summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gt/uc/intel_huc.c
blob: ddd146265beb42b399b2c9b49f459fbebddc9ee8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2016-2019 Intel Corporation
 */

#include <linux/types.h>

#include "gt/intel_gt.h"
#include "intel_guc_reg.h"
#include "intel_huc.h"
#include "intel_huc_print.h"
#include "i915_drv.h"
#include "i915_reg.h"
#include "pxp/intel_pxp_cmd_interface_43.h"

#include <linux/device/bus.h>
#include <linux/mei_aux.h>

/**
 * DOC: HuC
 *
 * The HuC is a dedicated microcontroller for usage in media HEVC (High
 * Efficiency Video Coding) operations. Userspace can directly use the firmware
 * capabilities by adding HuC specific commands to batch buffers.
 *
 * The kernel driver is only responsible for loading the HuC firmware and
 * triggering its security authentication. This is done differently depending
 * on the platform:
 * - older platforms (from Gen9 to most Gen12s): the load is performed via DMA
 *   and the authentication via GuC
 * - DG2: load and authentication are both performed via GSC.
 * - MTL and newer platforms: the load is performed via DMA (same as with
 *   not-DG2 older platforms), while the authentication is done in 2-steps,
 *   a first auth for clear-media workloads via GuC and a second one for all
 *   workloads via GSC.
 * On platforms where the GuC does the authentication, to correctly do so the
 * HuC binary must be loaded before the GuC one.
 * Loading the HuC is optional; however, not using the HuC might negatively
 * impact power usage and/or performance of media workloads, depending on the
 * use-cases.
 * HuC must be reloaded on events that cause the WOPCM to lose its contents
 * (S3/S4, FLR); on older platforms the HuC must also be reloaded on GuC/GT
 * reset, while on newer ones it will survive that.
 *
 * See https://github.com/intel/media-driver for the latest details on HuC
 * functionality.
 */

/**
 * DOC: HuC Memory Management
 *
 * Similarly to the GuC, the HuC can't do any memory allocations on its own,
 * with the difference being that the allocations for HuC usage are handled by
 * the userspace driver instead of the kernel one. The HuC accesses the memory
 * via the PPGTT belonging to the context loaded on the VCS executing the
 * HuC-specific commands.
 */

/*
 * MEI-GSC load is an async process. The probing of the exposed aux device
 * (see intel_gsc.c) usually happens a few seconds after i915 probe, depending
 * on when the kernel schedules it. Unless something goes terribly wrong, we're
 * guaranteed for this to happen during boot, so the big timeout is a safety net
 * that we never expect to need.
 * MEI-PXP + HuC load usually takes ~300ms, but if the GSC needs to be resumed
 * and/or reset, this can take longer. Note that the kernel might schedule
 * other work between the i915 init/resume and the MEI one, which can add to
 * the delay.
 */
#define GSC_INIT_TIMEOUT_MS 10000
#define PXP_INIT_TIMEOUT_MS 5000

static int sw_fence_dummy_notify(struct i915_sw_fence *sf,
				 enum i915_sw_fence_notify state)
{
	return NOTIFY_DONE;
}

static void __delayed_huc_load_complete(struct intel_huc *huc)
{
	if (!i915_sw_fence_done(&huc->delayed_load.fence))
		i915_sw_fence_complete(&huc->delayed_load.fence);
}

static void delayed_huc_load_complete(struct intel_huc *huc)
{
	hrtimer_cancel(&huc->delayed_load.timer);
	__delayed_huc_load_complete(huc);
}

static void __gsc_init_error(struct intel_huc *huc)
{
	huc->delayed_load.status = INTEL_HUC_DELAYED_LOAD_ERROR;
	__delayed_huc_load_complete(huc);
}

static void gsc_init_error(struct intel_huc *huc)
{
	hrtimer_cancel(&huc->delayed_load.timer);
	__gsc_init_error(huc);
}

static void gsc_init_done(struct intel_huc *huc)
{
	hrtimer_cancel(&huc->delayed_load.timer);

	/* MEI-GSC init is done, now we wait for MEI-PXP to bind */
	huc->delayed_load.status = INTEL_HUC_WAITING_ON_PXP;
	if (!i915_sw_fence_done(&huc->delayed_load.fence))
		hrtimer_start(&huc->delayed_load.timer,
			      ms_to_ktime(PXP_INIT_TIMEOUT_MS),
			      HRTIMER_MODE_REL);
}

static enum hrtimer_restart huc_delayed_load_timer_callback(struct hrtimer *hrtimer)
{
	struct intel_huc *huc = container_of(hrtimer, struct intel_huc, delayed_load.timer);

	if (!intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC)) {
		if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_GSC)
			huc_notice(huc, "timed out waiting for MEI GSC\n");
		else if (huc->delayed_load.status == INTEL_HUC_WAITING_ON_PXP)
			huc_notice(huc, "timed out waiting for MEI PXP\n");
		else
			MISSING_CASE(huc->delayed_load.status);

		__gsc_init_error(huc);
	}

	return HRTIMER_NORESTART;
}

static void huc_delayed_load_start(struct intel_huc *huc)
{
	ktime_t delay;

	GEM_BUG_ON(intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC));

	/*
	 * On resume we don't have to wait for MEI-GSC to be re-probed, but we
	 * do need to wait for MEI-PXP to reset & re-bind
	 */
	switch (huc->delayed_load.status) {
	case INTEL_HUC_WAITING_ON_GSC:
		delay = ms_to_ktime(GSC_INIT_TIMEOUT_MS);
		break;
	case INTEL_HUC_WAITING_ON_PXP:
		delay = ms_to_ktime(PXP_INIT_TIMEOUT_MS);
		break;
	default:
		gsc_init_error(huc);
		return;
	}

	/*
	 * This fence is always complete unless we're waiting for the
	 * GSC device to come up to load the HuC. We arm the fence here
	 * and complete it when we confirm that the HuC is loaded from
	 * the PXP bind callback.
	 */
	GEM_BUG_ON(!i915_sw_fence_done(&huc->delayed_load.fence));
	i915_sw_fence_fini(&huc->delayed_load.fence);
	i915_sw_fence_reinit(&huc->delayed_load.fence);
	i915_sw_fence_await(&huc->delayed_load.fence);
	i915_sw_fence_commit(&huc->delayed_load.fence);

	hrtimer_start(&huc->delayed_load.timer, delay, HRTIMER_MODE_REL);
}

static int gsc_notifier(struct notifier_block *nb, unsigned long action, void *data)
{
	struct device *dev = data;
	struct intel_huc *huc = container_of(nb, struct intel_huc, delayed_load.nb);
	struct intel_gsc_intf *intf = &huc_to_gt(huc)->gsc.intf[0];

	if (!intf->adev || &intf->adev->aux_dev.dev != dev)
		return 0;

	switch (action) {
	case BUS_NOTIFY_BOUND_DRIVER: /* mei driver bound to aux device */
		gsc_init_done(huc);
		break;

	case BUS_NOTIFY_DRIVER_NOT_BOUND: /* mei driver fails to be bound */
	case BUS_NOTIFY_UNBIND_DRIVER: /* mei driver about to be unbound */
		huc_info(huc, "MEI driver not bound, disabling load\n");
		gsc_init_error(huc);
		break;
	}

	return 0;
}

void intel_huc_register_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
{
	int ret;

	if (!intel_huc_is_loaded_by_gsc(huc))
		return;

	huc->delayed_load.nb.notifier_call = gsc_notifier;
	ret = bus_register_notifier(bus, &huc->delayed_load.nb);
	if (ret) {
		huc_err(huc, "failed to register GSC notifier %pe\n", ERR_PTR(ret));
		huc->delayed_load.nb.notifier_call = NULL;
		gsc_init_error(huc);
	}
}

void intel_huc_unregister_gsc_notifier(struct intel_huc *huc, const struct bus_type *bus)
{
	if (!huc->delayed_load.nb.notifier_call)
		return;

	delayed_huc_load_complete(huc);

	bus_unregister_notifier(bus, &huc->delayed_load.nb);
	huc->delayed_load.nb.notifier_call = NULL;
}

static void delayed_huc_load_init(struct intel_huc *huc)
{
	/*
	 * Initialize fence to be complete as this is expected to be complete
	 * unless there is a delayed HuC load in progress.
	 */
	i915_sw_fence_init(&huc->delayed_load.fence,
			   sw_fence_dummy_notify);
	i915_sw_fence_commit(&huc->delayed_load.fence);

	hrtimer_init(&huc->delayed_load.timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
	huc->delayed_load.timer.function = huc_delayed_load_timer_callback;
}

static void delayed_huc_load_fini(struct intel_huc *huc)
{
	/*
	 * the fence is initialized in init_early, so we need to clean it up
	 * even if HuC loading is off.
	 */
	delayed_huc_load_complete(huc);
	i915_sw_fence_fini(&huc->delayed_load.fence);
}

int intel_huc_sanitize(struct intel_huc *huc)
{
	delayed_huc_load_complete(huc);
	intel_uc_fw_sanitize(&huc->fw);
	return 0;
}

static bool vcs_supported(struct intel_gt *gt)
{
	intel_engine_mask_t mask = gt->info.engine_mask;

	/*
	 * We reach here from i915_driver_early_probe for the primary GT before
	 * its engine mask is set, so we use the device info engine mask for it;
	 * this means we're not taking VCS fusing into account, but if the
	 * primary GT supports VCS engines we expect at least one of them to
	 * remain unfused so we're fine.
	 * For other GTs we expect the GT-specific mask to be set before we
	 * call this function.
	 */
	GEM_BUG_ON(!gt_is_root(gt) && !gt->info.engine_mask);

	if (gt_is_root(gt))
		mask = RUNTIME_INFO(gt->i915)->platform_engine_mask;
	else
		mask = gt->info.engine_mask;

	return __ENGINE_INSTANCES_MASK(mask, VCS0, I915_MAX_VCS);
}

void intel_huc_init_early(struct intel_huc *huc)
{
	struct drm_i915_private *i915 = huc_to_gt(huc)->i915;
	struct intel_gt *gt = huc_to_gt(huc);

	intel_uc_fw_init_early(&huc->fw, INTEL_UC_FW_TYPE_HUC, true);

	/*
	 * we always init the fence as already completed, even if HuC is not
	 * supported. This way we don't have to distinguish between HuC not
	 * supported/disabled or already loaded, and can focus on if the load
	 * is currently in progress (fence not complete) or not, which is what
	 * we care about for stalling userspace submissions.
	 */
	delayed_huc_load_init(huc);

	if (!vcs_supported(gt)) {
		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_NOT_SUPPORTED);
		return;
	}

	if (GRAPHICS_VER(i915) >= 11) {
		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_LOAD_SUCCESSFUL;
		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_LOAD_SUCCESSFUL;
	} else {
		huc->status[INTEL_HUC_AUTH_BY_GUC].reg = HUC_STATUS2;
		huc->status[INTEL_HUC_AUTH_BY_GUC].mask = HUC_FW_VERIFIED;
		huc->status[INTEL_HUC_AUTH_BY_GUC].value = HUC_FW_VERIFIED;
	}

	if (IS_DG2(i915)) {
		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = GEN11_HUC_KERNEL_LOAD_INFO;
		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HUC_LOAD_SUCCESSFUL;
		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HUC_LOAD_SUCCESSFUL;
	} else {
		huc->status[INTEL_HUC_AUTH_BY_GSC].reg = HECI_FWSTS5(MTL_GSC_HECI1_BASE);
		huc->status[INTEL_HUC_AUTH_BY_GSC].mask = HECI_FWSTS5_HUC_AUTH_DONE;
		huc->status[INTEL_HUC_AUTH_BY_GSC].value = HECI_FWSTS5_HUC_AUTH_DONE;
	}
}

#define HUC_LOAD_MODE_STRING(x) (x ? "GSC" : "legacy")
static int check_huc_loading_mode(struct intel_huc *huc)
{
	struct intel_gt *gt = huc_to_gt(huc);
	bool gsc_enabled = huc->fw.has_gsc_headers;

	/*
	 * The fuse for HuC load via GSC is only valid on platforms that have
	 * GuC deprivilege.
	 */
	if (HAS_GUC_DEPRIVILEGE(gt->i915))
		huc->loaded_via_gsc = intel_uncore_read(gt->uncore, GUC_SHIM_CONTROL2) &
				      GSC_LOADS_HUC;

	if (huc->loaded_via_gsc && !gsc_enabled) {
		huc_err(huc, "HW requires a GSC-enabled blob, but we found a legacy one\n");
		return -ENOEXEC;
	}

	/*
	 * On newer platforms we have GSC-enabled binaries but we load the HuC
	 * via DMA. To do so we need to find the location of the legacy-style
	 * binary inside the GSC-enabled one, which we do at fetch time. Make
	 * sure that we were able to do so if the fuse says we need to load via
	 * DMA and the binary is GSC-enabled.
	 */
	if (!huc->loaded_via_gsc && gsc_enabled && !huc->fw.dma_start_offset) {
		huc_err(huc, "HW in DMA mode, but we have an incompatible GSC-enabled blob\n");
		return -ENOEXEC;
	}

	/*
	 * If the HuC is loaded via GSC, we need to be able to access the GSC.
	 * On DG2 this is done via the mei components, while on newer platforms
	 * it is done via the GSCCS,
	 */
	if (huc->loaded_via_gsc) {
		if (IS_DG2(gt->i915)) {
			if (!IS_ENABLED(CONFIG_INTEL_MEI_PXP) ||
			    !IS_ENABLED(CONFIG_INTEL_MEI_GSC)) {
				huc_info(huc, "can't load due to missing mei modules\n");
				return -EIO;
			}
		} else {
			if (!HAS_ENGINE(gt, GSC0)) {
				huc_info(huc, "can't load due to missing GSCCS\n");
				return -EIO;
			}
		}
	}

	huc_dbg(huc, "loaded by GSC = %s\n", str_yes_no(huc->loaded_via_gsc));

	return 0;
}

int intel_huc_init(struct intel_huc *huc)
{
	struct intel_gt *gt = huc_to_gt(huc);
	int err;

	err = check_huc_loading_mode(huc);
	if (err)
		goto out;

	if (HAS_ENGINE(gt, GSC0)) {
		struct i915_vma *vma;

		vma = intel_guc_allocate_vma(&gt->uc.guc, PXP43_HUC_AUTH_INOUT_SIZE * 2);
		if (IS_ERR(vma)) {
			err = PTR_ERR(vma);
			huc_info(huc, "Failed to allocate heci pkt\n");
			goto out;
		}

		huc->heci_pkt = vma;
	}

	err = intel_uc_fw_init(&huc->fw);
	if (err)
		goto out_pkt;

	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOADABLE);

	return 0;

out_pkt:
	if (huc->heci_pkt)
		i915_vma_unpin_and_release(&huc->heci_pkt, 0);
out:
	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
	huc_info(huc, "initialization failed %pe\n", ERR_PTR(err));
	return err;
}

void intel_huc_fini(struct intel_huc *huc)
{
	/*
	 * the fence is initialized in init_early, so we need to clean it up
	 * even if HuC loading is off.
	 */
	delayed_huc_load_fini(huc);

	if (huc->heci_pkt)
		i915_vma_unpin_and_release(&huc->heci_pkt, 0);

	if (intel_uc_fw_is_loadable(&huc->fw))
		intel_uc_fw_fini(&huc->fw);
}

void intel_huc_suspend(struct intel_huc *huc)
{
	if (!intel_uc_fw_is_loadable(&huc->fw))
		return;

	/*
	 * in the unlikely case that we're suspending before the GSC has
	 * completed its loading sequence, just stop waiting. We'll restart
	 * on resume.
	 */
	delayed_huc_load_complete(huc);
}

static const char *auth_mode_string(struct intel_huc *huc,
				    enum intel_huc_authentication_type type)
{
	bool partial = huc->fw.has_gsc_headers && type == INTEL_HUC_AUTH_BY_GUC;

	return partial ? "clear media" : "all workloads";
}

int intel_huc_wait_for_auth_complete(struct intel_huc *huc,
				     enum intel_huc_authentication_type type)
{
	struct intel_gt *gt = huc_to_gt(huc);
	int ret;

	ret = __intel_wait_for_register(gt->uncore,
					huc->status[type].reg,
					huc->status[type].mask,
					huc->status[type].value,
					2, 50, NULL);

	/* mark the load process as complete even if the wait failed */
	delayed_huc_load_complete(huc);

	if (ret) {
		huc_err(huc, "firmware not verified for %s: %pe\n",
			auth_mode_string(huc, type), ERR_PTR(ret));
		intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_LOAD_FAIL);
		return ret;
	}

	intel_uc_fw_change_status(&huc->fw, INTEL_UC_FIRMWARE_RUNNING);
	huc_info(huc, "authenticated for %s\n", auth_mode_string(huc, type));
	return 0;
}

/**
 * intel_huc_auth() - Authenticate HuC uCode
 * @huc: intel_huc structure
 * @type: authentication type (via GuC or via GSC)
 *
 * Called after HuC and GuC firmware loading during intel_uc_init_hw().
 *
 * This function invokes the GuC action to authenticate the HuC firmware,
 * passing the offset of the RSA signature to intel_guc_auth_huc(). It then
 * waits for up to 50ms for firmware verification ACK.
 */
int intel_huc_auth(struct intel_huc *huc, enum intel_huc_authentication_type type)
{
	struct intel_gt *gt = huc_to_gt(huc);
	struct intel_guc *guc = &gt->uc.guc;
	int ret;

	if (!intel_uc_fw_is_loaded(&huc->fw))
		return -ENOEXEC;

	/* GSC will do the auth with the load */
	if (intel_huc_is_loaded_by_gsc(huc))
		return -ENODEV;

	if (intel_huc_is_authenticated(huc, type))
		return -EEXIST;

	ret = i915_inject_probe_error(gt->i915, -ENXIO);
	if (ret)
		goto fail;

	switch (type) {
	case INTEL_HUC_AUTH_BY_GUC:
		ret = intel_guc_auth_huc(guc, intel_guc_ggtt_offset(guc, huc->fw.rsa_data));
		break;
	case INTEL_HUC_AUTH_BY_GSC:
		ret = intel_huc_fw_auth_via_gsccs(huc);
		break;
	default:
		MISSING_CASE(type);
		ret = -EINVAL;
	}
	if (ret)
		goto fail;

	/* Check authentication status, it should be done by now */
	ret = intel_huc_wait_for_auth_complete(huc, type);
	if (ret)
		goto fail;

	return 0;

fail:
	huc_probe_error(huc, "%s authentication failed %pe\n",
			auth_mode_string(huc, type), ERR_PTR(ret));
	return ret;
}

bool intel_huc_is_authenticated(struct intel_huc *huc,
				enum intel_huc_authentication_type type)
{
	struct intel_gt *gt = huc_to_gt(huc);
	intel_wakeref_t wakeref;
	u32 status = 0;

	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
		status = intel_uncore_read(gt->uncore, huc->status[type].reg);

	return (status & huc->status[type].mask) == huc->status[type].value;
}

static bool huc_is_fully_authenticated(struct intel_huc *huc)
{
	struct intel_uc_fw *huc_fw = &huc->fw;

	if (!huc_fw->has_gsc_headers)
		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC);
	else if (intel_huc_is_loaded_by_gsc(huc) || HAS_ENGINE(huc_to_gt(huc), GSC0))
		return intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GSC);
	else
		return false;
}

/**
 * intel_huc_check_status() - check HuC status
 * @huc: intel_huc structure
 *
 * This function reads status register to verify if HuC
 * firmware was successfully loaded.
 *
 * The return values match what is expected for the I915_PARAM_HUC_STATUS
 * getparam.
 */
int intel_huc_check_status(struct intel_huc *huc)
{
	struct intel_uc_fw *huc_fw = &huc->fw;

	switch (__intel_uc_fw_status(huc_fw)) {
	case INTEL_UC_FIRMWARE_NOT_SUPPORTED:
		return -ENODEV;
	case INTEL_UC_FIRMWARE_DISABLED:
		return -EOPNOTSUPP;
	case INTEL_UC_FIRMWARE_MISSING:
		return -ENOPKG;
	case INTEL_UC_FIRMWARE_ERROR:
		return -ENOEXEC;
	case INTEL_UC_FIRMWARE_INIT_FAIL:
		return -ENOMEM;
	case INTEL_UC_FIRMWARE_LOAD_FAIL:
		return -EIO;
	default:
		break;
	}

	/*
	 * GSC-enabled binaries loaded via DMA are first partially
	 * authenticated by GuC and then fully authenticated by GSC
	 */
	if (huc_is_fully_authenticated(huc))
		return 1; /* full auth */
	else if (huc_fw->has_gsc_headers && !intel_huc_is_loaded_by_gsc(huc) &&
		 intel_huc_is_authenticated(huc, INTEL_HUC_AUTH_BY_GUC))
		return 2; /* clear media only */
	else
		return 0;
}

static bool huc_has_delayed_load(struct intel_huc *huc)
{
	return intel_huc_is_loaded_by_gsc(huc) &&
	       (huc->delayed_load.status != INTEL_HUC_DELAYED_LOAD_ERROR);
}

void intel_huc_update_auth_status(struct intel_huc *huc)
{
	if (!intel_uc_fw_is_loadable(&huc->fw))
		return;

	if (!huc->fw.has_gsc_headers)
		return;

	if (huc_is_fully_authenticated(huc))
		intel_uc_fw_change_status(&huc->fw,
					  INTEL_UC_FIRMWARE_RUNNING);
	else if (huc_has_delayed_load(huc))
		huc_delayed_load_start(huc);
}

/**
 * intel_huc_load_status - dump information about HuC load status
 * @huc: the HuC
 * @p: the &drm_printer
 *
 * Pretty printer for HuC load status.
 */
void intel_huc_load_status(struct intel_huc *huc, struct drm_printer *p)
{
	struct intel_gt *gt = huc_to_gt(huc);
	intel_wakeref_t wakeref;

	if (!intel_huc_is_supported(huc)) {
		drm_printf(p, "HuC not supported\n");
		return;
	}

	if (!intel_huc_is_wanted(huc)) {
		drm_printf(p, "HuC disabled\n");
		return;
	}

	intel_uc_fw_dump(&huc->fw, p);

	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
		drm_printf(p, "HuC status: 0x%08x\n",
			   intel_uncore_read(gt->uncore, huc->status[INTEL_HUC_AUTH_BY_GUC].reg));
}