summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/radeon/radeon_kfd.c
blob: e476c331f3fa6e3c91d4a5203f0aab8829028dfa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
/*
 * Copyright 2014 Advanced Micro Devices, Inc.
 *
 * Permission is hereby granted, free of charge, to any person obtaining a
 * copy of this software and associated documentation files (the "Software"),
 * to deal in the Software without restriction, including without limitation
 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
 * and/or sell copies of the Software, and to permit persons to whom the
 * Software is furnished to do so, subject to the following conditions:
 *
 * The above copyright notice and this permission notice shall be included in
 * all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
 * OTHER DEALINGS IN THE SOFTWARE.
 */

#include <linux/module.h>
#include <linux/fdtable.h>
#include <linux/uaccess.h>
#include <drm/drmP.h>
#include "radeon.h"
#include "cikd.h"
#include "cik_reg.h"
#include "radeon_kfd.h"
#include "radeon_ucode.h"
#include <linux/firmware.h>
#include "cik_structs.h"

#define CIK_PIPE_PER_MEC	(4)

static const uint32_t watchRegs[MAX_WATCH_ADDRESSES * ADDRESS_WATCH_REG_MAX] = {
	TCP_WATCH0_ADDR_H, TCP_WATCH0_ADDR_L, TCP_WATCH0_CNTL,
	TCP_WATCH1_ADDR_H, TCP_WATCH1_ADDR_L, TCP_WATCH1_CNTL,
	TCP_WATCH2_ADDR_H, TCP_WATCH2_ADDR_L, TCP_WATCH2_CNTL,
	TCP_WATCH3_ADDR_H, TCP_WATCH3_ADDR_L, TCP_WATCH3_CNTL
};

struct kgd_mem {
	struct radeon_bo *bo;
	uint64_t gpu_addr;
	void *cpu_ptr;
};


static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
			void **mem_obj, uint64_t *gpu_addr,
			void **cpu_ptr);

static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj);

static uint64_t get_vmem_size(struct kgd_dev *kgd);
static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd);

static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd);
static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type);

/*
 * Register access functions
 */

static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
		uint32_t sh_mem_config,	uint32_t sh_mem_ape1_base,
		uint32_t sh_mem_ape1_limit, uint32_t sh_mem_bases);

static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
					unsigned int vmid);

static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t hpd_size, uint64_t hpd_gpu_addr);
static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id);
static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
			uint32_t queue_id, uint32_t __user *wptr);
static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd);
static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
				uint32_t pipe_id, uint32_t queue_id);

static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
				unsigned int timeout, uint32_t pipe_id,
				uint32_t queue_id);
static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd);
static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
				unsigned int timeout);
static int kgd_address_watch_disable(struct kgd_dev *kgd);
static int kgd_address_watch_execute(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					uint32_t cntl_val,
					uint32_t addr_hi,
					uint32_t addr_lo);
static int kgd_wave_control_execute(struct kgd_dev *kgd,
					uint32_t gfx_index_val,
					uint32_t sq_cmd);
static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					unsigned int reg_offset);

static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid);
static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
							uint8_t vmid);
static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid);

static const struct kfd2kgd_calls kfd2kgd = {
	.init_gtt_mem_allocation = alloc_gtt_mem,
	.free_gtt_mem = free_gtt_mem,
	.get_vmem_size = get_vmem_size,
	.get_gpu_clock_counter = get_gpu_clock_counter,
	.get_max_engine_clock_in_mhz = get_max_engine_clock_in_mhz,
	.program_sh_mem_settings = kgd_program_sh_mem_settings,
	.set_pasid_vmid_mapping = kgd_set_pasid_vmid_mapping,
	.init_pipeline = kgd_init_pipeline,
	.init_interrupts = kgd_init_interrupts,
	.hqd_load = kgd_hqd_load,
	.hqd_sdma_load = kgd_hqd_sdma_load,
	.hqd_is_occupied = kgd_hqd_is_occupied,
	.hqd_sdma_is_occupied = kgd_hqd_sdma_is_occupied,
	.hqd_destroy = kgd_hqd_destroy,
	.hqd_sdma_destroy = kgd_hqd_sdma_destroy,
	.address_watch_disable = kgd_address_watch_disable,
	.address_watch_execute = kgd_address_watch_execute,
	.wave_control_execute = kgd_wave_control_execute,
	.address_watch_get_offset = kgd_address_watch_get_offset,
	.get_atc_vmid_pasid_mapping_pasid = get_atc_vmid_pasid_mapping_pasid,
	.get_atc_vmid_pasid_mapping_valid = get_atc_vmid_pasid_mapping_valid,
	.write_vmid_invalidate_request = write_vmid_invalidate_request,
	.get_fw_version = get_fw_version
};

static const struct kgd2kfd_calls *kgd2kfd;

bool radeon_kfd_init(void)
{
#if defined(CONFIG_HSA_AMD_MODULE)
	bool (*kgd2kfd_init_p)(unsigned, const struct kgd2kfd_calls**);

	kgd2kfd_init_p = symbol_request(kgd2kfd_init);

	if (kgd2kfd_init_p == NULL)
		return false;

	if (!kgd2kfd_init_p(KFD_INTERFACE_VERSION, &kgd2kfd)) {
		symbol_put(kgd2kfd_init);
		kgd2kfd = NULL;

		return false;
	}

	return true;
#elif defined(CONFIG_HSA_AMD)
	if (!kgd2kfd_init(KFD_INTERFACE_VERSION, &kgd2kfd)) {
		kgd2kfd = NULL;

		return false;
	}

	return true;
#else
	return false;
#endif
}

void radeon_kfd_fini(void)
{
	if (kgd2kfd) {
		kgd2kfd->exit();
		symbol_put(kgd2kfd_init);
	}
}

void radeon_kfd_device_probe(struct radeon_device *rdev)
{
	if (kgd2kfd)
		rdev->kfd = kgd2kfd->probe((struct kgd_dev *)rdev,
			rdev->pdev, &kfd2kgd);
}

void radeon_kfd_device_init(struct radeon_device *rdev)
{
	if (rdev->kfd) {
		struct kgd2kfd_shared_resources gpu_resources = {
			.compute_vmid_bitmap = 0xFF00,

			.first_compute_pipe = 1,
			.compute_pipe_count = 4 - 1,
		};

		radeon_doorbell_get_kfd_info(rdev,
				&gpu_resources.doorbell_physical_address,
				&gpu_resources.doorbell_aperture_size,
				&gpu_resources.doorbell_start_offset);

		kgd2kfd->device_init(rdev->kfd, &gpu_resources);
	}
}

void radeon_kfd_device_fini(struct radeon_device *rdev)
{
	if (rdev->kfd) {
		kgd2kfd->device_exit(rdev->kfd);
		rdev->kfd = NULL;
	}
}

void radeon_kfd_interrupt(struct radeon_device *rdev, const void *ih_ring_entry)
{
	if (rdev->kfd)
		kgd2kfd->interrupt(rdev->kfd, ih_ring_entry);
}

void radeon_kfd_suspend(struct radeon_device *rdev)
{
	if (rdev->kfd)
		kgd2kfd->suspend(rdev->kfd);
}

int radeon_kfd_resume(struct radeon_device *rdev)
{
	int r = 0;

	if (rdev->kfd)
		r = kgd2kfd->resume(rdev->kfd);

	return r;
}

static int alloc_gtt_mem(struct kgd_dev *kgd, size_t size,
			void **mem_obj, uint64_t *gpu_addr,
			void **cpu_ptr)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;
	struct kgd_mem **mem = (struct kgd_mem **) mem_obj;
	int r;

	BUG_ON(kgd == NULL);
	BUG_ON(gpu_addr == NULL);
	BUG_ON(cpu_ptr == NULL);

	*mem = kmalloc(sizeof(struct kgd_mem), GFP_KERNEL);
	if ((*mem) == NULL)
		return -ENOMEM;

	r = radeon_bo_create(rdev, size, PAGE_SIZE, true, RADEON_GEM_DOMAIN_GTT,
				RADEON_GEM_GTT_WC, NULL, NULL, &(*mem)->bo);
	if (r) {
		dev_err(rdev->dev,
			"failed to allocate BO for amdkfd (%d)\n", r);
		return r;
	}

	/* map the buffer */
	r = radeon_bo_reserve((*mem)->bo, true);
	if (r) {
		dev_err(rdev->dev, "(%d) failed to reserve bo for amdkfd\n", r);
		goto allocate_mem_reserve_bo_failed;
	}

	r = radeon_bo_pin((*mem)->bo, RADEON_GEM_DOMAIN_GTT,
				&(*mem)->gpu_addr);
	if (r) {
		dev_err(rdev->dev, "(%d) failed to pin bo for amdkfd\n", r);
		goto allocate_mem_pin_bo_failed;
	}
	*gpu_addr = (*mem)->gpu_addr;

	r = radeon_bo_kmap((*mem)->bo, &(*mem)->cpu_ptr);
	if (r) {
		dev_err(rdev->dev,
			"(%d) failed to map bo to kernel for amdkfd\n", r);
		goto allocate_mem_kmap_bo_failed;
	}
	*cpu_ptr = (*mem)->cpu_ptr;

	radeon_bo_unreserve((*mem)->bo);

	return 0;

allocate_mem_kmap_bo_failed:
	radeon_bo_unpin((*mem)->bo);
allocate_mem_pin_bo_failed:
	radeon_bo_unreserve((*mem)->bo);
allocate_mem_reserve_bo_failed:
	radeon_bo_unref(&(*mem)->bo);

	return r;
}

static void free_gtt_mem(struct kgd_dev *kgd, void *mem_obj)
{
	struct kgd_mem *mem = (struct kgd_mem *) mem_obj;

	BUG_ON(mem == NULL);

	radeon_bo_reserve(mem->bo, true);
	radeon_bo_kunmap(mem->bo);
	radeon_bo_unpin(mem->bo);
	radeon_bo_unreserve(mem->bo);
	radeon_bo_unref(&(mem->bo));
	kfree(mem);
}

static uint64_t get_vmem_size(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;

	BUG_ON(kgd == NULL);

	return rdev->mc.real_vram_size;
}

static uint64_t get_gpu_clock_counter(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;

	return rdev->asic->get_gpu_clock_counter(rdev);
}

static uint32_t get_max_engine_clock_in_mhz(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = (struct radeon_device *)kgd;

	/* The sclk is in quantas of 10kHz */
	return rdev->pm.dpm.dyn_state.max_clock_voltage_on_ac.sclk / 100;
}

static inline struct radeon_device *get_radeon_device(struct kgd_dev *kgd)
{
	return (struct radeon_device *)kgd;
}

static void write_register(struct kgd_dev *kgd, uint32_t offset, uint32_t value)
{
	struct radeon_device *rdev = get_radeon_device(kgd);

	writel(value, (void __iomem *)(rdev->rmmio + offset));
}

static uint32_t read_register(struct kgd_dev *kgd, uint32_t offset)
{
	struct radeon_device *rdev = get_radeon_device(kgd);

	return readl((void __iomem *)(rdev->rmmio + offset));
}

static void lock_srbm(struct kgd_dev *kgd, uint32_t mec, uint32_t pipe,
			uint32_t queue, uint32_t vmid)
{
	struct radeon_device *rdev = get_radeon_device(kgd);
	uint32_t value = PIPEID(pipe) | MEID(mec) | VMID(vmid) | QUEUEID(queue);

	mutex_lock(&rdev->srbm_mutex);
	write_register(kgd, SRBM_GFX_CNTL, value);
}

static void unlock_srbm(struct kgd_dev *kgd)
{
	struct radeon_device *rdev = get_radeon_device(kgd);

	write_register(kgd, SRBM_GFX_CNTL, 0);
	mutex_unlock(&rdev->srbm_mutex);
}

static void acquire_queue(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t queue_id)
{
	uint32_t mec = (++pipe_id / CIK_PIPE_PER_MEC) + 1;
	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);

	lock_srbm(kgd, mec, pipe, queue_id, 0);
}

static void release_queue(struct kgd_dev *kgd)
{
	unlock_srbm(kgd);
}

static void kgd_program_sh_mem_settings(struct kgd_dev *kgd, uint32_t vmid,
					uint32_t sh_mem_config,
					uint32_t sh_mem_ape1_base,
					uint32_t sh_mem_ape1_limit,
					uint32_t sh_mem_bases)
{
	lock_srbm(kgd, 0, 0, 0, vmid);

	write_register(kgd, SH_MEM_CONFIG, sh_mem_config);
	write_register(kgd, SH_MEM_APE1_BASE, sh_mem_ape1_base);
	write_register(kgd, SH_MEM_APE1_LIMIT, sh_mem_ape1_limit);
	write_register(kgd, SH_MEM_BASES, sh_mem_bases);

	unlock_srbm(kgd);
}

static int kgd_set_pasid_vmid_mapping(struct kgd_dev *kgd, unsigned int pasid,
					unsigned int vmid)
{
	/*
	 * We have to assume that there is no outstanding mapping.
	 * The ATC_VMID_PASID_MAPPING_UPDATE_STATUS bit could be 0
	 * because a mapping is in progress or because a mapping finished and
	 * the SW cleared it.
	 * So the protocol is to always wait & clear.
	 */
	uint32_t pasid_mapping = (pasid == 0) ? 0 : (uint32_t)pasid |
					ATC_VMID_PASID_MAPPING_VALID_MASK;

	write_register(kgd, ATC_VMID0_PASID_MAPPING + vmid*sizeof(uint32_t),
			pasid_mapping);

	while (!(read_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS) &
								(1U << vmid)))
		cpu_relax();
	write_register(kgd, ATC_VMID_PASID_MAPPING_UPDATE_STATUS, 1U << vmid);

	/* Mapping vmid to pasid also for IH block */
	write_register(kgd, IH_VMID_0_LUT + vmid * sizeof(uint32_t),
			pasid_mapping);

	return 0;
}

static int kgd_init_pipeline(struct kgd_dev *kgd, uint32_t pipe_id,
				uint32_t hpd_size, uint64_t hpd_gpu_addr)
{
	uint32_t mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
	uint32_t pipe = (pipe_id % CIK_PIPE_PER_MEC);

	lock_srbm(kgd, mec, pipe, 0, 0);
	write_register(kgd, CP_HPD_EOP_BASE_ADDR,
			lower_32_bits(hpd_gpu_addr >> 8));
	write_register(kgd, CP_HPD_EOP_BASE_ADDR_HI,
			upper_32_bits(hpd_gpu_addr >> 8));
	write_register(kgd, CP_HPD_EOP_VMID, 0);
	write_register(kgd, CP_HPD_EOP_CONTROL, hpd_size);
	unlock_srbm(kgd);

	return 0;
}

static int kgd_init_interrupts(struct kgd_dev *kgd, uint32_t pipe_id)
{
	uint32_t mec;
	uint32_t pipe;

	mec = (pipe_id / CIK_PIPE_PER_MEC) + 1;
	pipe = (pipe_id % CIK_PIPE_PER_MEC);

	lock_srbm(kgd, mec, pipe, 0, 0);

	write_register(kgd, CPC_INT_CNTL,
			TIME_STAMP_INT_ENABLE | OPCODE_ERROR_INT_ENABLE);

	unlock_srbm(kgd);

	return 0;
}

static inline uint32_t get_sdma_base_addr(struct cik_sdma_rlc_registers *m)
{
	uint32_t retval;

	retval = m->sdma_engine_id * SDMA1_REGISTER_OFFSET +
			m->sdma_queue_id * KFD_CIK_SDMA_QUEUE_OFFSET;

	pr_debug("kfd: sdma base address: 0x%x\n", retval);

	return retval;
}

static inline struct cik_mqd *get_mqd(void *mqd)
{
	return (struct cik_mqd *)mqd;
}

static inline struct cik_sdma_rlc_registers *get_sdma_mqd(void *mqd)
{
	return (struct cik_sdma_rlc_registers *)mqd;
}

static int kgd_hqd_load(struct kgd_dev *kgd, void *mqd, uint32_t pipe_id,
			uint32_t queue_id, uint32_t __user *wptr)
{
	uint32_t wptr_shadow, is_wptr_shadow_valid;
	struct cik_mqd *m;

	m = get_mqd(mqd);

	is_wptr_shadow_valid = !get_user(wptr_shadow, wptr);

	acquire_queue(kgd, pipe_id, queue_id);
	write_register(kgd, CP_MQD_BASE_ADDR, m->cp_mqd_base_addr_lo);
	write_register(kgd, CP_MQD_BASE_ADDR_HI, m->cp_mqd_base_addr_hi);
	write_register(kgd, CP_MQD_CONTROL, m->cp_mqd_control);

	write_register(kgd, CP_HQD_PQ_BASE, m->cp_hqd_pq_base_lo);
	write_register(kgd, CP_HQD_PQ_BASE_HI, m->cp_hqd_pq_base_hi);
	write_register(kgd, CP_HQD_PQ_CONTROL, m->cp_hqd_pq_control);

	write_register(kgd, CP_HQD_IB_CONTROL, m->cp_hqd_ib_control);
	write_register(kgd, CP_HQD_IB_BASE_ADDR, m->cp_hqd_ib_base_addr_lo);
	write_register(kgd, CP_HQD_IB_BASE_ADDR_HI, m->cp_hqd_ib_base_addr_hi);

	write_register(kgd, CP_HQD_IB_RPTR, m->cp_hqd_ib_rptr);

	write_register(kgd, CP_HQD_PERSISTENT_STATE,
			m->cp_hqd_persistent_state);
	write_register(kgd, CP_HQD_SEMA_CMD, m->cp_hqd_sema_cmd);
	write_register(kgd, CP_HQD_MSG_TYPE, m->cp_hqd_msg_type);

	write_register(kgd, CP_HQD_ATOMIC0_PREOP_LO,
			m->cp_hqd_atomic0_preop_lo);

	write_register(kgd, CP_HQD_ATOMIC0_PREOP_HI,
			m->cp_hqd_atomic0_preop_hi);

	write_register(kgd, CP_HQD_ATOMIC1_PREOP_LO,
			m->cp_hqd_atomic1_preop_lo);

	write_register(kgd, CP_HQD_ATOMIC1_PREOP_HI,
			m->cp_hqd_atomic1_preop_hi);

	write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR,
			m->cp_hqd_pq_rptr_report_addr_lo);

	write_register(kgd, CP_HQD_PQ_RPTR_REPORT_ADDR_HI,
			m->cp_hqd_pq_rptr_report_addr_hi);

	write_register(kgd, CP_HQD_PQ_RPTR, m->cp_hqd_pq_rptr);

	write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR,
			m->cp_hqd_pq_wptr_poll_addr_lo);

	write_register(kgd, CP_HQD_PQ_WPTR_POLL_ADDR_HI,
			m->cp_hqd_pq_wptr_poll_addr_hi);

	write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL,
			m->cp_hqd_pq_doorbell_control);

	write_register(kgd, CP_HQD_VMID, m->cp_hqd_vmid);

	write_register(kgd, CP_HQD_QUANTUM, m->cp_hqd_quantum);

	write_register(kgd, CP_HQD_PIPE_PRIORITY, m->cp_hqd_pipe_priority);
	write_register(kgd, CP_HQD_QUEUE_PRIORITY, m->cp_hqd_queue_priority);

	write_register(kgd, CP_HQD_IQ_RPTR, m->cp_hqd_iq_rptr);

	if (is_wptr_shadow_valid)
		write_register(kgd, CP_HQD_PQ_WPTR, wptr_shadow);

	write_register(kgd, CP_HQD_ACTIVE, m->cp_hqd_active);
	release_queue(kgd);

	return 0;
}

static int kgd_hqd_sdma_load(struct kgd_dev *kgd, void *mqd)
{
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_VIRTUAL_ADDR,
			m->sdma_rlc_virtual_addr);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_BASE,
			m->sdma_rlc_rb_base);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_BASE_HI,
			m->sdma_rlc_rb_base_hi);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_LO,
			m->sdma_rlc_rb_rptr_addr_lo);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_RPTR_ADDR_HI,
			m->sdma_rlc_rb_rptr_addr_hi);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_DOORBELL,
			m->sdma_rlc_doorbell);

	write_register(kgd,
			sdma_base_addr + SDMA0_RLC0_RB_CNTL,
			m->sdma_rlc_rb_cntl);

	return 0;
}

static bool kgd_hqd_is_occupied(struct kgd_dev *kgd, uint64_t queue_address,
				uint32_t pipe_id, uint32_t queue_id)
{
	uint32_t act;
	bool retval = false;
	uint32_t low, high;

	acquire_queue(kgd, pipe_id, queue_id);
	act = read_register(kgd, CP_HQD_ACTIVE);
	if (act) {
		low = lower_32_bits(queue_address >> 8);
		high = upper_32_bits(queue_address >> 8);

		if (low == read_register(kgd, CP_HQD_PQ_BASE) &&
				high == read_register(kgd, CP_HQD_PQ_BASE_HI))
			retval = true;
	}
	release_queue(kgd);
	return retval;
}

static bool kgd_hqd_sdma_is_occupied(struct kgd_dev *kgd, void *mqd)
{
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;
	uint32_t sdma_rlc_rb_cntl;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	sdma_rlc_rb_cntl = read_register(kgd,
					sdma_base_addr + SDMA0_RLC0_RB_CNTL);

	if (sdma_rlc_rb_cntl & SDMA_RB_ENABLE)
		return true;

	return false;
}

static int kgd_hqd_destroy(struct kgd_dev *kgd, uint32_t reset_type,
				unsigned int timeout, uint32_t pipe_id,
				uint32_t queue_id)
{
	uint32_t temp;

	acquire_queue(kgd, pipe_id, queue_id);
	write_register(kgd, CP_HQD_PQ_DOORBELL_CONTROL, 0);

	write_register(kgd, CP_HQD_DEQUEUE_REQUEST, reset_type);

	while (true) {
		temp = read_register(kgd, CP_HQD_ACTIVE);
		if (temp & 0x1)
			break;
		if (timeout == 0) {
			pr_err("kfd: cp queue preemption time out (%dms)\n",
				temp);
			release_queue(kgd);
			return -ETIME;
		}
		msleep(20);
		timeout -= 20;
	}

	release_queue(kgd);
	return 0;
}

static int kgd_hqd_sdma_destroy(struct kgd_dev *kgd, void *mqd,
				unsigned int timeout)
{
	struct cik_sdma_rlc_registers *m;
	uint32_t sdma_base_addr;
	uint32_t temp;

	m = get_sdma_mqd(mqd);
	sdma_base_addr = get_sdma_base_addr(m);

	temp = read_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL);
	temp = temp & ~SDMA_RB_ENABLE;
	write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_CNTL, temp);

	while (true) {
		temp = read_register(kgd, sdma_base_addr +
						SDMA0_RLC0_CONTEXT_STATUS);
		if (temp & SDMA_RLC_IDLE)
			break;
		if (timeout == 0)
			return -ETIME;
		msleep(20);
		timeout -= 20;
	}

	write_register(kgd, sdma_base_addr + SDMA0_RLC0_DOORBELL, 0);
	write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_RPTR, 0);
	write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_WPTR, 0);
	write_register(kgd, sdma_base_addr + SDMA0_RLC0_RB_BASE, 0);

	return 0;
}

static int kgd_address_watch_disable(struct kgd_dev *kgd)
{
	union TCP_WATCH_CNTL_BITS cntl;
	unsigned int i;

	cntl.u32All = 0;

	cntl.bitfields.valid = 0;
	cntl.bitfields.mask = ADDRESS_WATCH_REG_CNTL_DEFAULT_MASK;
	cntl.bitfields.atc = 1;

	/* Turning off this address until we set all the registers */
	for (i = 0; i < MAX_WATCH_ADDRESSES; i++)
		write_register(kgd,
				watchRegs[i * ADDRESS_WATCH_REG_MAX +
					ADDRESS_WATCH_REG_CNTL],
				cntl.u32All);

	return 0;
}

static int kgd_address_watch_execute(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					uint32_t cntl_val,
					uint32_t addr_hi,
					uint32_t addr_lo)
{
	union TCP_WATCH_CNTL_BITS cntl;

	cntl.u32All = cntl_val;

	/* Turning off this watch point until we set all the registers */
	cntl.bitfields.valid = 0;
	write_register(kgd,
			watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
				ADDRESS_WATCH_REG_CNTL],
			cntl.u32All);

	write_register(kgd,
			watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
				ADDRESS_WATCH_REG_ADDR_HI],
			addr_hi);

	write_register(kgd,
			watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
				ADDRESS_WATCH_REG_ADDR_LO],
			addr_lo);

	/* Enable the watch point */
	cntl.bitfields.valid = 1;

	write_register(kgd,
			watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX +
				ADDRESS_WATCH_REG_CNTL],
			cntl.u32All);

	return 0;
}

static int kgd_wave_control_execute(struct kgd_dev *kgd,
					uint32_t gfx_index_val,
					uint32_t sq_cmd)
{
	struct radeon_device *rdev = get_radeon_device(kgd);
	uint32_t data;

	mutex_lock(&rdev->grbm_idx_mutex);

	write_register(kgd, GRBM_GFX_INDEX, gfx_index_val);
	write_register(kgd, SQ_CMD, sq_cmd);

	/*  Restore the GRBM_GFX_INDEX register  */

	data = INSTANCE_BROADCAST_WRITES | SH_BROADCAST_WRITES |
		SE_BROADCAST_WRITES;

	write_register(kgd, GRBM_GFX_INDEX, data);

	mutex_unlock(&rdev->grbm_idx_mutex);

	return 0;
}

static uint32_t kgd_address_watch_get_offset(struct kgd_dev *kgd,
					unsigned int watch_point_id,
					unsigned int reg_offset)
{
	return watchRegs[watch_point_id * ADDRESS_WATCH_REG_MAX + reg_offset];
}

static bool get_atc_vmid_pasid_mapping_valid(struct kgd_dev *kgd, uint8_t vmid)
{
	uint32_t reg;
	struct radeon_device *rdev = (struct radeon_device *) kgd;

	reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
	return reg & ATC_VMID_PASID_MAPPING_VALID_MASK;
}

static uint16_t get_atc_vmid_pasid_mapping_pasid(struct kgd_dev *kgd,
							uint8_t vmid)
{
	uint32_t reg;
	struct radeon_device *rdev = (struct radeon_device *) kgd;

	reg = RREG32(ATC_VMID0_PASID_MAPPING + vmid*4);
	return reg & ATC_VMID_PASID_MAPPING_PASID_MASK;
}

static void write_vmid_invalidate_request(struct kgd_dev *kgd, uint8_t vmid)
{
	struct radeon_device *rdev = (struct radeon_device *) kgd;

	return WREG32(VM_INVALIDATE_REQUEST, 1 << vmid);
}

static uint16_t get_fw_version(struct kgd_dev *kgd, enum kgd_engine_type type)
{
	struct radeon_device *rdev = (struct radeon_device *) kgd;
	const union radeon_firmware_header *hdr;

	BUG_ON(kgd == NULL || rdev->mec_fw == NULL);

	switch (type) {
	case KGD_ENGINE_PFP:
		hdr = (const union radeon_firmware_header *) rdev->pfp_fw->data;
		break;

	case KGD_ENGINE_ME:
		hdr = (const union radeon_firmware_header *) rdev->me_fw->data;
		break;

	case KGD_ENGINE_CE:
		hdr = (const union radeon_firmware_header *) rdev->ce_fw->data;
		break;

	case KGD_ENGINE_MEC1:
		hdr = (const union radeon_firmware_header *) rdev->mec_fw->data;
		break;

	case KGD_ENGINE_MEC2:
		hdr = (const union radeon_firmware_header *)
							rdev->mec2_fw->data;
		break;

	case KGD_ENGINE_RLC:
		hdr = (const union radeon_firmware_header *) rdev->rlc_fw->data;
		break;

	case KGD_ENGINE_SDMA:
		hdr = (const union radeon_firmware_header *)
							rdev->sdma_fw->data;
		break;

	default:
		return 0;
	}

	if (hdr == NULL)
		return 0;

	/* Only 12 bit in use*/
	return hdr->common.ucode_version;
}