
		unsigned short mxcsr = MXCSR_DEFAULT;

		if (boot_cpu_has(X86_FEATURE_XMM))
			mxcsr = fpu->state.fxsave.mxcsr;

		err = ~(mxcsr >> 7) & mxcsr;
	}

	if (err & 0x001) {	/* Invalid op */
		/*
		 * swd & 0x240 == 0x040: Stack Underflow
		 * swd & 0x240 == 0x240: Stack Overflow
		 * User must clear the SF bit (0x40) if set
		 */
		return FPE_FLTINV;
	} else if (err & 0x004) { /* Divide by Zero */
		return FPE_FLTDIV;
	} else if (err & 0x008) { /* Overflow */
		return FPE_FLTOVF;
	} else if (err & 0x012) { /* Denormal, Underflow */
		return FPE_FLTUND;
	} else if (err & 0x020) { /* Precision */
		return FPE_FLTRES;
	}

	/*
	 * If we're using IRQ 13, or supposedly even some trap
	 * X86_TRAP_MF implementations, it's possible
	 * we get a spurious trap, which is not an error.
	 */
	return 0;
}