summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/i915/i915_gem_fence_reg.c
blob: 3084f52e337283cfcab4f03b21786db9573882dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
/*
 * Copyright © 2008-2015 Intel Corporation
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice (including the next
 * paragraph) shall be included in all copies or substantial portions of the
 * Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
 * IN THE SOFTWARE.
 */

#include <drm/i915_drm.h>
#include "i915_drv.h"

/**
 * DOC: fence register handling
 *
 * Important to avoid confusions: "fences" in the i915 driver are not execution
 * fences used to track command completion but hardware detiler objects which
 * wrap a given range of the global GTT. Each platform has only a fairly limited
 * set of these objects.
 *
 * Fences are used to detile GTT memory mappings. They're also connected to the
 * hardware frontbuffer render tracking and hence interact with frontbuffer
 * compression. Furthermore on older platforms fences are required for tiled
 * objects used by the display engine. They can also be used by the render
 * engine - they're required for blitter commands and are optional for render
 * commands. But on gen4+ both display (with the exception of fbc) and rendering
 * have their own tiling state bits and don't need fences.
 *
 * Also note that fences only support X and Y tiling and hence can't be used for
 * the fancier new tiling formats like W, Ys and Yf.
 *
 * Finally note that because fences are such a restricted resource they're
 * dynamically associated with objects. Furthermore fence state is committed to
 * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
 * explicitly call i915_gem_object_get_fence() to synchronize fencing status
 * for cpu access. Also note that some code wants an unfenced view, for those
 * cases the fence can be removed forcefully with i915_gem_object_put_fence().
 *
 * Internally these functions will synchronize with userspace access by removing
 * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
 */

#define pipelined 0

static void i965_write_fence_reg(struct drm_i915_fence_reg *fence,
				 struct i915_vma *vma)
{
	i915_reg_t fence_reg_lo, fence_reg_hi;
	int fence_pitch_shift;
	u64 val;

	if (INTEL_GEN(fence->i915) >= 6) {
		fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
		fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
		fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;

	} else {
		fence_reg_lo = FENCE_REG_965_LO(fence->id);
		fence_reg_hi = FENCE_REG_965_HI(fence->id);
		fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
	}

	val = 0;
	if (vma) {
		unsigned int stride = i915_gem_object_get_stride(vma->obj);

		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
		GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
		GEM_BUG_ON(!IS_ALIGNED(stride, 128));

		val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
		val |= vma->node.start;
		val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
		if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
			val |= BIT(I965_FENCE_TILING_Y_SHIFT);
		val |= I965_FENCE_REG_VALID;
	}

	if (!pipelined) {
		struct drm_i915_private *dev_priv = fence->i915;

		/* To w/a incoherency with non-atomic 64-bit register updates,
		 * we split the 64-bit update into two 32-bit writes. In order
		 * for a partial fence not to be evaluated between writes, we
		 * precede the update with write to turn off the fence register,
		 * and only enable the fence as the last step.
		 *
		 * For extra levels of paranoia, we make sure each step lands
		 * before applying the next step.
		 */
		I915_WRITE(fence_reg_lo, 0);
		POSTING_READ(fence_reg_lo);

		I915_WRITE(fence_reg_hi, upper_32_bits(val));
		I915_WRITE(fence_reg_lo, lower_32_bits(val));
		POSTING_READ(fence_reg_lo);
	}
}

static void i915_write_fence_reg(struct drm_i915_fence_reg *fence,
				 struct i915_vma *vma)
{
	u32 val;

	val = 0;
	if (vma) {
		unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
		bool is_y_tiled = tiling == I915_TILING_Y;
		unsigned int stride = i915_gem_object_get_stride(vma->obj);

		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
		GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
		GEM_BUG_ON(!is_power_of_2(vma->fence_size));
		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));

		if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence->i915))
			stride /= 128;
		else
			stride /= 512;
		GEM_BUG_ON(!is_power_of_2(stride));

		val = vma->node.start;
		if (is_y_tiled)
			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
		val |= I915_FENCE_SIZE_BITS(vma->fence_size);
		val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;

		val |= I830_FENCE_REG_VALID;
	}

	if (!pipelined) {
		struct drm_i915_private *dev_priv = fence->i915;
		i915_reg_t reg = FENCE_REG(fence->id);

		I915_WRITE(reg, val);
		POSTING_READ(reg);
	}
}

static void i830_write_fence_reg(struct drm_i915_fence_reg *fence,
				 struct i915_vma *vma)
{
	u32 val;

	val = 0;
	if (vma) {
		unsigned int stride = i915_gem_object_get_stride(vma->obj);

		GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
		GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
		GEM_BUG_ON(!is_power_of_2(vma->fence_size));
		GEM_BUG_ON(!is_power_of_2(stride / 128));
		GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));

		val = vma->node.start;
		if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
			val |= BIT(I830_FENCE_TILING_Y_SHIFT);
		val |= I830_FENCE_SIZE_BITS(vma->fence_size);
		val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
		val |= I830_FENCE_REG_VALID;
	}

	if (!pipelined) {
		struct drm_i915_private *dev_priv = fence->i915;
		i915_reg_t reg = FENCE_REG(fence->id);

		I915_WRITE(reg, val);
		POSTING_READ(reg);
	}
}

static void fence_write(struct drm_i915_fence_reg *fence,
			struct i915_vma *vma)
{
	/* Previous access through the fence register is marshalled by
	 * the mb() inside the fault handlers (i915_gem_release_mmaps)
	 * and explicitly managed for internal users.
	 */

	if (IS_GEN(fence->i915, 2))
		i830_write_fence_reg(fence, vma);
	else if (IS_GEN(fence->i915, 3))
		i915_write_fence_reg(fence, vma);
	else
		i965_write_fence_reg(fence, vma);

	/* Access through the fenced region afterwards is
	 * ordered by the posting reads whilst writing the registers.
	 */

	fence->dirty = false;
}

static int fence_update(struct drm_i915_fence_reg *fence,
			struct i915_vma *vma)
{
	intel_wakeref_t wakeref;
	struct i915_vma *old;
	int ret;

	if (vma) {
		if (!i915_vma_is_map_and_fenceable(vma))
			return -EINVAL;

		if (WARN(!i915_gem_object_get_stride(vma->obj) ||
			 !i915_gem_object_get_tiling(vma->obj),
			 "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
			 i915_gem_object_get_stride(vma->obj),
			 i915_gem_object_get_tiling(vma->obj)))
			return -EINVAL;

		ret = i915_active_request_retire(&vma->last_fence,
					     &vma->obj->base.dev->struct_mutex);
		if (ret)
			return ret;
	}

	old = xchg(&fence->vma, NULL);
	if (old) {
		ret = i915_active_request_retire(&old->last_fence,
					     &old->obj->base.dev->struct_mutex);
		if (ret) {
			fence->vma = old;
			return ret;
		}

		i915_vma_flush_writes(old);

		/*
		 * Ensure that all userspace CPU access is completed before
		 * stealing the fence.
		 */
		if (old != vma) {
			GEM_BUG_ON(old->fence != fence);
			i915_vma_revoke_mmap(old);
			old->fence = NULL;
		}

		list_move(&fence->link, &fence->i915->mm.fence_list);
	}

	/*
	 * We only need to update the register itself if the device is awake.
	 * If the device is currently powered down, we will defer the write
	 * to the runtime resume, see i915_gem_restore_fences().
	 *
	 * This only works for removing the fence register, on acquisition
	 * the caller must hold the rpm wakeref. The fence register must
	 * be cleared before we can use any other fences to ensure that
	 * the new fences do not overlap the elided clears, confusing HW.
	 */
	wakeref = intel_runtime_pm_get_if_in_use(fence->i915);
	if (!wakeref) {
		GEM_BUG_ON(vma);
		return 0;
	}

	WRITE_ONCE(fence->vma, vma);
	fence_write(fence, vma);

	if (vma) {
		vma->fence = fence;
		list_move_tail(&fence->link, &fence->i915->mm.fence_list);
	}

	intel_runtime_pm_put(fence->i915, wakeref);
	return 0;
}

/**
 * i915_vma_put_fence - force-remove fence for a VMA
 * @vma: vma to map linearly (not through a fence reg)
 *
 * This function force-removes any fence from the given object, which is useful
 * if the kernel wants to do untiled GTT access.
 *
 * Returns:
 *
 * 0 on success, negative error code on failure.
 */
int i915_vma_put_fence(struct i915_vma *vma)
{
	struct drm_i915_fence_reg *fence = vma->fence;

	if (!fence)
		return 0;

	if (fence->pin_count)
		return -EBUSY;

	return fence_update(fence, NULL);
}

static struct drm_i915_fence_reg *fence_find(struct drm_i915_private *dev_priv)
{
	struct drm_i915_fence_reg *fence;

	list_for_each_entry(fence, &dev_priv->mm.fence_list, link) {
		GEM_BUG_ON(fence->vma && fence->vma->fence != fence);

		if (fence->pin_count)
			continue;

		return fence;
	}

	/* Wait for completion of pending flips which consume fences */
	if (intel_has_pending_fb_unpin(dev_priv))
		return ERR_PTR(-EAGAIN);

	return ERR_PTR(-EDEADLK);
}

/**
 * i915_vma_pin_fence - set up fencing for a vma
 * @vma: vma to map through a fence reg
 *
 * When mapping objects through the GTT, userspace wants to be able to write
 * to them without having to worry about swizzling if the object is tiled.
 * This function walks the fence regs looking for a free one for @obj,
 * stealing one if it can't find any.
 *
 * It then sets up the reg based on the object's properties: address, pitch
 * and tiling format.
 *
 * For an untiled surface, this removes any existing fence.
 *
 * Returns:
 *
 * 0 on success, negative error code on failure.
 */
int
i915_vma_pin_fence(struct i915_vma *vma)
{
	struct drm_i915_fence_reg *fence;
	struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
	int err;

	/* Note that we revoke fences on runtime suspend. Therefore the user
	 * must keep the device awake whilst using the fence.
	 */
	assert_rpm_wakelock_held(vma->vm->i915);

	/* Just update our place in the LRU if our fence is getting reused. */
	if (vma->fence) {
		fence = vma->fence;
		GEM_BUG_ON(fence->vma != vma);
		fence->pin_count++;
		if (!fence->dirty) {
			list_move_tail(&fence->link,
				       &fence->i915->mm.fence_list);
			return 0;
		}
	} else if (set) {
		fence = fence_find(vma->vm->i915);
		if (IS_ERR(fence))
			return PTR_ERR(fence);

		GEM_BUG_ON(fence->pin_count);
		fence->pin_count++;
	} else
		return 0;

	err = fence_update(fence, set);
	if (err)
		goto out_unpin;

	GEM_BUG_ON(fence->vma != set);
	GEM_BUG_ON(vma->fence != (set ? fence : NULL));

	if (set)
		return 0;

out_unpin:
	fence->pin_count--;
	return err;
}

/**
 * i915_reserve_fence - Reserve a fence for vGPU
 * @dev_priv: i915 device private
 *
 * This function walks the fence regs looking for a free one and remove
 * it from the fence_list. It is used to reserve fence for vGPU to use.
 */
struct drm_i915_fence_reg *
i915_reserve_fence(struct drm_i915_private *dev_priv)
{
	struct drm_i915_fence_reg *fence;
	int count;
	int ret;

	lockdep_assert_held(&dev_priv->drm.struct_mutex);

	/* Keep at least one fence available for the display engine. */
	count = 0;
	list_for_each_entry(fence, &dev_priv->mm.fence_list, link)
		count += !fence->pin_count;
	if (count <= 1)
		return ERR_PTR(-ENOSPC);

	fence = fence_find(dev_priv);
	if (IS_ERR(fence))
		return fence;

	if (fence->vma) {
		/* Force-remove fence from VMA */
		ret = fence_update(fence, NULL);
		if (ret)
			return ERR_PTR(ret);
	}

	list_del(&fence->link);
	return fence;
}

/**
 * i915_unreserve_fence - Reclaim a reserved fence
 * @fence: the fence reg
 *
 * This function add a reserved fence register from vGPU to the fence_list.
 */
void i915_unreserve_fence(struct drm_i915_fence_reg *fence)
{
	lockdep_assert_held(&fence->i915->drm.struct_mutex);

	list_add(&fence->link, &fence->i915->mm.fence_list);
}

/**
 * i915_gem_restore_fences - restore fence state
 * @dev_priv: i915 device private
 *
 * Restore the hw fence state to match the software tracking again, to be called
 * after a gpu reset and on resume. Note that on runtime suspend we only cancel
 * the fences, to be reacquired by the user later.
 */
void i915_gem_restore_fences(struct drm_i915_private *dev_priv)
{
	int i;

	rcu_read_lock(); /* keep obj alive as we dereference */
	for (i = 0; i < dev_priv->num_fence_regs; i++) {
		struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
		struct i915_vma *vma = READ_ONCE(reg->vma);

		GEM_BUG_ON(vma && vma->fence != reg);

		/*
		 * Commit delayed tiling changes if we have an object still
		 * attached to the fence, otherwise just clear the fence.
		 */
		if (vma && !i915_gem_object_is_tiled(vma->obj))
			vma = NULL;

		fence_write(reg, vma);
	}
	rcu_read_unlock();
}

/**
 * DOC: tiling swizzling details
 *
 * The idea behind tiling is to increase cache hit rates by rearranging
 * pixel data so that a group of pixel accesses are in the same cacheline.
 * Performance improvement from doing this on the back/depth buffer are on
 * the order of 30%.
 *
 * Intel architectures make this somewhat more complicated, though, by
 * adjustments made to addressing of data when the memory is in interleaved
 * mode (matched pairs of DIMMS) to improve memory bandwidth.
 * For interleaved memory, the CPU sends every sequential 64 bytes
 * to an alternate memory channel so it can get the bandwidth from both.
 *
 * The GPU also rearranges its accesses for increased bandwidth to interleaved
 * memory, and it matches what the CPU does for non-tiled.  However, when tiled
 * it does it a little differently, since one walks addresses not just in the
 * X direction but also Y.  So, along with alternating channels when bit
 * 6 of the address flips, it also alternates when other bits flip --  Bits 9
 * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
 * are common to both the 915 and 965-class hardware.
 *
 * The CPU also sometimes XORs in higher bits as well, to improve
 * bandwidth doing strided access like we do so frequently in graphics.  This
 * is called "Channel XOR Randomization" in the MCH documentation.  The result
 * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
 * decode.
 *
 * All of this bit 6 XORing has an effect on our memory management,
 * as we need to make sure that the 3d driver can correctly address object
 * contents.
 *
 * If we don't have interleaved memory, all tiling is safe and no swizzling is
 * required.
 *
 * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
 * 17 is not just a page offset, so as we page an object out and back in,
 * individual pages in it will have different bit 17 addresses, resulting in
 * each 64 bytes being swapped with its neighbor!
 *
 * Otherwise, if interleaved, we have to tell the 3d driver what the address
 * swizzling it needs to do is, since it's writing with the CPU to the pages
 * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
 * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
 * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
 * to match what the GPU expects.
 */

/**
 * i915_gem_detect_bit_6_swizzle - detect bit 6 swizzling pattern
 * @dev_priv: i915 device private
 *
 * Detects bit 6 swizzling of address lookup between IGD access and CPU
 * access through main memory.
 */
void
i915_gem_detect_bit_6_swizzle(struct drm_i915_private *dev_priv)
{
	u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
	u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;

	if (INTEL_GEN(dev_priv) >= 8 || IS_VALLEYVIEW(dev_priv)) {
		/*
		 * On BDW+, swizzling is not used. We leave the CPU memory
		 * controller in charge of optimizing memory accesses without
		 * the extra address manipulation GPU side.
		 *
		 * VLV and CHV don't have GPU swizzling.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
	} else if (INTEL_GEN(dev_priv) >= 6) {
		if (dev_priv->preserve_bios_swizzle) {
			if (I915_READ(DISP_ARB_CTL) &
			    DISP_TILE_SURFACE_SWIZZLING) {
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
			} else {
				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			}
		} else {
			u32 dimm_c0, dimm_c1;
			dimm_c0 = I915_READ(MAD_DIMM_C0);
			dimm_c1 = I915_READ(MAD_DIMM_C1);
			dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
			dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
			/* Enable swizzling when the channels are populated
			 * with identically sized dimms. We don't need to check
			 * the 3rd channel because no cpu with gpu attached
			 * ships in that configuration. Also, swizzling only
			 * makes sense for 2 channels anyway. */
			if (dimm_c0 == dimm_c1) {
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
			} else {
				swizzle_x = I915_BIT_6_SWIZZLE_NONE;
				swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			}
		}
	} else if (IS_GEN(dev_priv, 5)) {
		/* On Ironlake whatever DRAM config, GPU always do
		 * same swizzling setup.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_9_10;
		swizzle_y = I915_BIT_6_SWIZZLE_9;
	} else if (IS_GEN(dev_priv, 2)) {
		/* As far as we know, the 865 doesn't have these bit 6
		 * swizzling issues.
		 */
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
	} else if (IS_G45(dev_priv) || IS_I965G(dev_priv) || IS_G33(dev_priv)) {
		/* The 965, G33, and newer, have a very flexible memory
		 * configuration.  It will enable dual-channel mode
		 * (interleaving) on as much memory as it can, and the GPU
		 * will additionally sometimes enable different bit 6
		 * swizzling for tiled objects from the CPU.
		 *
		 * Here's what I found on the G965:
		 *    slot fill         memory size  swizzling
		 * 0A   0B   1A   1B    1-ch   2-ch
		 * 512  0    0    0     512    0     O
		 * 512  0    512  0     16     1008  X
		 * 512  0    0    512   16     1008  X
		 * 0    512  0    512   16     1008  X
		 * 1024 1024 1024 0     2048   1024  O
		 *
		 * We could probably detect this based on either the DRB
		 * matching, which was the case for the swizzling required in
		 * the table above, or from the 1-ch value being less than
		 * the minimum size of a rank.
		 *
		 * Reports indicate that the swizzling actually
		 * varies depending upon page placement inside the
		 * channels, i.e. we see swizzled pages where the
		 * banks of memory are paired and unswizzled on the
		 * uneven portion, so leave that as unknown.
		 */
		if (I915_READ16(C0DRB3) == I915_READ16(C1DRB3)) {
			swizzle_x = I915_BIT_6_SWIZZLE_9_10;
			swizzle_y = I915_BIT_6_SWIZZLE_9;
		}
	} else {
		u32 dcc;

		/* On 9xx chipsets, channel interleave by the CPU is
		 * determined by DCC.  For single-channel, neither the CPU
		 * nor the GPU do swizzling.  For dual channel interleaved,
		 * the GPU's interleave is bit 9 and 10 for X tiled, and bit
		 * 9 for Y tiled.  The CPU's interleave is independent, and
		 * can be based on either bit 11 (haven't seen this yet) or
		 * bit 17 (common).
		 */
		dcc = I915_READ(DCC);
		switch (dcc & DCC_ADDRESSING_MODE_MASK) {
		case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
			swizzle_x = I915_BIT_6_SWIZZLE_NONE;
			swizzle_y = I915_BIT_6_SWIZZLE_NONE;
			break;
		case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
			if (dcc & DCC_CHANNEL_XOR_DISABLE) {
				/* This is the base swizzling by the GPU for
				 * tiled buffers.
				 */
				swizzle_x = I915_BIT_6_SWIZZLE_9_10;
				swizzle_y = I915_BIT_6_SWIZZLE_9;
			} else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
				/* Bit 11 swizzling by the CPU in addition. */
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
				swizzle_y = I915_BIT_6_SWIZZLE_9_11;
			} else {
				/* Bit 17 swizzling by the CPU in addition. */
				swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
				swizzle_y = I915_BIT_6_SWIZZLE_9_17;
			}
			break;
		}

		/* check for L-shaped memory aka modified enhanced addressing */
		if (IS_GEN(dev_priv, 4) &&
		    !(I915_READ(DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
		}

		if (dcc == 0xffffffff) {
			DRM_ERROR("Couldn't read from MCHBAR.  "
				  "Disabling tiling.\n");
			swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
			swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
		}
	}

	if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
	    swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
		/* Userspace likes to explode if it sees unknown swizzling,
		 * so lie. We will finish the lie when reporting through
		 * the get-tiling-ioctl by reporting the physical swizzle
		 * mode as unknown instead.
		 *
		 * As we don't strictly know what the swizzling is, it may be
		 * bit17 dependent, and so we need to also prevent the pages
		 * from being moved.
		 */
		dev_priv->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
		swizzle_x = I915_BIT_6_SWIZZLE_NONE;
		swizzle_y = I915_BIT_6_SWIZZLE_NONE;
	}

	dev_priv->mm.bit_6_swizzle_x = swizzle_x;
	dev_priv->mm.bit_6_swizzle_y = swizzle_y;
}

/*
 * Swap every 64 bytes of this page around, to account for it having a new
 * bit 17 of its physical address and therefore being interpreted differently
 * by the GPU.
 */
static void
i915_gem_swizzle_page(struct page *page)
{
	char temp[64];
	char *vaddr;
	int i;

	vaddr = kmap(page);

	for (i = 0; i < PAGE_SIZE; i += 128) {
		memcpy(temp, &vaddr[i], 64);
		memcpy(&vaddr[i], &vaddr[i + 64], 64);
		memcpy(&vaddr[i + 64], temp, 64);
	}

	kunmap(page);
}

/**
 * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
 * @obj: i915 GEM buffer object
 * @pages: the scattergather list of physical pages
 *
 * This function fixes up the swizzling in case any page frame number for this
 * object has changed in bit 17 since that state has been saved with
 * i915_gem_object_save_bit_17_swizzle().
 *
 * This is called when pinning backing storage again, since the kernel is free
 * to move unpinned backing storage around (either by directly moving pages or
 * by swapping them out and back in again).
 */
void
i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
				  struct sg_table *pages)
{
	struct sgt_iter sgt_iter;
	struct page *page;
	int i;

	if (obj->bit_17 == NULL)
		return;

	i = 0;
	for_each_sgt_page(page, sgt_iter, pages) {
		char new_bit_17 = page_to_phys(page) >> 17;
		if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
			i915_gem_swizzle_page(page);
			set_page_dirty(page);
		}
		i++;
	}
}

/**
 * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
 * @obj: i915 GEM buffer object
 * @pages: the scattergather list of physical pages
 *
 * This function saves the bit 17 of each page frame number so that swizzling
 * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
 * be called before the backing storage can be unpinned.
 */
void
i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
				    struct sg_table *pages)
{
	const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
	struct sgt_iter sgt_iter;
	struct page *page;
	int i;

	if (obj->bit_17 == NULL) {
		obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
		if (obj->bit_17 == NULL) {
			DRM_ERROR("Failed to allocate memory for bit 17 "
				  "record\n");
			return;
		}
	}

	i = 0;

	for_each_sgt_page(page, sgt_iter, pages) {
		if (page_to_phys(page) & (1 << 17))
			__set_bit(i, obj->bit_17);
		else
			__clear_bit(i, obj->bit_17);
		i++;
	}
}