1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
|
// SPDX-License-Identifier: MIT
/*
* Copyright © 2022 Intel Corporation
*/
#include "i915_drv.h"
#include "intel_gt_mcr.h"
#include "intel_gt_print.h"
#include "intel_gt_regs.h"
/**
* DOC: GT Multicast/Replicated (MCR) Register Support
*
* Some GT registers are designed as "multicast" or "replicated" registers:
* multiple instances of the same register share a single MMIO offset. MCR
* registers are generally used when the hardware needs to potentially track
* independent values of a register per hardware unit (e.g., per-subslice,
* per-L3bank, etc.). The specific types of replication that exist vary
* per-platform.
*
* MMIO accesses to MCR registers are controlled according to the settings
* programmed in the platform's MCR_SELECTOR register(s). MMIO writes to MCR
* registers can be done in either a (i.e., a single write updates all
* instances of the register to the same value) or unicast (a write updates only
* one specific instance). Reads of MCR registers always operate in a unicast
* manner regardless of how the multicast/unicast bit is set in MCR_SELECTOR.
* Selection of a specific MCR instance for unicast operations is referred to
* as "steering."
*
* If MCR register operations are steered toward a hardware unit that is
* fused off or currently powered down due to power gating, the MMIO operation
* is "terminated" by the hardware. Terminated read operations will return a
* value of zero and terminated unicast write operations will be silently
* ignored.
*/
#define HAS_MSLICE_STEERING(dev_priv) (INTEL_INFO(dev_priv)->has_mslice_steering)
static const char * const intel_steering_types[] = {
"L3BANK",
"MSLICE",
"LNCF",
"GAM",
"DSS",
"OADDRM",
"INSTANCE 0",
};
static const struct intel_mmio_range icl_l3bank_steering_table[] = {
{ 0x00B100, 0x00B3FF },
{},
};
/*
* Although the bspec lists more "MSLICE" ranges than shown here, some of those
* are of a "GAM" subclass that has special rules. Thus we use a separate
* GAM table farther down for those.
*/
static const struct intel_mmio_range xehpsdv_mslice_steering_table[] = {
{ 0x00DD00, 0x00DDFF },
{ 0x00E900, 0x00FFFF }, /* 0xEA00 - OxEFFF is unused */
{},
};
static const struct intel_mmio_range xehpsdv_gam_steering_table[] = {
{ 0x004000, 0x004AFF },
{ 0x00C800, 0x00CFFF },
{},
};
static const struct intel_mmio_range xehpsdv_lncf_steering_table[] = {
{ 0x00B000, 0x00B0FF },
{ 0x00D800, 0x00D8FF },
{},
};
static const struct intel_mmio_range dg2_lncf_steering_table[] = {
{ 0x00B000, 0x00B0FF },
{ 0x00D880, 0x00D8FF },
{},
};
/*
* We have several types of MCR registers on PVC where steering to (0,0)
* will always provide us with a non-terminated value. We'll stick them
* all in the same table for simplicity.
*/
static const struct intel_mmio_range pvc_instance0_steering_table[] = {
{ 0x004000, 0x004AFF }, /* HALF-BSLICE */
{ 0x008800, 0x00887F }, /* CC */
{ 0x008A80, 0x008AFF }, /* TILEPSMI */
{ 0x00B000, 0x00B0FF }, /* HALF-BSLICE */
{ 0x00B100, 0x00B3FF }, /* L3BANK */
{ 0x00C800, 0x00CFFF }, /* HALF-BSLICE */
{ 0x00D800, 0x00D8FF }, /* HALF-BSLICE */
{ 0x00DD00, 0x00DDFF }, /* BSLICE */
{ 0x00E900, 0x00E9FF }, /* HALF-BSLICE */
{ 0x00EC00, 0x00EEFF }, /* HALF-BSLICE */
{ 0x00F000, 0x00FFFF }, /* HALF-BSLICE */
{ 0x024180, 0x0241FF }, /* HALF-BSLICE */
{},
};
static const struct intel_mmio_range xelpg_instance0_steering_table[] = {
{ 0x000B00, 0x000BFF }, /* SQIDI */
{ 0x001000, 0x001FFF }, /* SQIDI */
{ 0x004000, 0x0048FF }, /* GAM */
{ 0x008700, 0x0087FF }, /* SQIDI */
{ 0x00B000, 0x00B0FF }, /* NODE */
{ 0x00C800, 0x00CFFF }, /* GAM */
{ 0x00D880, 0x00D8FF }, /* NODE */
{ 0x00DD00, 0x00DDFF }, /* OAAL2 */
{},
};
static const struct intel_mmio_range xelpg_l3bank_steering_table[] = {
{ 0x00B100, 0x00B3FF },
{},
};
/* DSS steering is used for SLICE ranges as well */
static const struct intel_mmio_range xelpg_dss_steering_table[] = {
{ 0x005200, 0x0052FF }, /* SLICE */
{ 0x005500, 0x007FFF }, /* SLICE */
{ 0x008140, 0x00815F }, /* SLICE (0x8140-0x814F), DSS (0x8150-0x815F) */
{ 0x0094D0, 0x00955F }, /* SLICE (0x94D0-0x951F), DSS (0x9520-0x955F) */
{ 0x009680, 0x0096FF }, /* DSS */
{ 0x00D800, 0x00D87F }, /* SLICE */
{ 0x00DC00, 0x00DCFF }, /* SLICE */
{ 0x00DE80, 0x00E8FF }, /* DSS (0xE000-0xE0FF reserved) */
{},
};
static const struct intel_mmio_range xelpmp_oaddrm_steering_table[] = {
{ 0x393200, 0x39323F },
{ 0x393400, 0x3934FF },
{},
};
void intel_gt_mcr_init(struct intel_gt *gt)
{
struct drm_i915_private *i915 = gt->i915;
unsigned long fuse;
int i;
spin_lock_init(>->mcr_lock);
/*
* An mslice is unavailable only if both the meml3 for the slice is
* disabled *and* all of the DSS in the slice (quadrant) are disabled.
*/
if (HAS_MSLICE_STEERING(i915)) {
gt->info.mslice_mask =
intel_slicemask_from_xehp_dssmask(gt->info.sseu.subslice_mask,
GEN_DSS_PER_MSLICE);
gt->info.mslice_mask |=
(intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
GEN12_MEML3_EN_MASK);
if (!gt->info.mslice_mask) /* should be impossible! */
gt_warn(gt, "mslice mask all zero!\n");
}
if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
gt->steering_table[OADDRM] = xelpmp_oaddrm_steering_table;
} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) {
/* Wa_14016747170 */
if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
fuse = REG_FIELD_GET(MTL_GT_L3_EXC_MASK,
intel_uncore_read(gt->uncore,
MTL_GT_ACTIVITY_FACTOR));
else
fuse = REG_FIELD_GET(GT_L3_EXC_MASK,
intel_uncore_read(gt->uncore, XEHP_FUSE4));
/*
* Despite the register field being named "exclude mask" the
* bits actually represent enabled banks (two banks per bit).
*/
for_each_set_bit(i, &fuse, 3)
gt->info.l3bank_mask |= 0x3 << 2 * i;
gt->steering_table[INSTANCE0] = xelpg_instance0_steering_table;
gt->steering_table[L3BANK] = xelpg_l3bank_steering_table;
gt->steering_table[DSS] = xelpg_dss_steering_table;
} else if (IS_PONTEVECCHIO(i915)) {
gt->steering_table[INSTANCE0] = pvc_instance0_steering_table;
} else if (IS_DG2(i915)) {
gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
gt->steering_table[LNCF] = dg2_lncf_steering_table;
/*
* No need to hook up the GAM table since it has a dedicated
* steering control register on DG2 and can use implicit
* steering.
*/
} else if (IS_XEHPSDV(i915)) {
gt->steering_table[MSLICE] = xehpsdv_mslice_steering_table;
gt->steering_table[LNCF] = xehpsdv_lncf_steering_table;
gt->steering_table[GAM] = xehpsdv_gam_steering_table;
} else if (GRAPHICS_VER(i915) >= 11 &&
GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) {
gt->steering_table[L3BANK] = icl_l3bank_steering_table;
gt->info.l3bank_mask =
~intel_uncore_read(gt->uncore, GEN10_MIRROR_FUSE3) &
GEN10_L3BANK_MASK;
if (!gt->info.l3bank_mask) /* should be impossible! */
gt_warn(gt, "L3 bank mask is all zero!\n");
} else if (GRAPHICS_VER(i915) >= 11) {
/*
* We expect all modern platforms to have at least some
* type of steering that needs to be initialized.
*/
MISSING_CASE(INTEL_INFO(i915)->platform);
}
}
/*
* Although the rest of the driver should use MCR-specific functions to
* read/write MCR registers, we still use the regular intel_uncore_* functions
* internally to implement those, so we need a way for the functions in this
* file to "cast" an i915_mcr_reg_t into an i915_reg_t.
*/
static i915_reg_t mcr_reg_cast(const i915_mcr_reg_t mcr)
{
i915_reg_t r = { .reg = mcr.reg };
return r;
}
/*
* rw_with_mcr_steering_fw - Access a register with specific MCR steering
* @gt: GT to read register from
* @reg: register being accessed
* @rw_flag: FW_REG_READ for read access or FW_REG_WRITE for write access
* @group: group number (documented as "sliceid" on older platforms)
* @instance: instance number (documented as "subsliceid" on older platforms)
* @value: register value to be written (ignored for read)
*
* Context: The caller must hold the MCR lock
* Return: 0 for write access. register value for read access.
*
* Caller needs to make sure the relevant forcewake wells are up.
*/
static u32 rw_with_mcr_steering_fw(struct intel_gt *gt,
i915_mcr_reg_t reg, u8 rw_flag,
int group, int instance, u32 value)
{
struct intel_uncore *uncore = gt->uncore;
u32 mcr_mask, mcr_ss, mcr, old_mcr, val = 0;
lockdep_assert_held(>->mcr_lock);
if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70)) {
/*
* Always leave the hardware in multicast mode when doing reads
* (see comment about Wa_22013088509 below) and only change it
* to unicast mode when doing writes of a specific instance.
*
* No need to save old steering reg value.
*/
intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR,
REG_FIELD_PREP(MTL_MCR_GROUPID, group) |
REG_FIELD_PREP(MTL_MCR_INSTANCEID, instance) |
(rw_flag == FW_REG_READ ? GEN11_MCR_MULTICAST : 0));
} else if (GRAPHICS_VER(uncore->i915) >= 11) {
mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
mcr_ss = GEN11_MCR_SLICE(group) | GEN11_MCR_SUBSLICE(instance);
/*
* Wa_22013088509
*
* The setting of the multicast/unicast bit usually wouldn't
* matter for read operations (which always return the value
* from a single register instance regardless of how that bit
* is set), but some platforms have a workaround requiring us
* to remain in multicast mode for reads. There's no real
* downside to this, so we'll just go ahead and do so on all
* platforms; we'll only clear the multicast bit from the mask
* when exlicitly doing a write operation.
*/
if (rw_flag == FW_REG_WRITE)
mcr_mask |= GEN11_MCR_MULTICAST;
mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
old_mcr = mcr;
mcr &= ~mcr_mask;
mcr |= mcr_ss;
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
} else {
mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
mcr_ss = GEN8_MCR_SLICE(group) | GEN8_MCR_SUBSLICE(instance);
mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
old_mcr = mcr;
mcr &= ~mcr_mask;
mcr |= mcr_ss;
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
}
if (rw_flag == FW_REG_READ)
val = intel_uncore_read_fw(uncore, mcr_reg_cast(reg));
else
intel_uncore_write_fw(uncore, mcr_reg_cast(reg), value);
/*
* For pre-MTL platforms, we need to restore the old value of the
* steering control register to ensure that implicit steering continues
* to behave as expected. For MTL and beyond, we need only reinstate
* the 'multicast' bit (and only if we did a write that cleared it).
*/
if (GRAPHICS_VER_FULL(uncore->i915) >= IP_VER(12, 70) && rw_flag == FW_REG_WRITE)
intel_uncore_write_fw(uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
else if (GRAPHICS_VER_FULL(uncore->i915) < IP_VER(12, 70))
intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, old_mcr);
return val;
}
static u32 rw_with_mcr_steering(struct intel_gt *gt,
i915_mcr_reg_t reg, u8 rw_flag,
int group, int instance,
u32 value)
{
struct intel_uncore *uncore = gt->uncore;
enum forcewake_domains fw_domains;
unsigned long flags;
u32 val;
fw_domains = intel_uncore_forcewake_for_reg(uncore, mcr_reg_cast(reg),
rw_flag);
fw_domains |= intel_uncore_forcewake_for_reg(uncore,
GEN8_MCR_SELECTOR,
FW_REG_READ | FW_REG_WRITE);
intel_gt_mcr_lock(gt, &flags);
spin_lock(&uncore->lock);
intel_uncore_forcewake_get__locked(uncore, fw_domains);
val = rw_with_mcr_steering_fw(gt, reg, rw_flag, group, instance, value);
intel_uncore_forcewake_put__locked(uncore, fw_domains);
spin_unlock(&uncore->lock);
intel_gt_mcr_unlock(gt, flags);
return val;
}
/**
* intel_gt_mcr_lock - Acquire MCR steering lock
* @gt: GT structure
* @flags: storage to save IRQ flags to
*
* Performs locking to protect the steering for the duration of an MCR
* operation. On MTL and beyond, a hardware lock will also be taken to
* serialize access not only for the driver, but also for external hardware and
* firmware agents.
*
* Context: Takes gt->mcr_lock. uncore->lock should *not* be held when this
* function is called, although it may be acquired after this
* function call.
*/
void intel_gt_mcr_lock(struct intel_gt *gt, unsigned long *flags)
{
unsigned long __flags;
int err = 0;
lockdep_assert_not_held(>->uncore->lock);
/*
* Starting with MTL, we need to coordinate not only with other
* driver threads, but also with hardware/firmware agents. A dedicated
* locking register is used.
*/
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
err = wait_for(intel_uncore_read_fw(gt->uncore,
MTL_STEER_SEMAPHORE) == 0x1, 100);
/*
* Even on platforms with a hardware lock, we'll continue to grab
* a software spinlock too for lockdep purposes. If the hardware lock
* was already acquired, there should never be contention on the
* software lock.
*/
spin_lock_irqsave(>->mcr_lock, __flags);
*flags = __flags;
/*
* In theory we should never fail to acquire the HW semaphore; this
* would indicate some hardware/firmware is misbehaving and not
* releasing it properly.
*/
if (err == -ETIMEDOUT) {
gt_err_ratelimited(gt, "hardware MCR steering semaphore timed out");
add_taint_for_CI(gt->i915, TAINT_WARN); /* CI is now unreliable */
}
}
/**
* intel_gt_mcr_unlock - Release MCR steering lock
* @gt: GT structure
* @flags: IRQ flags to restore
*
* Releases the lock acquired by intel_gt_mcr_lock().
*
* Context: Releases gt->mcr_lock
*/
void intel_gt_mcr_unlock(struct intel_gt *gt, unsigned long flags)
{
spin_unlock_irqrestore(>->mcr_lock, flags);
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
intel_uncore_write_fw(gt->uncore, MTL_STEER_SEMAPHORE, 0x1);
}
/**
* intel_gt_mcr_read - read a specific instance of an MCR register
* @gt: GT structure
* @reg: the MCR register to read
* @group: the MCR group
* @instance: the MCR instance
*
* Context: Takes and releases gt->mcr_lock
*
* Returns the value read from an MCR register after steering toward a specific
* group/instance.
*/
u32 intel_gt_mcr_read(struct intel_gt *gt,
i915_mcr_reg_t reg,
int group, int instance)
{
return rw_with_mcr_steering(gt, reg, FW_REG_READ, group, instance, 0);
}
/**
* intel_gt_mcr_unicast_write - write a specific instance of an MCR register
* @gt: GT structure
* @reg: the MCR register to write
* @value: value to write
* @group: the MCR group
* @instance: the MCR instance
*
* Write an MCR register in unicast mode after steering toward a specific
* group/instance.
*
* Context: Calls a function that takes and releases gt->mcr_lock
*/
void intel_gt_mcr_unicast_write(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value,
int group, int instance)
{
rw_with_mcr_steering(gt, reg, FW_REG_WRITE, group, instance, value);
}
/**
* intel_gt_mcr_multicast_write - write a value to all instances of an MCR register
* @gt: GT structure
* @reg: the MCR register to write
* @value: value to write
*
* Write an MCR register in multicast mode to update all instances.
*
* Context: Takes and releases gt->mcr_lock
*/
void intel_gt_mcr_multicast_write(struct intel_gt *gt,
i915_mcr_reg_t reg, u32 value)
{
unsigned long flags;
intel_gt_mcr_lock(gt, &flags);
/*
* Ensure we have multicast behavior, just in case some non-i915 agent
* left the hardware in unicast mode.
*/
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
intel_uncore_write(gt->uncore, mcr_reg_cast(reg), value);
intel_gt_mcr_unlock(gt, flags);
}
/**
* intel_gt_mcr_multicast_write_fw - write a value to all instances of an MCR register
* @gt: GT structure
* @reg: the MCR register to write
* @value: value to write
*
* Write an MCR register in multicast mode to update all instances. This
* function assumes the caller is already holding any necessary forcewake
* domains; use intel_gt_mcr_multicast_write() in cases where forcewake should
* be obtained automatically.
*
* Context: The caller must hold gt->mcr_lock.
*/
void intel_gt_mcr_multicast_write_fw(struct intel_gt *gt, i915_mcr_reg_t reg, u32 value)
{
lockdep_assert_held(>->mcr_lock);
/*
* Ensure we have multicast behavior, just in case some non-i915 agent
* left the hardware in unicast mode.
*/
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70))
intel_uncore_write_fw(gt->uncore, MTL_MCR_SELECTOR, GEN11_MCR_MULTICAST);
intel_uncore_write_fw(gt->uncore, mcr_reg_cast(reg), value);
}
/**
* intel_gt_mcr_multicast_rmw - Performs a multicast RMW operations
* @gt: GT structure
* @reg: the MCR register to read and write
* @clear: bits to clear during RMW
* @set: bits to set during RMW
*
* Performs a read-modify-write on an MCR register in a multicast manner.
* This operation only makes sense on MCR registers where all instances are
* expected to have the same value. The read will target any non-terminated
* instance and the write will be applied to all instances.
*
* This function assumes the caller is already holding any necessary forcewake
* domains; use intel_gt_mcr_multicast_rmw() in cases where forcewake should
* be obtained automatically.
*
* Context: Calls functions that take and release gt->mcr_lock
*
* Returns the old (unmodified) value read.
*/
u32 intel_gt_mcr_multicast_rmw(struct intel_gt *gt, i915_mcr_reg_t reg,
u32 clear, u32 set)
{
u32 val = intel_gt_mcr_read_any(gt, reg);
intel_gt_mcr_multicast_write(gt, reg, (val & ~clear) | set);
return val;
}
/*
* reg_needs_read_steering - determine whether a register read requires
* explicit steering
* @gt: GT structure
* @reg: the register to check steering requirements for
* @type: type of multicast steering to check
*
* Determines whether @reg needs explicit steering of a specific type for
* reads.
*
* Returns false if @reg does not belong to a register range of the given
* steering type, or if the default (subslice-based) steering IDs are suitable
* for @type steering too.
*/
static bool reg_needs_read_steering(struct intel_gt *gt,
i915_mcr_reg_t reg,
enum intel_steering_type type)
{
u32 offset = i915_mmio_reg_offset(reg);
const struct intel_mmio_range *entry;
if (likely(!gt->steering_table[type]))
return false;
if (IS_GSI_REG(offset))
offset += gt->uncore->gsi_offset;
for (entry = gt->steering_table[type]; entry->end; entry++) {
if (offset >= entry->start && offset <= entry->end)
return true;
}
return false;
}
/*
* get_nonterminated_steering - determines valid IDs for a class of MCR steering
* @gt: GT structure
* @type: multicast register type
* @group: Group ID returned
* @instance: Instance ID returned
*
* Determines group and instance values that will steer reads of the specified
* MCR class to a non-terminated instance.
*/
static void get_nonterminated_steering(struct intel_gt *gt,
enum intel_steering_type type,
u8 *group, u8 *instance)
{
u32 dss;
switch (type) {
case L3BANK:
*group = 0; /* unused */
*instance = __ffs(gt->info.l3bank_mask);
break;
case MSLICE:
GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
*group = __ffs(gt->info.mslice_mask);
*instance = 0; /* unused */
break;
case LNCF:
/*
* An LNCF is always present if its mslice is present, so we
* can safely just steer to LNCF 0 in all cases.
*/
GEM_WARN_ON(!HAS_MSLICE_STEERING(gt->i915));
*group = __ffs(gt->info.mslice_mask) << 1;
*instance = 0; /* unused */
break;
case GAM:
*group = IS_DG2(gt->i915) ? 1 : 0;
*instance = 0;
break;
case DSS:
dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0);
*group = dss / GEN_DSS_PER_GSLICE;
*instance = dss % GEN_DSS_PER_GSLICE;
break;
case INSTANCE0:
/*
* There are a lot of MCR types for which instance (0, 0)
* will always provide a non-terminated value.
*/
*group = 0;
*instance = 0;
break;
case OADDRM:
if ((VDBOX_MASK(gt) | VEBOX_MASK(gt) | gt->info.sfc_mask) & BIT(0))
*group = 0;
else
*group = 1;
*instance = 0;
break;
default:
MISSING_CASE(type);
*group = 0;
*instance = 0;
}
}
/**
* intel_gt_mcr_get_nonterminated_steering - find group/instance values that
* will steer a register to a non-terminated instance
* @gt: GT structure
* @reg: register for which the steering is required
* @group: return variable for group steering
* @instance: return variable for instance steering
*
* This function returns a group/instance pair that is guaranteed to work for
* read steering of the given register. Note that a value will be returned even
* if the register is not replicated and therefore does not actually require
* steering.
*/
void intel_gt_mcr_get_nonterminated_steering(struct intel_gt *gt,
i915_mcr_reg_t reg,
u8 *group, u8 *instance)
{
int type;
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (reg_needs_read_steering(gt, reg, type)) {
get_nonterminated_steering(gt, type, group, instance);
return;
}
}
*group = gt->default_steering.groupid;
*instance = gt->default_steering.instanceid;
}
/**
* intel_gt_mcr_read_any_fw - reads one instance of an MCR register
* @gt: GT structure
* @reg: register to read
*
* Reads a GT MCR register. The read will be steered to a non-terminated
* instance (i.e., one that isn't fused off or powered down by power gating).
* This function assumes the caller is already holding any necessary forcewake
* domains; use intel_gt_mcr_read_any() in cases where forcewake should be
* obtained automatically.
*
* Context: The caller must hold gt->mcr_lock.
*
* Returns the value from a non-terminated instance of @reg.
*/
u32 intel_gt_mcr_read_any_fw(struct intel_gt *gt, i915_mcr_reg_t reg)
{
int type;
u8 group, instance;
lockdep_assert_held(>->mcr_lock);
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (reg_needs_read_steering(gt, reg, type)) {
get_nonterminated_steering(gt, type, &group, &instance);
return rw_with_mcr_steering_fw(gt, reg,
FW_REG_READ,
group, instance, 0);
}
}
return intel_uncore_read_fw(gt->uncore, mcr_reg_cast(reg));
}
/**
* intel_gt_mcr_read_any - reads one instance of an MCR register
* @gt: GT structure
* @reg: register to read
*
* Reads a GT MCR register. The read will be steered to a non-terminated
* instance (i.e., one that isn't fused off or powered down by power gating).
*
* Context: Calls a function that takes and releases gt->mcr_lock.
*
* Returns the value from a non-terminated instance of @reg.
*/
u32 intel_gt_mcr_read_any(struct intel_gt *gt, i915_mcr_reg_t reg)
{
int type;
u8 group, instance;
for (type = 0; type < NUM_STEERING_TYPES; type++) {
if (reg_needs_read_steering(gt, reg, type)) {
get_nonterminated_steering(gt, type, &group, &instance);
return rw_with_mcr_steering(gt, reg,
FW_REG_READ,
group, instance, 0);
}
}
return intel_uncore_read(gt->uncore, mcr_reg_cast(reg));
}
static void report_steering_type(struct drm_printer *p,
struct intel_gt *gt,
enum intel_steering_type type,
bool dump_table)
{
const struct intel_mmio_range *entry;
u8 group, instance;
BUILD_BUG_ON(ARRAY_SIZE(intel_steering_types) != NUM_STEERING_TYPES);
if (!gt->steering_table[type]) {
drm_printf(p, "%s steering: uses default steering\n",
intel_steering_types[type]);
return;
}
get_nonterminated_steering(gt, type, &group, &instance);
drm_printf(p, "%s steering: group=0x%x, instance=0x%x\n",
intel_steering_types[type], group, instance);
if (!dump_table)
return;
for (entry = gt->steering_table[type]; entry->end; entry++)
drm_printf(p, "\t0x%06x - 0x%06x\n", entry->start, entry->end);
}
void intel_gt_mcr_report_steering(struct drm_printer *p, struct intel_gt *gt,
bool dump_table)
{
/*
* Starting with MTL we no longer have default steering;
* all ranges are explicitly steered.
*/
if (GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))
drm_printf(p, "Default steering: group=0x%x, instance=0x%x\n",
gt->default_steering.groupid,
gt->default_steering.instanceid);
if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 70)) {
for (int i = 0; i < NUM_STEERING_TYPES; i++)
if (gt->steering_table[i])
report_steering_type(p, gt, i, dump_table);
} else if (IS_PONTEVECCHIO(gt->i915)) {
report_steering_type(p, gt, INSTANCE0, dump_table);
} else if (HAS_MSLICE_STEERING(gt->i915)) {
report_steering_type(p, gt, MSLICE, dump_table);
report_steering_type(p, gt, LNCF, dump_table);
}
}
/**
* intel_gt_mcr_get_ss_steering - returns the group/instance steering for a SS
* @gt: GT structure
* @dss: DSS ID to obtain steering for
* @group: pointer to storage for steering group ID
* @instance: pointer to storage for steering instance ID
*
* Returns the steering IDs (via the @group and @instance parameters) that
* correspond to a specific subslice/DSS ID.
*/
void intel_gt_mcr_get_ss_steering(struct intel_gt *gt, unsigned int dss,
unsigned int *group, unsigned int *instance)
{
if (IS_PONTEVECCHIO(gt->i915)) {
*group = dss / GEN_DSS_PER_CSLICE;
*instance = dss % GEN_DSS_PER_CSLICE;
} else if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50)) {
*group = dss / GEN_DSS_PER_GSLICE;
*instance = dss % GEN_DSS_PER_GSLICE;
} else {
*group = dss / GEN_MAX_SS_PER_HSW_SLICE;
*instance = dss % GEN_MAX_SS_PER_HSW_SLICE;
return;
}
}
/**
* intel_gt_mcr_wait_for_reg - wait until MCR register matches expected state
* @gt: GT structure
* @reg: the register to read
* @mask: mask to apply to register value
* @value: value to wait for
* @fast_timeout_us: fast timeout in microsecond for atomic/tight wait
* @slow_timeout_ms: slow timeout in millisecond
*
* This routine waits until the target register @reg contains the expected
* @value after applying the @mask, i.e. it waits until ::
*
* (intel_gt_mcr_read_any_fw(gt, reg) & mask) == value
*
* Otherwise, the wait will timeout after @slow_timeout_ms milliseconds.
* For atomic context @slow_timeout_ms must be zero and @fast_timeout_us
* must be not larger than 20,0000 microseconds.
*
* This function is basically an MCR-friendly version of
* __intel_wait_for_register_fw(). Generally this function will only be used
* on GAM registers which are a bit special --- although they're MCR registers,
* reads (e.g., waiting for status updates) are always directed to the primary
* instance.
*
* Note that this routine assumes the caller holds forcewake asserted, it is
* not suitable for very long waits.
*
* Context: Calls a function that takes and releases gt->mcr_lock
* Return: 0 if the register matches the desired condition, or -ETIMEDOUT.
*/
int intel_gt_mcr_wait_for_reg(struct intel_gt *gt,
i915_mcr_reg_t reg,
u32 mask,
u32 value,
unsigned int fast_timeout_us,
unsigned int slow_timeout_ms)
{
int ret;
lockdep_assert_not_held(>->mcr_lock);
#define done ((intel_gt_mcr_read_any(gt, reg) & mask) == value)
/* Catch any overuse of this function */
might_sleep_if(slow_timeout_ms);
GEM_BUG_ON(fast_timeout_us > 20000);
GEM_BUG_ON(!fast_timeout_us && !slow_timeout_ms);
ret = -ETIMEDOUT;
if (fast_timeout_us && fast_timeout_us <= 20000)
ret = _wait_for_atomic(done, fast_timeout_us, 0);
if (ret && slow_timeout_ms)
ret = wait_for(done, slow_timeout_ms);
return ret;
#undef done
}
|