summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/gvt/sched_policy.c
blob: 985fe81794ddc97725d14ed43f07cb356fc25ade (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
/*
 * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 *
 * Authors:
 *    Anhua Xu
 *    Kevin Tian <kevin.tian@intel.com>
 *
 * Contributors:
 *    Min He <min.he@intel.com>
 *    Bing Niu <bing.niu@intel.com>
 *    Zhi Wang <zhi.a.wang@intel.com>
 *
 */

#include "i915_drv.h"
#include "gvt.h"

static bool vgpu_has_pending_workload(struct intel_vgpu *vgpu)
{
	enum intel_engine_id i;
	struct intel_engine_cs *engine;

	for_each_engine(engine, vgpu->gvt->dev_priv, i) {
		if (!list_empty(workload_q_head(vgpu, i)))
			return true;
	}

	return false;
}

struct vgpu_sched_data {
	struct list_head lru_list;
	struct intel_vgpu *vgpu;
	bool active;

	ktime_t sched_in_time;
	ktime_t sched_time;
	ktime_t left_ts;
	ktime_t allocated_ts;

	struct vgpu_sched_ctl sched_ctl;
};

struct gvt_sched_data {
	struct intel_gvt *gvt;
	struct hrtimer timer;
	unsigned long period;
	struct list_head lru_runq_head;
	ktime_t expire_time;
};

static void vgpu_update_timeslice(struct intel_vgpu *vgpu, ktime_t cur_time)
{
	ktime_t delta_ts;
	struct vgpu_sched_data *vgpu_data;

	if (!vgpu || vgpu == vgpu->gvt->idle_vgpu)
		return;

	vgpu_data = vgpu->sched_data;
	delta_ts = ktime_sub(cur_time, vgpu_data->sched_in_time);
	vgpu_data->sched_time = ktime_add(vgpu_data->sched_time, delta_ts);
	vgpu_data->left_ts = ktime_sub(vgpu_data->left_ts, delta_ts);
	vgpu_data->sched_in_time = cur_time;
}

#define GVT_TS_BALANCE_PERIOD_MS 100
#define GVT_TS_BALANCE_STAGE_NUM 10

static void gvt_balance_timeslice(struct gvt_sched_data *sched_data)
{
	struct vgpu_sched_data *vgpu_data;
	struct list_head *pos;
	static uint64_t stage_check;
	int stage = stage_check++ % GVT_TS_BALANCE_STAGE_NUM;

	/* The timeslice accumulation reset at stage 0, which is
	 * allocated again without adding previous debt.
	 */
	if (stage == 0) {
		int total_weight = 0;
		ktime_t fair_timeslice;

		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
			total_weight += vgpu_data->sched_ctl.weight;
		}

		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
			fair_timeslice = ktime_divns(ms_to_ktime(GVT_TS_BALANCE_PERIOD_MS),
						     total_weight) * vgpu_data->sched_ctl.weight;

			vgpu_data->allocated_ts = fair_timeslice;
			vgpu_data->left_ts = vgpu_data->allocated_ts;
		}
	} else {
		list_for_each(pos, &sched_data->lru_runq_head) {
			vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);

			/* timeslice for next 100ms should add the left/debt
			 * slice of previous stages.
			 */
			vgpu_data->left_ts += vgpu_data->allocated_ts;
		}
	}
}

static void try_to_schedule_next_vgpu(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	enum intel_engine_id i;
	struct intel_engine_cs *engine;
	struct vgpu_sched_data *vgpu_data;
	ktime_t cur_time;

	/* no need to schedule if next_vgpu is the same with current_vgpu,
	 * let scheduler chose next_vgpu again by setting it to NULL.
	 */
	if (scheduler->next_vgpu == scheduler->current_vgpu) {
		scheduler->next_vgpu = NULL;
		return;
	}

	/*
	 * after the flag is set, workload dispatch thread will
	 * stop dispatching workload for current vgpu
	 */
	scheduler->need_reschedule = true;

	/* still have uncompleted workload? */
	for_each_engine(engine, gvt->dev_priv, i) {
		if (scheduler->current_workload[i])
			return;
	}

	cur_time = ktime_get();
	vgpu_update_timeslice(scheduler->current_vgpu, cur_time);
	vgpu_data = scheduler->next_vgpu->sched_data;
	vgpu_data->sched_in_time = cur_time;

	/* switch current vgpu */
	scheduler->current_vgpu = scheduler->next_vgpu;
	scheduler->next_vgpu = NULL;

	scheduler->need_reschedule = false;

	/* wake up workload dispatch thread */
	for_each_engine(engine, gvt->dev_priv, i)
		wake_up(&scheduler->waitq[i]);
}

static struct intel_vgpu *find_busy_vgpu(struct gvt_sched_data *sched_data)
{
	struct vgpu_sched_data *vgpu_data;
	struct intel_vgpu *vgpu = NULL;
	struct list_head *head = &sched_data->lru_runq_head;
	struct list_head *pos;

	/* search a vgpu with pending workload */
	list_for_each(pos, head) {

		vgpu_data = container_of(pos, struct vgpu_sched_data, lru_list);
		if (!vgpu_has_pending_workload(vgpu_data->vgpu))
			continue;

		/* Return the vGPU only if it has time slice left */
		if (vgpu_data->left_ts > 0) {
			vgpu = vgpu_data->vgpu;
			break;
		}
	}

	return vgpu;
}

/* in nanosecond */
#define GVT_DEFAULT_TIME_SLICE 1000000

static void tbs_sched_func(struct gvt_sched_data *sched_data)
{
	struct intel_gvt *gvt = sched_data->gvt;
	struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
	struct vgpu_sched_data *vgpu_data;
	struct intel_vgpu *vgpu = NULL;
	/* no active vgpu or has already had a target */
	if (list_empty(&sched_data->lru_runq_head) || scheduler->next_vgpu)
		goto out;

	vgpu = find_busy_vgpu(sched_data);
	if (vgpu) {
		scheduler->next_vgpu = vgpu;

		/* Move the last used vGPU to the tail of lru_list */
		vgpu_data = vgpu->sched_data;
		list_del_init(&vgpu_data->lru_list);
		list_add_tail(&vgpu_data->lru_list,
				&sched_data->lru_runq_head);
	} else {
		scheduler->next_vgpu = gvt->idle_vgpu;
	}
out:
	if (scheduler->next_vgpu)
		try_to_schedule_next_vgpu(gvt);
}

void intel_gvt_schedule(struct intel_gvt *gvt)
{
	struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;
	ktime_t cur_time;

	mutex_lock(&gvt->sched_lock);
	cur_time = ktime_get();

	if (test_and_clear_bit(INTEL_GVT_REQUEST_SCHED,
				(void *)&gvt->service_request)) {
		if (cur_time >= sched_data->expire_time) {
			gvt_balance_timeslice(sched_data);
			sched_data->expire_time = ktime_add_ms(
				cur_time, GVT_TS_BALANCE_PERIOD_MS);
		}
	}
	clear_bit(INTEL_GVT_REQUEST_EVENT_SCHED, (void *)&gvt->service_request);

	vgpu_update_timeslice(gvt->scheduler.current_vgpu, cur_time);
	tbs_sched_func(sched_data);

	mutex_unlock(&gvt->sched_lock);
}

static enum hrtimer_restart tbs_timer_fn(struct hrtimer *timer_data)
{
	struct gvt_sched_data *data;

	data = container_of(timer_data, struct gvt_sched_data, timer);

	intel_gvt_request_service(data->gvt, INTEL_GVT_REQUEST_SCHED);

	hrtimer_add_expires_ns(&data->timer, data->period);

	return HRTIMER_RESTART;
}

static int tbs_sched_init(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&gvt->scheduler;

	struct gvt_sched_data *data;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	INIT_LIST_HEAD(&data->lru_runq_head);
	hrtimer_init(&data->timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
	data->timer.function = tbs_timer_fn;
	data->period = GVT_DEFAULT_TIME_SLICE;
	data->gvt = gvt;

	scheduler->sched_data = data;

	return 0;
}

static void tbs_sched_clean(struct intel_gvt *gvt)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&gvt->scheduler;
	struct gvt_sched_data *data = scheduler->sched_data;

	hrtimer_cancel(&data->timer);

	kfree(data);
	scheduler->sched_data = NULL;
}

static int tbs_sched_init_vgpu(struct intel_vgpu *vgpu)
{
	struct vgpu_sched_data *data;

	data = kzalloc(sizeof(*data), GFP_KERNEL);
	if (!data)
		return -ENOMEM;

	data->sched_ctl.weight = vgpu->sched_ctl.weight;
	data->vgpu = vgpu;
	INIT_LIST_HEAD(&data->lru_list);

	vgpu->sched_data = data;

	return 0;
}

static void tbs_sched_clean_vgpu(struct intel_vgpu *vgpu)
{
	struct intel_gvt *gvt = vgpu->gvt;
	struct gvt_sched_data *sched_data = gvt->scheduler.sched_data;

	kfree(vgpu->sched_data);
	vgpu->sched_data = NULL;

	/* this vgpu id has been removed */
	if (idr_is_empty(&gvt->vgpu_idr))
		hrtimer_cancel(&sched_data->timer);
}

static void tbs_sched_start_schedule(struct intel_vgpu *vgpu)
{
	struct gvt_sched_data *sched_data = vgpu->gvt->scheduler.sched_data;
	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;

	if (!list_empty(&vgpu_data->lru_list))
		return;

	list_add_tail(&vgpu_data->lru_list, &sched_data->lru_runq_head);

	if (!hrtimer_active(&sched_data->timer))
		hrtimer_start(&sched_data->timer, ktime_add_ns(ktime_get(),
			sched_data->period), HRTIMER_MODE_ABS);
	vgpu_data->active = true;
}

static void tbs_sched_stop_schedule(struct intel_vgpu *vgpu)
{
	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;

	list_del_init(&vgpu_data->lru_list);
	vgpu_data->active = false;
}

static struct intel_gvt_sched_policy_ops tbs_schedule_ops = {
	.init = tbs_sched_init,
	.clean = tbs_sched_clean,
	.init_vgpu = tbs_sched_init_vgpu,
	.clean_vgpu = tbs_sched_clean_vgpu,
	.start_schedule = tbs_sched_start_schedule,
	.stop_schedule = tbs_sched_stop_schedule,
};

int intel_gvt_init_sched_policy(struct intel_gvt *gvt)
{
	int ret;

	mutex_lock(&gvt->sched_lock);
	gvt->scheduler.sched_ops = &tbs_schedule_ops;
	ret = gvt->scheduler.sched_ops->init(gvt);
	mutex_unlock(&gvt->sched_lock);

	return ret;
}

void intel_gvt_clean_sched_policy(struct intel_gvt *gvt)
{
	mutex_lock(&gvt->sched_lock);
	gvt->scheduler.sched_ops->clean(gvt);
	mutex_unlock(&gvt->sched_lock);
}

/* for per-vgpu scheduler policy, there are 2 per-vgpu data:
 * sched_data, and sched_ctl. We see these 2 data as part of
 * the global scheduler which are proteced by gvt->sched_lock.
 * Caller should make their decision if the vgpu_lock should
 * be hold outside.
 */

int intel_vgpu_init_sched_policy(struct intel_vgpu *vgpu)
{
	int ret;

	mutex_lock(&vgpu->gvt->sched_lock);
	ret = vgpu->gvt->scheduler.sched_ops->init_vgpu(vgpu);
	mutex_unlock(&vgpu->gvt->sched_lock);

	return ret;
}

void intel_vgpu_clean_sched_policy(struct intel_vgpu *vgpu)
{
	mutex_lock(&vgpu->gvt->sched_lock);
	vgpu->gvt->scheduler.sched_ops->clean_vgpu(vgpu);
	mutex_unlock(&vgpu->gvt->sched_lock);
}

void intel_vgpu_start_schedule(struct intel_vgpu *vgpu)
{
	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;

	mutex_lock(&vgpu->gvt->sched_lock);
	if (!vgpu_data->active) {
		gvt_dbg_core("vgpu%d: start schedule\n", vgpu->id);
		vgpu->gvt->scheduler.sched_ops->start_schedule(vgpu);
	}
	mutex_unlock(&vgpu->gvt->sched_lock);
}

void intel_gvt_kick_schedule(struct intel_gvt *gvt)
{
	mutex_lock(&gvt->sched_lock);
	intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
	mutex_unlock(&gvt->sched_lock);
}

void intel_vgpu_stop_schedule(struct intel_vgpu *vgpu)
{
	struct intel_gvt_workload_scheduler *scheduler =
		&vgpu->gvt->scheduler;
	int ring_id;
	struct vgpu_sched_data *vgpu_data = vgpu->sched_data;
	struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;

	if (!vgpu_data->active)
		return;

	gvt_dbg_core("vgpu%d: stop schedule\n", vgpu->id);

	mutex_lock(&vgpu->gvt->sched_lock);
	scheduler->sched_ops->stop_schedule(vgpu);

	if (scheduler->next_vgpu == vgpu)
		scheduler->next_vgpu = NULL;

	if (scheduler->current_vgpu == vgpu) {
		/* stop workload dispatching */
		scheduler->need_reschedule = true;
		scheduler->current_vgpu = NULL;
	}

	intel_runtime_pm_get(dev_priv);
	spin_lock_bh(&scheduler->mmio_context_lock);
	for (ring_id = 0; ring_id < I915_NUM_ENGINES; ring_id++) {
		if (scheduler->engine_owner[ring_id] == vgpu) {
			intel_gvt_switch_mmio(vgpu, NULL, ring_id);
			scheduler->engine_owner[ring_id] = NULL;
		}
	}
	spin_unlock_bh(&scheduler->mmio_context_lock);
	intel_runtime_pm_put(dev_priv);
	mutex_unlock(&vgpu->gvt->sched_lock);
}