summaryrefslogtreecommitdiffstats
path: root/arch/x86/kvm/svm/sev.c
blob: 532df12b43c5b7629dd5a616b7f0b921cba21ba8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Kernel-based Virtual Machine driver for Linux
 *
 * AMD SVM-SEV support
 *
 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
 */
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/kvm_types.h>
#include <linux/kvm_host.h>
#include <linux/kernel.h>
#include <linux/highmem.h>
#include <linux/psp.h>
#include <linux/psp-sev.h>
#include <linux/pagemap.h>
#include <linux/swap.h>
#include <linux/misc_cgroup.h>
#include <linux/processor.h>
#include <linux/trace_events.h>
#include <uapi/linux/sev-guest.h>

#include <asm/pkru.h>
#include <asm/trapnr.h>
#include <asm/fpu/xcr.h>
#include <asm/fpu/xstate.h>
#include <asm/debugreg.h>
#include <asm/sev.h>

#include "mmu.h"
#include "x86.h"
#include "svm.h"
#include "svm_ops.h"
#include "cpuid.h"
#include "trace.h"

#define GHCB_VERSION_MAX	2ULL
#define GHCB_VERSION_DEFAULT	2ULL
#define GHCB_VERSION_MIN	1ULL

#define GHCB_HV_FT_SUPPORTED	(GHCB_HV_FT_SNP | GHCB_HV_FT_SNP_AP_CREATION)

/* enable/disable SEV support */
static bool sev_enabled = true;
module_param_named(sev, sev_enabled, bool, 0444);

/* enable/disable SEV-ES support */
static bool sev_es_enabled = true;
module_param_named(sev_es, sev_es_enabled, bool, 0444);

/* enable/disable SEV-SNP support */
static bool sev_snp_enabled = true;
module_param_named(sev_snp, sev_snp_enabled, bool, 0444);

/* enable/disable SEV-ES DebugSwap support */
static bool sev_es_debug_swap_enabled = true;
module_param_named(debug_swap, sev_es_debug_swap_enabled, bool, 0444);
static u64 sev_supported_vmsa_features;

#define AP_RESET_HOLD_NONE		0
#define AP_RESET_HOLD_NAE_EVENT		1
#define AP_RESET_HOLD_MSR_PROTO		2

/* As defined by SEV-SNP Firmware ABI, under "Guest Policy". */
#define SNP_POLICY_MASK_API_MINOR	GENMASK_ULL(7, 0)
#define SNP_POLICY_MASK_API_MAJOR	GENMASK_ULL(15, 8)
#define SNP_POLICY_MASK_SMT		BIT_ULL(16)
#define SNP_POLICY_MASK_RSVD_MBO	BIT_ULL(17)
#define SNP_POLICY_MASK_DEBUG		BIT_ULL(19)
#define SNP_POLICY_MASK_SINGLE_SOCKET	BIT_ULL(20)

#define SNP_POLICY_MASK_VALID		(SNP_POLICY_MASK_API_MINOR	| \
					 SNP_POLICY_MASK_API_MAJOR	| \
					 SNP_POLICY_MASK_SMT		| \
					 SNP_POLICY_MASK_RSVD_MBO	| \
					 SNP_POLICY_MASK_DEBUG		| \
					 SNP_POLICY_MASK_SINGLE_SOCKET)

#define INITIAL_VMSA_GPA 0xFFFFFFFFF000

static u8 sev_enc_bit;
static DECLARE_RWSEM(sev_deactivate_lock);
static DEFINE_MUTEX(sev_bitmap_lock);
unsigned int max_sev_asid;
static unsigned int min_sev_asid;
static unsigned long sev_me_mask;
static unsigned int nr_asids;
static unsigned long *sev_asid_bitmap;
static unsigned long *sev_reclaim_asid_bitmap;

static int snp_decommission_context(struct kvm *kvm);

struct enc_region {
	struct list_head list;
	unsigned long npages;
	struct page **pages;
	unsigned long uaddr;
	unsigned long size;
};

/* Called with the sev_bitmap_lock held, or on shutdown  */
static int sev_flush_asids(unsigned int min_asid, unsigned int max_asid)
{
	int ret, error = 0;
	unsigned int asid;

	/* Check if there are any ASIDs to reclaim before performing a flush */
	asid = find_next_bit(sev_reclaim_asid_bitmap, nr_asids, min_asid);
	if (asid > max_asid)
		return -EBUSY;

	/*
	 * DEACTIVATE will clear the WBINVD indicator causing DF_FLUSH to fail,
	 * so it must be guarded.
	 */
	down_write(&sev_deactivate_lock);

	wbinvd_on_all_cpus();

	if (sev_snp_enabled)
		ret = sev_do_cmd(SEV_CMD_SNP_DF_FLUSH, NULL, &error);
	else
		ret = sev_guest_df_flush(&error);

	up_write(&sev_deactivate_lock);

	if (ret)
		pr_err("SEV%s: DF_FLUSH failed, ret=%d, error=%#x\n",
		       sev_snp_enabled ? "-SNP" : "", ret, error);

	return ret;
}

static inline bool is_mirroring_enc_context(struct kvm *kvm)
{
	return !!to_kvm_sev_info(kvm)->enc_context_owner;
}

static bool sev_vcpu_has_debug_swap(struct vcpu_svm *svm)
{
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;

	return sev->vmsa_features & SVM_SEV_FEAT_DEBUG_SWAP;
}

/* Must be called with the sev_bitmap_lock held */
static bool __sev_recycle_asids(unsigned int min_asid, unsigned int max_asid)
{
	if (sev_flush_asids(min_asid, max_asid))
		return false;

	/* The flush process will flush all reclaimable SEV and SEV-ES ASIDs */
	bitmap_xor(sev_asid_bitmap, sev_asid_bitmap, sev_reclaim_asid_bitmap,
		   nr_asids);
	bitmap_zero(sev_reclaim_asid_bitmap, nr_asids);

	return true;
}

static int sev_misc_cg_try_charge(struct kvm_sev_info *sev)
{
	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
	return misc_cg_try_charge(type, sev->misc_cg, 1);
}

static void sev_misc_cg_uncharge(struct kvm_sev_info *sev)
{
	enum misc_res_type type = sev->es_active ? MISC_CG_RES_SEV_ES : MISC_CG_RES_SEV;
	misc_cg_uncharge(type, sev->misc_cg, 1);
}

static int sev_asid_new(struct kvm_sev_info *sev)
{
	/*
	 * SEV-enabled guests must use asid from min_sev_asid to max_sev_asid.
	 * SEV-ES-enabled guest can use from 1 to min_sev_asid - 1.
	 * Note: min ASID can end up larger than the max if basic SEV support is
	 * effectively disabled by disallowing use of ASIDs for SEV guests.
	 */
	unsigned int min_asid = sev->es_active ? 1 : min_sev_asid;
	unsigned int max_asid = sev->es_active ? min_sev_asid - 1 : max_sev_asid;
	unsigned int asid;
	bool retry = true;
	int ret;

	if (min_asid > max_asid)
		return -ENOTTY;

	WARN_ON(sev->misc_cg);
	sev->misc_cg = get_current_misc_cg();
	ret = sev_misc_cg_try_charge(sev);
	if (ret) {
		put_misc_cg(sev->misc_cg);
		sev->misc_cg = NULL;
		return ret;
	}

	mutex_lock(&sev_bitmap_lock);

again:
	asid = find_next_zero_bit(sev_asid_bitmap, max_asid + 1, min_asid);
	if (asid > max_asid) {
		if (retry && __sev_recycle_asids(min_asid, max_asid)) {
			retry = false;
			goto again;
		}
		mutex_unlock(&sev_bitmap_lock);
		ret = -EBUSY;
		goto e_uncharge;
	}

	__set_bit(asid, sev_asid_bitmap);

	mutex_unlock(&sev_bitmap_lock);

	sev->asid = asid;
	return 0;
e_uncharge:
	sev_misc_cg_uncharge(sev);
	put_misc_cg(sev->misc_cg);
	sev->misc_cg = NULL;
	return ret;
}

static unsigned int sev_get_asid(struct kvm *kvm)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;

	return sev->asid;
}

static void sev_asid_free(struct kvm_sev_info *sev)
{
	struct svm_cpu_data *sd;
	int cpu;

	mutex_lock(&sev_bitmap_lock);

	__set_bit(sev->asid, sev_reclaim_asid_bitmap);

	for_each_possible_cpu(cpu) {
		sd = per_cpu_ptr(&svm_data, cpu);
		sd->sev_vmcbs[sev->asid] = NULL;
	}

	mutex_unlock(&sev_bitmap_lock);

	sev_misc_cg_uncharge(sev);
	put_misc_cg(sev->misc_cg);
	sev->misc_cg = NULL;
}

static void sev_decommission(unsigned int handle)
{
	struct sev_data_decommission decommission;

	if (!handle)
		return;

	decommission.handle = handle;
	sev_guest_decommission(&decommission, NULL);
}

/*
 * Transition a page to hypervisor-owned/shared state in the RMP table. This
 * should not fail under normal conditions, but leak the page should that
 * happen since it will no longer be usable by the host due to RMP protections.
 */
static int kvm_rmp_make_shared(struct kvm *kvm, u64 pfn, enum pg_level level)
{
	if (KVM_BUG_ON(rmp_make_shared(pfn, level), kvm)) {
		snp_leak_pages(pfn, page_level_size(level) >> PAGE_SHIFT);
		return -EIO;
	}

	return 0;
}

/*
 * Certain page-states, such as Pre-Guest and Firmware pages (as documented
 * in Chapter 5 of the SEV-SNP Firmware ABI under "Page States") cannot be
 * directly transitioned back to normal/hypervisor-owned state via RMPUPDATE
 * unless they are reclaimed first.
 *
 * Until they are reclaimed and subsequently transitioned via RMPUPDATE, they
 * might not be usable by the host due to being set as immutable or still
 * being associated with a guest ASID.
 *
 * Bug the VM and leak the page if reclaim fails, or if the RMP entry can't be
 * converted back to shared, as the page is no longer usable due to RMP
 * protections, and it's infeasible for the guest to continue on.
 */
static int snp_page_reclaim(struct kvm *kvm, u64 pfn)
{
	struct sev_data_snp_page_reclaim data = {0};
	int fw_err, rc;

	data.paddr = __sme_set(pfn << PAGE_SHIFT);
	rc = sev_do_cmd(SEV_CMD_SNP_PAGE_RECLAIM, &data, &fw_err);
	if (KVM_BUG(rc, kvm, "Failed to reclaim PFN %llx, rc %d fw_err %d", pfn, rc, fw_err)) {
		snp_leak_pages(pfn, 1);
		return -EIO;
	}

	if (kvm_rmp_make_shared(kvm, pfn, PG_LEVEL_4K))
		return -EIO;

	return rc;
}

static void sev_unbind_asid(struct kvm *kvm, unsigned int handle)
{
	struct sev_data_deactivate deactivate;

	if (!handle)
		return;

	deactivate.handle = handle;

	/* Guard DEACTIVATE against WBINVD/DF_FLUSH used in ASID recycling */
	down_read(&sev_deactivate_lock);
	sev_guest_deactivate(&deactivate, NULL);
	up_read(&sev_deactivate_lock);

	sev_decommission(handle);
}

/*
 * This sets up bounce buffers/firmware pages to handle SNP Guest Request
 * messages (e.g. attestation requests). See "SNP Guest Request" in the GHCB
 * 2.0 specification for more details.
 *
 * Technically, when an SNP Guest Request is issued, the guest will provide its
 * own request/response pages, which could in theory be passed along directly
 * to firmware rather than using bounce pages. However, these pages would need
 * special care:
 *
 *   - Both pages are from shared guest memory, so they need to be protected
 *     from migration/etc. occurring while firmware reads/writes to them. At a
 *     minimum, this requires elevating the ref counts and potentially needing
 *     an explicit pinning of the memory. This places additional restrictions
 *     on what type of memory backends userspace can use for shared guest
 *     memory since there is some reliance on using refcounted pages.
 *
 *   - The response page needs to be switched to Firmware-owned[1] state
 *     before the firmware can write to it, which can lead to potential
 *     host RMP #PFs if the guest is misbehaved and hands the host a
 *     guest page that KVM might write to for other reasons (e.g. virtio
 *     buffers/etc.).
 *
 * Both of these issues can be avoided completely by using separately-allocated
 * bounce pages for both the request/response pages and passing those to
 * firmware instead. So that's what is being set up here.
 *
 * Guest requests rely on message sequence numbers to ensure requests are
 * issued to firmware in the order the guest issues them, so concurrent guest
 * requests generally shouldn't happen. But a misbehaved guest could issue
 * concurrent guest requests in theory, so a mutex is used to serialize
 * access to the bounce buffers.
 *
 * [1] See the "Page States" section of the SEV-SNP Firmware ABI for more
 *     details on Firmware-owned pages, along with "RMP and VMPL Access Checks"
 *     in the APM for details on the related RMP restrictions.
 */
static int snp_guest_req_init(struct kvm *kvm)
{
	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
	struct page *req_page;

	req_page = alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
	if (!req_page)
		return -ENOMEM;

	sev->guest_resp_buf = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
	if (!sev->guest_resp_buf) {
		__free_page(req_page);
		return -EIO;
	}

	sev->guest_req_buf = page_address(req_page);
	mutex_init(&sev->guest_req_mutex);

	return 0;
}

static void snp_guest_req_cleanup(struct kvm *kvm)
{
	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);

	if (sev->guest_resp_buf)
		snp_free_firmware_page(sev->guest_resp_buf);

	if (sev->guest_req_buf)
		__free_page(virt_to_page(sev->guest_req_buf));

	sev->guest_req_buf = NULL;
	sev->guest_resp_buf = NULL;
}

static int __sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp,
			    struct kvm_sev_init *data,
			    unsigned long vm_type)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_platform_init_args init_args = {0};
	bool es_active = vm_type != KVM_X86_SEV_VM;
	u64 valid_vmsa_features = es_active ? sev_supported_vmsa_features : 0;
	int ret;

	if (kvm->created_vcpus)
		return -EINVAL;

	if (data->flags)
		return -EINVAL;

	if (data->vmsa_features & ~valid_vmsa_features)
		return -EINVAL;

	if (data->ghcb_version > GHCB_VERSION_MAX || (!es_active && data->ghcb_version))
		return -EINVAL;

	if (unlikely(sev->active))
		return -EINVAL;

	sev->active = true;
	sev->es_active = es_active;
	sev->vmsa_features = data->vmsa_features;
	sev->ghcb_version = data->ghcb_version;

	/*
	 * Currently KVM supports the full range of mandatory features defined
	 * by version 2 of the GHCB protocol, so default to that for SEV-ES
	 * guests created via KVM_SEV_INIT2.
	 */
	if (sev->es_active && !sev->ghcb_version)
		sev->ghcb_version = GHCB_VERSION_DEFAULT;

	if (vm_type == KVM_X86_SNP_VM)
		sev->vmsa_features |= SVM_SEV_FEAT_SNP_ACTIVE;

	ret = sev_asid_new(sev);
	if (ret)
		goto e_no_asid;

	init_args.probe = false;
	ret = sev_platform_init(&init_args);
	if (ret)
		goto e_free;

	/* This needs to happen after SEV/SNP firmware initialization. */
	if (vm_type == KVM_X86_SNP_VM && snp_guest_req_init(kvm))
		goto e_free;

	INIT_LIST_HEAD(&sev->regions_list);
	INIT_LIST_HEAD(&sev->mirror_vms);
	sev->need_init = false;

	kvm_set_apicv_inhibit(kvm, APICV_INHIBIT_REASON_SEV);

	return 0;

e_free:
	argp->error = init_args.error;
	sev_asid_free(sev);
	sev->asid = 0;
e_no_asid:
	sev->vmsa_features = 0;
	sev->es_active = false;
	sev->active = false;
	return ret;
}

static int sev_guest_init(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_init data = {
		.vmsa_features = 0,
		.ghcb_version = 0,
	};
	unsigned long vm_type;

	if (kvm->arch.vm_type != KVM_X86_DEFAULT_VM)
		return -EINVAL;

	vm_type = (argp->id == KVM_SEV_INIT ? KVM_X86_SEV_VM : KVM_X86_SEV_ES_VM);

	/*
	 * KVM_SEV_ES_INIT has been deprecated by KVM_SEV_INIT2, so it will
	 * continue to only ever support the minimal GHCB protocol version.
	 */
	if (vm_type == KVM_X86_SEV_ES_VM)
		data.ghcb_version = GHCB_VERSION_MIN;

	return __sev_guest_init(kvm, argp, &data, vm_type);
}

static int sev_guest_init2(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct kvm_sev_init data;

	if (!sev->need_init)
		return -EINVAL;

	if (kvm->arch.vm_type != KVM_X86_SEV_VM &&
	    kvm->arch.vm_type != KVM_X86_SEV_ES_VM &&
	    kvm->arch.vm_type != KVM_X86_SNP_VM)
		return -EINVAL;

	if (copy_from_user(&data, u64_to_user_ptr(argp->data), sizeof(data)))
		return -EFAULT;

	return __sev_guest_init(kvm, argp, &data, kvm->arch.vm_type);
}

static int sev_bind_asid(struct kvm *kvm, unsigned int handle, int *error)
{
	unsigned int asid = sev_get_asid(kvm);
	struct sev_data_activate activate;
	int ret;

	/* activate ASID on the given handle */
	activate.handle = handle;
	activate.asid   = asid;
	ret = sev_guest_activate(&activate, error);

	return ret;
}

static int __sev_issue_cmd(int fd, int id, void *data, int *error)
{
	struct fd f;
	int ret;

	f = fdget(fd);
	if (!f.file)
		return -EBADF;

	ret = sev_issue_cmd_external_user(f.file, id, data, error);

	fdput(f);
	return ret;
}

static int sev_issue_cmd(struct kvm *kvm, int id, void *data, int *error)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;

	return __sev_issue_cmd(sev->fd, id, data, error);
}

static int sev_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_launch_start start;
	struct kvm_sev_launch_start params;
	void *dh_blob, *session_blob;
	int *error = &argp->error;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
		return -EFAULT;

	memset(&start, 0, sizeof(start));

	dh_blob = NULL;
	if (params.dh_uaddr) {
		dh_blob = psp_copy_user_blob(params.dh_uaddr, params.dh_len);
		if (IS_ERR(dh_blob))
			return PTR_ERR(dh_blob);

		start.dh_cert_address = __sme_set(__pa(dh_blob));
		start.dh_cert_len = params.dh_len;
	}

	session_blob = NULL;
	if (params.session_uaddr) {
		session_blob = psp_copy_user_blob(params.session_uaddr, params.session_len);
		if (IS_ERR(session_blob)) {
			ret = PTR_ERR(session_blob);
			goto e_free_dh;
		}

		start.session_address = __sme_set(__pa(session_blob));
		start.session_len = params.session_len;
	}

	start.handle = params.handle;
	start.policy = params.policy;

	/* create memory encryption context */
	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_LAUNCH_START, &start, error);
	if (ret)
		goto e_free_session;

	/* Bind ASID to this guest */
	ret = sev_bind_asid(kvm, start.handle, error);
	if (ret) {
		sev_decommission(start.handle);
		goto e_free_session;
	}

	/* return handle to userspace */
	params.handle = start.handle;
	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params))) {
		sev_unbind_asid(kvm, start.handle);
		ret = -EFAULT;
		goto e_free_session;
	}

	sev->handle = start.handle;
	sev->fd = argp->sev_fd;

e_free_session:
	kfree(session_blob);
e_free_dh:
	kfree(dh_blob);
	return ret;
}

static struct page **sev_pin_memory(struct kvm *kvm, unsigned long uaddr,
				    unsigned long ulen, unsigned long *n,
				    int write)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	unsigned long npages, size;
	int npinned;
	unsigned long locked, lock_limit;
	struct page **pages;
	unsigned long first, last;
	int ret;

	lockdep_assert_held(&kvm->lock);

	if (ulen == 0 || uaddr + ulen < uaddr)
		return ERR_PTR(-EINVAL);

	/* Calculate number of pages. */
	first = (uaddr & PAGE_MASK) >> PAGE_SHIFT;
	last = ((uaddr + ulen - 1) & PAGE_MASK) >> PAGE_SHIFT;
	npages = (last - first + 1);

	locked = sev->pages_locked + npages;
	lock_limit = rlimit(RLIMIT_MEMLOCK) >> PAGE_SHIFT;
	if (locked > lock_limit && !capable(CAP_IPC_LOCK)) {
		pr_err("SEV: %lu locked pages exceed the lock limit of %lu.\n", locked, lock_limit);
		return ERR_PTR(-ENOMEM);
	}

	if (WARN_ON_ONCE(npages > INT_MAX))
		return ERR_PTR(-EINVAL);

	/* Avoid using vmalloc for smaller buffers. */
	size = npages * sizeof(struct page *);
	if (size > PAGE_SIZE)
		pages = __vmalloc(size, GFP_KERNEL_ACCOUNT);
	else
		pages = kmalloc(size, GFP_KERNEL_ACCOUNT);

	if (!pages)
		return ERR_PTR(-ENOMEM);

	/* Pin the user virtual address. */
	npinned = pin_user_pages_fast(uaddr, npages, write ? FOLL_WRITE : 0, pages);
	if (npinned != npages) {
		pr_err("SEV: Failure locking %lu pages.\n", npages);
		ret = -ENOMEM;
		goto err;
	}

	*n = npages;
	sev->pages_locked = locked;

	return pages;

err:
	if (npinned > 0)
		unpin_user_pages(pages, npinned);

	kvfree(pages);
	return ERR_PTR(ret);
}

static void sev_unpin_memory(struct kvm *kvm, struct page **pages,
			     unsigned long npages)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;

	unpin_user_pages(pages, npages);
	kvfree(pages);
	sev->pages_locked -= npages;
}

static void sev_clflush_pages(struct page *pages[], unsigned long npages)
{
	uint8_t *page_virtual;
	unsigned long i;

	if (this_cpu_has(X86_FEATURE_SME_COHERENT) || npages == 0 ||
	    pages == NULL)
		return;

	for (i = 0; i < npages; i++) {
		page_virtual = kmap_local_page(pages[i]);
		clflush_cache_range(page_virtual, PAGE_SIZE);
		kunmap_local(page_virtual);
		cond_resched();
	}
}

static unsigned long get_num_contig_pages(unsigned long idx,
				struct page **inpages, unsigned long npages)
{
	unsigned long paddr, next_paddr;
	unsigned long i = idx + 1, pages = 1;

	/* find the number of contiguous pages starting from idx */
	paddr = __sme_page_pa(inpages[idx]);
	while (i < npages) {
		next_paddr = __sme_page_pa(inpages[i++]);
		if ((paddr + PAGE_SIZE) == next_paddr) {
			pages++;
			paddr = next_paddr;
			continue;
		}
		break;
	}

	return pages;
}

static int sev_launch_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	unsigned long vaddr, vaddr_end, next_vaddr, npages, pages, size, i;
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct kvm_sev_launch_update_data params;
	struct sev_data_launch_update_data data;
	struct page **inpages;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
		return -EFAULT;

	vaddr = params.uaddr;
	size = params.len;
	vaddr_end = vaddr + size;

	/* Lock the user memory. */
	inpages = sev_pin_memory(kvm, vaddr, size, &npages, 1);
	if (IS_ERR(inpages))
		return PTR_ERR(inpages);

	/*
	 * Flush (on non-coherent CPUs) before LAUNCH_UPDATE encrypts pages in
	 * place; the cache may contain the data that was written unencrypted.
	 */
	sev_clflush_pages(inpages, npages);

	data.reserved = 0;
	data.handle = sev->handle;

	for (i = 0; vaddr < vaddr_end; vaddr = next_vaddr, i += pages) {
		int offset, len;

		/*
		 * If the user buffer is not page-aligned, calculate the offset
		 * within the page.
		 */
		offset = vaddr & (PAGE_SIZE - 1);

		/* Calculate the number of pages that can be encrypted in one go. */
		pages = get_num_contig_pages(i, inpages, npages);

		len = min_t(size_t, ((pages * PAGE_SIZE) - offset), size);

		data.len = len;
		data.address = __sme_page_pa(inpages[i]) + offset;
		ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_DATA, &data, &argp->error);
		if (ret)
			goto e_unpin;

		size -= len;
		next_vaddr = vaddr + len;
	}

e_unpin:
	/* content of memory is updated, mark pages dirty */
	for (i = 0; i < npages; i++) {
		set_page_dirty_lock(inpages[i]);
		mark_page_accessed(inpages[i]);
	}
	/* unlock the user pages */
	sev_unpin_memory(kvm, inpages, npages);
	return ret;
}

static int sev_es_sync_vmsa(struct vcpu_svm *svm)
{
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
	struct sev_es_save_area *save = svm->sev_es.vmsa;
	struct xregs_state *xsave;
	const u8 *s;
	u8 *d;
	int i;

	/* Check some debug related fields before encrypting the VMSA */
	if (svm->vcpu.guest_debug || (svm->vmcb->save.dr7 & ~DR7_FIXED_1))
		return -EINVAL;

	/*
	 * SEV-ES will use a VMSA that is pointed to by the VMCB, not
	 * the traditional VMSA that is part of the VMCB. Copy the
	 * traditional VMSA as it has been built so far (in prep
	 * for LAUNCH_UPDATE_VMSA) to be the initial SEV-ES state.
	 */
	memcpy(save, &svm->vmcb->save, sizeof(svm->vmcb->save));

	/* Sync registgers */
	save->rax = svm->vcpu.arch.regs[VCPU_REGS_RAX];
	save->rbx = svm->vcpu.arch.regs[VCPU_REGS_RBX];
	save->rcx = svm->vcpu.arch.regs[VCPU_REGS_RCX];
	save->rdx = svm->vcpu.arch.regs[VCPU_REGS_RDX];
	save->rsp = svm->vcpu.arch.regs[VCPU_REGS_RSP];
	save->rbp = svm->vcpu.arch.regs[VCPU_REGS_RBP];
	save->rsi = svm->vcpu.arch.regs[VCPU_REGS_RSI];
	save->rdi = svm->vcpu.arch.regs[VCPU_REGS_RDI];
#ifdef CONFIG_X86_64
	save->r8  = svm->vcpu.arch.regs[VCPU_REGS_R8];
	save->r9  = svm->vcpu.arch.regs[VCPU_REGS_R9];
	save->r10 = svm->vcpu.arch.regs[VCPU_REGS_R10];
	save->r11 = svm->vcpu.arch.regs[VCPU_REGS_R11];
	save->r12 = svm->vcpu.arch.regs[VCPU_REGS_R12];
	save->r13 = svm->vcpu.arch.regs[VCPU_REGS_R13];
	save->r14 = svm->vcpu.arch.regs[VCPU_REGS_R14];
	save->r15 = svm->vcpu.arch.regs[VCPU_REGS_R15];
#endif
	save->rip = svm->vcpu.arch.regs[VCPU_REGS_RIP];

	/* Sync some non-GPR registers before encrypting */
	save->xcr0 = svm->vcpu.arch.xcr0;
	save->pkru = svm->vcpu.arch.pkru;
	save->xss  = svm->vcpu.arch.ia32_xss;
	save->dr6  = svm->vcpu.arch.dr6;

	save->sev_features = sev->vmsa_features;

	/*
	 * Skip FPU and AVX setup with KVM_SEV_ES_INIT to avoid
	 * breaking older measurements.
	 */
	if (vcpu->kvm->arch.vm_type != KVM_X86_DEFAULT_VM) {
		xsave = &vcpu->arch.guest_fpu.fpstate->regs.xsave;
		save->x87_dp = xsave->i387.rdp;
		save->mxcsr = xsave->i387.mxcsr;
		save->x87_ftw = xsave->i387.twd;
		save->x87_fsw = xsave->i387.swd;
		save->x87_fcw = xsave->i387.cwd;
		save->x87_fop = xsave->i387.fop;
		save->x87_ds = 0;
		save->x87_cs = 0;
		save->x87_rip = xsave->i387.rip;

		for (i = 0; i < 8; i++) {
			/*
			 * The format of the x87 save area is undocumented and
			 * definitely not what you would expect.  It consists of
			 * an 8*8 bytes area with bytes 0-7, and an 8*2 bytes
			 * area with bytes 8-9 of each register.
			 */
			d = save->fpreg_x87 + i * 8;
			s = ((u8 *)xsave->i387.st_space) + i * 16;
			memcpy(d, s, 8);
			save->fpreg_x87[64 + i * 2] = s[8];
			save->fpreg_x87[64 + i * 2 + 1] = s[9];
		}
		memcpy(save->fpreg_xmm, xsave->i387.xmm_space, 256);

		s = get_xsave_addr(xsave, XFEATURE_YMM);
		if (s)
			memcpy(save->fpreg_ymm, s, 256);
		else
			memset(save->fpreg_ymm, 0, 256);
	}

	pr_debug("Virtual Machine Save Area (VMSA):\n");
	print_hex_dump_debug("", DUMP_PREFIX_NONE, 16, 1, save, sizeof(*save), false);

	return 0;
}

static int __sev_launch_update_vmsa(struct kvm *kvm, struct kvm_vcpu *vcpu,
				    int *error)
{
	struct sev_data_launch_update_vmsa vmsa;
	struct vcpu_svm *svm = to_svm(vcpu);
	int ret;

	if (vcpu->guest_debug) {
		pr_warn_once("KVM_SET_GUEST_DEBUG for SEV-ES guest is not supported");
		return -EINVAL;
	}

	/* Perform some pre-encryption checks against the VMSA */
	ret = sev_es_sync_vmsa(svm);
	if (ret)
		return ret;

	/*
	 * The LAUNCH_UPDATE_VMSA command will perform in-place encryption of
	 * the VMSA memory content (i.e it will write the same memory region
	 * with the guest's key), so invalidate it first.
	 */
	clflush_cache_range(svm->sev_es.vmsa, PAGE_SIZE);

	vmsa.reserved = 0;
	vmsa.handle = to_kvm_sev_info(kvm)->handle;
	vmsa.address = __sme_pa(svm->sev_es.vmsa);
	vmsa.len = PAGE_SIZE;
	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_VMSA, &vmsa, error);
	if (ret)
	  return ret;

	/*
	 * SEV-ES guests maintain an encrypted version of their FPU
	 * state which is restored and saved on VMRUN and VMEXIT.
	 * Mark vcpu->arch.guest_fpu->fpstate as scratch so it won't
	 * do xsave/xrstor on it.
	 */
	fpstate_set_confidential(&vcpu->arch.guest_fpu);
	vcpu->arch.guest_state_protected = true;

	/*
	 * SEV-ES guest mandates LBR Virtualization to be _always_ ON. Enable it
	 * only after setting guest_state_protected because KVM_SET_MSRS allows
	 * dynamic toggling of LBRV (for performance reason) on write access to
	 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
	 */
	svm_enable_lbrv(vcpu);
	return 0;
}

static int sev_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_vcpu *vcpu;
	unsigned long i;
	int ret;

	if (!sev_es_guest(kvm))
		return -ENOTTY;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		ret = mutex_lock_killable(&vcpu->mutex);
		if (ret)
			return ret;

		ret = __sev_launch_update_vmsa(kvm, vcpu, &argp->error);

		mutex_unlock(&vcpu->mutex);
		if (ret)
			return ret;
	}

	return 0;
}

static int sev_launch_measure(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	void __user *measure = u64_to_user_ptr(argp->data);
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_launch_measure data;
	struct kvm_sev_launch_measure params;
	void __user *p = NULL;
	void *blob = NULL;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, measure, sizeof(params)))
		return -EFAULT;

	memset(&data, 0, sizeof(data));

	/* User wants to query the blob length */
	if (!params.len)
		goto cmd;

	p = u64_to_user_ptr(params.uaddr);
	if (p) {
		if (params.len > SEV_FW_BLOB_MAX_SIZE)
			return -EINVAL;

		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
		if (!blob)
			return -ENOMEM;

		data.address = __psp_pa(blob);
		data.len = params.len;
	}

cmd:
	data.handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_MEASURE, &data, &argp->error);

	/*
	 * If we query the session length, FW responded with expected data.
	 */
	if (!params.len)
		goto done;

	if (ret)
		goto e_free_blob;

	if (blob) {
		if (copy_to_user(p, blob, params.len))
			ret = -EFAULT;
	}

done:
	params.len = data.len;
	if (copy_to_user(measure, &params, sizeof(params)))
		ret = -EFAULT;
e_free_blob:
	kfree(blob);
	return ret;
}

static int sev_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_launch_finish data;

	if (!sev_guest(kvm))
		return -ENOTTY;

	data.handle = sev->handle;
	return sev_issue_cmd(kvm, SEV_CMD_LAUNCH_FINISH, &data, &argp->error);
}

static int sev_guest_status(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct kvm_sev_guest_status params;
	struct sev_data_guest_status data;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	memset(&data, 0, sizeof(data));

	data.handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_GUEST_STATUS, &data, &argp->error);
	if (ret)
		return ret;

	params.policy = data.policy;
	params.state = data.state;
	params.handle = data.handle;

	if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
		ret = -EFAULT;

	return ret;
}

static int __sev_issue_dbg_cmd(struct kvm *kvm, unsigned long src,
			       unsigned long dst, int size,
			       int *error, bool enc)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_dbg data;

	data.reserved = 0;
	data.handle = sev->handle;
	data.dst_addr = dst;
	data.src_addr = src;
	data.len = size;

	return sev_issue_cmd(kvm,
			     enc ? SEV_CMD_DBG_ENCRYPT : SEV_CMD_DBG_DECRYPT,
			     &data, error);
}

static int __sev_dbg_decrypt(struct kvm *kvm, unsigned long src_paddr,
			     unsigned long dst_paddr, int sz, int *err)
{
	int offset;

	/*
	 * Its safe to read more than we are asked, caller should ensure that
	 * destination has enough space.
	 */
	offset = src_paddr & 15;
	src_paddr = round_down(src_paddr, 16);
	sz = round_up(sz + offset, 16);

	return __sev_issue_dbg_cmd(kvm, src_paddr, dst_paddr, sz, err, false);
}

static int __sev_dbg_decrypt_user(struct kvm *kvm, unsigned long paddr,
				  void __user *dst_uaddr,
				  unsigned long dst_paddr,
				  int size, int *err)
{
	struct page *tpage = NULL;
	int ret, offset;

	/* if inputs are not 16-byte then use intermediate buffer */
	if (!IS_ALIGNED(dst_paddr, 16) ||
	    !IS_ALIGNED(paddr,     16) ||
	    !IS_ALIGNED(size,      16)) {
		tpage = (void *)alloc_page(GFP_KERNEL_ACCOUNT | __GFP_ZERO);
		if (!tpage)
			return -ENOMEM;

		dst_paddr = __sme_page_pa(tpage);
	}

	ret = __sev_dbg_decrypt(kvm, paddr, dst_paddr, size, err);
	if (ret)
		goto e_free;

	if (tpage) {
		offset = paddr & 15;
		if (copy_to_user(dst_uaddr, page_address(tpage) + offset, size))
			ret = -EFAULT;
	}

e_free:
	if (tpage)
		__free_page(tpage);

	return ret;
}

static int __sev_dbg_encrypt_user(struct kvm *kvm, unsigned long paddr,
				  void __user *vaddr,
				  unsigned long dst_paddr,
				  void __user *dst_vaddr,
				  int size, int *error)
{
	struct page *src_tpage = NULL;
	struct page *dst_tpage = NULL;
	int ret, len = size;

	/* If source buffer is not aligned then use an intermediate buffer */
	if (!IS_ALIGNED((unsigned long)vaddr, 16)) {
		src_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
		if (!src_tpage)
			return -ENOMEM;

		if (copy_from_user(page_address(src_tpage), vaddr, size)) {
			__free_page(src_tpage);
			return -EFAULT;
		}

		paddr = __sme_page_pa(src_tpage);
	}

	/*
	 *  If destination buffer or length is not aligned then do read-modify-write:
	 *   - decrypt destination in an intermediate buffer
	 *   - copy the source buffer in an intermediate buffer
	 *   - use the intermediate buffer as source buffer
	 */
	if (!IS_ALIGNED((unsigned long)dst_vaddr, 16) || !IS_ALIGNED(size, 16)) {
		int dst_offset;

		dst_tpage = alloc_page(GFP_KERNEL_ACCOUNT);
		if (!dst_tpage) {
			ret = -ENOMEM;
			goto e_free;
		}

		ret = __sev_dbg_decrypt(kvm, dst_paddr,
					__sme_page_pa(dst_tpage), size, error);
		if (ret)
			goto e_free;

		/*
		 *  If source is kernel buffer then use memcpy() otherwise
		 *  copy_from_user().
		 */
		dst_offset = dst_paddr & 15;

		if (src_tpage)
			memcpy(page_address(dst_tpage) + dst_offset,
			       page_address(src_tpage), size);
		else {
			if (copy_from_user(page_address(dst_tpage) + dst_offset,
					   vaddr, size)) {
				ret = -EFAULT;
				goto e_free;
			}
		}

		paddr = __sme_page_pa(dst_tpage);
		dst_paddr = round_down(dst_paddr, 16);
		len = round_up(size, 16);
	}

	ret = __sev_issue_dbg_cmd(kvm, paddr, dst_paddr, len, error, true);

e_free:
	if (src_tpage)
		__free_page(src_tpage);
	if (dst_tpage)
		__free_page(dst_tpage);
	return ret;
}

static int sev_dbg_crypt(struct kvm *kvm, struct kvm_sev_cmd *argp, bool dec)
{
	unsigned long vaddr, vaddr_end, next_vaddr;
	unsigned long dst_vaddr;
	struct page **src_p, **dst_p;
	struct kvm_sev_dbg debug;
	unsigned long n;
	unsigned int size;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&debug, u64_to_user_ptr(argp->data), sizeof(debug)))
		return -EFAULT;

	if (!debug.len || debug.src_uaddr + debug.len < debug.src_uaddr)
		return -EINVAL;
	if (!debug.dst_uaddr)
		return -EINVAL;

	vaddr = debug.src_uaddr;
	size = debug.len;
	vaddr_end = vaddr + size;
	dst_vaddr = debug.dst_uaddr;

	for (; vaddr < vaddr_end; vaddr = next_vaddr) {
		int len, s_off, d_off;

		/* lock userspace source and destination page */
		src_p = sev_pin_memory(kvm, vaddr & PAGE_MASK, PAGE_SIZE, &n, 0);
		if (IS_ERR(src_p))
			return PTR_ERR(src_p);

		dst_p = sev_pin_memory(kvm, dst_vaddr & PAGE_MASK, PAGE_SIZE, &n, 1);
		if (IS_ERR(dst_p)) {
			sev_unpin_memory(kvm, src_p, n);
			return PTR_ERR(dst_p);
		}

		/*
		 * Flush (on non-coherent CPUs) before DBG_{DE,EN}CRYPT read or modify
		 * the pages; flush the destination too so that future accesses do not
		 * see stale data.
		 */
		sev_clflush_pages(src_p, 1);
		sev_clflush_pages(dst_p, 1);

		/*
		 * Since user buffer may not be page aligned, calculate the
		 * offset within the page.
		 */
		s_off = vaddr & ~PAGE_MASK;
		d_off = dst_vaddr & ~PAGE_MASK;
		len = min_t(size_t, (PAGE_SIZE - s_off), size);

		if (dec)
			ret = __sev_dbg_decrypt_user(kvm,
						     __sme_page_pa(src_p[0]) + s_off,
						     (void __user *)dst_vaddr,
						     __sme_page_pa(dst_p[0]) + d_off,
						     len, &argp->error);
		else
			ret = __sev_dbg_encrypt_user(kvm,
						     __sme_page_pa(src_p[0]) + s_off,
						     (void __user *)vaddr,
						     __sme_page_pa(dst_p[0]) + d_off,
						     (void __user *)dst_vaddr,
						     len, &argp->error);

		sev_unpin_memory(kvm, src_p, n);
		sev_unpin_memory(kvm, dst_p, n);

		if (ret)
			goto err;

		next_vaddr = vaddr + len;
		dst_vaddr = dst_vaddr + len;
		size -= len;
	}
err:
	return ret;
}

static int sev_launch_secret(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_launch_secret data;
	struct kvm_sev_launch_secret params;
	struct page **pages;
	void *blob, *hdr;
	unsigned long n, i;
	int ret, offset;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
		return -EFAULT;

	pages = sev_pin_memory(kvm, params.guest_uaddr, params.guest_len, &n, 1);
	if (IS_ERR(pages))
		return PTR_ERR(pages);

	/*
	 * Flush (on non-coherent CPUs) before LAUNCH_SECRET encrypts pages in
	 * place; the cache may contain the data that was written unencrypted.
	 */
	sev_clflush_pages(pages, n);

	/*
	 * The secret must be copied into contiguous memory region, lets verify
	 * that userspace memory pages are contiguous before we issue command.
	 */
	if (get_num_contig_pages(0, pages, n) != n) {
		ret = -EINVAL;
		goto e_unpin_memory;
	}

	memset(&data, 0, sizeof(data));

	offset = params.guest_uaddr & (PAGE_SIZE - 1);
	data.guest_address = __sme_page_pa(pages[0]) + offset;
	data.guest_len = params.guest_len;

	blob = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
	if (IS_ERR(blob)) {
		ret = PTR_ERR(blob);
		goto e_unpin_memory;
	}

	data.trans_address = __psp_pa(blob);
	data.trans_len = params.trans_len;

	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
	if (IS_ERR(hdr)) {
		ret = PTR_ERR(hdr);
		goto e_free_blob;
	}
	data.hdr_address = __psp_pa(hdr);
	data.hdr_len = params.hdr_len;

	data.handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_LAUNCH_UPDATE_SECRET, &data, &argp->error);

	kfree(hdr);

e_free_blob:
	kfree(blob);
e_unpin_memory:
	/* content of memory is updated, mark pages dirty */
	for (i = 0; i < n; i++) {
		set_page_dirty_lock(pages[i]);
		mark_page_accessed(pages[i]);
	}
	sev_unpin_memory(kvm, pages, n);
	return ret;
}

static int sev_get_attestation_report(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	void __user *report = u64_to_user_ptr(argp->data);
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_attestation_report data;
	struct kvm_sev_attestation_report params;
	void __user *p;
	void *blob = NULL;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
		return -EFAULT;

	memset(&data, 0, sizeof(data));

	/* User wants to query the blob length */
	if (!params.len)
		goto cmd;

	p = u64_to_user_ptr(params.uaddr);
	if (p) {
		if (params.len > SEV_FW_BLOB_MAX_SIZE)
			return -EINVAL;

		blob = kzalloc(params.len, GFP_KERNEL_ACCOUNT);
		if (!blob)
			return -ENOMEM;

		data.address = __psp_pa(blob);
		data.len = params.len;
		memcpy(data.mnonce, params.mnonce, sizeof(params.mnonce));
	}
cmd:
	data.handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_ATTESTATION_REPORT, &data, &argp->error);
	/*
	 * If we query the session length, FW responded with expected data.
	 */
	if (!params.len)
		goto done;

	if (ret)
		goto e_free_blob;

	if (blob) {
		if (copy_to_user(p, blob, params.len))
			ret = -EFAULT;
	}

done:
	params.len = data.len;
	if (copy_to_user(report, &params, sizeof(params)))
		ret = -EFAULT;
e_free_blob:
	kfree(blob);
	return ret;
}

/* Userspace wants to query session length. */
static int
__sev_send_start_query_session_length(struct kvm *kvm, struct kvm_sev_cmd *argp,
				      struct kvm_sev_send_start *params)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_send_start data;
	int ret;

	memset(&data, 0, sizeof(data));
	data.handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);

	params->session_len = data.session_len;
	if (copy_to_user(u64_to_user_ptr(argp->data), params,
				sizeof(struct kvm_sev_send_start)))
		ret = -EFAULT;

	return ret;
}

static int sev_send_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_send_start data;
	struct kvm_sev_send_start params;
	void *amd_certs, *session_data;
	void *pdh_cert, *plat_certs;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
				sizeof(struct kvm_sev_send_start)))
		return -EFAULT;

	/* if session_len is zero, userspace wants to query the session length */
	if (!params.session_len)
		return __sev_send_start_query_session_length(kvm, argp,
				&params);

	/* some sanity checks */
	if (!params.pdh_cert_uaddr || !params.pdh_cert_len ||
	    !params.session_uaddr || params.session_len > SEV_FW_BLOB_MAX_SIZE)
		return -EINVAL;

	/* allocate the memory to hold the session data blob */
	session_data = kzalloc(params.session_len, GFP_KERNEL_ACCOUNT);
	if (!session_data)
		return -ENOMEM;

	/* copy the certificate blobs from userspace */
	pdh_cert = psp_copy_user_blob(params.pdh_cert_uaddr,
				params.pdh_cert_len);
	if (IS_ERR(pdh_cert)) {
		ret = PTR_ERR(pdh_cert);
		goto e_free_session;
	}

	plat_certs = psp_copy_user_blob(params.plat_certs_uaddr,
				params.plat_certs_len);
	if (IS_ERR(plat_certs)) {
		ret = PTR_ERR(plat_certs);
		goto e_free_pdh;
	}

	amd_certs = psp_copy_user_blob(params.amd_certs_uaddr,
				params.amd_certs_len);
	if (IS_ERR(amd_certs)) {
		ret = PTR_ERR(amd_certs);
		goto e_free_plat_cert;
	}

	/* populate the FW SEND_START field with system physical address */
	memset(&data, 0, sizeof(data));
	data.pdh_cert_address = __psp_pa(pdh_cert);
	data.pdh_cert_len = params.pdh_cert_len;
	data.plat_certs_address = __psp_pa(plat_certs);
	data.plat_certs_len = params.plat_certs_len;
	data.amd_certs_address = __psp_pa(amd_certs);
	data.amd_certs_len = params.amd_certs_len;
	data.session_address = __psp_pa(session_data);
	data.session_len = params.session_len;
	data.handle = sev->handle;

	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_START, &data, &argp->error);

	if (!ret && copy_to_user(u64_to_user_ptr(params.session_uaddr),
			session_data, params.session_len)) {
		ret = -EFAULT;
		goto e_free_amd_cert;
	}

	params.policy = data.policy;
	params.session_len = data.session_len;
	if (copy_to_user(u64_to_user_ptr(argp->data), &params,
				sizeof(struct kvm_sev_send_start)))
		ret = -EFAULT;

e_free_amd_cert:
	kfree(amd_certs);
e_free_plat_cert:
	kfree(plat_certs);
e_free_pdh:
	kfree(pdh_cert);
e_free_session:
	kfree(session_data);
	return ret;
}

/* Userspace wants to query either header or trans length. */
static int
__sev_send_update_data_query_lengths(struct kvm *kvm, struct kvm_sev_cmd *argp,
				     struct kvm_sev_send_update_data *params)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_send_update_data data;
	int ret;

	memset(&data, 0, sizeof(data));
	data.handle = sev->handle;
	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);

	params->hdr_len = data.hdr_len;
	params->trans_len = data.trans_len;

	if (copy_to_user(u64_to_user_ptr(argp->data), params,
			 sizeof(struct kvm_sev_send_update_data)))
		ret = -EFAULT;

	return ret;
}

static int sev_send_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_send_update_data data;
	struct kvm_sev_send_update_data params;
	void *hdr, *trans_data;
	struct page **guest_page;
	unsigned long n;
	int ret, offset;

	if (!sev_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
			sizeof(struct kvm_sev_send_update_data)))
		return -EFAULT;

	/* userspace wants to query either header or trans length */
	if (!params.trans_len || !params.hdr_len)
		return __sev_send_update_data_query_lengths(kvm, argp, &params);

	if (!params.trans_uaddr || !params.guest_uaddr ||
	    !params.guest_len || !params.hdr_uaddr)
		return -EINVAL;

	/* Check if we are crossing the page boundary */
	offset = params.guest_uaddr & (PAGE_SIZE - 1);
	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
		return -EINVAL;

	/* Pin guest memory */
	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
				    PAGE_SIZE, &n, 0);
	if (IS_ERR(guest_page))
		return PTR_ERR(guest_page);

	/* allocate memory for header and transport buffer */
	ret = -ENOMEM;
	hdr = kzalloc(params.hdr_len, GFP_KERNEL_ACCOUNT);
	if (!hdr)
		goto e_unpin;

	trans_data = kzalloc(params.trans_len, GFP_KERNEL_ACCOUNT);
	if (!trans_data)
		goto e_free_hdr;

	memset(&data, 0, sizeof(data));
	data.hdr_address = __psp_pa(hdr);
	data.hdr_len = params.hdr_len;
	data.trans_address = __psp_pa(trans_data);
	data.trans_len = params.trans_len;

	/* The SEND_UPDATE_DATA command requires C-bit to be always set. */
	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
	data.guest_address |= sev_me_mask;
	data.guest_len = params.guest_len;
	data.handle = sev->handle;

	ret = sev_issue_cmd(kvm, SEV_CMD_SEND_UPDATE_DATA, &data, &argp->error);

	if (ret)
		goto e_free_trans_data;

	/* copy transport buffer to user space */
	if (copy_to_user(u64_to_user_ptr(params.trans_uaddr),
			 trans_data, params.trans_len)) {
		ret = -EFAULT;
		goto e_free_trans_data;
	}

	/* Copy packet header to userspace. */
	if (copy_to_user(u64_to_user_ptr(params.hdr_uaddr), hdr,
			 params.hdr_len))
		ret = -EFAULT;

e_free_trans_data:
	kfree(trans_data);
e_free_hdr:
	kfree(hdr);
e_unpin:
	sev_unpin_memory(kvm, guest_page, n);

	return ret;
}

static int sev_send_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_send_finish data;

	if (!sev_guest(kvm))
		return -ENOTTY;

	data.handle = sev->handle;
	return sev_issue_cmd(kvm, SEV_CMD_SEND_FINISH, &data, &argp->error);
}

static int sev_send_cancel(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_send_cancel data;

	if (!sev_guest(kvm))
		return -ENOTTY;

	data.handle = sev->handle;
	return sev_issue_cmd(kvm, SEV_CMD_SEND_CANCEL, &data, &argp->error);
}

static int sev_receive_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_receive_start start;
	struct kvm_sev_receive_start params;
	int *error = &argp->error;
	void *session_data;
	void *pdh_data;
	int ret;

	if (!sev_guest(kvm))
		return -ENOTTY;

	/* Get parameter from the userspace */
	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
			sizeof(struct kvm_sev_receive_start)))
		return -EFAULT;

	/* some sanity checks */
	if (!params.pdh_uaddr || !params.pdh_len ||
	    !params.session_uaddr || !params.session_len)
		return -EINVAL;

	pdh_data = psp_copy_user_blob(params.pdh_uaddr, params.pdh_len);
	if (IS_ERR(pdh_data))
		return PTR_ERR(pdh_data);

	session_data = psp_copy_user_blob(params.session_uaddr,
			params.session_len);
	if (IS_ERR(session_data)) {
		ret = PTR_ERR(session_data);
		goto e_free_pdh;
	}

	memset(&start, 0, sizeof(start));
	start.handle = params.handle;
	start.policy = params.policy;
	start.pdh_cert_address = __psp_pa(pdh_data);
	start.pdh_cert_len = params.pdh_len;
	start.session_address = __psp_pa(session_data);
	start.session_len = params.session_len;

	/* create memory encryption context */
	ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_RECEIVE_START, &start,
				error);
	if (ret)
		goto e_free_session;

	/* Bind ASID to this guest */
	ret = sev_bind_asid(kvm, start.handle, error);
	if (ret) {
		sev_decommission(start.handle);
		goto e_free_session;
	}

	params.handle = start.handle;
	if (copy_to_user(u64_to_user_ptr(argp->data),
			 &params, sizeof(struct kvm_sev_receive_start))) {
		ret = -EFAULT;
		sev_unbind_asid(kvm, start.handle);
		goto e_free_session;
	}

    	sev->handle = start.handle;
	sev->fd = argp->sev_fd;

e_free_session:
	kfree(session_data);
e_free_pdh:
	kfree(pdh_data);

	return ret;
}

static int sev_receive_update_data(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct kvm_sev_receive_update_data params;
	struct sev_data_receive_update_data data;
	void *hdr = NULL, *trans = NULL;
	struct page **guest_page;
	unsigned long n;
	int ret, offset;

	if (!sev_guest(kvm))
		return -EINVAL;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data),
			sizeof(struct kvm_sev_receive_update_data)))
		return -EFAULT;

	if (!params.hdr_uaddr || !params.hdr_len ||
	    !params.guest_uaddr || !params.guest_len ||
	    !params.trans_uaddr || !params.trans_len)
		return -EINVAL;

	/* Check if we are crossing the page boundary */
	offset = params.guest_uaddr & (PAGE_SIZE - 1);
	if (params.guest_len > PAGE_SIZE || (params.guest_len + offset) > PAGE_SIZE)
		return -EINVAL;

	hdr = psp_copy_user_blob(params.hdr_uaddr, params.hdr_len);
	if (IS_ERR(hdr))
		return PTR_ERR(hdr);

	trans = psp_copy_user_blob(params.trans_uaddr, params.trans_len);
	if (IS_ERR(trans)) {
		ret = PTR_ERR(trans);
		goto e_free_hdr;
	}

	memset(&data, 0, sizeof(data));
	data.hdr_address = __psp_pa(hdr);
	data.hdr_len = params.hdr_len;
	data.trans_address = __psp_pa(trans);
	data.trans_len = params.trans_len;

	/* Pin guest memory */
	guest_page = sev_pin_memory(kvm, params.guest_uaddr & PAGE_MASK,
				    PAGE_SIZE, &n, 1);
	if (IS_ERR(guest_page)) {
		ret = PTR_ERR(guest_page);
		goto e_free_trans;
	}

	/*
	 * Flush (on non-coherent CPUs) before RECEIVE_UPDATE_DATA, the PSP
	 * encrypts the written data with the guest's key, and the cache may
	 * contain dirty, unencrypted data.
	 */
	sev_clflush_pages(guest_page, n);

	/* The RECEIVE_UPDATE_DATA command requires C-bit to be always set. */
	data.guest_address = (page_to_pfn(guest_page[0]) << PAGE_SHIFT) + offset;
	data.guest_address |= sev_me_mask;
	data.guest_len = params.guest_len;
	data.handle = sev->handle;

	ret = sev_issue_cmd(kvm, SEV_CMD_RECEIVE_UPDATE_DATA, &data,
				&argp->error);

	sev_unpin_memory(kvm, guest_page, n);

e_free_trans:
	kfree(trans);
e_free_hdr:
	kfree(hdr);

	return ret;
}

static int sev_receive_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_receive_finish data;

	if (!sev_guest(kvm))
		return -ENOTTY;

	data.handle = sev->handle;
	return sev_issue_cmd(kvm, SEV_CMD_RECEIVE_FINISH, &data, &argp->error);
}

static bool is_cmd_allowed_from_mirror(u32 cmd_id)
{
	/*
	 * Allow mirrors VM to call KVM_SEV_LAUNCH_UPDATE_VMSA to enable SEV-ES
	 * active mirror VMs. Also allow the debugging and status commands.
	 */
	if (cmd_id == KVM_SEV_LAUNCH_UPDATE_VMSA ||
	    cmd_id == KVM_SEV_GUEST_STATUS || cmd_id == KVM_SEV_DBG_DECRYPT ||
	    cmd_id == KVM_SEV_DBG_ENCRYPT)
		return true;

	return false;
}

static int sev_lock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
{
	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;
	int r = -EBUSY;

	if (dst_kvm == src_kvm)
		return -EINVAL;

	/*
	 * Bail if these VMs are already involved in a migration to avoid
	 * deadlock between two VMs trying to migrate to/from each other.
	 */
	if (atomic_cmpxchg_acquire(&dst_sev->migration_in_progress, 0, 1))
		return -EBUSY;

	if (atomic_cmpxchg_acquire(&src_sev->migration_in_progress, 0, 1))
		goto release_dst;

	r = -EINTR;
	if (mutex_lock_killable(&dst_kvm->lock))
		goto release_src;
	if (mutex_lock_killable_nested(&src_kvm->lock, SINGLE_DEPTH_NESTING))
		goto unlock_dst;
	return 0;

unlock_dst:
	mutex_unlock(&dst_kvm->lock);
release_src:
	atomic_set_release(&src_sev->migration_in_progress, 0);
release_dst:
	atomic_set_release(&dst_sev->migration_in_progress, 0);
	return r;
}

static void sev_unlock_two_vms(struct kvm *dst_kvm, struct kvm *src_kvm)
{
	struct kvm_sev_info *dst_sev = &to_kvm_svm(dst_kvm)->sev_info;
	struct kvm_sev_info *src_sev = &to_kvm_svm(src_kvm)->sev_info;

	mutex_unlock(&dst_kvm->lock);
	mutex_unlock(&src_kvm->lock);
	atomic_set_release(&dst_sev->migration_in_progress, 0);
	atomic_set_release(&src_sev->migration_in_progress, 0);
}

/* vCPU mutex subclasses.  */
enum sev_migration_role {
	SEV_MIGRATION_SOURCE = 0,
	SEV_MIGRATION_TARGET,
	SEV_NR_MIGRATION_ROLES,
};

static int sev_lock_vcpus_for_migration(struct kvm *kvm,
					enum sev_migration_role role)
{
	struct kvm_vcpu *vcpu;
	unsigned long i, j;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (mutex_lock_killable_nested(&vcpu->mutex, role))
			goto out_unlock;

#ifdef CONFIG_PROVE_LOCKING
		if (!i)
			/*
			 * Reset the role to one that avoids colliding with
			 * the role used for the first vcpu mutex.
			 */
			role = SEV_NR_MIGRATION_ROLES;
		else
			mutex_release(&vcpu->mutex.dep_map, _THIS_IP_);
#endif
	}

	return 0;

out_unlock:

	kvm_for_each_vcpu(j, vcpu, kvm) {
		if (i == j)
			break;

#ifdef CONFIG_PROVE_LOCKING
		if (j)
			mutex_acquire(&vcpu->mutex.dep_map, role, 0, _THIS_IP_);
#endif

		mutex_unlock(&vcpu->mutex);
	}
	return -EINTR;
}

static void sev_unlock_vcpus_for_migration(struct kvm *kvm)
{
	struct kvm_vcpu *vcpu;
	unsigned long i;
	bool first = true;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		if (first)
			first = false;
		else
			mutex_acquire(&vcpu->mutex.dep_map,
				      SEV_NR_MIGRATION_ROLES, 0, _THIS_IP_);

		mutex_unlock(&vcpu->mutex);
	}
}

static void sev_migrate_from(struct kvm *dst_kvm, struct kvm *src_kvm)
{
	struct kvm_sev_info *dst = &to_kvm_svm(dst_kvm)->sev_info;
	struct kvm_sev_info *src = &to_kvm_svm(src_kvm)->sev_info;
	struct kvm_vcpu *dst_vcpu, *src_vcpu;
	struct vcpu_svm *dst_svm, *src_svm;
	struct kvm_sev_info *mirror;
	unsigned long i;

	dst->active = true;
	dst->asid = src->asid;
	dst->handle = src->handle;
	dst->pages_locked = src->pages_locked;
	dst->enc_context_owner = src->enc_context_owner;
	dst->es_active = src->es_active;
	dst->vmsa_features = src->vmsa_features;

	src->asid = 0;
	src->active = false;
	src->handle = 0;
	src->pages_locked = 0;
	src->enc_context_owner = NULL;
	src->es_active = false;

	list_cut_before(&dst->regions_list, &src->regions_list, &src->regions_list);

	/*
	 * If this VM has mirrors, "transfer" each mirror's refcount of the
	 * source to the destination (this KVM).  The caller holds a reference
	 * to the source, so there's no danger of use-after-free.
	 */
	list_cut_before(&dst->mirror_vms, &src->mirror_vms, &src->mirror_vms);
	list_for_each_entry(mirror, &dst->mirror_vms, mirror_entry) {
		kvm_get_kvm(dst_kvm);
		kvm_put_kvm(src_kvm);
		mirror->enc_context_owner = dst_kvm;
	}

	/*
	 * If this VM is a mirror, remove the old mirror from the owners list
	 * and add the new mirror to the list.
	 */
	if (is_mirroring_enc_context(dst_kvm)) {
		struct kvm_sev_info *owner_sev_info =
			&to_kvm_svm(dst->enc_context_owner)->sev_info;

		list_del(&src->mirror_entry);
		list_add_tail(&dst->mirror_entry, &owner_sev_info->mirror_vms);
	}

	kvm_for_each_vcpu(i, dst_vcpu, dst_kvm) {
		dst_svm = to_svm(dst_vcpu);

		sev_init_vmcb(dst_svm);

		if (!dst->es_active)
			continue;

		/*
		 * Note, the source is not required to have the same number of
		 * vCPUs as the destination when migrating a vanilla SEV VM.
		 */
		src_vcpu = kvm_get_vcpu(src_kvm, i);
		src_svm = to_svm(src_vcpu);

		/*
		 * Transfer VMSA and GHCB state to the destination.  Nullify and
		 * clear source fields as appropriate, the state now belongs to
		 * the destination.
		 */
		memcpy(&dst_svm->sev_es, &src_svm->sev_es, sizeof(src_svm->sev_es));
		dst_svm->vmcb->control.ghcb_gpa = src_svm->vmcb->control.ghcb_gpa;
		dst_svm->vmcb->control.vmsa_pa = src_svm->vmcb->control.vmsa_pa;
		dst_vcpu->arch.guest_state_protected = true;

		memset(&src_svm->sev_es, 0, sizeof(src_svm->sev_es));
		src_svm->vmcb->control.ghcb_gpa = INVALID_PAGE;
		src_svm->vmcb->control.vmsa_pa = INVALID_PAGE;
		src_vcpu->arch.guest_state_protected = false;
	}
}

static int sev_check_source_vcpus(struct kvm *dst, struct kvm *src)
{
	struct kvm_vcpu *src_vcpu;
	unsigned long i;

	if (!sev_es_guest(src))
		return 0;

	if (atomic_read(&src->online_vcpus) != atomic_read(&dst->online_vcpus))
		return -EINVAL;

	kvm_for_each_vcpu(i, src_vcpu, src) {
		if (!src_vcpu->arch.guest_state_protected)
			return -EINVAL;
	}

	return 0;
}

int sev_vm_move_enc_context_from(struct kvm *kvm, unsigned int source_fd)
{
	struct kvm_sev_info *dst_sev = &to_kvm_svm(kvm)->sev_info;
	struct kvm_sev_info *src_sev, *cg_cleanup_sev;
	struct fd f = fdget(source_fd);
	struct kvm *source_kvm;
	bool charged = false;
	int ret;

	if (!f.file)
		return -EBADF;

	if (!file_is_kvm(f.file)) {
		ret = -EBADF;
		goto out_fput;
	}

	source_kvm = f.file->private_data;
	ret = sev_lock_two_vms(kvm, source_kvm);
	if (ret)
		goto out_fput;

	if (kvm->arch.vm_type != source_kvm->arch.vm_type ||
	    sev_guest(kvm) || !sev_guest(source_kvm)) {
		ret = -EINVAL;
		goto out_unlock;
	}

	src_sev = &to_kvm_svm(source_kvm)->sev_info;

	dst_sev->misc_cg = get_current_misc_cg();
	cg_cleanup_sev = dst_sev;
	if (dst_sev->misc_cg != src_sev->misc_cg) {
		ret = sev_misc_cg_try_charge(dst_sev);
		if (ret)
			goto out_dst_cgroup;
		charged = true;
	}

	ret = sev_lock_vcpus_for_migration(kvm, SEV_MIGRATION_SOURCE);
	if (ret)
		goto out_dst_cgroup;
	ret = sev_lock_vcpus_for_migration(source_kvm, SEV_MIGRATION_TARGET);
	if (ret)
		goto out_dst_vcpu;

	ret = sev_check_source_vcpus(kvm, source_kvm);
	if (ret)
		goto out_source_vcpu;

	sev_migrate_from(kvm, source_kvm);
	kvm_vm_dead(source_kvm);
	cg_cleanup_sev = src_sev;
	ret = 0;

out_source_vcpu:
	sev_unlock_vcpus_for_migration(source_kvm);
out_dst_vcpu:
	sev_unlock_vcpus_for_migration(kvm);
out_dst_cgroup:
	/* Operates on the source on success, on the destination on failure.  */
	if (charged)
		sev_misc_cg_uncharge(cg_cleanup_sev);
	put_misc_cg(cg_cleanup_sev->misc_cg);
	cg_cleanup_sev->misc_cg = NULL;
out_unlock:
	sev_unlock_two_vms(kvm, source_kvm);
out_fput:
	fdput(f);
	return ret;
}

int sev_dev_get_attr(u32 group, u64 attr, u64 *val)
{
	if (group != KVM_X86_GRP_SEV)
		return -ENXIO;

	switch (attr) {
	case KVM_X86_SEV_VMSA_FEATURES:
		*val = sev_supported_vmsa_features;
		return 0;

	default:
		return -ENXIO;
	}
}

/*
 * The guest context contains all the information, keys and metadata
 * associated with the guest that the firmware tracks to implement SEV
 * and SNP features. The firmware stores the guest context in hypervisor
 * provide page via the SNP_GCTX_CREATE command.
 */
static void *snp_context_create(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct sev_data_snp_addr data = {};
	void *context;
	int rc;

	/* Allocate memory for context page */
	context = snp_alloc_firmware_page(GFP_KERNEL_ACCOUNT);
	if (!context)
		return NULL;

	data.address = __psp_pa(context);
	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_GCTX_CREATE, &data, &argp->error);
	if (rc) {
		pr_warn("Failed to create SEV-SNP context, rc %d fw_error %d",
			rc, argp->error);
		snp_free_firmware_page(context);
		return NULL;
	}

	return context;
}

static int snp_bind_asid(struct kvm *kvm, int *error)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_snp_activate data = {0};

	data.gctx_paddr = __psp_pa(sev->snp_context);
	data.asid = sev_get_asid(kvm);
	return sev_issue_cmd(kvm, SEV_CMD_SNP_ACTIVATE, &data, error);
}

static int snp_launch_start(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_snp_launch_start start = {0};
	struct kvm_sev_snp_launch_start params;
	int rc;

	if (!sev_snp_guest(kvm))
		return -ENOTTY;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
		return -EFAULT;

	/* Don't allow userspace to allocate memory for more than 1 SNP context. */
	if (sev->snp_context)
		return -EINVAL;

	sev->snp_context = snp_context_create(kvm, argp);
	if (!sev->snp_context)
		return -ENOTTY;

	if (params.flags)
		return -EINVAL;

	if (params.policy & ~SNP_POLICY_MASK_VALID)
		return -EINVAL;

	/* Check for policy bits that must be set */
	if (!(params.policy & SNP_POLICY_MASK_RSVD_MBO) ||
	    !(params.policy & SNP_POLICY_MASK_SMT))
		return -EINVAL;

	if (params.policy & SNP_POLICY_MASK_SINGLE_SOCKET)
		return -EINVAL;

	start.gctx_paddr = __psp_pa(sev->snp_context);
	start.policy = params.policy;
	memcpy(start.gosvw, params.gosvw, sizeof(params.gosvw));
	rc = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_START, &start, &argp->error);
	if (rc) {
		pr_debug("%s: SEV_CMD_SNP_LAUNCH_START firmware command failed, rc %d\n",
			 __func__, rc);
		goto e_free_context;
	}

	sev->fd = argp->sev_fd;
	rc = snp_bind_asid(kvm, &argp->error);
	if (rc) {
		pr_debug("%s: Failed to bind ASID to SEV-SNP context, rc %d\n",
			 __func__, rc);
		goto e_free_context;
	}

	return 0;

e_free_context:
	snp_decommission_context(kvm);

	return rc;
}

struct sev_gmem_populate_args {
	__u8 type;
	int sev_fd;
	int fw_error;
};

static int sev_gmem_post_populate(struct kvm *kvm, gfn_t gfn_start, kvm_pfn_t pfn,
				  void __user *src, int order, void *opaque)
{
	struct sev_gmem_populate_args *sev_populate_args = opaque;
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	int n_private = 0, ret, i;
	int npages = (1 << order);
	gfn_t gfn;

	if (WARN_ON_ONCE(sev_populate_args->type != KVM_SEV_SNP_PAGE_TYPE_ZERO && !src))
		return -EINVAL;

	for (gfn = gfn_start, i = 0; gfn < gfn_start + npages; gfn++, i++) {
		struct sev_data_snp_launch_update fw_args = {0};
		bool assigned;
		int level;

		ret = snp_lookup_rmpentry((u64)pfn + i, &assigned, &level);
		if (ret || assigned) {
			pr_debug("%s: Failed to ensure GFN 0x%llx RMP entry is initial shared state, ret: %d assigned: %d\n",
				 __func__, gfn, ret, assigned);
			ret = ret ? -EINVAL : -EEXIST;
			goto err;
		}

		if (src) {
			void *vaddr = kmap_local_pfn(pfn + i);

			ret = copy_from_user(vaddr, src + i * PAGE_SIZE, PAGE_SIZE);
			if (ret)
				goto err;
			kunmap_local(vaddr);
		}

		ret = rmp_make_private(pfn + i, gfn << PAGE_SHIFT, PG_LEVEL_4K,
				       sev_get_asid(kvm), true);
		if (ret)
			goto err;

		n_private++;

		fw_args.gctx_paddr = __psp_pa(sev->snp_context);
		fw_args.address = __sme_set(pfn_to_hpa(pfn + i));
		fw_args.page_size = PG_LEVEL_TO_RMP(PG_LEVEL_4K);
		fw_args.page_type = sev_populate_args->type;

		ret = __sev_issue_cmd(sev_populate_args->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
				      &fw_args, &sev_populate_args->fw_error);
		if (ret)
			goto fw_err;
	}

	return 0;

fw_err:
	/*
	 * If the firmware command failed handle the reclaim and cleanup of that
	 * PFN specially vs. prior pages which can be cleaned up below without
	 * needing to reclaim in advance.
	 *
	 * Additionally, when invalid CPUID function entries are detected,
	 * firmware writes the expected values into the page and leaves it
	 * unencrypted so it can be used for debugging and error-reporting.
	 *
	 * Copy this page back into the source buffer so userspace can use this
	 * information to provide information on which CPUID leaves/fields
	 * failed CPUID validation.
	 */
	if (!snp_page_reclaim(kvm, pfn + i) &&
	    sev_populate_args->type == KVM_SEV_SNP_PAGE_TYPE_CPUID &&
	    sev_populate_args->fw_error == SEV_RET_INVALID_PARAM) {
		void *vaddr = kmap_local_pfn(pfn + i);

		if (copy_to_user(src + i * PAGE_SIZE, vaddr, PAGE_SIZE))
			pr_debug("Failed to write CPUID page back to userspace\n");

		kunmap_local(vaddr);
	}

	/* pfn + i is hypervisor-owned now, so skip below cleanup for it. */
	n_private--;

err:
	pr_debug("%s: exiting with error ret %d (fw_error %d), restoring %d gmem PFNs to shared.\n",
		 __func__, ret, sev_populate_args->fw_error, n_private);
	for (i = 0; i < n_private; i++)
		kvm_rmp_make_shared(kvm, pfn + i, PG_LEVEL_4K);

	return ret;
}

static int snp_launch_update(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_gmem_populate_args sev_populate_args = {0};
	struct kvm_sev_snp_launch_update params;
	struct kvm_memory_slot *memslot;
	long npages, count;
	void __user *src;
	int ret = 0;

	if (!sev_snp_guest(kvm) || !sev->snp_context)
		return -EINVAL;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
		return -EFAULT;

	pr_debug("%s: GFN start 0x%llx length 0x%llx type %d flags %d\n", __func__,
		 params.gfn_start, params.len, params.type, params.flags);

	if (!PAGE_ALIGNED(params.len) || params.flags ||
	    (params.type != KVM_SEV_SNP_PAGE_TYPE_NORMAL &&
	     params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO &&
	     params.type != KVM_SEV_SNP_PAGE_TYPE_UNMEASURED &&
	     params.type != KVM_SEV_SNP_PAGE_TYPE_SECRETS &&
	     params.type != KVM_SEV_SNP_PAGE_TYPE_CPUID))
		return -EINVAL;

	npages = params.len / PAGE_SIZE;

	/*
	 * For each GFN that's being prepared as part of the initial guest
	 * state, the following pre-conditions are verified:
	 *
	 *   1) The backing memslot is a valid private memslot.
	 *   2) The GFN has been set to private via KVM_SET_MEMORY_ATTRIBUTES
	 *      beforehand.
	 *   3) The PFN of the guest_memfd has not already been set to private
	 *      in the RMP table.
	 *
	 * The KVM MMU relies on kvm->mmu_invalidate_seq to retry nested page
	 * faults if there's a race between a fault and an attribute update via
	 * KVM_SET_MEMORY_ATTRIBUTES, and a similar approach could be utilized
	 * here. However, kvm->slots_lock guards against both this as well as
	 * concurrent memslot updates occurring while these checks are being
	 * performed, so use that here to make it easier to reason about the
	 * initial expected state and better guard against unexpected
	 * situations.
	 */
	mutex_lock(&kvm->slots_lock);

	memslot = gfn_to_memslot(kvm, params.gfn_start);
	if (!kvm_slot_can_be_private(memslot)) {
		ret = -EINVAL;
		goto out;
	}

	sev_populate_args.sev_fd = argp->sev_fd;
	sev_populate_args.type = params.type;
	src = params.type == KVM_SEV_SNP_PAGE_TYPE_ZERO ? NULL : u64_to_user_ptr(params.uaddr);

	count = kvm_gmem_populate(kvm, params.gfn_start, src, npages,
				  sev_gmem_post_populate, &sev_populate_args);
	if (count < 0) {
		argp->error = sev_populate_args.fw_error;
		pr_debug("%s: kvm_gmem_populate failed, ret %ld (fw_error %d)\n",
			 __func__, count, argp->error);
		ret = -EIO;
	} else {
		params.gfn_start += count;
		params.len -= count * PAGE_SIZE;
		if (params.type != KVM_SEV_SNP_PAGE_TYPE_ZERO)
			params.uaddr += count * PAGE_SIZE;

		ret = 0;
		if (copy_to_user(u64_to_user_ptr(argp->data), &params, sizeof(params)))
			ret = -EFAULT;
	}

out:
	mutex_unlock(&kvm->slots_lock);

	return ret;
}

static int snp_launch_update_vmsa(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_snp_launch_update data = {};
	struct kvm_vcpu *vcpu;
	unsigned long i;
	int ret;

	data.gctx_paddr = __psp_pa(sev->snp_context);
	data.page_type = SNP_PAGE_TYPE_VMSA;

	kvm_for_each_vcpu(i, vcpu, kvm) {
		struct vcpu_svm *svm = to_svm(vcpu);
		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;

		ret = sev_es_sync_vmsa(svm);
		if (ret)
			return ret;

		/* Transition the VMSA page to a firmware state. */
		ret = rmp_make_private(pfn, INITIAL_VMSA_GPA, PG_LEVEL_4K, sev->asid, true);
		if (ret)
			return ret;

		/* Issue the SNP command to encrypt the VMSA */
		data.address = __sme_pa(svm->sev_es.vmsa);
		ret = __sev_issue_cmd(argp->sev_fd, SEV_CMD_SNP_LAUNCH_UPDATE,
				      &data, &argp->error);
		if (ret) {
			snp_page_reclaim(kvm, pfn);

			return ret;
		}

		svm->vcpu.arch.guest_state_protected = true;
		/*
		 * SEV-ES (and thus SNP) guest mandates LBR Virtualization to
		 * be _always_ ON. Enable it only after setting
		 * guest_state_protected because KVM_SET_MSRS allows dynamic
		 * toggling of LBRV (for performance reason) on write access to
		 * MSR_IA32_DEBUGCTLMSR when guest_state_protected is not set.
		 */
		svm_enable_lbrv(vcpu);
	}

	return 0;
}

static int snp_launch_finish(struct kvm *kvm, struct kvm_sev_cmd *argp)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct kvm_sev_snp_launch_finish params;
	struct sev_data_snp_launch_finish *data;
	void *id_block = NULL, *id_auth = NULL;
	int ret;

	if (!sev_snp_guest(kvm))
		return -ENOTTY;

	if (!sev->snp_context)
		return -EINVAL;

	if (copy_from_user(&params, u64_to_user_ptr(argp->data), sizeof(params)))
		return -EFAULT;

	if (params.flags)
		return -EINVAL;

	/* Measure all vCPUs using LAUNCH_UPDATE before finalizing the launch flow. */
	ret = snp_launch_update_vmsa(kvm, argp);
	if (ret)
		return ret;

	data = kzalloc(sizeof(*data), GFP_KERNEL_ACCOUNT);
	if (!data)
		return -ENOMEM;

	if (params.id_block_en) {
		id_block = psp_copy_user_blob(params.id_block_uaddr, KVM_SEV_SNP_ID_BLOCK_SIZE);
		if (IS_ERR(id_block)) {
			ret = PTR_ERR(id_block);
			goto e_free;
		}

		data->id_block_en = 1;
		data->id_block_paddr = __sme_pa(id_block);

		id_auth = psp_copy_user_blob(params.id_auth_uaddr, KVM_SEV_SNP_ID_AUTH_SIZE);
		if (IS_ERR(id_auth)) {
			ret = PTR_ERR(id_auth);
			goto e_free_id_block;
		}

		data->id_auth_paddr = __sme_pa(id_auth);

		if (params.auth_key_en)
			data->auth_key_en = 1;
	}

	data->vcek_disabled = params.vcek_disabled;

	memcpy(data->host_data, params.host_data, KVM_SEV_SNP_FINISH_DATA_SIZE);
	data->gctx_paddr = __psp_pa(sev->snp_context);
	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_LAUNCH_FINISH, data, &argp->error);

	/*
	 * Now that there will be no more SNP_LAUNCH_UPDATE ioctls, private pages
	 * can be given to the guest simply by marking the RMP entry as private.
	 * This can happen on first access and also with KVM_PRE_FAULT_MEMORY.
	 */
	if (!ret)
		kvm->arch.pre_fault_allowed = true;

	kfree(id_auth);

e_free_id_block:
	kfree(id_block);

e_free:
	kfree(data);

	return ret;
}

int sev_mem_enc_ioctl(struct kvm *kvm, void __user *argp)
{
	struct kvm_sev_cmd sev_cmd;
	int r;

	if (!sev_enabled)
		return -ENOTTY;

	if (!argp)
		return 0;

	if (copy_from_user(&sev_cmd, argp, sizeof(struct kvm_sev_cmd)))
		return -EFAULT;

	mutex_lock(&kvm->lock);

	/* Only the enc_context_owner handles some memory enc operations. */
	if (is_mirroring_enc_context(kvm) &&
	    !is_cmd_allowed_from_mirror(sev_cmd.id)) {
		r = -EINVAL;
		goto out;
	}

	/*
	 * Once KVM_SEV_INIT2 initializes a KVM instance as an SNP guest, only
	 * allow the use of SNP-specific commands.
	 */
	if (sev_snp_guest(kvm) && sev_cmd.id < KVM_SEV_SNP_LAUNCH_START) {
		r = -EPERM;
		goto out;
	}

	switch (sev_cmd.id) {
	case KVM_SEV_ES_INIT:
		if (!sev_es_enabled) {
			r = -ENOTTY;
			goto out;
		}
		fallthrough;
	case KVM_SEV_INIT:
		r = sev_guest_init(kvm, &sev_cmd);
		break;
	case KVM_SEV_INIT2:
		r = sev_guest_init2(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_START:
		r = sev_launch_start(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_UPDATE_DATA:
		r = sev_launch_update_data(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_UPDATE_VMSA:
		r = sev_launch_update_vmsa(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_MEASURE:
		r = sev_launch_measure(kvm, &sev_cmd);
		break;
	case KVM_SEV_LAUNCH_FINISH:
		r = sev_launch_finish(kvm, &sev_cmd);
		break;
	case KVM_SEV_GUEST_STATUS:
		r = sev_guest_status(kvm, &sev_cmd);
		break;
	case KVM_SEV_DBG_DECRYPT:
		r = sev_dbg_crypt(kvm, &sev_cmd, true);
		break;
	case KVM_SEV_DBG_ENCRYPT:
		r = sev_dbg_crypt(kvm, &sev_cmd, false);
		break;
	case KVM_SEV_LAUNCH_SECRET:
		r = sev_launch_secret(kvm, &sev_cmd);
		break;
	case KVM_SEV_GET_ATTESTATION_REPORT:
		r = sev_get_attestation_report(kvm, &sev_cmd);
		break;
	case KVM_SEV_SEND_START:
		r = sev_send_start(kvm, &sev_cmd);
		break;
	case KVM_SEV_SEND_UPDATE_DATA:
		r = sev_send_update_data(kvm, &sev_cmd);
		break;
	case KVM_SEV_SEND_FINISH:
		r = sev_send_finish(kvm, &sev_cmd);
		break;
	case KVM_SEV_SEND_CANCEL:
		r = sev_send_cancel(kvm, &sev_cmd);
		break;
	case KVM_SEV_RECEIVE_START:
		r = sev_receive_start(kvm, &sev_cmd);
		break;
	case KVM_SEV_RECEIVE_UPDATE_DATA:
		r = sev_receive_update_data(kvm, &sev_cmd);
		break;
	case KVM_SEV_RECEIVE_FINISH:
		r = sev_receive_finish(kvm, &sev_cmd);
		break;
	case KVM_SEV_SNP_LAUNCH_START:
		r = snp_launch_start(kvm, &sev_cmd);
		break;
	case KVM_SEV_SNP_LAUNCH_UPDATE:
		r = snp_launch_update(kvm, &sev_cmd);
		break;
	case KVM_SEV_SNP_LAUNCH_FINISH:
		r = snp_launch_finish(kvm, &sev_cmd);
		break;
	default:
		r = -EINVAL;
		goto out;
	}

	if (copy_to_user(argp, &sev_cmd, sizeof(struct kvm_sev_cmd)))
		r = -EFAULT;

out:
	mutex_unlock(&kvm->lock);
	return r;
}

int sev_mem_enc_register_region(struct kvm *kvm,
				struct kvm_enc_region *range)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct enc_region *region;
	int ret = 0;

	if (!sev_guest(kvm))
		return -ENOTTY;

	/* If kvm is mirroring encryption context it isn't responsible for it */
	if (is_mirroring_enc_context(kvm))
		return -EINVAL;

	if (range->addr > ULONG_MAX || range->size > ULONG_MAX)
		return -EINVAL;

	region = kzalloc(sizeof(*region), GFP_KERNEL_ACCOUNT);
	if (!region)
		return -ENOMEM;

	mutex_lock(&kvm->lock);
	region->pages = sev_pin_memory(kvm, range->addr, range->size, &region->npages, 1);
	if (IS_ERR(region->pages)) {
		ret = PTR_ERR(region->pages);
		mutex_unlock(&kvm->lock);
		goto e_free;
	}

	/*
	 * The guest may change the memory encryption attribute from C=0 -> C=1
	 * or vice versa for this memory range. Lets make sure caches are
	 * flushed to ensure that guest data gets written into memory with
	 * correct C-bit.  Note, this must be done before dropping kvm->lock,
	 * as region and its array of pages can be freed by a different task
	 * once kvm->lock is released.
	 */
	sev_clflush_pages(region->pages, region->npages);

	region->uaddr = range->addr;
	region->size = range->size;

	list_add_tail(&region->list, &sev->regions_list);
	mutex_unlock(&kvm->lock);

	return ret;

e_free:
	kfree(region);
	return ret;
}

static struct enc_region *
find_enc_region(struct kvm *kvm, struct kvm_enc_region *range)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct list_head *head = &sev->regions_list;
	struct enc_region *i;

	list_for_each_entry(i, head, list) {
		if (i->uaddr == range->addr &&
		    i->size == range->size)
			return i;
	}

	return NULL;
}

static void __unregister_enc_region_locked(struct kvm *kvm,
					   struct enc_region *region)
{
	sev_unpin_memory(kvm, region->pages, region->npages);
	list_del(&region->list);
	kfree(region);
}

int sev_mem_enc_unregister_region(struct kvm *kvm,
				  struct kvm_enc_region *range)
{
	struct enc_region *region;
	int ret;

	/* If kvm is mirroring encryption context it isn't responsible for it */
	if (is_mirroring_enc_context(kvm))
		return -EINVAL;

	mutex_lock(&kvm->lock);

	if (!sev_guest(kvm)) {
		ret = -ENOTTY;
		goto failed;
	}

	region = find_enc_region(kvm, range);
	if (!region) {
		ret = -EINVAL;
		goto failed;
	}

	/*
	 * Ensure that all guest tagged cache entries are flushed before
	 * releasing the pages back to the system for use. CLFLUSH will
	 * not do this, so issue a WBINVD.
	 */
	wbinvd_on_all_cpus();

	__unregister_enc_region_locked(kvm, region);

	mutex_unlock(&kvm->lock);
	return 0;

failed:
	mutex_unlock(&kvm->lock);
	return ret;
}

int sev_vm_copy_enc_context_from(struct kvm *kvm, unsigned int source_fd)
{
	struct fd f = fdget(source_fd);
	struct kvm *source_kvm;
	struct kvm_sev_info *source_sev, *mirror_sev;
	int ret;

	if (!f.file)
		return -EBADF;

	if (!file_is_kvm(f.file)) {
		ret = -EBADF;
		goto e_source_fput;
	}

	source_kvm = f.file->private_data;
	ret = sev_lock_two_vms(kvm, source_kvm);
	if (ret)
		goto e_source_fput;

	/*
	 * Mirrors of mirrors should work, but let's not get silly.  Also
	 * disallow out-of-band SEV/SEV-ES init if the target is already an
	 * SEV guest, or if vCPUs have been created.  KVM relies on vCPUs being
	 * created after SEV/SEV-ES initialization, e.g. to init intercepts.
	 */
	if (sev_guest(kvm) || !sev_guest(source_kvm) ||
	    is_mirroring_enc_context(source_kvm) || kvm->created_vcpus) {
		ret = -EINVAL;
		goto e_unlock;
	}

	/*
	 * The mirror kvm holds an enc_context_owner ref so its asid can't
	 * disappear until we're done with it
	 */
	source_sev = &to_kvm_svm(source_kvm)->sev_info;
	kvm_get_kvm(source_kvm);
	mirror_sev = &to_kvm_svm(kvm)->sev_info;
	list_add_tail(&mirror_sev->mirror_entry, &source_sev->mirror_vms);

	/* Set enc_context_owner and copy its encryption context over */
	mirror_sev->enc_context_owner = source_kvm;
	mirror_sev->active = true;
	mirror_sev->asid = source_sev->asid;
	mirror_sev->fd = source_sev->fd;
	mirror_sev->es_active = source_sev->es_active;
	mirror_sev->need_init = false;
	mirror_sev->handle = source_sev->handle;
	INIT_LIST_HEAD(&mirror_sev->regions_list);
	INIT_LIST_HEAD(&mirror_sev->mirror_vms);
	ret = 0;

	/*
	 * Do not copy ap_jump_table. Since the mirror does not share the same
	 * KVM contexts as the original, and they may have different
	 * memory-views.
	 */

e_unlock:
	sev_unlock_two_vms(kvm, source_kvm);
e_source_fput:
	fdput(f);
	return ret;
}

static int snp_decommission_context(struct kvm *kvm)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct sev_data_snp_addr data = {};
	int ret;

	/* If context is not created then do nothing */
	if (!sev->snp_context)
		return 0;

	/* Do the decommision, which will unbind the ASID from the SNP context */
	data.address = __sme_pa(sev->snp_context);
	down_write(&sev_deactivate_lock);
	ret = sev_do_cmd(SEV_CMD_SNP_DECOMMISSION, &data, NULL);
	up_write(&sev_deactivate_lock);

	if (WARN_ONCE(ret, "Failed to release guest context, ret %d", ret))
		return ret;

	snp_free_firmware_page(sev->snp_context);
	sev->snp_context = NULL;

	return 0;
}

void sev_vm_destroy(struct kvm *kvm)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	struct list_head *head = &sev->regions_list;
	struct list_head *pos, *q;

	if (!sev_guest(kvm))
		return;

	WARN_ON(!list_empty(&sev->mirror_vms));

	/* If this is a mirror_kvm release the enc_context_owner and skip sev cleanup */
	if (is_mirroring_enc_context(kvm)) {
		struct kvm *owner_kvm = sev->enc_context_owner;

		mutex_lock(&owner_kvm->lock);
		list_del(&sev->mirror_entry);
		mutex_unlock(&owner_kvm->lock);
		kvm_put_kvm(owner_kvm);
		return;
	}

	/*
	 * Ensure that all guest tagged cache entries are flushed before
	 * releasing the pages back to the system for use. CLFLUSH will
	 * not do this, so issue a WBINVD.
	 */
	wbinvd_on_all_cpus();

	/*
	 * if userspace was terminated before unregistering the memory regions
	 * then lets unpin all the registered memory.
	 */
	if (!list_empty(head)) {
		list_for_each_safe(pos, q, head) {
			__unregister_enc_region_locked(kvm,
				list_entry(pos, struct enc_region, list));
			cond_resched();
		}
	}

	if (sev_snp_guest(kvm)) {
		snp_guest_req_cleanup(kvm);

		/*
		 * Decomission handles unbinding of the ASID. If it fails for
		 * some unexpected reason, just leak the ASID.
		 */
		if (snp_decommission_context(kvm))
			return;
	} else {
		sev_unbind_asid(kvm, sev->handle);
	}

	sev_asid_free(sev);
}

void __init sev_set_cpu_caps(void)
{
	if (sev_enabled) {
		kvm_cpu_cap_set(X86_FEATURE_SEV);
		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_VM);
	}
	if (sev_es_enabled) {
		kvm_cpu_cap_set(X86_FEATURE_SEV_ES);
		kvm_caps.supported_vm_types |= BIT(KVM_X86_SEV_ES_VM);
	}
	if (sev_snp_enabled) {
		kvm_cpu_cap_set(X86_FEATURE_SEV_SNP);
		kvm_caps.supported_vm_types |= BIT(KVM_X86_SNP_VM);
	}
}

void __init sev_hardware_setup(void)
{
	unsigned int eax, ebx, ecx, edx, sev_asid_count, sev_es_asid_count;
	bool sev_snp_supported = false;
	bool sev_es_supported = false;
	bool sev_supported = false;

	if (!sev_enabled || !npt_enabled || !nrips)
		goto out;

	/*
	 * SEV must obviously be supported in hardware.  Sanity check that the
	 * CPU supports decode assists, which is mandatory for SEV guests to
	 * support instruction emulation.  Ditto for flushing by ASID, as SEV
	 * guests are bound to a single ASID, i.e. KVM can't rotate to a new
	 * ASID to effect a TLB flush.
	 */
	if (!boot_cpu_has(X86_FEATURE_SEV) ||
	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_DECODEASSISTS)) ||
	    WARN_ON_ONCE(!boot_cpu_has(X86_FEATURE_FLUSHBYASID)))
		goto out;

	/* Retrieve SEV CPUID information */
	cpuid(0x8000001f, &eax, &ebx, &ecx, &edx);

	/* Set encryption bit location for SEV-ES guests */
	sev_enc_bit = ebx & 0x3f;

	/* Maximum number of encrypted guests supported simultaneously */
	max_sev_asid = ecx;
	if (!max_sev_asid)
		goto out;

	/* Minimum ASID value that should be used for SEV guest */
	min_sev_asid = edx;
	sev_me_mask = 1UL << (ebx & 0x3f);

	/*
	 * Initialize SEV ASID bitmaps. Allocate space for ASID 0 in the bitmap,
	 * even though it's never used, so that the bitmap is indexed by the
	 * actual ASID.
	 */
	nr_asids = max_sev_asid + 1;
	sev_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
	if (!sev_asid_bitmap)
		goto out;

	sev_reclaim_asid_bitmap = bitmap_zalloc(nr_asids, GFP_KERNEL);
	if (!sev_reclaim_asid_bitmap) {
		bitmap_free(sev_asid_bitmap);
		sev_asid_bitmap = NULL;
		goto out;
	}

	if (min_sev_asid <= max_sev_asid) {
		sev_asid_count = max_sev_asid - min_sev_asid + 1;
		WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV, sev_asid_count));
	}
	sev_supported = true;

	/* SEV-ES support requested? */
	if (!sev_es_enabled)
		goto out;

	/*
	 * SEV-ES requires MMIO caching as KVM doesn't have access to the guest
	 * instruction stream, i.e. can't emulate in response to a #NPF and
	 * instead relies on #NPF(RSVD) being reflected into the guest as #VC
	 * (the guest can then do a #VMGEXIT to request MMIO emulation).
	 */
	if (!enable_mmio_caching)
		goto out;

	/* Does the CPU support SEV-ES? */
	if (!boot_cpu_has(X86_FEATURE_SEV_ES))
		goto out;

	if (!lbrv) {
		WARN_ONCE(!boot_cpu_has(X86_FEATURE_LBRV),
			  "LBRV must be present for SEV-ES support");
		goto out;
	}

	/* Has the system been allocated ASIDs for SEV-ES? */
	if (min_sev_asid == 1)
		goto out;

	sev_es_asid_count = min_sev_asid - 1;
	WARN_ON_ONCE(misc_cg_set_capacity(MISC_CG_RES_SEV_ES, sev_es_asid_count));
	sev_es_supported = true;
	sev_snp_supported = sev_snp_enabled && cc_platform_has(CC_ATTR_HOST_SEV_SNP);

out:
	if (boot_cpu_has(X86_FEATURE_SEV))
		pr_info("SEV %s (ASIDs %u - %u)\n",
			sev_supported ? min_sev_asid <= max_sev_asid ? "enabled" :
								       "unusable" :
								       "disabled",
			min_sev_asid, max_sev_asid);
	if (boot_cpu_has(X86_FEATURE_SEV_ES))
		pr_info("SEV-ES %s (ASIDs %u - %u)\n",
			sev_es_supported ? "enabled" : "disabled",
			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);
	if (boot_cpu_has(X86_FEATURE_SEV_SNP))
		pr_info("SEV-SNP %s (ASIDs %u - %u)\n",
			sev_snp_supported ? "enabled" : "disabled",
			min_sev_asid > 1 ? 1 : 0, min_sev_asid - 1);

	sev_enabled = sev_supported;
	sev_es_enabled = sev_es_supported;
	sev_snp_enabled = sev_snp_supported;

	if (!sev_es_enabled || !cpu_feature_enabled(X86_FEATURE_DEBUG_SWAP) ||
	    !cpu_feature_enabled(X86_FEATURE_NO_NESTED_DATA_BP))
		sev_es_debug_swap_enabled = false;

	sev_supported_vmsa_features = 0;
	if (sev_es_debug_swap_enabled)
		sev_supported_vmsa_features |= SVM_SEV_FEAT_DEBUG_SWAP;
}

void sev_hardware_unsetup(void)
{
	if (!sev_enabled)
		return;

	/* No need to take sev_bitmap_lock, all VMs have been destroyed. */
	sev_flush_asids(1, max_sev_asid);

	bitmap_free(sev_asid_bitmap);
	bitmap_free(sev_reclaim_asid_bitmap);

	misc_cg_set_capacity(MISC_CG_RES_SEV, 0);
	misc_cg_set_capacity(MISC_CG_RES_SEV_ES, 0);
}

int sev_cpu_init(struct svm_cpu_data *sd)
{
	if (!sev_enabled)
		return 0;

	sd->sev_vmcbs = kcalloc(nr_asids, sizeof(void *), GFP_KERNEL);
	if (!sd->sev_vmcbs)
		return -ENOMEM;

	return 0;
}

/*
 * Pages used by hardware to hold guest encrypted state must be flushed before
 * returning them to the system.
 */
static void sev_flush_encrypted_page(struct kvm_vcpu *vcpu, void *va)
{
	unsigned int asid = sev_get_asid(vcpu->kvm);

	/*
	 * Note!  The address must be a kernel address, as regular page walk
	 * checks are performed by VM_PAGE_FLUSH, i.e. operating on a user
	 * address is non-deterministic and unsafe.  This function deliberately
	 * takes a pointer to deter passing in a user address.
	 */
	unsigned long addr = (unsigned long)va;

	/*
	 * If CPU enforced cache coherency for encrypted mappings of the
	 * same physical page is supported, use CLFLUSHOPT instead. NOTE: cache
	 * flush is still needed in order to work properly with DMA devices.
	 */
	if (boot_cpu_has(X86_FEATURE_SME_COHERENT)) {
		clflush_cache_range(va, PAGE_SIZE);
		return;
	}

	/*
	 * VM Page Flush takes a host virtual address and a guest ASID.  Fall
	 * back to WBINVD if this faults so as not to make any problems worse
	 * by leaving stale encrypted data in the cache.
	 */
	if (WARN_ON_ONCE(wrmsrl_safe(MSR_AMD64_VM_PAGE_FLUSH, addr | asid)))
		goto do_wbinvd;

	return;

do_wbinvd:
	wbinvd_on_all_cpus();
}

void sev_guest_memory_reclaimed(struct kvm *kvm)
{
	/*
	 * With SNP+gmem, private/encrypted memory is unreachable via the
	 * hva-based mmu notifiers, so these events are only actually
	 * pertaining to shared pages where there is no need to perform
	 * the WBINVD to flush associated caches.
	 */
	if (!sev_guest(kvm) || sev_snp_guest(kvm))
		return;

	wbinvd_on_all_cpus();
}

void sev_free_vcpu(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm;

	if (!sev_es_guest(vcpu->kvm))
		return;

	svm = to_svm(vcpu);

	/*
	 * If it's an SNP guest, then the VMSA was marked in the RMP table as
	 * a guest-owned page. Transition the page to hypervisor state before
	 * releasing it back to the system.
	 */
	if (sev_snp_guest(vcpu->kvm)) {
		u64 pfn = __pa(svm->sev_es.vmsa) >> PAGE_SHIFT;

		if (kvm_rmp_make_shared(vcpu->kvm, pfn, PG_LEVEL_4K))
			goto skip_vmsa_free;
	}

	if (vcpu->arch.guest_state_protected)
		sev_flush_encrypted_page(vcpu, svm->sev_es.vmsa);

	__free_page(virt_to_page(svm->sev_es.vmsa));

skip_vmsa_free:
	if (svm->sev_es.ghcb_sa_free)
		kvfree(svm->sev_es.ghcb_sa);
}

static void dump_ghcb(struct vcpu_svm *svm)
{
	struct ghcb *ghcb = svm->sev_es.ghcb;
	unsigned int nbits;

	/* Re-use the dump_invalid_vmcb module parameter */
	if (!dump_invalid_vmcb) {
		pr_warn_ratelimited("set kvm_amd.dump_invalid_vmcb=1 to dump internal KVM state.\n");
		return;
	}

	nbits = sizeof(ghcb->save.valid_bitmap) * 8;

	pr_err("GHCB (GPA=%016llx):\n", svm->vmcb->control.ghcb_gpa);
	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_code",
	       ghcb->save.sw_exit_code, ghcb_sw_exit_code_is_valid(ghcb));
	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_1",
	       ghcb->save.sw_exit_info_1, ghcb_sw_exit_info_1_is_valid(ghcb));
	pr_err("%-20s%016llx is_valid: %u\n", "sw_exit_info_2",
	       ghcb->save.sw_exit_info_2, ghcb_sw_exit_info_2_is_valid(ghcb));
	pr_err("%-20s%016llx is_valid: %u\n", "sw_scratch",
	       ghcb->save.sw_scratch, ghcb_sw_scratch_is_valid(ghcb));
	pr_err("%-20s%*pb\n", "valid_bitmap", nbits, ghcb->save.valid_bitmap);
}

static void sev_es_sync_to_ghcb(struct vcpu_svm *svm)
{
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct ghcb *ghcb = svm->sev_es.ghcb;

	/*
	 * The GHCB protocol so far allows for the following data
	 * to be returned:
	 *   GPRs RAX, RBX, RCX, RDX
	 *
	 * Copy their values, even if they may not have been written during the
	 * VM-Exit.  It's the guest's responsibility to not consume random data.
	 */
	ghcb_set_rax(ghcb, vcpu->arch.regs[VCPU_REGS_RAX]);
	ghcb_set_rbx(ghcb, vcpu->arch.regs[VCPU_REGS_RBX]);
	ghcb_set_rcx(ghcb, vcpu->arch.regs[VCPU_REGS_RCX]);
	ghcb_set_rdx(ghcb, vcpu->arch.regs[VCPU_REGS_RDX]);
}

static void sev_es_sync_from_ghcb(struct vcpu_svm *svm)
{
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct ghcb *ghcb = svm->sev_es.ghcb;
	u64 exit_code;

	/*
	 * The GHCB protocol so far allows for the following data
	 * to be supplied:
	 *   GPRs RAX, RBX, RCX, RDX
	 *   XCR0
	 *   CPL
	 *
	 * VMMCALL allows the guest to provide extra registers. KVM also
	 * expects RSI for hypercalls, so include that, too.
	 *
	 * Copy their values to the appropriate location if supplied.
	 */
	memset(vcpu->arch.regs, 0, sizeof(vcpu->arch.regs));

	BUILD_BUG_ON(sizeof(svm->sev_es.valid_bitmap) != sizeof(ghcb->save.valid_bitmap));
	memcpy(&svm->sev_es.valid_bitmap, &ghcb->save.valid_bitmap, sizeof(ghcb->save.valid_bitmap));

	vcpu->arch.regs[VCPU_REGS_RAX] = kvm_ghcb_get_rax_if_valid(svm, ghcb);
	vcpu->arch.regs[VCPU_REGS_RBX] = kvm_ghcb_get_rbx_if_valid(svm, ghcb);
	vcpu->arch.regs[VCPU_REGS_RCX] = kvm_ghcb_get_rcx_if_valid(svm, ghcb);
	vcpu->arch.regs[VCPU_REGS_RDX] = kvm_ghcb_get_rdx_if_valid(svm, ghcb);
	vcpu->arch.regs[VCPU_REGS_RSI] = kvm_ghcb_get_rsi_if_valid(svm, ghcb);

	svm->vmcb->save.cpl = kvm_ghcb_get_cpl_if_valid(svm, ghcb);

	if (kvm_ghcb_xcr0_is_valid(svm)) {
		vcpu->arch.xcr0 = ghcb_get_xcr0(ghcb);
		kvm_update_cpuid_runtime(vcpu);
	}

	/* Copy the GHCB exit information into the VMCB fields */
	exit_code = ghcb_get_sw_exit_code(ghcb);
	control->exit_code = lower_32_bits(exit_code);
	control->exit_code_hi = upper_32_bits(exit_code);
	control->exit_info_1 = ghcb_get_sw_exit_info_1(ghcb);
	control->exit_info_2 = ghcb_get_sw_exit_info_2(ghcb);
	svm->sev_es.sw_scratch = kvm_ghcb_get_sw_scratch_if_valid(svm, ghcb);

	/* Clear the valid entries fields */
	memset(ghcb->save.valid_bitmap, 0, sizeof(ghcb->save.valid_bitmap));
}

static u64 kvm_ghcb_get_sw_exit_code(struct vmcb_control_area *control)
{
	return (((u64)control->exit_code_hi) << 32) | control->exit_code;
}

static int sev_es_validate_vmgexit(struct vcpu_svm *svm)
{
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct kvm_vcpu *vcpu = &svm->vcpu;
	u64 exit_code;
	u64 reason;

	/*
	 * Retrieve the exit code now even though it may not be marked valid
	 * as it could help with debugging.
	 */
	exit_code = kvm_ghcb_get_sw_exit_code(control);

	/* Only GHCB Usage code 0 is supported */
	if (svm->sev_es.ghcb->ghcb_usage) {
		reason = GHCB_ERR_INVALID_USAGE;
		goto vmgexit_err;
	}

	reason = GHCB_ERR_MISSING_INPUT;

	if (!kvm_ghcb_sw_exit_code_is_valid(svm) ||
	    !kvm_ghcb_sw_exit_info_1_is_valid(svm) ||
	    !kvm_ghcb_sw_exit_info_2_is_valid(svm))
		goto vmgexit_err;

	switch (exit_code) {
	case SVM_EXIT_READ_DR7:
		break;
	case SVM_EXIT_WRITE_DR7:
		if (!kvm_ghcb_rax_is_valid(svm))
			goto vmgexit_err;
		break;
	case SVM_EXIT_RDTSC:
		break;
	case SVM_EXIT_RDPMC:
		if (!kvm_ghcb_rcx_is_valid(svm))
			goto vmgexit_err;
		break;
	case SVM_EXIT_CPUID:
		if (!kvm_ghcb_rax_is_valid(svm) ||
		    !kvm_ghcb_rcx_is_valid(svm))
			goto vmgexit_err;
		if (vcpu->arch.regs[VCPU_REGS_RAX] == 0xd)
			if (!kvm_ghcb_xcr0_is_valid(svm))
				goto vmgexit_err;
		break;
	case SVM_EXIT_INVD:
		break;
	case SVM_EXIT_IOIO:
		if (control->exit_info_1 & SVM_IOIO_STR_MASK) {
			if (!kvm_ghcb_sw_scratch_is_valid(svm))
				goto vmgexit_err;
		} else {
			if (!(control->exit_info_1 & SVM_IOIO_TYPE_MASK))
				if (!kvm_ghcb_rax_is_valid(svm))
					goto vmgexit_err;
		}
		break;
	case SVM_EXIT_MSR:
		if (!kvm_ghcb_rcx_is_valid(svm))
			goto vmgexit_err;
		if (control->exit_info_1) {
			if (!kvm_ghcb_rax_is_valid(svm) ||
			    !kvm_ghcb_rdx_is_valid(svm))
				goto vmgexit_err;
		}
		break;
	case SVM_EXIT_VMMCALL:
		if (!kvm_ghcb_rax_is_valid(svm) ||
		    !kvm_ghcb_cpl_is_valid(svm))
			goto vmgexit_err;
		break;
	case SVM_EXIT_RDTSCP:
		break;
	case SVM_EXIT_WBINVD:
		break;
	case SVM_EXIT_MONITOR:
		if (!kvm_ghcb_rax_is_valid(svm) ||
		    !kvm_ghcb_rcx_is_valid(svm) ||
		    !kvm_ghcb_rdx_is_valid(svm))
			goto vmgexit_err;
		break;
	case SVM_EXIT_MWAIT:
		if (!kvm_ghcb_rax_is_valid(svm) ||
		    !kvm_ghcb_rcx_is_valid(svm))
			goto vmgexit_err;
		break;
	case SVM_VMGEXIT_MMIO_READ:
	case SVM_VMGEXIT_MMIO_WRITE:
		if (!kvm_ghcb_sw_scratch_is_valid(svm))
			goto vmgexit_err;
		break;
	case SVM_VMGEXIT_AP_CREATION:
		if (!sev_snp_guest(vcpu->kvm))
			goto vmgexit_err;
		if (lower_32_bits(control->exit_info_1) != SVM_VMGEXIT_AP_DESTROY)
			if (!kvm_ghcb_rax_is_valid(svm))
				goto vmgexit_err;
		break;
	case SVM_VMGEXIT_NMI_COMPLETE:
	case SVM_VMGEXIT_AP_HLT_LOOP:
	case SVM_VMGEXIT_AP_JUMP_TABLE:
	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
	case SVM_VMGEXIT_HV_FEATURES:
	case SVM_VMGEXIT_TERM_REQUEST:
		break;
	case SVM_VMGEXIT_PSC:
		if (!sev_snp_guest(vcpu->kvm) || !kvm_ghcb_sw_scratch_is_valid(svm))
			goto vmgexit_err;
		break;
	case SVM_VMGEXIT_GUEST_REQUEST:
	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
		if (!sev_snp_guest(vcpu->kvm) ||
		    !PAGE_ALIGNED(control->exit_info_1) ||
		    !PAGE_ALIGNED(control->exit_info_2) ||
		    control->exit_info_1 == control->exit_info_2)
			goto vmgexit_err;
		break;
	default:
		reason = GHCB_ERR_INVALID_EVENT;
		goto vmgexit_err;
	}

	return 0;

vmgexit_err:
	if (reason == GHCB_ERR_INVALID_USAGE) {
		vcpu_unimpl(vcpu, "vmgexit: ghcb usage %#x is not valid\n",
			    svm->sev_es.ghcb->ghcb_usage);
	} else if (reason == GHCB_ERR_INVALID_EVENT) {
		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx is not valid\n",
			    exit_code);
	} else {
		vcpu_unimpl(vcpu, "vmgexit: exit code %#llx input is not valid\n",
			    exit_code);
		dump_ghcb(svm);
	}

	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, reason);

	/* Resume the guest to "return" the error code. */
	return 1;
}

void sev_es_unmap_ghcb(struct vcpu_svm *svm)
{
	/* Clear any indication that the vCPU is in a type of AP Reset Hold */
	svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NONE;

	if (!svm->sev_es.ghcb)
		return;

	if (svm->sev_es.ghcb_sa_free) {
		/*
		 * The scratch area lives outside the GHCB, so there is a
		 * buffer that, depending on the operation performed, may
		 * need to be synced, then freed.
		 */
		if (svm->sev_es.ghcb_sa_sync) {
			kvm_write_guest(svm->vcpu.kvm,
					svm->sev_es.sw_scratch,
					svm->sev_es.ghcb_sa,
					svm->sev_es.ghcb_sa_len);
			svm->sev_es.ghcb_sa_sync = false;
		}

		kvfree(svm->sev_es.ghcb_sa);
		svm->sev_es.ghcb_sa = NULL;
		svm->sev_es.ghcb_sa_free = false;
	}

	trace_kvm_vmgexit_exit(svm->vcpu.vcpu_id, svm->sev_es.ghcb);

	sev_es_sync_to_ghcb(svm);

	kvm_vcpu_unmap(&svm->vcpu, &svm->sev_es.ghcb_map, true);
	svm->sev_es.ghcb = NULL;
}

void pre_sev_run(struct vcpu_svm *svm, int cpu)
{
	struct svm_cpu_data *sd = per_cpu_ptr(&svm_data, cpu);
	unsigned int asid = sev_get_asid(svm->vcpu.kvm);

	/* Assign the asid allocated with this SEV guest */
	svm->asid = asid;

	/*
	 * Flush guest TLB:
	 *
	 * 1) when different VMCB for the same ASID is to be run on the same host CPU.
	 * 2) or this VMCB was executed on different host CPU in previous VMRUNs.
	 */
	if (sd->sev_vmcbs[asid] == svm->vmcb &&
	    svm->vcpu.arch.last_vmentry_cpu == cpu)
		return;

	sd->sev_vmcbs[asid] = svm->vmcb;
	svm->vmcb->control.tlb_ctl = TLB_CONTROL_FLUSH_ASID;
	vmcb_mark_dirty(svm->vmcb, VMCB_ASID);
}

#define GHCB_SCRATCH_AREA_LIMIT		(16ULL * PAGE_SIZE)
static int setup_vmgexit_scratch(struct vcpu_svm *svm, bool sync, u64 len)
{
	struct vmcb_control_area *control = &svm->vmcb->control;
	u64 ghcb_scratch_beg, ghcb_scratch_end;
	u64 scratch_gpa_beg, scratch_gpa_end;
	void *scratch_va;

	scratch_gpa_beg = svm->sev_es.sw_scratch;
	if (!scratch_gpa_beg) {
		pr_err("vmgexit: scratch gpa not provided\n");
		goto e_scratch;
	}

	scratch_gpa_end = scratch_gpa_beg + len;
	if (scratch_gpa_end < scratch_gpa_beg) {
		pr_err("vmgexit: scratch length (%#llx) not valid for scratch address (%#llx)\n",
		       len, scratch_gpa_beg);
		goto e_scratch;
	}

	if ((scratch_gpa_beg & PAGE_MASK) == control->ghcb_gpa) {
		/* Scratch area begins within GHCB */
		ghcb_scratch_beg = control->ghcb_gpa +
				   offsetof(struct ghcb, shared_buffer);
		ghcb_scratch_end = control->ghcb_gpa +
				   offsetof(struct ghcb, reserved_0xff0);

		/*
		 * If the scratch area begins within the GHCB, it must be
		 * completely contained in the GHCB shared buffer area.
		 */
		if (scratch_gpa_beg < ghcb_scratch_beg ||
		    scratch_gpa_end > ghcb_scratch_end) {
			pr_err("vmgexit: scratch area is outside of GHCB shared buffer area (%#llx - %#llx)\n",
			       scratch_gpa_beg, scratch_gpa_end);
			goto e_scratch;
		}

		scratch_va = (void *)svm->sev_es.ghcb;
		scratch_va += (scratch_gpa_beg - control->ghcb_gpa);
	} else {
		/*
		 * The guest memory must be read into a kernel buffer, so
		 * limit the size
		 */
		if (len > GHCB_SCRATCH_AREA_LIMIT) {
			pr_err("vmgexit: scratch area exceeds KVM limits (%#llx requested, %#llx limit)\n",
			       len, GHCB_SCRATCH_AREA_LIMIT);
			goto e_scratch;
		}
		scratch_va = kvzalloc(len, GFP_KERNEL_ACCOUNT);
		if (!scratch_va)
			return -ENOMEM;

		if (kvm_read_guest(svm->vcpu.kvm, scratch_gpa_beg, scratch_va, len)) {
			/* Unable to copy scratch area from guest */
			pr_err("vmgexit: kvm_read_guest for scratch area failed\n");

			kvfree(scratch_va);
			return -EFAULT;
		}

		/*
		 * The scratch area is outside the GHCB. The operation will
		 * dictate whether the buffer needs to be synced before running
		 * the vCPU next time (i.e. a read was requested so the data
		 * must be written back to the guest memory).
		 */
		svm->sev_es.ghcb_sa_sync = sync;
		svm->sev_es.ghcb_sa_free = true;
	}

	svm->sev_es.ghcb_sa = scratch_va;
	svm->sev_es.ghcb_sa_len = len;

	return 0;

e_scratch:
	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_SCRATCH_AREA);

	return 1;
}

static void set_ghcb_msr_bits(struct vcpu_svm *svm, u64 value, u64 mask,
			      unsigned int pos)
{
	svm->vmcb->control.ghcb_gpa &= ~(mask << pos);
	svm->vmcb->control.ghcb_gpa |= (value & mask) << pos;
}

static u64 get_ghcb_msr_bits(struct vcpu_svm *svm, u64 mask, unsigned int pos)
{
	return (svm->vmcb->control.ghcb_gpa >> pos) & mask;
}

static void set_ghcb_msr(struct vcpu_svm *svm, u64 value)
{
	svm->vmcb->control.ghcb_gpa = value;
}

static int snp_rmptable_psmash(kvm_pfn_t pfn)
{
	int ret;

	pfn = pfn & ~(KVM_PAGES_PER_HPAGE(PG_LEVEL_2M) - 1);

	/*
	 * PSMASH_FAIL_INUSE indicates another processor is modifying the
	 * entry, so retry until that's no longer the case.
	 */
	do {
		ret = psmash(pfn);
	} while (ret == PSMASH_FAIL_INUSE);

	return ret;
}

static int snp_complete_psc_msr(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	if (vcpu->run->hypercall.ret)
		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
	else
		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP);

	return 1; /* resume guest */
}

static int snp_begin_psc_msr(struct vcpu_svm *svm, u64 ghcb_msr)
{
	u64 gpa = gfn_to_gpa(GHCB_MSR_PSC_REQ_TO_GFN(ghcb_msr));
	u8 op = GHCB_MSR_PSC_REQ_TO_OP(ghcb_msr);
	struct kvm_vcpu *vcpu = &svm->vcpu;

	if (op != SNP_PAGE_STATE_PRIVATE && op != SNP_PAGE_STATE_SHARED) {
		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
		return 1; /* resume guest */
	}

	if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
		set_ghcb_msr(svm, GHCB_MSR_PSC_RESP_ERROR);
		return 1; /* resume guest */
	}

	vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
	vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
	vcpu->run->hypercall.args[0] = gpa;
	vcpu->run->hypercall.args[1] = 1;
	vcpu->run->hypercall.args[2] = (op == SNP_PAGE_STATE_PRIVATE)
				       ? KVM_MAP_GPA_RANGE_ENCRYPTED
				       : KVM_MAP_GPA_RANGE_DECRYPTED;
	vcpu->run->hypercall.args[2] |= KVM_MAP_GPA_RANGE_PAGE_SZ_4K;

	vcpu->arch.complete_userspace_io = snp_complete_psc_msr;

	return 0; /* forward request to userspace */
}

struct psc_buffer {
	struct psc_hdr hdr;
	struct psc_entry entries[];
} __packed;

static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc);

static void snp_complete_psc(struct vcpu_svm *svm, u64 psc_ret)
{
	svm->sev_es.psc_inflight = 0;
	svm->sev_es.psc_idx = 0;
	svm->sev_es.psc_2m = false;
	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, psc_ret);
}

static void __snp_complete_one_psc(struct vcpu_svm *svm)
{
	struct psc_buffer *psc = svm->sev_es.ghcb_sa;
	struct psc_entry *entries = psc->entries;
	struct psc_hdr *hdr = &psc->hdr;
	__u16 idx;

	/*
	 * Everything in-flight has been processed successfully. Update the
	 * corresponding entries in the guest's PSC buffer and zero out the
	 * count of in-flight PSC entries.
	 */
	for (idx = svm->sev_es.psc_idx; svm->sev_es.psc_inflight;
	     svm->sev_es.psc_inflight--, idx++) {
		struct psc_entry *entry = &entries[idx];

		entry->cur_page = entry->pagesize ? 512 : 1;
	}

	hdr->cur_entry = idx;
}

static int snp_complete_one_psc(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct psc_buffer *psc = svm->sev_es.ghcb_sa;

	if (vcpu->run->hypercall.ret) {
		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
		return 1; /* resume guest */
	}

	__snp_complete_one_psc(svm);

	/* Handle the next range (if any). */
	return snp_begin_psc(svm, psc);
}

static int snp_begin_psc(struct vcpu_svm *svm, struct psc_buffer *psc)
{
	struct psc_entry *entries = psc->entries;
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct psc_hdr *hdr = &psc->hdr;
	struct psc_entry entry_start;
	u16 idx, idx_start, idx_end;
	int npages;
	bool huge;
	u64 gfn;

	if (!(vcpu->kvm->arch.hypercall_exit_enabled & (1 << KVM_HC_MAP_GPA_RANGE))) {
		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
		return 1;
	}

next_range:
	/* There should be no other PSCs in-flight at this point. */
	if (WARN_ON_ONCE(svm->sev_es.psc_inflight)) {
		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_GENERIC);
		return 1;
	}

	/*
	 * The PSC descriptor buffer can be modified by a misbehaved guest after
	 * validation, so take care to only use validated copies of values used
	 * for things like array indexing.
	 */
	idx_start = hdr->cur_entry;
	idx_end = hdr->end_entry;

	if (idx_end >= VMGEXIT_PSC_MAX_COUNT) {
		snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_HDR);
		return 1;
	}

	/* Find the start of the next range which needs processing. */
	for (idx = idx_start; idx <= idx_end; idx++, hdr->cur_entry++) {
		entry_start = entries[idx];

		gfn = entry_start.gfn;
		huge = entry_start.pagesize;
		npages = huge ? 512 : 1;

		if (entry_start.cur_page > npages || !IS_ALIGNED(gfn, npages)) {
			snp_complete_psc(svm, VMGEXIT_PSC_ERROR_INVALID_ENTRY);
			return 1;
		}

		if (entry_start.cur_page) {
			/*
			 * If this is a partially-completed 2M range, force 4K handling
			 * for the remaining pages since they're effectively split at
			 * this point. Subsequent code should ensure this doesn't get
			 * combined with adjacent PSC entries where 2M handling is still
			 * possible.
			 */
			npages -= entry_start.cur_page;
			gfn += entry_start.cur_page;
			huge = false;
		}

		if (npages)
			break;
	}

	if (idx > idx_end) {
		/* Nothing more to process. */
		snp_complete_psc(svm, 0);
		return 1;
	}

	svm->sev_es.psc_2m = huge;
	svm->sev_es.psc_idx = idx;
	svm->sev_es.psc_inflight = 1;

	/*
	 * Find all subsequent PSC entries that contain adjacent GPA
	 * ranges/operations and can be combined into a single
	 * KVM_HC_MAP_GPA_RANGE exit.
	 */
	while (++idx <= idx_end) {
		struct psc_entry entry = entries[idx];

		if (entry.operation != entry_start.operation ||
		    entry.gfn != entry_start.gfn + npages ||
		    entry.cur_page || !!entry.pagesize != huge)
			break;

		svm->sev_es.psc_inflight++;
		npages += huge ? 512 : 1;
	}

	switch (entry_start.operation) {
	case VMGEXIT_PSC_OP_PRIVATE:
	case VMGEXIT_PSC_OP_SHARED:
		vcpu->run->exit_reason = KVM_EXIT_HYPERCALL;
		vcpu->run->hypercall.nr = KVM_HC_MAP_GPA_RANGE;
		vcpu->run->hypercall.args[0] = gfn_to_gpa(gfn);
		vcpu->run->hypercall.args[1] = npages;
		vcpu->run->hypercall.args[2] = entry_start.operation == VMGEXIT_PSC_OP_PRIVATE
					       ? KVM_MAP_GPA_RANGE_ENCRYPTED
					       : KVM_MAP_GPA_RANGE_DECRYPTED;
		vcpu->run->hypercall.args[2] |= entry_start.pagesize
						? KVM_MAP_GPA_RANGE_PAGE_SZ_2M
						: KVM_MAP_GPA_RANGE_PAGE_SZ_4K;
		vcpu->arch.complete_userspace_io = snp_complete_one_psc;
		return 0; /* forward request to userspace */
	default:
		/*
		 * Only shared/private PSC operations are currently supported, so if the
		 * entire range consists of unsupported operations (e.g. SMASH/UNSMASH),
		 * then consider the entire range completed and avoid exiting to
		 * userspace. In theory snp_complete_psc() can always be called directly
		 * at this point to complete the current range and start the next one,
		 * but that could lead to unexpected levels of recursion.
		 */
		__snp_complete_one_psc(svm);
		goto next_range;
	}

	unreachable();
}

static int __sev_snp_update_protected_guest_state(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	WARN_ON(!mutex_is_locked(&svm->sev_es.snp_vmsa_mutex));

	/* Mark the vCPU as offline and not runnable */
	vcpu->arch.pv.pv_unhalted = false;
	vcpu->arch.mp_state = KVM_MP_STATE_HALTED;

	/* Clear use of the VMSA */
	svm->vmcb->control.vmsa_pa = INVALID_PAGE;

	if (VALID_PAGE(svm->sev_es.snp_vmsa_gpa)) {
		gfn_t gfn = gpa_to_gfn(svm->sev_es.snp_vmsa_gpa);
		struct kvm_memory_slot *slot;
		kvm_pfn_t pfn;

		slot = gfn_to_memslot(vcpu->kvm, gfn);
		if (!slot)
			return -EINVAL;

		/*
		 * The new VMSA will be private memory guest memory, so
		 * retrieve the PFN from the gmem backend.
		 */
		if (kvm_gmem_get_pfn(vcpu->kvm, slot, gfn, &pfn, NULL))
			return -EINVAL;

		/*
		 * From this point forward, the VMSA will always be a
		 * guest-mapped page rather than the initial one allocated
		 * by KVM in svm->sev_es.vmsa. In theory, svm->sev_es.vmsa
		 * could be free'd and cleaned up here, but that involves
		 * cleanups like wbinvd_on_all_cpus() which would ideally
		 * be handled during teardown rather than guest boot.
		 * Deferring that also allows the existing logic for SEV-ES
		 * VMSAs to be re-used with minimal SNP-specific changes.
		 */
		svm->sev_es.snp_has_guest_vmsa = true;

		/* Use the new VMSA */
		svm->vmcb->control.vmsa_pa = pfn_to_hpa(pfn);

		/* Mark the vCPU as runnable */
		vcpu->arch.pv.pv_unhalted = false;
		vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;

		svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;

		/*
		 * gmem pages aren't currently migratable, but if this ever
		 * changes then care should be taken to ensure
		 * svm->sev_es.vmsa is pinned through some other means.
		 */
		kvm_release_pfn_clean(pfn);
	}

	/*
	 * When replacing the VMSA during SEV-SNP AP creation,
	 * mark the VMCB dirty so that full state is always reloaded.
	 */
	vmcb_mark_all_dirty(svm->vmcb);

	return 0;
}

/*
 * Invoked as part of svm_vcpu_reset() processing of an init event.
 */
void sev_snp_init_protected_guest_state(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	int ret;

	if (!sev_snp_guest(vcpu->kvm))
		return;

	mutex_lock(&svm->sev_es.snp_vmsa_mutex);

	if (!svm->sev_es.snp_ap_waiting_for_reset)
		goto unlock;

	svm->sev_es.snp_ap_waiting_for_reset = false;

	ret = __sev_snp_update_protected_guest_state(vcpu);
	if (ret)
		vcpu_unimpl(vcpu, "snp: AP state update on init failed\n");

unlock:
	mutex_unlock(&svm->sev_es.snp_vmsa_mutex);
}

static int sev_snp_ap_creation(struct vcpu_svm *svm)
{
	struct kvm_sev_info *sev = &to_kvm_svm(svm->vcpu.kvm)->sev_info;
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct kvm_vcpu *target_vcpu;
	struct vcpu_svm *target_svm;
	unsigned int request;
	unsigned int apic_id;
	bool kick;
	int ret;

	request = lower_32_bits(svm->vmcb->control.exit_info_1);
	apic_id = upper_32_bits(svm->vmcb->control.exit_info_1);

	/* Validate the APIC ID */
	target_vcpu = kvm_get_vcpu_by_id(vcpu->kvm, apic_id);
	if (!target_vcpu) {
		vcpu_unimpl(vcpu, "vmgexit: invalid AP APIC ID [%#x] from guest\n",
			    apic_id);
		return -EINVAL;
	}

	ret = 0;

	target_svm = to_svm(target_vcpu);

	/*
	 * The target vCPU is valid, so the vCPU will be kicked unless the
	 * request is for CREATE_ON_INIT. For any errors at this stage, the
	 * kick will place the vCPU in an non-runnable state.
	 */
	kick = true;

	mutex_lock(&target_svm->sev_es.snp_vmsa_mutex);

	target_svm->sev_es.snp_vmsa_gpa = INVALID_PAGE;
	target_svm->sev_es.snp_ap_waiting_for_reset = true;

	/* Interrupt injection mode shouldn't change for AP creation */
	if (request < SVM_VMGEXIT_AP_DESTROY) {
		u64 sev_features;

		sev_features = vcpu->arch.regs[VCPU_REGS_RAX];
		sev_features ^= sev->vmsa_features;

		if (sev_features & SVM_SEV_FEAT_INT_INJ_MODES) {
			vcpu_unimpl(vcpu, "vmgexit: invalid AP injection mode [%#lx] from guest\n",
				    vcpu->arch.regs[VCPU_REGS_RAX]);
			ret = -EINVAL;
			goto out;
		}
	}

	switch (request) {
	case SVM_VMGEXIT_AP_CREATE_ON_INIT:
		kick = false;
		fallthrough;
	case SVM_VMGEXIT_AP_CREATE:
		if (!page_address_valid(vcpu, svm->vmcb->control.exit_info_2)) {
			vcpu_unimpl(vcpu, "vmgexit: invalid AP VMSA address [%#llx] from guest\n",
				    svm->vmcb->control.exit_info_2);
			ret = -EINVAL;
			goto out;
		}

		/*
		 * Malicious guest can RMPADJUST a large page into VMSA which
		 * will hit the SNP erratum where the CPU will incorrectly signal
		 * an RMP violation #PF if a hugepage collides with the RMP entry
		 * of VMSA page, reject the AP CREATE request if VMSA address from
		 * guest is 2M aligned.
		 */
		if (IS_ALIGNED(svm->vmcb->control.exit_info_2, PMD_SIZE)) {
			vcpu_unimpl(vcpu,
				    "vmgexit: AP VMSA address [%llx] from guest is unsafe as it is 2M aligned\n",
				    svm->vmcb->control.exit_info_2);
			ret = -EINVAL;
			goto out;
		}

		target_svm->sev_es.snp_vmsa_gpa = svm->vmcb->control.exit_info_2;
		break;
	case SVM_VMGEXIT_AP_DESTROY:
		break;
	default:
		vcpu_unimpl(vcpu, "vmgexit: invalid AP creation request [%#x] from guest\n",
			    request);
		ret = -EINVAL;
		break;
	}

out:
	if (kick) {
		kvm_make_request(KVM_REQ_UPDATE_PROTECTED_GUEST_STATE, target_vcpu);
		kvm_vcpu_kick(target_vcpu);
	}

	mutex_unlock(&target_svm->sev_es.snp_vmsa_mutex);

	return ret;
}

static int snp_handle_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
{
	struct sev_data_snp_guest_request data = {0};
	struct kvm *kvm = svm->vcpu.kvm;
	struct kvm_sev_info *sev = to_kvm_sev_info(kvm);
	sev_ret_code fw_err = 0;
	int ret;

	if (!sev_snp_guest(kvm))
		return -EINVAL;

	mutex_lock(&sev->guest_req_mutex);

	if (kvm_read_guest(kvm, req_gpa, sev->guest_req_buf, PAGE_SIZE)) {
		ret = -EIO;
		goto out_unlock;
	}

	data.gctx_paddr = __psp_pa(sev->snp_context);
	data.req_paddr = __psp_pa(sev->guest_req_buf);
	data.res_paddr = __psp_pa(sev->guest_resp_buf);

	/*
	 * Firmware failures are propagated on to guest, but any other failure
	 * condition along the way should be reported to userspace. E.g. if
	 * the PSP is dead and commands are timing out.
	 */
	ret = sev_issue_cmd(kvm, SEV_CMD_SNP_GUEST_REQUEST, &data, &fw_err);
	if (ret && !fw_err)
		goto out_unlock;

	if (kvm_write_guest(kvm, resp_gpa, sev->guest_resp_buf, PAGE_SIZE)) {
		ret = -EIO;
		goto out_unlock;
	}

	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, SNP_GUEST_ERR(0, fw_err));

	ret = 1; /* resume guest */

out_unlock:
	mutex_unlock(&sev->guest_req_mutex);
	return ret;
}

static int snp_handle_ext_guest_req(struct vcpu_svm *svm, gpa_t req_gpa, gpa_t resp_gpa)
{
	struct kvm *kvm = svm->vcpu.kvm;
	u8 msg_type;

	if (!sev_snp_guest(kvm))
		return -EINVAL;

	if (kvm_read_guest(kvm, req_gpa + offsetof(struct snp_guest_msg_hdr, msg_type),
			   &msg_type, 1))
		return -EIO;

	/*
	 * As per GHCB spec, requests of type MSG_REPORT_REQ also allow for
	 * additional certificate data to be provided alongside the attestation
	 * report via the guest-provided data pages indicated by RAX/RBX. The
	 * certificate data is optional and requires additional KVM enablement
	 * to provide an interface for userspace to provide it, but KVM still
	 * needs to be able to handle extended guest requests either way. So
	 * provide a stub implementation that will always return an empty
	 * certificate table in the guest-provided data pages.
	 */
	if (msg_type == SNP_MSG_REPORT_REQ) {
		struct kvm_vcpu *vcpu = &svm->vcpu;
		u64 data_npages;
		gpa_t data_gpa;

		if (!kvm_ghcb_rax_is_valid(svm) || !kvm_ghcb_rbx_is_valid(svm))
			goto request_invalid;

		data_gpa = vcpu->arch.regs[VCPU_REGS_RAX];
		data_npages = vcpu->arch.regs[VCPU_REGS_RBX];

		if (!PAGE_ALIGNED(data_gpa))
			goto request_invalid;

		/*
		 * As per GHCB spec (see "SNP Extended Guest Request"), the
		 * certificate table is terminated by 24-bytes of zeroes.
		 */
		if (data_npages && kvm_clear_guest(kvm, data_gpa, 24))
			return -EIO;
	}

	return snp_handle_guest_req(svm, req_gpa, resp_gpa);

request_invalid:
	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
	return 1; /* resume guest */
}

static int sev_handle_vmgexit_msr_protocol(struct vcpu_svm *svm)
{
	struct vmcb_control_area *control = &svm->vmcb->control;
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;
	u64 ghcb_info;
	int ret = 1;

	ghcb_info = control->ghcb_gpa & GHCB_MSR_INFO_MASK;

	trace_kvm_vmgexit_msr_protocol_enter(svm->vcpu.vcpu_id,
					     control->ghcb_gpa);

	switch (ghcb_info) {
	case GHCB_MSR_SEV_INFO_REQ:
		set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
						    GHCB_VERSION_MIN,
						    sev_enc_bit));
		break;
	case GHCB_MSR_CPUID_REQ: {
		u64 cpuid_fn, cpuid_reg, cpuid_value;

		cpuid_fn = get_ghcb_msr_bits(svm,
					     GHCB_MSR_CPUID_FUNC_MASK,
					     GHCB_MSR_CPUID_FUNC_POS);

		/* Initialize the registers needed by the CPUID intercept */
		vcpu->arch.regs[VCPU_REGS_RAX] = cpuid_fn;
		vcpu->arch.regs[VCPU_REGS_RCX] = 0;

		ret = svm_invoke_exit_handler(vcpu, SVM_EXIT_CPUID);
		if (!ret) {
			/* Error, keep GHCB MSR value as-is */
			break;
		}

		cpuid_reg = get_ghcb_msr_bits(svm,
					      GHCB_MSR_CPUID_REG_MASK,
					      GHCB_MSR_CPUID_REG_POS);
		if (cpuid_reg == 0)
			cpuid_value = vcpu->arch.regs[VCPU_REGS_RAX];
		else if (cpuid_reg == 1)
			cpuid_value = vcpu->arch.regs[VCPU_REGS_RBX];
		else if (cpuid_reg == 2)
			cpuid_value = vcpu->arch.regs[VCPU_REGS_RCX];
		else
			cpuid_value = vcpu->arch.regs[VCPU_REGS_RDX];

		set_ghcb_msr_bits(svm, cpuid_value,
				  GHCB_MSR_CPUID_VALUE_MASK,
				  GHCB_MSR_CPUID_VALUE_POS);

		set_ghcb_msr_bits(svm, GHCB_MSR_CPUID_RESP,
				  GHCB_MSR_INFO_MASK,
				  GHCB_MSR_INFO_POS);
		break;
	}
	case GHCB_MSR_AP_RESET_HOLD_REQ:
		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_MSR_PROTO;
		ret = kvm_emulate_ap_reset_hold(&svm->vcpu);

		/*
		 * Preset the result to a non-SIPI return and then only set
		 * the result to non-zero when delivering a SIPI.
		 */
		set_ghcb_msr_bits(svm, 0,
				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);

		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
				  GHCB_MSR_INFO_MASK,
				  GHCB_MSR_INFO_POS);
		break;
	case GHCB_MSR_HV_FT_REQ:
		set_ghcb_msr_bits(svm, GHCB_HV_FT_SUPPORTED,
				  GHCB_MSR_HV_FT_MASK, GHCB_MSR_HV_FT_POS);
		set_ghcb_msr_bits(svm, GHCB_MSR_HV_FT_RESP,
				  GHCB_MSR_INFO_MASK, GHCB_MSR_INFO_POS);
		break;
	case GHCB_MSR_PREF_GPA_REQ:
		if (!sev_snp_guest(vcpu->kvm))
			goto out_terminate;

		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_NONE, GHCB_MSR_GPA_VALUE_MASK,
				  GHCB_MSR_GPA_VALUE_POS);
		set_ghcb_msr_bits(svm, GHCB_MSR_PREF_GPA_RESP, GHCB_MSR_INFO_MASK,
				  GHCB_MSR_INFO_POS);
		break;
	case GHCB_MSR_REG_GPA_REQ: {
		u64 gfn;

		if (!sev_snp_guest(vcpu->kvm))
			goto out_terminate;

		gfn = get_ghcb_msr_bits(svm, GHCB_MSR_GPA_VALUE_MASK,
					GHCB_MSR_GPA_VALUE_POS);

		svm->sev_es.ghcb_registered_gpa = gfn_to_gpa(gfn);

		set_ghcb_msr_bits(svm, gfn, GHCB_MSR_GPA_VALUE_MASK,
				  GHCB_MSR_GPA_VALUE_POS);
		set_ghcb_msr_bits(svm, GHCB_MSR_REG_GPA_RESP, GHCB_MSR_INFO_MASK,
				  GHCB_MSR_INFO_POS);
		break;
	}
	case GHCB_MSR_PSC_REQ:
		if (!sev_snp_guest(vcpu->kvm))
			goto out_terminate;

		ret = snp_begin_psc_msr(svm, control->ghcb_gpa);
		break;
	case GHCB_MSR_TERM_REQ: {
		u64 reason_set, reason_code;

		reason_set = get_ghcb_msr_bits(svm,
					       GHCB_MSR_TERM_REASON_SET_MASK,
					       GHCB_MSR_TERM_REASON_SET_POS);
		reason_code = get_ghcb_msr_bits(svm,
						GHCB_MSR_TERM_REASON_MASK,
						GHCB_MSR_TERM_REASON_POS);
		pr_info("SEV-ES guest requested termination: %#llx:%#llx\n",
			reason_set, reason_code);

		goto out_terminate;
	}
	default:
		/* Error, keep GHCB MSR value as-is */
		break;
	}

	trace_kvm_vmgexit_msr_protocol_exit(svm->vcpu.vcpu_id,
					    control->ghcb_gpa, ret);

	return ret;

out_terminate:
	vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
	vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
	vcpu->run->system_event.ndata = 1;
	vcpu->run->system_event.data[0] = control->ghcb_gpa;

	return 0;
}

int sev_handle_vmgexit(struct kvm_vcpu *vcpu)
{
	struct vcpu_svm *svm = to_svm(vcpu);
	struct vmcb_control_area *control = &svm->vmcb->control;
	u64 ghcb_gpa, exit_code;
	int ret;

	/* Validate the GHCB */
	ghcb_gpa = control->ghcb_gpa;
	if (ghcb_gpa & GHCB_MSR_INFO_MASK)
		return sev_handle_vmgexit_msr_protocol(svm);

	if (!ghcb_gpa) {
		vcpu_unimpl(vcpu, "vmgexit: GHCB gpa is not set\n");

		/* Without a GHCB, just return right back to the guest */
		return 1;
	}

	if (kvm_vcpu_map(vcpu, ghcb_gpa >> PAGE_SHIFT, &svm->sev_es.ghcb_map)) {
		/* Unable to map GHCB from guest */
		vcpu_unimpl(vcpu, "vmgexit: error mapping GHCB [%#llx] from guest\n",
			    ghcb_gpa);

		/* Without a GHCB, just return right back to the guest */
		return 1;
	}

	svm->sev_es.ghcb = svm->sev_es.ghcb_map.hva;

	trace_kvm_vmgexit_enter(vcpu->vcpu_id, svm->sev_es.ghcb);

	sev_es_sync_from_ghcb(svm);

	/* SEV-SNP guest requires that the GHCB GPA must be registered */
	if (sev_snp_guest(svm->vcpu.kvm) && !ghcb_gpa_is_registered(svm, ghcb_gpa)) {
		vcpu_unimpl(&svm->vcpu, "vmgexit: GHCB GPA [%#llx] is not registered.\n", ghcb_gpa);
		return -EINVAL;
	}

	ret = sev_es_validate_vmgexit(svm);
	if (ret)
		return ret;

	ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 0);
	ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 0);

	exit_code = kvm_ghcb_get_sw_exit_code(control);
	switch (exit_code) {
	case SVM_VMGEXIT_MMIO_READ:
		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
		if (ret)
			break;

		ret = kvm_sev_es_mmio_read(vcpu,
					   control->exit_info_1,
					   control->exit_info_2,
					   svm->sev_es.ghcb_sa);
		break;
	case SVM_VMGEXIT_MMIO_WRITE:
		ret = setup_vmgexit_scratch(svm, false, control->exit_info_2);
		if (ret)
			break;

		ret = kvm_sev_es_mmio_write(vcpu,
					    control->exit_info_1,
					    control->exit_info_2,
					    svm->sev_es.ghcb_sa);
		break;
	case SVM_VMGEXIT_NMI_COMPLETE:
		++vcpu->stat.nmi_window_exits;
		svm->nmi_masked = false;
		kvm_make_request(KVM_REQ_EVENT, vcpu);
		ret = 1;
		break;
	case SVM_VMGEXIT_AP_HLT_LOOP:
		svm->sev_es.ap_reset_hold_type = AP_RESET_HOLD_NAE_EVENT;
		ret = kvm_emulate_ap_reset_hold(vcpu);
		break;
	case SVM_VMGEXIT_AP_JUMP_TABLE: {
		struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;

		switch (control->exit_info_1) {
		case 0:
			/* Set AP jump table address */
			sev->ap_jump_table = control->exit_info_2;
			break;
		case 1:
			/* Get AP jump table address */
			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, sev->ap_jump_table);
			break;
		default:
			pr_err("svm: vmgexit: unsupported AP jump table request - exit_info_1=%#llx\n",
			       control->exit_info_1);
			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
		}

		ret = 1;
		break;
	}
	case SVM_VMGEXIT_HV_FEATURES:
		ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_HV_FT_SUPPORTED);

		ret = 1;
		break;
	case SVM_VMGEXIT_TERM_REQUEST:
		pr_info("SEV-ES guest requested termination: reason %#llx info %#llx\n",
			control->exit_info_1, control->exit_info_2);
		vcpu->run->exit_reason = KVM_EXIT_SYSTEM_EVENT;
		vcpu->run->system_event.type = KVM_SYSTEM_EVENT_SEV_TERM;
		vcpu->run->system_event.ndata = 1;
		vcpu->run->system_event.data[0] = control->ghcb_gpa;
		break;
	case SVM_VMGEXIT_PSC:
		ret = setup_vmgexit_scratch(svm, true, control->exit_info_2);
		if (ret)
			break;

		ret = snp_begin_psc(svm, svm->sev_es.ghcb_sa);
		break;
	case SVM_VMGEXIT_AP_CREATION:
		ret = sev_snp_ap_creation(svm);
		if (ret) {
			ghcb_set_sw_exit_info_1(svm->sev_es.ghcb, 2);
			ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, GHCB_ERR_INVALID_INPUT);
		}

		ret = 1;
		break;
	case SVM_VMGEXIT_GUEST_REQUEST:
		ret = snp_handle_guest_req(svm, control->exit_info_1, control->exit_info_2);
		break;
	case SVM_VMGEXIT_EXT_GUEST_REQUEST:
		ret = snp_handle_ext_guest_req(svm, control->exit_info_1, control->exit_info_2);
		break;
	case SVM_VMGEXIT_UNSUPPORTED_EVENT:
		vcpu_unimpl(vcpu,
			    "vmgexit: unsupported event - exit_info_1=%#llx, exit_info_2=%#llx\n",
			    control->exit_info_1, control->exit_info_2);
		ret = -EINVAL;
		break;
	default:
		ret = svm_invoke_exit_handler(vcpu, exit_code);
	}

	return ret;
}

int sev_es_string_io(struct vcpu_svm *svm, int size, unsigned int port, int in)
{
	int count;
	int bytes;
	int r;

	if (svm->vmcb->control.exit_info_2 > INT_MAX)
		return -EINVAL;

	count = svm->vmcb->control.exit_info_2;
	if (unlikely(check_mul_overflow(count, size, &bytes)))
		return -EINVAL;

	r = setup_vmgexit_scratch(svm, in, bytes);
	if (r)
		return r;

	return kvm_sev_es_string_io(&svm->vcpu, size, port, svm->sev_es.ghcb_sa,
				    count, in);
}

static void sev_es_vcpu_after_set_cpuid(struct vcpu_svm *svm)
{
	struct kvm_vcpu *vcpu = &svm->vcpu;

	if (boot_cpu_has(X86_FEATURE_V_TSC_AUX)) {
		bool v_tsc_aux = guest_cpuid_has(vcpu, X86_FEATURE_RDTSCP) ||
				 guest_cpuid_has(vcpu, X86_FEATURE_RDPID);

		set_msr_interception(vcpu, svm->msrpm, MSR_TSC_AUX, v_tsc_aux, v_tsc_aux);
	}

	/*
	 * For SEV-ES, accesses to MSR_IA32_XSS should not be intercepted if
	 * the host/guest supports its use.
	 *
	 * guest_can_use() checks a number of requirements on the host/guest to
	 * ensure that MSR_IA32_XSS is available, but it might report true even
	 * if X86_FEATURE_XSAVES isn't configured in the guest to ensure host
	 * MSR_IA32_XSS is always properly restored. For SEV-ES, it is better
	 * to further check that the guest CPUID actually supports
	 * X86_FEATURE_XSAVES so that accesses to MSR_IA32_XSS by misbehaved
	 * guests will still get intercepted and caught in the normal
	 * kvm_emulate_rdmsr()/kvm_emulated_wrmsr() paths.
	 */
	if (guest_can_use(vcpu, X86_FEATURE_XSAVES) &&
	    guest_cpuid_has(vcpu, X86_FEATURE_XSAVES))
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 1, 1);
	else
		set_msr_interception(vcpu, svm->msrpm, MSR_IA32_XSS, 0, 0);
}

void sev_vcpu_after_set_cpuid(struct vcpu_svm *svm)
{
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct kvm_cpuid_entry2 *best;

	/* For sev guests, the memory encryption bit is not reserved in CR3.  */
	best = kvm_find_cpuid_entry(vcpu, 0x8000001F);
	if (best)
		vcpu->arch.reserved_gpa_bits &= ~(1UL << (best->ebx & 0x3f));

	if (sev_es_guest(svm->vcpu.kvm))
		sev_es_vcpu_after_set_cpuid(svm);
}

static void sev_es_init_vmcb(struct vcpu_svm *svm)
{
	struct vmcb *vmcb = svm->vmcb01.ptr;
	struct kvm_vcpu *vcpu = &svm->vcpu;

	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ES_ENABLE;

	/*
	 * An SEV-ES guest requires a VMSA area that is a separate from the
	 * VMCB page. Do not include the encryption mask on the VMSA physical
	 * address since hardware will access it using the guest key.  Note,
	 * the VMSA will be NULL if this vCPU is the destination for intrahost
	 * migration, and will be copied later.
	 */
	if (svm->sev_es.vmsa && !svm->sev_es.snp_has_guest_vmsa)
		svm->vmcb->control.vmsa_pa = __pa(svm->sev_es.vmsa);

	/* Can't intercept CR register access, HV can't modify CR registers */
	svm_clr_intercept(svm, INTERCEPT_CR0_READ);
	svm_clr_intercept(svm, INTERCEPT_CR4_READ);
	svm_clr_intercept(svm, INTERCEPT_CR8_READ);
	svm_clr_intercept(svm, INTERCEPT_CR0_WRITE);
	svm_clr_intercept(svm, INTERCEPT_CR4_WRITE);
	svm_clr_intercept(svm, INTERCEPT_CR8_WRITE);

	svm_clr_intercept(svm, INTERCEPT_SELECTIVE_CR0);

	/* Track EFER/CR register changes */
	svm_set_intercept(svm, TRAP_EFER_WRITE);
	svm_set_intercept(svm, TRAP_CR0_WRITE);
	svm_set_intercept(svm, TRAP_CR4_WRITE);
	svm_set_intercept(svm, TRAP_CR8_WRITE);

	vmcb->control.intercepts[INTERCEPT_DR] = 0;
	if (!sev_vcpu_has_debug_swap(svm)) {
		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_READ);
		vmcb_set_intercept(&vmcb->control, INTERCEPT_DR7_WRITE);
		recalc_intercepts(svm);
	} else {
		/*
		 * Disable #DB intercept iff DebugSwap is enabled.  KVM doesn't
		 * allow debugging SEV-ES guests, and enables DebugSwap iff
		 * NO_NESTED_DATA_BP is supported, so there's no reason to
		 * intercept #DB when DebugSwap is enabled.  For simplicity
		 * with respect to guest debug, intercept #DB for other VMs
		 * even if NO_NESTED_DATA_BP is supported, i.e. even if the
		 * guest can't DoS the CPU with infinite #DB vectoring.
		 */
		clr_exception_intercept(svm, DB_VECTOR);
	}

	/* Can't intercept XSETBV, HV can't modify XCR0 directly */
	svm_clr_intercept(svm, INTERCEPT_XSETBV);

	/* Clear intercepts on selected MSRs */
	set_msr_interception(vcpu, svm->msrpm, MSR_EFER, 1, 1);
	set_msr_interception(vcpu, svm->msrpm, MSR_IA32_CR_PAT, 1, 1);
}

void sev_init_vmcb(struct vcpu_svm *svm)
{
	svm->vmcb->control.nested_ctl |= SVM_NESTED_CTL_SEV_ENABLE;
	clr_exception_intercept(svm, UD_VECTOR);

	/*
	 * Don't intercept #GP for SEV guests, e.g. for the VMware backdoor, as
	 * KVM can't decrypt guest memory to decode the faulting instruction.
	 */
	clr_exception_intercept(svm, GP_VECTOR);

	if (sev_es_guest(svm->vcpu.kvm))
		sev_es_init_vmcb(svm);
}

void sev_es_vcpu_reset(struct vcpu_svm *svm)
{
	struct kvm_vcpu *vcpu = &svm->vcpu;
	struct kvm_sev_info *sev = &to_kvm_svm(vcpu->kvm)->sev_info;

	/*
	 * Set the GHCB MSR value as per the GHCB specification when emulating
	 * vCPU RESET for an SEV-ES guest.
	 */
	set_ghcb_msr(svm, GHCB_MSR_SEV_INFO((__u64)sev->ghcb_version,
					    GHCB_VERSION_MIN,
					    sev_enc_bit));

	mutex_init(&svm->sev_es.snp_vmsa_mutex);
}

void sev_es_prepare_switch_to_guest(struct vcpu_svm *svm, struct sev_es_save_area *hostsa)
{
	/*
	 * All host state for SEV-ES guests is categorized into three swap types
	 * based on how it is handled by hardware during a world switch:
	 *
	 * A: VMRUN:   Host state saved in host save area
	 *    VMEXIT:  Host state loaded from host save area
	 *
	 * B: VMRUN:   Host state _NOT_ saved in host save area
	 *    VMEXIT:  Host state loaded from host save area
	 *
	 * C: VMRUN:   Host state _NOT_ saved in host save area
	 *    VMEXIT:  Host state initialized to default(reset) values
	 *
	 * Manually save type-B state, i.e. state that is loaded by VMEXIT but
	 * isn't saved by VMRUN, that isn't already saved by VMSAVE (performed
	 * by common SVM code).
	 */
	hostsa->xcr0 = kvm_host.xcr0;
	hostsa->pkru = read_pkru();
	hostsa->xss = kvm_host.xss;

	/*
	 * If DebugSwap is enabled, debug registers are loaded but NOT saved by
	 * the CPU (Type-B). If DebugSwap is disabled/unsupported, the CPU both
	 * saves and loads debug registers (Type-A).
	 */
	if (sev_vcpu_has_debug_swap(svm)) {
		hostsa->dr0 = native_get_debugreg(0);
		hostsa->dr1 = native_get_debugreg(1);
		hostsa->dr2 = native_get_debugreg(2);
		hostsa->dr3 = native_get_debugreg(3);
		hostsa->dr0_addr_mask = amd_get_dr_addr_mask(0);
		hostsa->dr1_addr_mask = amd_get_dr_addr_mask(1);
		hostsa->dr2_addr_mask = amd_get_dr_addr_mask(2);
		hostsa->dr3_addr_mask = amd_get_dr_addr_mask(3);
	}
}

void sev_vcpu_deliver_sipi_vector(struct kvm_vcpu *vcpu, u8 vector)
{
	struct vcpu_svm *svm = to_svm(vcpu);

	/* First SIPI: Use the values as initially set by the VMM */
	if (!svm->sev_es.received_first_sipi) {
		svm->sev_es.received_first_sipi = true;
		return;
	}

	/* Subsequent SIPI */
	switch (svm->sev_es.ap_reset_hold_type) {
	case AP_RESET_HOLD_NAE_EVENT:
		/*
		 * Return from an AP Reset Hold VMGEXIT, where the guest will
		 * set the CS and RIP. Set SW_EXIT_INFO_2 to a non-zero value.
		 */
		ghcb_set_sw_exit_info_2(svm->sev_es.ghcb, 1);
		break;
	case AP_RESET_HOLD_MSR_PROTO:
		/*
		 * Return from an AP Reset Hold VMGEXIT, where the guest will
		 * set the CS and RIP. Set GHCB data field to a non-zero value.
		 */
		set_ghcb_msr_bits(svm, 1,
				  GHCB_MSR_AP_RESET_HOLD_RESULT_MASK,
				  GHCB_MSR_AP_RESET_HOLD_RESULT_POS);

		set_ghcb_msr_bits(svm, GHCB_MSR_AP_RESET_HOLD_RESP,
				  GHCB_MSR_INFO_MASK,
				  GHCB_MSR_INFO_POS);
		break;
	default:
		break;
	}
}

struct page *snp_safe_alloc_page_node(int node, gfp_t gfp)
{
	unsigned long pfn;
	struct page *p;

	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
		return alloc_pages_node(node, gfp | __GFP_ZERO, 0);

	/*
	 * Allocate an SNP-safe page to workaround the SNP erratum where
	 * the CPU will incorrectly signal an RMP violation #PF if a
	 * hugepage (2MB or 1GB) collides with the RMP entry of a
	 * 2MB-aligned VMCB, VMSA, or AVIC backing page.
	 *
	 * Allocate one extra page, choose a page which is not
	 * 2MB-aligned, and free the other.
	 */
	p = alloc_pages_node(node, gfp | __GFP_ZERO, 1);
	if (!p)
		return NULL;

	split_page(p, 1);

	pfn = page_to_pfn(p);
	if (IS_ALIGNED(pfn, PTRS_PER_PMD))
		__free_page(p++);
	else
		__free_page(p + 1);

	return p;
}

void sev_handle_rmp_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u64 error_code)
{
	struct kvm_memory_slot *slot;
	struct kvm *kvm = vcpu->kvm;
	int order, rmp_level, ret;
	bool assigned;
	kvm_pfn_t pfn;
	gfn_t gfn;

	gfn = gpa >> PAGE_SHIFT;

	/*
	 * The only time RMP faults occur for shared pages is when the guest is
	 * triggering an RMP fault for an implicit page-state change from
	 * shared->private. Implicit page-state changes are forwarded to
	 * userspace via KVM_EXIT_MEMORY_FAULT events, however, so RMP faults
	 * for shared pages should not end up here.
	 */
	if (!kvm_mem_is_private(kvm, gfn)) {
		pr_warn_ratelimited("SEV: Unexpected RMP fault for non-private GPA 0x%llx\n",
				    gpa);
		return;
	}

	slot = gfn_to_memslot(kvm, gfn);
	if (!kvm_slot_can_be_private(slot)) {
		pr_warn_ratelimited("SEV: Unexpected RMP fault, non-private slot for GPA 0x%llx\n",
				    gpa);
		return;
	}

	ret = kvm_gmem_get_pfn(kvm, slot, gfn, &pfn, &order);
	if (ret) {
		pr_warn_ratelimited("SEV: Unexpected RMP fault, no backing page for private GPA 0x%llx\n",
				    gpa);
		return;
	}

	ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
	if (ret || !assigned) {
		pr_warn_ratelimited("SEV: Unexpected RMP fault, no assigned RMP entry found for GPA 0x%llx PFN 0x%llx error %d\n",
				    gpa, pfn, ret);
		goto out_no_trace;
	}

	/*
	 * There are 2 cases where a PSMASH may be needed to resolve an #NPF
	 * with PFERR_GUEST_RMP_BIT set:
	 *
	 * 1) RMPADJUST/PVALIDATE can trigger an #NPF with PFERR_GUEST_SIZEM
	 *    bit set if the guest issues them with a smaller granularity than
	 *    what is indicated by the page-size bit in the 2MB RMP entry for
	 *    the PFN that backs the GPA.
	 *
	 * 2) Guest access via NPT can trigger an #NPF if the NPT mapping is
	 *    smaller than what is indicated by the 2MB RMP entry for the PFN
	 *    that backs the GPA.
	 *
	 * In both these cases, the corresponding 2M RMP entry needs to
	 * be PSMASH'd to 512 4K RMP entries.  If the RMP entry is already
	 * split into 4K RMP entries, then this is likely a spurious case which
	 * can occur when there are concurrent accesses by the guest to a 2MB
	 * GPA range that is backed by a 2MB-aligned PFN who's RMP entry is in
	 * the process of being PMASH'd into 4K entries. These cases should
	 * resolve automatically on subsequent accesses, so just ignore them
	 * here.
	 */
	if (rmp_level == PG_LEVEL_4K)
		goto out;

	ret = snp_rmptable_psmash(pfn);
	if (ret) {
		/*
		 * Look it up again. If it's 4K now then the PSMASH may have
		 * raced with another process and the issue has already resolved
		 * itself.
		 */
		if (!snp_lookup_rmpentry(pfn, &assigned, &rmp_level) &&
		    assigned && rmp_level == PG_LEVEL_4K)
			goto out;

		pr_warn_ratelimited("SEV: Unable to split RMP entry for GPA 0x%llx PFN 0x%llx ret %d\n",
				    gpa, pfn, ret);
	}

	kvm_zap_gfn_range(kvm, gfn, gfn + PTRS_PER_PMD);
out:
	trace_kvm_rmp_fault(vcpu, gpa, pfn, error_code, rmp_level, ret);
out_no_trace:
	put_page(pfn_to_page(pfn));
}

static bool is_pfn_range_shared(kvm_pfn_t start, kvm_pfn_t end)
{
	kvm_pfn_t pfn = start;

	while (pfn < end) {
		int ret, rmp_level;
		bool assigned;

		ret = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
		if (ret) {
			pr_warn_ratelimited("SEV: Failed to retrieve RMP entry: PFN 0x%llx GFN start 0x%llx GFN end 0x%llx RMP level %d error %d\n",
					    pfn, start, end, rmp_level, ret);
			return false;
		}

		if (assigned) {
			pr_debug("%s: overlap detected, PFN 0x%llx start 0x%llx end 0x%llx RMP level %d\n",
				 __func__, pfn, start, end, rmp_level);
			return false;
		}

		pfn++;
	}

	return true;
}

static u8 max_level_for_order(int order)
{
	if (order >= KVM_HPAGE_GFN_SHIFT(PG_LEVEL_2M))
		return PG_LEVEL_2M;

	return PG_LEVEL_4K;
}

static bool is_large_rmp_possible(struct kvm *kvm, kvm_pfn_t pfn, int order)
{
	kvm_pfn_t pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);

	/*
	 * If this is a large folio, and the entire 2M range containing the
	 * PFN is currently shared, then the entire 2M-aligned range can be
	 * set to private via a single 2M RMP entry.
	 */
	if (max_level_for_order(order) > PG_LEVEL_4K &&
	    is_pfn_range_shared(pfn_aligned, pfn_aligned + PTRS_PER_PMD))
		return true;

	return false;
}

int sev_gmem_prepare(struct kvm *kvm, kvm_pfn_t pfn, gfn_t gfn, int max_order)
{
	struct kvm_sev_info *sev = &to_kvm_svm(kvm)->sev_info;
	kvm_pfn_t pfn_aligned;
	gfn_t gfn_aligned;
	int level, rc;
	bool assigned;

	if (!sev_snp_guest(kvm))
		return 0;

	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
	if (rc) {
		pr_err_ratelimited("SEV: Failed to look up RMP entry: GFN %llx PFN %llx error %d\n",
				   gfn, pfn, rc);
		return -ENOENT;
	}

	if (assigned) {
		pr_debug("%s: already assigned: gfn %llx pfn %llx max_order %d level %d\n",
			 __func__, gfn, pfn, max_order, level);
		return 0;
	}

	if (is_large_rmp_possible(kvm, pfn, max_order)) {
		level = PG_LEVEL_2M;
		pfn_aligned = ALIGN_DOWN(pfn, PTRS_PER_PMD);
		gfn_aligned = ALIGN_DOWN(gfn, PTRS_PER_PMD);
	} else {
		level = PG_LEVEL_4K;
		pfn_aligned = pfn;
		gfn_aligned = gfn;
	}

	rc = rmp_make_private(pfn_aligned, gfn_to_gpa(gfn_aligned), level, sev->asid, false);
	if (rc) {
		pr_err_ratelimited("SEV: Failed to update RMP entry: GFN %llx PFN %llx level %d error %d\n",
				   gfn, pfn, level, rc);
		return -EINVAL;
	}

	pr_debug("%s: updated: gfn %llx pfn %llx pfn_aligned %llx max_order %d level %d\n",
		 __func__, gfn, pfn, pfn_aligned, max_order, level);

	return 0;
}

void sev_gmem_invalidate(kvm_pfn_t start, kvm_pfn_t end)
{
	kvm_pfn_t pfn;

	if (!cc_platform_has(CC_ATTR_HOST_SEV_SNP))
		return;

	pr_debug("%s: PFN start 0x%llx PFN end 0x%llx\n", __func__, start, end);

	for (pfn = start; pfn < end;) {
		bool use_2m_update = false;
		int rc, rmp_level;
		bool assigned;

		rc = snp_lookup_rmpentry(pfn, &assigned, &rmp_level);
		if (rc || !assigned)
			goto next_pfn;

		use_2m_update = IS_ALIGNED(pfn, PTRS_PER_PMD) &&
				end >= (pfn + PTRS_PER_PMD) &&
				rmp_level > PG_LEVEL_4K;

		/*
		 * If an unaligned PFN corresponds to a 2M region assigned as a
		 * large page in the RMP table, PSMASH the region into individual
		 * 4K RMP entries before attempting to convert a 4K sub-page.
		 */
		if (!use_2m_update && rmp_level > PG_LEVEL_4K) {
			/*
			 * This shouldn't fail, but if it does, report it, but
			 * still try to update RMP entry to shared and pray this
			 * was a spurious error that can be addressed later.
			 */
			rc = snp_rmptable_psmash(pfn);
			WARN_ONCE(rc, "SEV: Failed to PSMASH RMP entry for PFN 0x%llx error %d\n",
				  pfn, rc);
		}

		rc = rmp_make_shared(pfn, use_2m_update ? PG_LEVEL_2M : PG_LEVEL_4K);
		if (WARN_ONCE(rc, "SEV: Failed to update RMP entry for PFN 0x%llx error %d\n",
			      pfn, rc))
			goto next_pfn;

		/*
		 * SEV-ES avoids host/guest cache coherency issues through
		 * WBINVD hooks issued via MMU notifiers during run-time, and
		 * KVM's VM destroy path at shutdown. Those MMU notifier events
		 * don't cover gmem since there is no requirement to map pages
		 * to a HVA in order to use them for a running guest. While the
		 * shutdown path would still likely cover things for SNP guests,
		 * userspace may also free gmem pages during run-time via
		 * hole-punching operations on the guest_memfd, so flush the
		 * cache entries for these pages before free'ing them back to
		 * the host.
		 */
		clflush_cache_range(__va(pfn_to_hpa(pfn)),
				    use_2m_update ? PMD_SIZE : PAGE_SIZE);
next_pfn:
		pfn += use_2m_update ? PTRS_PER_PMD : 1;
		cond_resched();
	}
}

int sev_private_max_mapping_level(struct kvm *kvm, kvm_pfn_t pfn)
{
	int level, rc;
	bool assigned;

	if (!sev_snp_guest(kvm))
		return 0;

	rc = snp_lookup_rmpentry(pfn, &assigned, &level);
	if (rc || !assigned)
		return PG_LEVEL_4K;

	return level;
}