summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/rcar-du/rcar_du_crtc.c
blob: fe86a3e67757124bd39f9a15d2737ad284216bdf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
// SPDX-License-Identifier: GPL-2.0+
/*
 * rcar_du_crtc.c  --  R-Car Display Unit CRTCs
 *
 * Copyright (C) 2013-2015 Renesas Electronics Corporation
 *
 * Contact: Laurent Pinchart (laurent.pinchart@ideasonboard.com)
 */

#include <linux/clk.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/sys_soc.h>

#include <drm/drm_atomic.h>
#include <drm/drm_atomic_helper.h>
#include <drm/drm_bridge.h>
#include <drm/drm_crtc.h>
#include <drm/drm_device.h>
#include <drm/drm_fb_cma_helper.h>
#include <drm/drm_gem_cma_helper.h>
#include <drm/drm_plane_helper.h>
#include <drm/drm_vblank.h>

#include "rcar_cmm.h"
#include "rcar_du_crtc.h"
#include "rcar_du_drv.h"
#include "rcar_du_encoder.h"
#include "rcar_du_kms.h"
#include "rcar_du_plane.h"
#include "rcar_du_regs.h"
#include "rcar_du_vsp.h"
#include "rcar_lvds.h"

static u32 rcar_du_crtc_read(struct rcar_du_crtc *rcrtc, u32 reg)
{
	struct rcar_du_device *rcdu = rcrtc->dev;

	return rcar_du_read(rcdu, rcrtc->mmio_offset + reg);
}

static void rcar_du_crtc_write(struct rcar_du_crtc *rcrtc, u32 reg, u32 data)
{
	struct rcar_du_device *rcdu = rcrtc->dev;

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg, data);
}

static void rcar_du_crtc_clr(struct rcar_du_crtc *rcrtc, u32 reg, u32 clr)
{
	struct rcar_du_device *rcdu = rcrtc->dev;

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) & ~clr);
}

static void rcar_du_crtc_set(struct rcar_du_crtc *rcrtc, u32 reg, u32 set)
{
	struct rcar_du_device *rcdu = rcrtc->dev;

	rcar_du_write(rcdu, rcrtc->mmio_offset + reg,
		      rcar_du_read(rcdu, rcrtc->mmio_offset + reg) | set);
}

void rcar_du_crtc_dsysr_clr_set(struct rcar_du_crtc *rcrtc, u32 clr, u32 set)
{
	struct rcar_du_device *rcdu = rcrtc->dev;

	rcrtc->dsysr = (rcrtc->dsysr & ~clr) | set;
	rcar_du_write(rcdu, rcrtc->mmio_offset + DSYSR, rcrtc->dsysr);
}

/* -----------------------------------------------------------------------------
 * Hardware Setup
 */

struct dpll_info {
	unsigned int output;
	unsigned int fdpll;
	unsigned int n;
	unsigned int m;
};

static void rcar_du_dpll_divider(struct rcar_du_crtc *rcrtc,
				 struct dpll_info *dpll,
				 unsigned long input,
				 unsigned long target)
{
	unsigned long best_diff = (unsigned long)-1;
	unsigned long diff;
	unsigned int fdpll;
	unsigned int m;
	unsigned int n;

	/*
	 *   fin                                 fvco        fout       fclkout
	 * in --> [1/M] --> |PD| -> [LPF] -> [VCO] -> [1/P] -+-> [1/FDPLL] -> out
	 *              +-> |  |                             |
	 *              |                                    |
	 *              +---------------- [1/N] <------------+
	 *
	 *	fclkout = fvco / P / FDPLL -- (1)
	 *
	 * fin/M = fvco/P/N
	 *
	 *	fvco = fin * P *  N / M -- (2)
	 *
	 * (1) + (2) indicates
	 *
	 *	fclkout = fin * N / M / FDPLL
	 *
	 * NOTES
	 *	N	: (n + 1)
	 *	M	: (m + 1)
	 *	FDPLL	: (fdpll + 1)
	 *	P	: 2
	 *	2kHz < fvco < 4096MHz
	 *
	 * To minimize the jitter,
	 * N : as large as possible
	 * M : as small as possible
	 */
	for (m = 0; m < 4; m++) {
		for (n = 119; n > 38; n--) {
			/*
			 * This code only runs on 64-bit architectures, the
			 * unsigned long type can thus be used for 64-bit
			 * computation. It will still compile without any
			 * warning on 32-bit architectures.
			 *
			 * To optimize calculations, use fout instead of fvco
			 * to verify the VCO frequency constraint.
			 */
			unsigned long fout = input * (n + 1) / (m + 1);

			if (fout < 1000 || fout > 2048 * 1000 * 1000U)
				continue;

			for (fdpll = 1; fdpll < 32; fdpll++) {
				unsigned long output;

				output = fout / (fdpll + 1);
				if (output >= 400 * 1000 * 1000)
					continue;

				diff = abs((long)output - (long)target);
				if (best_diff > diff) {
					best_diff = diff;
					dpll->n = n;
					dpll->m = m;
					dpll->fdpll = fdpll;
					dpll->output = output;
				}

				if (diff == 0)
					goto done;
			}
		}
	}

done:
	dev_dbg(rcrtc->dev->dev,
		"output:%u, fdpll:%u, n:%u, m:%u, diff:%lu\n",
		 dpll->output, dpll->fdpll, dpll->n, dpll->m, best_diff);
}

struct du_clk_params {
	struct clk *clk;
	unsigned long rate;
	unsigned long diff;
	u32 escr;
};

static void rcar_du_escr_divider(struct clk *clk, unsigned long target,
				 u32 escr, struct du_clk_params *params)
{
	unsigned long rate;
	unsigned long diff;
	u32 div;

	/*
	 * If the target rate has already been achieved perfectly we can't do
	 * better.
	 */
	if (params->diff == 0)
		return;

	/*
	 * Compute the input clock rate and internal divisor values to obtain
	 * the clock rate closest to the target frequency.
	 */
	rate = clk_round_rate(clk, target);
	div = clamp(DIV_ROUND_CLOSEST(rate, target), 1UL, 64UL) - 1;
	diff = abs(rate / (div + 1) - target);

	/*
	 * Store the parameters if the resulting frequency is better than any
	 * previously calculated value.
	 */
	if (diff < params->diff) {
		params->clk = clk;
		params->rate = rate;
		params->diff = diff;
		params->escr = escr | div;
	}
}

static const struct soc_device_attribute rcar_du_r8a7795_es1[] = {
	{ .soc_id = "r8a7795", .revision = "ES1.*" },
	{ /* sentinel */ }
};

static void rcar_du_crtc_set_display_timing(struct rcar_du_crtc *rcrtc)
{
	const struct drm_display_mode *mode = &rcrtc->crtc.state->adjusted_mode;
	struct rcar_du_device *rcdu = rcrtc->dev;
	unsigned long mode_clock = mode->clock * 1000;
	u32 dsmr;
	u32 escr;

	if (rcdu->info->dpll_mask & (1 << rcrtc->index)) {
		unsigned long target = mode_clock;
		struct dpll_info dpll = { 0 };
		unsigned long extclk;
		u32 dpllcr;
		u32 div = 0;

		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock, and have no internal clock divider.
		 */

		/*
		 * The H3 ES1.x exhibits dot clock duty cycle stability issues.
		 * We can work around them by configuring the DPLL to twice the
		 * desired frequency, coupled with a /2 post-divider. Restrict
		 * the workaround to H3 ES1.x as ES2.0 and all other SoCs have
		 * no post-divider when a display PLL is present (as shown by
		 * the workaround breaking HDMI output on M3-W during testing).
		 */
		if (soc_device_match(rcar_du_r8a7795_es1)) {
			target *= 2;
			div = 1;
		}

		extclk = clk_get_rate(rcrtc->extclock);
		rcar_du_dpll_divider(rcrtc, &dpll, extclk, target);

		dpllcr = DPLLCR_CODE | DPLLCR_CLKE
		       | DPLLCR_FDPLL(dpll.fdpll)
		       | DPLLCR_N(dpll.n) | DPLLCR_M(dpll.m)
		       | DPLLCR_STBY;

		if (rcrtc->index == 1)
			dpllcr |= DPLLCR_PLCS1
			       |  DPLLCR_INCS_DOTCLKIN1;
		else
			dpllcr |= DPLLCR_PLCS0
			       |  DPLLCR_INCS_DOTCLKIN0;

		rcar_du_group_write(rcrtc->group, DPLLCR, dpllcr);

		escr = ESCR_DCLKSEL_DCLKIN | div;
	} else if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index)) {
		/*
		 * Use the LVDS PLL output as the dot clock when outputting to
		 * the LVDS encoder on an SoC that supports this clock routing
		 * option. We use the clock directly in that case, without any
		 * additional divider.
		 */
		escr = ESCR_DCLKSEL_DCLKIN;
	} else {
		struct du_clk_params params = { .diff = (unsigned long)-1 };

		rcar_du_escr_divider(rcrtc->clock, mode_clock,
				     ESCR_DCLKSEL_CLKS, &params);
		if (rcrtc->extclock)
			rcar_du_escr_divider(rcrtc->extclock, mode_clock,
					     ESCR_DCLKSEL_DCLKIN, &params);

		dev_dbg(rcrtc->dev->dev, "mode clock %lu %s rate %lu\n",
			mode_clock, params.clk == rcrtc->clock ? "cpg" : "ext",
			params.rate);

		clk_set_rate(params.clk, params.rate);
		escr = params.escr;
	}

	dev_dbg(rcrtc->dev->dev, "%s: ESCR 0x%08x\n", __func__, escr);

	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? ESCR13 : ESCR02, escr);
	rcar_du_crtc_write(rcrtc, rcrtc->index % 2 ? OTAR13 : OTAR02, 0);

	/* Signal polarities */
	dsmr = ((mode->flags & DRM_MODE_FLAG_PVSYNC) ? DSMR_VSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_PHSYNC) ? DSMR_HSL : 0)
	     | ((mode->flags & DRM_MODE_FLAG_INTERLACE) ? DSMR_ODEV : 0)
	     | DSMR_DIPM_DISP | DSMR_CSPM;
	rcar_du_crtc_write(rcrtc, DSMR, dsmr);

	/* Display timings */
	rcar_du_crtc_write(rcrtc, HDSR, mode->htotal - mode->hsync_start - 19);
	rcar_du_crtc_write(rcrtc, HDER, mode->htotal - mode->hsync_start +
					mode->hdisplay - 19);
	rcar_du_crtc_write(rcrtc, HSWR, mode->hsync_end -
					mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, HCR,  mode->htotal - 1);

	rcar_du_crtc_write(rcrtc, VDSR, mode->crtc_vtotal -
					mode->crtc_vsync_end - 2);
	rcar_du_crtc_write(rcrtc, VDER, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vdisplay - 2);
	rcar_du_crtc_write(rcrtc, VSPR, mode->crtc_vtotal -
					mode->crtc_vsync_end +
					mode->crtc_vsync_start - 1);
	rcar_du_crtc_write(rcrtc, VCR,  mode->crtc_vtotal - 1);

	rcar_du_crtc_write(rcrtc, DESR,  mode->htotal - mode->hsync_start - 1);
	rcar_du_crtc_write(rcrtc, DEWR,  mode->hdisplay);
}

static unsigned int plane_zpos(struct rcar_du_plane *plane)
{
	return plane->plane.state->normalized_zpos;
}

static const struct rcar_du_format_info *
plane_format(struct rcar_du_plane *plane)
{
	return to_rcar_plane_state(plane->plane.state)->format;
}

static void rcar_du_crtc_update_planes(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_plane *planes[RCAR_DU_NUM_HW_PLANES];
	struct rcar_du_device *rcdu = rcrtc->dev;
	unsigned int num_planes = 0;
	unsigned int dptsr_planes;
	unsigned int hwplanes = 0;
	unsigned int prio = 0;
	unsigned int i;
	u32 dspr = 0;

	for (i = 0; i < rcrtc->group->num_planes; ++i) {
		struct rcar_du_plane *plane = &rcrtc->group->planes[i];
		unsigned int j;

		if (plane->plane.state->crtc != &rcrtc->crtc ||
		    !plane->plane.state->visible)
			continue;

		/* Insert the plane in the sorted planes array. */
		for (j = num_planes++; j > 0; --j) {
			if (plane_zpos(planes[j-1]) <= plane_zpos(plane))
				break;
			planes[j] = planes[j-1];
		}

		planes[j] = plane;
		prio += plane_format(plane)->planes * 4;
	}

	for (i = 0; i < num_planes; ++i) {
		struct rcar_du_plane *plane = planes[i];
		struct drm_plane_state *state = plane->plane.state;
		unsigned int index = to_rcar_plane_state(state)->hwindex;

		prio -= 4;
		dspr |= (index + 1) << prio;
		hwplanes |= 1 << index;

		if (plane_format(plane)->planes == 2) {
			index = (index + 1) % 8;

			prio -= 4;
			dspr |= (index + 1) << prio;
			hwplanes |= 1 << index;
		}
	}

	/* If VSP+DU integration is enabled the plane assignment is fixed. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE)) {
		if (rcdu->info->gen < 3) {
			dspr = (rcrtc->index % 2) + 1;
			hwplanes = 1 << (rcrtc->index % 2);
		} else {
			dspr = (rcrtc->index % 2) ? 3 : 1;
			hwplanes = 1 << ((rcrtc->index % 2) ? 2 : 0);
		}
	}

	/*
	 * Update the planes to display timing and dot clock generator
	 * associations.
	 *
	 * Updating the DPTSR register requires restarting the CRTC group,
	 * resulting in visible flicker. To mitigate the issue only update the
	 * association if needed by enabled planes. Planes being disabled will
	 * keep their current association.
	 */
	mutex_lock(&rcrtc->group->lock);

	dptsr_planes = rcrtc->index % 2 ? rcrtc->group->dptsr_planes | hwplanes
		     : rcrtc->group->dptsr_planes & ~hwplanes;

	if (dptsr_planes != rcrtc->group->dptsr_planes) {
		rcar_du_group_write(rcrtc->group, DPTSR,
				    (dptsr_planes << 16) | dptsr_planes);
		rcrtc->group->dptsr_planes = dptsr_planes;

		if (rcrtc->group->used_crtcs)
			rcar_du_group_restart(rcrtc->group);
	}

	/* Restart the group if plane sources have changed. */
	if (rcrtc->group->need_restart)
		rcar_du_group_restart(rcrtc->group);

	mutex_unlock(&rcrtc->group->lock);

	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR,
			    dspr);
}

/* -----------------------------------------------------------------------------
 * Page Flip
 */

void rcar_du_crtc_finish_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct drm_pending_vblank_event *event;
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	spin_lock_irqsave(&dev->event_lock, flags);
	event = rcrtc->event;
	rcrtc->event = NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	if (event == NULL)
		return;

	spin_lock_irqsave(&dev->event_lock, flags);
	drm_crtc_send_vblank_event(&rcrtc->crtc, event);
	wake_up(&rcrtc->flip_wait);
	spin_unlock_irqrestore(&dev->event_lock, flags);

	drm_crtc_vblank_put(&rcrtc->crtc);
}

static bool rcar_du_crtc_page_flip_pending(struct rcar_du_crtc *rcrtc)
{
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;
	bool pending;

	spin_lock_irqsave(&dev->event_lock, flags);
	pending = rcrtc->event != NULL;
	spin_unlock_irqrestore(&dev->event_lock, flags);

	return pending;
}

static void rcar_du_crtc_wait_page_flip(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->dev;

	if (wait_event_timeout(rcrtc->flip_wait,
			       !rcar_du_crtc_page_flip_pending(rcrtc),
			       msecs_to_jiffies(50)))
		return;

	dev_warn(rcdu->dev, "page flip timeout\n");

	rcar_du_crtc_finish_page_flip(rcrtc);
}

/* -----------------------------------------------------------------------------
 * Color Management Module (CMM)
 */

static int rcar_du_cmm_check(struct drm_crtc *crtc,
			     struct drm_crtc_state *state)
{
	struct drm_property_blob *drm_lut = state->gamma_lut;
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct device *dev = rcrtc->dev->dev;

	if (!drm_lut)
		return 0;

	/* We only accept fully populated LUT tables. */
	if (drm_color_lut_size(drm_lut) != CM2_LUT_SIZE) {
		dev_err(dev, "invalid gamma lut size: %zu bytes\n",
			drm_lut->length);
		return -EINVAL;
	}

	return 0;
}

static void rcar_du_cmm_setup(struct drm_crtc *crtc)
{
	struct drm_property_blob *drm_lut = crtc->state->gamma_lut;
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_cmm_config cmm_config = {};

	if (!rcrtc->cmm)
		return;

	if (drm_lut)
		cmm_config.lut.table = (struct drm_color_lut *)drm_lut->data;

	rcar_cmm_setup(rcrtc->cmm, &cmm_config);
}

/* -----------------------------------------------------------------------------
 * Start/Stop and Suspend/Resume
 */

static void rcar_du_crtc_setup(struct rcar_du_crtc *rcrtc)
{
	/* Set display off and background to black */
	rcar_du_crtc_write(rcrtc, DOOR, DOOR_RGB(0, 0, 0));
	rcar_du_crtc_write(rcrtc, BPOR, BPOR_RGB(0, 0, 0));

	/* Configure display timings and output routing */
	rcar_du_crtc_set_display_timing(rcrtc);
	rcar_du_group_set_routing(rcrtc->group);

	/* Start with all planes disabled. */
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);

	/* Enable the VSP compositor. */
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_enable(rcrtc);

	/* Turn vertical blanking interrupt reporting on. */
	drm_crtc_vblank_on(&rcrtc->crtc);
}

static int rcar_du_crtc_get(struct rcar_du_crtc *rcrtc)
{
	int ret;

	/*
	 * Guard against double-get, as the function is called from both the
	 * .atomic_enable() and .atomic_begin() handlers.
	 */
	if (rcrtc->initialized)
		return 0;

	ret = clk_prepare_enable(rcrtc->clock);
	if (ret < 0)
		return ret;

	ret = clk_prepare_enable(rcrtc->extclock);
	if (ret < 0)
		goto error_clock;

	ret = rcar_du_group_get(rcrtc->group);
	if (ret < 0)
		goto error_group;

	rcar_du_crtc_setup(rcrtc);
	rcrtc->initialized = true;

	return 0;

error_group:
	clk_disable_unprepare(rcrtc->extclock);
error_clock:
	clk_disable_unprepare(rcrtc->clock);
	return ret;
}

static void rcar_du_crtc_put(struct rcar_du_crtc *rcrtc)
{
	rcar_du_group_put(rcrtc->group);

	clk_disable_unprepare(rcrtc->extclock);
	clk_disable_unprepare(rcrtc->clock);

	rcrtc->initialized = false;
}

static void rcar_du_crtc_start(struct rcar_du_crtc *rcrtc)
{
	bool interlaced;

	/*
	 * Select master sync mode. This enables display operation in master
	 * sync mode (with the HSYNC and VSYNC signals configured as outputs and
	 * actively driven).
	 */
	interlaced = rcrtc->crtc.mode.flags & DRM_MODE_FLAG_INTERLACE;
	rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK | DSYSR_SCM_MASK,
				   (interlaced ? DSYSR_SCM_INT_VIDEO : 0) |
				   DSYSR_TVM_MASTER);

	rcar_du_group_start_stop(rcrtc->group, true);
}

static void rcar_du_crtc_disable_planes(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->dev;
	struct drm_crtc *crtc = &rcrtc->crtc;
	u32 status;

	/* Make sure vblank interrupts are enabled. */
	drm_crtc_vblank_get(crtc);

	/*
	 * Disable planes and calculate how many vertical blanking interrupts we
	 * have to wait for. If a vertical blanking interrupt has been triggered
	 * but not processed yet, we don't know whether it occurred before or
	 * after the planes got disabled. We thus have to wait for two vblank
	 * interrupts in that case.
	 */
	spin_lock_irq(&rcrtc->vblank_lock);
	rcar_du_group_write(rcrtc->group, rcrtc->index % 2 ? DS2PR : DS1PR, 0);
	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcrtc->vblank_count = status & DSSR_VBK ? 2 : 1;
	spin_unlock_irq(&rcrtc->vblank_lock);

	if (!wait_event_timeout(rcrtc->vblank_wait, rcrtc->vblank_count == 0,
				msecs_to_jiffies(100)))
		dev_warn(rcdu->dev, "vertical blanking timeout\n");

	drm_crtc_vblank_put(crtc);
}

static void rcar_du_crtc_stop(struct rcar_du_crtc *rcrtc)
{
	struct drm_crtc *crtc = &rcrtc->crtc;

	/*
	 * Disable all planes and wait for the change to take effect. This is
	 * required as the plane enable registers are updated on vblank, and no
	 * vblank will occur once the CRTC is stopped. Disabling planes when
	 * starting the CRTC thus wouldn't be enough as it would start scanning
	 * out immediately from old frame buffers until the next vblank.
	 *
	 * This increases the CRTC stop delay, especially when multiple CRTCs
	 * are stopped in one operation as we now wait for one vblank per CRTC.
	 * Whether this can be improved needs to be researched.
	 */
	rcar_du_crtc_disable_planes(rcrtc);

	/*
	 * Disable vertical blanking interrupt reporting. We first need to wait
	 * for page flip completion before stopping the CRTC as userspace
	 * expects page flips to eventually complete.
	 */
	rcar_du_crtc_wait_page_flip(rcrtc);
	drm_crtc_vblank_off(crtc);

	/* Disable the VSP compositor. */
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_disable(rcrtc);

	if (rcrtc->cmm)
		rcar_cmm_disable(rcrtc->cmm);

	/*
	 * Select switch sync mode. This stops display operation and configures
	 * the HSYNC and VSYNC signals as inputs.
	 *
	 * TODO: Find another way to stop the display for DUs that don't support
	 * TVM sync.
	 */
	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_TVM_SYNC))
		rcar_du_crtc_dsysr_clr_set(rcrtc, DSYSR_TVM_MASK,
					   DSYSR_TVM_SWITCH);

	rcar_du_group_start_stop(rcrtc->group, false);
}

/* -----------------------------------------------------------------------------
 * CRTC Functions
 */

static int rcar_du_crtc_atomic_check(struct drm_crtc *crtc,
				     struct drm_crtc_state *state)
{
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(state);
	struct drm_encoder *encoder;
	int ret;

	ret = rcar_du_cmm_check(crtc, state);
	if (ret)
		return ret;

	/* Store the routes from the CRTC output to the DU outputs. */
	rstate->outputs = 0;

	drm_for_each_encoder_mask(encoder, crtc->dev, state->encoder_mask) {
		struct rcar_du_encoder *renc;

		/* Skip the writeback encoder. */
		if (encoder->encoder_type == DRM_MODE_ENCODER_VIRTUAL)
			continue;

		renc = to_rcar_encoder(encoder);
		rstate->outputs |= BIT(renc->output);
	}

	return 0;
}

static void rcar_du_crtc_atomic_enable(struct drm_crtc *crtc,
				       struct drm_crtc_state *old_state)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(crtc->state);
	struct rcar_du_device *rcdu = rcrtc->dev;

	if (rcrtc->cmm)
		rcar_cmm_enable(rcrtc->cmm);
	rcar_du_crtc_get(rcrtc);

	/*
	 * On D3/E3 the dot clock is provided by the LVDS encoder attached to
	 * the DU channel. We need to enable its clock output explicitly if
	 * the LVDS output is disabled.
	 */
	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
		struct rcar_du_encoder *encoder =
			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
		const struct drm_display_mode *mode =
			&crtc->state->adjusted_mode;
		struct drm_bridge *bridge;

		bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
		rcar_lvds_clk_enable(bridge, mode->clock * 1000);
	}

	rcar_du_crtc_start(rcrtc);

	/*
	 * TODO: The chip manual indicates that CMM tables should be written
	 * after the DU channel has been activated. Investigate the impact
	 * of this restriction on the first displayed frame.
	 */
	rcar_du_cmm_setup(crtc);
}

static void rcar_du_crtc_atomic_disable(struct drm_crtc *crtc,
					struct drm_crtc_state *old_state)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_du_crtc_state *rstate = to_rcar_crtc_state(old_state);
	struct rcar_du_device *rcdu = rcrtc->dev;

	rcar_du_crtc_stop(rcrtc);
	rcar_du_crtc_put(rcrtc);

	if (rcdu->info->lvds_clk_mask & BIT(rcrtc->index) &&
	    rstate->outputs == BIT(RCAR_DU_OUTPUT_DPAD0)) {
		struct rcar_du_encoder *encoder =
			rcdu->encoders[RCAR_DU_OUTPUT_LVDS0 + rcrtc->index];
		struct drm_bridge *bridge;

		/*
		 * Disable the LVDS clock output, see
		 * rcar_du_crtc_atomic_enable().
		 */
		bridge = drm_bridge_chain_get_first_bridge(&encoder->base);
		rcar_lvds_clk_disable(bridge);
	}

	spin_lock_irq(&crtc->dev->event_lock);
	if (crtc->state->event) {
		drm_crtc_send_vblank_event(crtc, crtc->state->event);
		crtc->state->event = NULL;
	}
	spin_unlock_irq(&crtc->dev->event_lock);
}

static void rcar_du_crtc_atomic_begin(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	WARN_ON(!crtc->state->enable);

	/*
	 * If a mode set is in progress we can be called with the CRTC disabled.
	 * We thus need to first get and setup the CRTC in order to configure
	 * planes. We must *not* put the CRTC in .atomic_flush(), as it must be
	 * kept awake until the .atomic_enable() call that will follow. The get
	 * operation in .atomic_enable() will in that case be a no-op, and the
	 * CRTC will be put later in .atomic_disable().
	 *
	 * If a mode set is not in progress the CRTC is enabled, and the
	 * following get call will be a no-op. There is thus no need to balance
	 * it in .atomic_flush() either.
	 */
	rcar_du_crtc_get(rcrtc);

	/* If the active state changed, we let .atomic_enable handle CMM. */
	if (crtc->state->color_mgmt_changed && !crtc->state->active_changed)
		rcar_du_cmm_setup(crtc);

	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_begin(rcrtc);
}

static void rcar_du_crtc_atomic_flush(struct drm_crtc *crtc,
				      struct drm_crtc_state *old_crtc_state)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_device *dev = rcrtc->crtc.dev;
	unsigned long flags;

	rcar_du_crtc_update_planes(rcrtc);

	if (crtc->state->event) {
		WARN_ON(drm_crtc_vblank_get(crtc) != 0);

		spin_lock_irqsave(&dev->event_lock, flags);
		rcrtc->event = crtc->state->event;
		crtc->state->event = NULL;
		spin_unlock_irqrestore(&dev->event_lock, flags);
	}

	if (rcar_du_has(rcrtc->dev, RCAR_DU_FEATURE_VSP1_SOURCE))
		rcar_du_vsp_atomic_flush(rcrtc);
}

static enum drm_mode_status
rcar_du_crtc_mode_valid(struct drm_crtc *crtc,
			const struct drm_display_mode *mode)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct rcar_du_device *rcdu = rcrtc->dev;
	bool interlaced = mode->flags & DRM_MODE_FLAG_INTERLACE;
	unsigned int vbp;

	if (interlaced && !rcar_du_has(rcdu, RCAR_DU_FEATURE_INTERLACED))
		return MODE_NO_INTERLACE;

	/*
	 * The hardware requires a minimum combined horizontal sync and back
	 * porch of 20 pixels and a minimum vertical back porch of 3 lines.
	 */
	if (mode->htotal - mode->hsync_start < 20)
		return MODE_HBLANK_NARROW;

	vbp = (mode->vtotal - mode->vsync_end) / (interlaced ? 2 : 1);
	if (vbp < 3)
		return MODE_VBLANK_NARROW;

	return MODE_OK;
}

static const struct drm_crtc_helper_funcs crtc_helper_funcs = {
	.atomic_check = rcar_du_crtc_atomic_check,
	.atomic_begin = rcar_du_crtc_atomic_begin,
	.atomic_flush = rcar_du_crtc_atomic_flush,
	.atomic_enable = rcar_du_crtc_atomic_enable,
	.atomic_disable = rcar_du_crtc_atomic_disable,
	.mode_valid = rcar_du_crtc_mode_valid,
};

static void rcar_du_crtc_crc_init(struct rcar_du_crtc *rcrtc)
{
	struct rcar_du_device *rcdu = rcrtc->dev;
	const char **sources;
	unsigned int count;
	int i = -1;

	/* CRC available only on Gen3 HW. */
	if (rcdu->info->gen < 3)
		return;

	/* Reserve 1 for "auto" source. */
	count = rcrtc->vsp->num_planes + 1;

	sources = kmalloc_array(count, sizeof(*sources), GFP_KERNEL);
	if (!sources)
		return;

	sources[0] = kstrdup("auto", GFP_KERNEL);
	if (!sources[0])
		goto error;

	for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
		struct drm_plane *plane = &rcrtc->vsp->planes[i].plane;
		char name[16];

		sprintf(name, "plane%u", plane->base.id);
		sources[i + 1] = kstrdup(name, GFP_KERNEL);
		if (!sources[i + 1])
			goto error;
	}

	rcrtc->sources = sources;
	rcrtc->sources_count = count;
	return;

error:
	while (i >= 0) {
		kfree(sources[i]);
		i--;
	}
	kfree(sources);
}

static void rcar_du_crtc_crc_cleanup(struct rcar_du_crtc *rcrtc)
{
	unsigned int i;

	if (!rcrtc->sources)
		return;

	for (i = 0; i < rcrtc->sources_count; i++)
		kfree(rcrtc->sources[i]);
	kfree(rcrtc->sources);

	rcrtc->sources = NULL;
	rcrtc->sources_count = 0;
}

static struct drm_crtc_state *
rcar_du_crtc_atomic_duplicate_state(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;
	struct rcar_du_crtc_state *copy;

	if (WARN_ON(!crtc->state))
		return NULL;

	state = to_rcar_crtc_state(crtc->state);
	copy = kmemdup(state, sizeof(*state), GFP_KERNEL);
	if (copy == NULL)
		return NULL;

	__drm_atomic_helper_crtc_duplicate_state(crtc, &copy->state);

	return &copy->state;
}

static void rcar_du_crtc_atomic_destroy_state(struct drm_crtc *crtc,
					      struct drm_crtc_state *state)
{
	__drm_atomic_helper_crtc_destroy_state(state);
	kfree(to_rcar_crtc_state(state));
}

static void rcar_du_crtc_cleanup(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_crc_cleanup(rcrtc);

	return drm_crtc_cleanup(crtc);
}

static void rcar_du_crtc_reset(struct drm_crtc *crtc)
{
	struct rcar_du_crtc_state *state;

	if (crtc->state) {
		rcar_du_crtc_atomic_destroy_state(crtc, crtc->state);
		crtc->state = NULL;
	}

	state = kzalloc(sizeof(*state), GFP_KERNEL);
	if (state == NULL)
		return;

	state->crc.source = VSP1_DU_CRC_NONE;
	state->crc.index = 0;

	__drm_atomic_helper_crtc_reset(crtc, &state->state);
}

static int rcar_du_crtc_enable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_write(rcrtc, DSRCR, DSRCR_VBCL);
	rcar_du_crtc_set(rcrtc, DIER, DIER_VBE);
	rcrtc->vblank_enable = true;

	return 0;
}

static void rcar_du_crtc_disable_vblank(struct drm_crtc *crtc)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	rcar_du_crtc_clr(rcrtc, DIER, DIER_VBE);
	rcrtc->vblank_enable = false;
}

static int rcar_du_crtc_parse_crc_source(struct rcar_du_crtc *rcrtc,
					 const char *source_name,
					 enum vsp1_du_crc_source *source)
{
	unsigned int index;
	int ret;

	/*
	 * Parse the source name. Supported values are "plane%u" to compute the
	 * CRC on an input plane (%u is the plane ID), and "auto" to compute the
	 * CRC on the composer (VSP) output.
	 */

	if (!source_name) {
		*source = VSP1_DU_CRC_NONE;
		return 0;
	} else if (!strcmp(source_name, "auto")) {
		*source = VSP1_DU_CRC_OUTPUT;
		return 0;
	} else if (strstarts(source_name, "plane")) {
		unsigned int i;

		*source = VSP1_DU_CRC_PLANE;

		ret = kstrtouint(source_name + strlen("plane"), 10, &index);
		if (ret < 0)
			return ret;

		for (i = 0; i < rcrtc->vsp->num_planes; ++i) {
			if (index == rcrtc->vsp->planes[i].plane.base.id)
				return i;
		}
	}

	return -EINVAL;
}

static int rcar_du_crtc_verify_crc_source(struct drm_crtc *crtc,
					  const char *source_name,
					  size_t *values_cnt)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	enum vsp1_du_crc_source source;

	if (rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source) < 0) {
		DRM_DEBUG_DRIVER("unknown source %s\n", source_name);
		return -EINVAL;
	}

	*values_cnt = 1;
	return 0;
}

static const char *const *
rcar_du_crtc_get_crc_sources(struct drm_crtc *crtc, size_t *count)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);

	*count = rcrtc->sources_count;
	return rcrtc->sources;
}

static int rcar_du_crtc_set_crc_source(struct drm_crtc *crtc,
				       const char *source_name)
{
	struct rcar_du_crtc *rcrtc = to_rcar_crtc(crtc);
	struct drm_modeset_acquire_ctx ctx;
	struct drm_crtc_state *crtc_state;
	struct drm_atomic_state *state;
	enum vsp1_du_crc_source source;
	unsigned int index;
	int ret;

	ret = rcar_du_crtc_parse_crc_source(rcrtc, source_name, &source);
	if (ret < 0)
		return ret;

	index = ret;

	/* Perform an atomic commit to set the CRC source. */
	drm_modeset_acquire_init(&ctx, 0);

	state = drm_atomic_state_alloc(crtc->dev);
	if (!state) {
		ret = -ENOMEM;
		goto unlock;
	}

	state->acquire_ctx = &ctx;

retry:
	crtc_state = drm_atomic_get_crtc_state(state, crtc);
	if (!IS_ERR(crtc_state)) {
		struct rcar_du_crtc_state *rcrtc_state;

		rcrtc_state = to_rcar_crtc_state(crtc_state);
		rcrtc_state->crc.source = source;
		rcrtc_state->crc.index = index;

		ret = drm_atomic_commit(state);
	} else {
		ret = PTR_ERR(crtc_state);
	}

	if (ret == -EDEADLK) {
		drm_atomic_state_clear(state);
		drm_modeset_backoff(&ctx);
		goto retry;
	}

	drm_atomic_state_put(state);

unlock:
	drm_modeset_drop_locks(&ctx);
	drm_modeset_acquire_fini(&ctx);

	return ret;
}

static const struct drm_crtc_funcs crtc_funcs_gen2 = {
	.reset = rcar_du_crtc_reset,
	.destroy = drm_crtc_cleanup,
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
};

static const struct drm_crtc_funcs crtc_funcs_gen3 = {
	.reset = rcar_du_crtc_reset,
	.destroy = rcar_du_crtc_cleanup,
	.set_config = drm_atomic_helper_set_config,
	.page_flip = drm_atomic_helper_page_flip,
	.atomic_duplicate_state = rcar_du_crtc_atomic_duplicate_state,
	.atomic_destroy_state = rcar_du_crtc_atomic_destroy_state,
	.enable_vblank = rcar_du_crtc_enable_vblank,
	.disable_vblank = rcar_du_crtc_disable_vblank,
	.set_crc_source = rcar_du_crtc_set_crc_source,
	.verify_crc_source = rcar_du_crtc_verify_crc_source,
	.get_crc_sources = rcar_du_crtc_get_crc_sources,
	.gamma_set = drm_atomic_helper_legacy_gamma_set,
};

/* -----------------------------------------------------------------------------
 * Interrupt Handling
 */

static irqreturn_t rcar_du_crtc_irq(int irq, void *arg)
{
	struct rcar_du_crtc *rcrtc = arg;
	struct rcar_du_device *rcdu = rcrtc->dev;
	irqreturn_t ret = IRQ_NONE;
	u32 status;

	spin_lock(&rcrtc->vblank_lock);

	status = rcar_du_crtc_read(rcrtc, DSSR);
	rcar_du_crtc_write(rcrtc, DSRCR, status & DSRCR_MASK);

	if (status & DSSR_VBK) {
		/*
		 * Wake up the vblank wait if the counter reaches 0. This must
		 * be protected by the vblank_lock to avoid races in
		 * rcar_du_crtc_disable_planes().
		 */
		if (rcrtc->vblank_count) {
			if (--rcrtc->vblank_count == 0)
				wake_up(&rcrtc->vblank_wait);
		}
	}

	spin_unlock(&rcrtc->vblank_lock);

	if (status & DSSR_VBK) {
		if (rcdu->info->gen < 3) {
			drm_crtc_handle_vblank(&rcrtc->crtc);
			rcar_du_crtc_finish_page_flip(rcrtc);
		}

		ret = IRQ_HANDLED;
	}

	return ret;
}

/* -----------------------------------------------------------------------------
 * Initialization
 */

int rcar_du_crtc_create(struct rcar_du_group *rgrp, unsigned int swindex,
			unsigned int hwindex)
{
	static const unsigned int mmio_offsets[] = {
		DU0_REG_OFFSET, DU1_REG_OFFSET, DU2_REG_OFFSET, DU3_REG_OFFSET
	};

	struct rcar_du_device *rcdu = rgrp->dev;
	struct platform_device *pdev = to_platform_device(rcdu->dev);
	struct rcar_du_crtc *rcrtc = &rcdu->crtcs[swindex];
	struct drm_crtc *crtc = &rcrtc->crtc;
	struct drm_plane *primary;
	unsigned int irqflags;
	struct clk *clk;
	char clk_name[9];
	char *name;
	int irq;
	int ret;

	/* Get the CRTC clock and the optional external clock. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		sprintf(clk_name, "du.%u", hwindex);
		name = clk_name;
	} else {
		name = NULL;
	}

	rcrtc->clock = devm_clk_get(rcdu->dev, name);
	if (IS_ERR(rcrtc->clock)) {
		dev_err(rcdu->dev, "no clock for DU channel %u\n", hwindex);
		return PTR_ERR(rcrtc->clock);
	}

	sprintf(clk_name, "dclkin.%u", hwindex);
	clk = devm_clk_get(rcdu->dev, clk_name);
	if (!IS_ERR(clk)) {
		rcrtc->extclock = clk;
	} else if (PTR_ERR(clk) == -EPROBE_DEFER) {
		return -EPROBE_DEFER;
	} else if (rcdu->info->dpll_mask & BIT(hwindex)) {
		/*
		 * DU channels that have a display PLL can't use the internal
		 * system clock and thus require an external clock.
		 */
		ret = PTR_ERR(clk);
		dev_err(rcdu->dev, "can't get dclkin.%u: %d\n", hwindex, ret);
		return ret;
	}

	init_waitqueue_head(&rcrtc->flip_wait);
	init_waitqueue_head(&rcrtc->vblank_wait);
	spin_lock_init(&rcrtc->vblank_lock);

	rcrtc->dev = rcdu;
	rcrtc->group = rgrp;
	rcrtc->mmio_offset = mmio_offsets[hwindex];
	rcrtc->index = hwindex;
	rcrtc->dsysr = (rcrtc->index % 2 ? 0 : DSYSR_DRES) | DSYSR_TVM_TVSYNC;

	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_VSP1_SOURCE))
		primary = &rcrtc->vsp->planes[rcrtc->vsp_pipe].plane;
	else
		primary = &rgrp->planes[swindex % 2].plane;

	ret = drm_crtc_init_with_planes(rcdu->ddev, crtc, primary, NULL,
					rcdu->info->gen <= 2 ?
					&crtc_funcs_gen2 : &crtc_funcs_gen3,
					NULL);
	if (ret < 0)
		return ret;

	/* CMM might be disabled for this CRTC. */
	if (rcdu->cmms[swindex]) {
		rcrtc->cmm = rcdu->cmms[swindex];
		rgrp->cmms_mask |= BIT(hwindex % 2);

		drm_mode_crtc_set_gamma_size(crtc, CM2_LUT_SIZE);
		drm_crtc_enable_color_mgmt(crtc, 0, false, CM2_LUT_SIZE);
	}

	drm_crtc_helper_add(crtc, &crtc_helper_funcs);

	/* Register the interrupt handler. */
	if (rcar_du_has(rcdu, RCAR_DU_FEATURE_CRTC_IRQ_CLOCK)) {
		/* The IRQ's are associated with the CRTC (sw)index. */
		irq = platform_get_irq(pdev, swindex);
		irqflags = 0;
	} else {
		irq = platform_get_irq(pdev, 0);
		irqflags = IRQF_SHARED;
	}

	if (irq < 0) {
		dev_err(rcdu->dev, "no IRQ for CRTC %u\n", swindex);
		return irq;
	}

	ret = devm_request_irq(rcdu->dev, irq, rcar_du_crtc_irq, irqflags,
			       dev_name(rcdu->dev), rcrtc);
	if (ret < 0) {
		dev_err(rcdu->dev,
			"failed to register IRQ for CRTC %u\n", swindex);
		return ret;
	}

	rcar_du_crtc_crc_init(rcrtc);

	return 0;
}