summaryrefslogtreecommitdiffstats
path: root/drivers/gpu/drm/xe/xe_migrate.c
blob: 6f24aaf5825221741d4197045a33b5427979150c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
// SPDX-License-Identifier: MIT
/*
 * Copyright © 2020 Intel Corporation
 */

#include "xe_migrate.h"

#include <linux/bitfield.h>
#include <linux/sizes.h>

#include <drm/drm_managed.h>
#include <drm/ttm/ttm_tt.h>
#include <drm/xe_drm.h>

#include <generated/xe_wa_oob.h>

#include "instructions/xe_gpu_commands.h"
#include "instructions/xe_mi_commands.h"
#include "regs/xe_gtt_defs.h"
#include "tests/xe_test.h"
#include "xe_assert.h"
#include "xe_bb.h"
#include "xe_bo.h"
#include "xe_exec_queue.h"
#include "xe_ggtt.h"
#include "xe_gt.h"
#include "xe_hw_engine.h"
#include "xe_lrc.h"
#include "xe_map.h"
#include "xe_mocs.h"
#include "xe_pt.h"
#include "xe_res_cursor.h"
#include "xe_sched_job.h"
#include "xe_sync.h"
#include "xe_trace_bo.h"
#include "xe_vm.h"

/**
 * struct xe_migrate - migrate context.
 */
struct xe_migrate {
	/** @q: Default exec queue used for migration */
	struct xe_exec_queue *q;
	/** @tile: Backpointer to the tile this struct xe_migrate belongs to. */
	struct xe_tile *tile;
	/** @job_mutex: Timeline mutex for @eng. */
	struct mutex job_mutex;
	/** @pt_bo: Page-table buffer object. */
	struct xe_bo *pt_bo;
	/** @batch_base_ofs: VM offset of the migration batch buffer */
	u64 batch_base_ofs;
	/** @usm_batch_base_ofs: VM offset of the usm batch buffer */
	u64 usm_batch_base_ofs;
	/** @cleared_mem_ofs: VM offset of @cleared_bo. */
	u64 cleared_mem_ofs;
	/**
	 * @fence: dma-fence representing the last migration job batch.
	 * Protected by @job_mutex.
	 */
	struct dma_fence *fence;
	/**
	 * @vm_update_sa: For integrated, used to suballocate page-tables
	 * out of the pt_bo.
	 */
	struct drm_suballoc_manager vm_update_sa;
	/** @min_chunk_size: For dgfx, Minimum chunk size */
	u64 min_chunk_size;
};

#define MAX_PREEMPTDISABLE_TRANSFER SZ_8M /* Around 1ms. */
#define MAX_CCS_LIMITED_TRANSFER SZ_4M /* XE_PAGE_SIZE * (FIELD_MAX(XE2_CCS_SIZE_MASK) + 1) */
#define NUM_KERNEL_PDE 15
#define NUM_PT_SLOTS 32
#define LEVEL0_PAGE_TABLE_ENCODE_SIZE SZ_2M
#define MAX_NUM_PTE 512
#define IDENTITY_OFFSET 256ULL

/*
 * Although MI_STORE_DATA_IMM's "length" field is 10-bits, 0x3FE is the largest
 * legal value accepted.  Since that instruction field is always stored in
 * (val-2) format, this translates to 0x400 dwords for the true maximum length
 * of the instruction.  Subtracting the instruction header (1 dword) and
 * address (2 dwords), that leaves 0x3FD dwords (0x1FE qwords) for PTE values.
 */
#define MAX_PTE_PER_SDI 0x1FE

/**
 * xe_tile_migrate_exec_queue() - Get this tile's migrate exec queue.
 * @tile: The tile.
 *
 * Returns the default migrate exec queue of this tile.
 *
 * Return: The default migrate exec queue
 */
struct xe_exec_queue *xe_tile_migrate_exec_queue(struct xe_tile *tile)
{
	return tile->migrate->q;
}

static void xe_migrate_fini(struct drm_device *dev, void *arg)
{
	struct xe_migrate *m = arg;

	xe_vm_lock(m->q->vm, false);
	xe_bo_unpin(m->pt_bo);
	xe_vm_unlock(m->q->vm);

	dma_fence_put(m->fence);
	xe_bo_put(m->pt_bo);
	drm_suballoc_manager_fini(&m->vm_update_sa);
	mutex_destroy(&m->job_mutex);
	xe_vm_close_and_put(m->q->vm);
	xe_exec_queue_put(m->q);
}

static u64 xe_migrate_vm_addr(u64 slot, u32 level)
{
	XE_WARN_ON(slot >= NUM_PT_SLOTS);

	/* First slot is reserved for mapping of PT bo and bb, start from 1 */
	return (slot + 1ULL) << xe_pt_shift(level + 1);
}

static u64 xe_migrate_vram_ofs(struct xe_device *xe, u64 addr, bool is_comp_pte)
{
	/*
	 * Remove the DPA to get a correct offset into identity table for the
	 * migrate offset
	 */
	u64 identity_offset = IDENTITY_OFFSET;

	if (GRAPHICS_VER(xe) >= 20 && is_comp_pte)
		identity_offset += DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);

	addr -= xe->mem.vram.dpa_base;
	return addr + (identity_offset << xe_pt_shift(2));
}

static void xe_migrate_program_identity(struct xe_device *xe, struct xe_vm *vm, struct xe_bo *bo,
					u64 map_ofs, u64 vram_offset, u16 pat_index, u64 pt_2m_ofs)
{
	u64 pos, ofs, flags;
	u64 entry;
	/* XXX: Unclear if this should be usable_size? */
	u64 vram_limit =  xe->mem.vram.actual_physical_size +
		xe->mem.vram.dpa_base;
	u32 level = 2;

	ofs = map_ofs + XE_PAGE_SIZE * level + vram_offset * 8;
	flags = vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level,
					    true, 0);

	xe_assert(xe, IS_ALIGNED(xe->mem.vram.usable_size, SZ_2M));

	/*
	 * Use 1GB pages when possible, last chunk always use 2M
	 * pages as mixing reserved memory (stolen, WOCPM) with a single
	 * mapping is not allowed on certain platforms.
	 */
	for (pos = xe->mem.vram.dpa_base; pos < vram_limit;
	     pos += SZ_1G, ofs += 8) {
		if (pos + SZ_1G >= vram_limit) {
			entry = vm->pt_ops->pde_encode_bo(bo, pt_2m_ofs,
							  pat_index);
			xe_map_wr(xe, &bo->vmap, ofs, u64, entry);

			flags = vm->pt_ops->pte_encode_addr(xe, 0,
							    pat_index,
							    level - 1,
							    true, 0);

			for (ofs = pt_2m_ofs; pos < vram_limit;
			     pos += SZ_2M, ofs += 8)
				xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
			break;	/* Ensure pos == vram_limit assert correct */
		}

		xe_map_wr(xe, &bo->vmap, ofs, u64, pos | flags);
	}

	xe_assert(xe, pos == vram_limit);
}

static int xe_migrate_prepare_vm(struct xe_tile *tile, struct xe_migrate *m,
				 struct xe_vm *vm)
{
	struct xe_device *xe = tile_to_xe(tile);
	u16 pat_index = xe->pat.idx[XE_CACHE_WB];
	u8 id = tile->id;
	u32 num_entries = NUM_PT_SLOTS, num_level = vm->pt_root[id]->level;
#define VRAM_IDENTITY_MAP_COUNT	2
	u32 num_setup = num_level + VRAM_IDENTITY_MAP_COUNT;
#undef VRAM_IDENTITY_MAP_COUNT
	u32 map_ofs, level, i;
	struct xe_bo *bo, *batch = tile->mem.kernel_bb_pool->bo;
	u64 entry, pt29_ofs;

	/* Can't bump NUM_PT_SLOTS too high */
	BUILD_BUG_ON(NUM_PT_SLOTS > SZ_2M/XE_PAGE_SIZE);
	/* Must be a multiple of 64K to support all platforms */
	BUILD_BUG_ON(NUM_PT_SLOTS * XE_PAGE_SIZE % SZ_64K);
	/* And one slot reserved for the 4KiB page table updates */
	BUILD_BUG_ON(!(NUM_KERNEL_PDE & 1));

	/* Need to be sure everything fits in the first PT, or create more */
	xe_tile_assert(tile, m->batch_base_ofs + batch->size < SZ_2M);

	bo = xe_bo_create_pin_map(vm->xe, tile, vm,
				  num_entries * XE_PAGE_SIZE,
				  ttm_bo_type_kernel,
				  XE_BO_FLAG_VRAM_IF_DGFX(tile) |
				  XE_BO_FLAG_PINNED);
	if (IS_ERR(bo))
		return PTR_ERR(bo);

	/* PT30 & PT31 reserved for 2M identity map */
	pt29_ofs = bo->size - 3 * XE_PAGE_SIZE;
	entry = vm->pt_ops->pde_encode_bo(bo, pt29_ofs, pat_index);
	xe_pt_write(xe, &vm->pt_root[id]->bo->vmap, 0, entry);

	map_ofs = (num_entries - num_setup) * XE_PAGE_SIZE;

	/* Map the entire BO in our level 0 pt */
	for (i = 0, level = 0; i < num_entries; level++) {
		entry = vm->pt_ops->pte_encode_bo(bo, i * XE_PAGE_SIZE,
						  pat_index, 0);

		xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64, entry);

		if (vm->flags & XE_VM_FLAG_64K)
			i += 16;
		else
			i += 1;
	}

	if (!IS_DGFX(xe)) {
		/* Write out batch too */
		m->batch_base_ofs = NUM_PT_SLOTS * XE_PAGE_SIZE;
		for (i = 0; i < batch->size;
		     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
		     XE_PAGE_SIZE) {
			entry = vm->pt_ops->pte_encode_bo(batch, i,
							  pat_index, 0);

			xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
				  entry);
			level++;
		}
		if (xe->info.has_usm) {
			xe_tile_assert(tile, batch->size == SZ_1M);

			batch = tile->primary_gt->usm.bb_pool->bo;
			m->usm_batch_base_ofs = m->batch_base_ofs + SZ_1M;
			xe_tile_assert(tile, batch->size == SZ_512K);

			for (i = 0; i < batch->size;
			     i += vm->flags & XE_VM_FLAG_64K ? XE_64K_PAGE_SIZE :
			     XE_PAGE_SIZE) {
				entry = vm->pt_ops->pte_encode_bo(batch, i,
								  pat_index, 0);

				xe_map_wr(xe, &bo->vmap, map_ofs + level * 8, u64,
					  entry);
				level++;
			}
		}
	} else {
		u64 batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);

		m->batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);

		if (xe->info.has_usm) {
			batch = tile->primary_gt->usm.bb_pool->bo;
			batch_addr = xe_bo_addr(batch, 0, XE_PAGE_SIZE);
			m->usm_batch_base_ofs = xe_migrate_vram_ofs(xe, batch_addr, false);
		}
	}

	for (level = 1; level < num_level; level++) {
		u32 flags = 0;

		if (vm->flags & XE_VM_FLAG_64K && level == 1)
			flags = XE_PDE_64K;

		entry = vm->pt_ops->pde_encode_bo(bo, map_ofs + (u64)(level - 1) *
						  XE_PAGE_SIZE, pat_index);
		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level, u64,
			  entry | flags);
	}

	/* Write PDE's that point to our BO. */
	for (i = 0; i < map_ofs / PAGE_SIZE; i++) {
		entry = vm->pt_ops->pde_encode_bo(bo, (u64)i * XE_PAGE_SIZE,
						  pat_index);

		xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE +
			  (i + 1) * 8, u64, entry);
	}

	/* Set up a 1GiB NULL mapping at 255GiB offset. */
	level = 2;
	xe_map_wr(xe, &bo->vmap, map_ofs + XE_PAGE_SIZE * level + 255 * 8, u64,
		  vm->pt_ops->pte_encode_addr(xe, 0, pat_index, level, IS_DGFX(xe), 0)
		  | XE_PTE_NULL);
	m->cleared_mem_ofs = (255ULL << xe_pt_shift(level));

	/* Identity map the entire vram at 256GiB offset */
	if (IS_DGFX(xe)) {
		u64 pt30_ofs = bo->size - 2 * XE_PAGE_SIZE;

		xe_migrate_program_identity(xe, vm, bo, map_ofs, IDENTITY_OFFSET,
					    pat_index, pt30_ofs);
		xe_assert(xe, xe->mem.vram.actual_physical_size <=
					(MAX_NUM_PTE - IDENTITY_OFFSET) * SZ_1G);

		/*
		 * Identity map the entire vram for compressed pat_index for xe2+
		 * if flat ccs is enabled.
		 */
		if (GRAPHICS_VER(xe) >= 20 && xe_device_has_flat_ccs(xe)) {
			u16 comp_pat_index = xe->pat.idx[XE_CACHE_NONE_COMPRESSION];
			u64 vram_offset = IDENTITY_OFFSET +
				DIV_ROUND_UP_ULL(xe->mem.vram.actual_physical_size, SZ_1G);
			u64 pt31_ofs = bo->size - XE_PAGE_SIZE;

			xe_assert(xe, xe->mem.vram.actual_physical_size <= (MAX_NUM_PTE -
						IDENTITY_OFFSET - IDENTITY_OFFSET / 2) * SZ_1G);
			xe_migrate_program_identity(xe, vm, bo, map_ofs, vram_offset,
						    comp_pat_index, pt31_ofs);
		}
	}

	/*
	 * Example layout created above, with root level = 3:
	 * [PT0...PT7]: kernel PT's for copy/clear; 64 or 4KiB PTE's
	 * [PT8]: Kernel PT for VM_BIND, 4 KiB PTE's
	 * [PT9...PT26]: Userspace PT's for VM_BIND, 4 KiB PTE's
	 * [PT27 = PDE 0] [PT28 = PDE 1] [PT29 = PDE 2] [PT30 & PT31 = 2M vram identity map]
	 *
	 * This makes the lowest part of the VM point to the pagetables.
	 * Hence the lowest 2M in the vm should point to itself, with a few writes
	 * and flushes, other parts of the VM can be used either for copying and
	 * clearing.
	 *
	 * For performance, the kernel reserves PDE's, so about 20 are left
	 * for async VM updates.
	 *
	 * To make it easier to work, each scratch PT is put in slot (1 + PT #)
	 * everywhere, this allows lockless updates to scratch pages by using
	 * the different addresses in VM.
	 */
#define NUM_VMUSA_UNIT_PER_PAGE	32
#define VM_SA_UPDATE_UNIT_SIZE		(XE_PAGE_SIZE / NUM_VMUSA_UNIT_PER_PAGE)
#define NUM_VMUSA_WRITES_PER_UNIT	(VM_SA_UPDATE_UNIT_SIZE / sizeof(u64))
	drm_suballoc_manager_init(&m->vm_update_sa,
				  (size_t)(map_ofs / XE_PAGE_SIZE - NUM_KERNEL_PDE) *
				  NUM_VMUSA_UNIT_PER_PAGE, 0);

	m->pt_bo = bo;
	return 0;
}

/*
 * Including the reserved copy engine is required to avoid deadlocks due to
 * migrate jobs servicing the faults gets stuck behind the job that faulted.
 */
static u32 xe_migrate_usm_logical_mask(struct xe_gt *gt)
{
	u32 logical_mask = 0;
	struct xe_hw_engine *hwe;
	enum xe_hw_engine_id id;

	for_each_hw_engine(hwe, gt, id) {
		if (hwe->class != XE_ENGINE_CLASS_COPY)
			continue;

		if (xe_gt_is_usm_hwe(gt, hwe))
			logical_mask |= BIT(hwe->logical_instance);
	}

	return logical_mask;
}

static bool xe_migrate_needs_ccs_emit(struct xe_device *xe)
{
	return xe_device_has_flat_ccs(xe) && !(GRAPHICS_VER(xe) >= 20 && IS_DGFX(xe));
}

/**
 * xe_migrate_init() - Initialize a migrate context
 * @tile: Back-pointer to the tile we're initializing for.
 *
 * Return: Pointer to a migrate context on success. Error pointer on error.
 */
struct xe_migrate *xe_migrate_init(struct xe_tile *tile)
{
	struct xe_device *xe = tile_to_xe(tile);
	struct xe_gt *primary_gt = tile->primary_gt;
	struct xe_migrate *m;
	struct xe_vm *vm;
	int err;

	m = drmm_kzalloc(&xe->drm, sizeof(*m), GFP_KERNEL);
	if (!m)
		return ERR_PTR(-ENOMEM);

	m->tile = tile;

	/* Special layout, prepared below.. */
	vm = xe_vm_create(xe, XE_VM_FLAG_MIGRATION |
			  XE_VM_FLAG_SET_TILE_ID(tile));
	if (IS_ERR(vm))
		return ERR_CAST(vm);

	xe_vm_lock(vm, false);
	err = xe_migrate_prepare_vm(tile, m, vm);
	xe_vm_unlock(vm);
	if (err) {
		xe_vm_close_and_put(vm);
		return ERR_PTR(err);
	}

	if (xe->info.has_usm) {
		struct xe_hw_engine *hwe = xe_gt_hw_engine(primary_gt,
							   XE_ENGINE_CLASS_COPY,
							   primary_gt->usm.reserved_bcs_instance,
							   false);
		u32 logical_mask = xe_migrate_usm_logical_mask(primary_gt);

		if (!hwe || !logical_mask)
			return ERR_PTR(-EINVAL);

		/*
		 * XXX: Currently only reserving 1 (likely slow) BCS instance on
		 * PVC, may want to revisit if performance is needed.
		 */
		m->q = xe_exec_queue_create(xe, vm, logical_mask, 1, hwe,
					    EXEC_QUEUE_FLAG_KERNEL |
					    EXEC_QUEUE_FLAG_PERMANENT |
					    EXEC_QUEUE_FLAG_HIGH_PRIORITY, 0);
	} else {
		m->q = xe_exec_queue_create_class(xe, primary_gt, vm,
						  XE_ENGINE_CLASS_COPY,
						  EXEC_QUEUE_FLAG_KERNEL |
						  EXEC_QUEUE_FLAG_PERMANENT);
	}
	if (IS_ERR(m->q)) {
		xe_vm_close_and_put(vm);
		return ERR_CAST(m->q);
	}

	mutex_init(&m->job_mutex);
	fs_reclaim_acquire(GFP_KERNEL);
	might_lock(&m->job_mutex);
	fs_reclaim_release(GFP_KERNEL);

	err = drmm_add_action_or_reset(&xe->drm, xe_migrate_fini, m);
	if (err)
		return ERR_PTR(err);

	if (IS_DGFX(xe)) {
		if (xe_migrate_needs_ccs_emit(xe))
			/* min chunk size corresponds to 4K of CCS Metadata */
			m->min_chunk_size = SZ_4K * SZ_64K /
				xe_device_ccs_bytes(xe, SZ_64K);
		else
			/* Somewhat arbitrary to avoid a huge amount of blits */
			m->min_chunk_size = SZ_64K;
		m->min_chunk_size = roundup_pow_of_two(m->min_chunk_size);
		drm_dbg(&xe->drm, "Migrate min chunk size is 0x%08llx\n",
			(unsigned long long)m->min_chunk_size);
	}

	return m;
}

static u64 max_mem_transfer_per_pass(struct xe_device *xe)
{
	if (!IS_DGFX(xe) && xe_device_has_flat_ccs(xe))
		return MAX_CCS_LIMITED_TRANSFER;

	return MAX_PREEMPTDISABLE_TRANSFER;
}

static u64 xe_migrate_res_sizes(struct xe_migrate *m, struct xe_res_cursor *cur)
{
	struct xe_device *xe = tile_to_xe(m->tile);
	u64 size = min_t(u64, max_mem_transfer_per_pass(xe), cur->remaining);

	if (mem_type_is_vram(cur->mem_type)) {
		/*
		 * VRAM we want to blit in chunks with sizes aligned to
		 * min_chunk_size in order for the offset to CCS metadata to be
		 * page-aligned. If it's the last chunk it may be smaller.
		 *
		 * Another constraint is that we need to limit the blit to
		 * the VRAM block size, unless size is smaller than
		 * min_chunk_size.
		 */
		u64 chunk = max_t(u64, cur->size, m->min_chunk_size);

		size = min_t(u64, size, chunk);
		if (size > m->min_chunk_size)
			size = round_down(size, m->min_chunk_size);
	}

	return size;
}

static bool xe_migrate_allow_identity(u64 size, const struct xe_res_cursor *cur)
{
	/* If the chunk is not fragmented, allow identity map. */
	return cur->size >= size;
}

#define PTE_UPDATE_FLAG_IS_VRAM		BIT(0)
#define PTE_UPDATE_FLAG_IS_COMP_PTE	BIT(1)

static u32 pte_update_size(struct xe_migrate *m,
			   u32 flags,
			   struct ttm_resource *res,
			   struct xe_res_cursor *cur,
			   u64 *L0, u64 *L0_ofs, u32 *L0_pt,
			   u32 cmd_size, u32 pt_ofs, u32 avail_pts)
{
	u32 cmds = 0;
	bool is_vram = PTE_UPDATE_FLAG_IS_VRAM & flags;
	bool is_comp_pte = PTE_UPDATE_FLAG_IS_COMP_PTE & flags;

	*L0_pt = pt_ofs;
	if (is_vram && xe_migrate_allow_identity(*L0, cur)) {
		/* Offset into identity map. */
		*L0_ofs = xe_migrate_vram_ofs(tile_to_xe(m->tile),
					      cur->start + vram_region_gpu_offset(res),
					      is_comp_pte);
		cmds += cmd_size;
	} else {
		/* Clip L0 to available size */
		u64 size = min(*L0, (u64)avail_pts * SZ_2M);
		u32 num_4k_pages = (size + XE_PAGE_SIZE - 1) >> XE_PTE_SHIFT;

		*L0 = size;
		*L0_ofs = xe_migrate_vm_addr(pt_ofs, 0);

		/* MI_STORE_DATA_IMM */
		cmds += 3 * DIV_ROUND_UP(num_4k_pages, MAX_PTE_PER_SDI);

		/* PDE qwords */
		cmds += num_4k_pages * 2;

		/* Each chunk has a single blit command */
		cmds += cmd_size;
	}

	return cmds;
}

static void emit_pte(struct xe_migrate *m,
		     struct xe_bb *bb, u32 at_pt,
		     bool is_vram, bool is_comp_pte,
		     struct xe_res_cursor *cur,
		     u32 size, struct ttm_resource *res)
{
	struct xe_device *xe = tile_to_xe(m->tile);
	struct xe_vm *vm = m->q->vm;
	u16 pat_index;
	u32 ptes;
	u64 ofs = (u64)at_pt * XE_PAGE_SIZE;
	u64 cur_ofs;

	/* Indirect access needs compression enabled uncached PAT index */
	if (GRAPHICS_VERx100(xe) >= 2000)
		pat_index = is_comp_pte ? xe->pat.idx[XE_CACHE_NONE_COMPRESSION] :
					  xe->pat.idx[XE_CACHE_WB];
	else
		pat_index = xe->pat.idx[XE_CACHE_WB];

	ptes = DIV_ROUND_UP(size, XE_PAGE_SIZE);

	while (ptes) {
		u32 chunk = min(MAX_PTE_PER_SDI, ptes);

		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
		bb->cs[bb->len++] = ofs;
		bb->cs[bb->len++] = 0;

		cur_ofs = ofs;
		ofs += chunk * 8;
		ptes -= chunk;

		while (chunk--) {
			u64 addr, flags = 0;
			bool devmem = false;

			addr = xe_res_dma(cur) & PAGE_MASK;
			if (is_vram) {
				if (vm->flags & XE_VM_FLAG_64K) {
					u64 va = cur_ofs * XE_PAGE_SIZE / 8;

					xe_assert(xe, (va & (SZ_64K - 1)) ==
						  (addr & (SZ_64K - 1)));

					flags |= XE_PTE_PS64;
				}

				addr += vram_region_gpu_offset(res);
				devmem = true;
			}

			addr = vm->pt_ops->pte_encode_addr(m->tile->xe,
							   addr, pat_index,
							   0, devmem, flags);
			bb->cs[bb->len++] = lower_32_bits(addr);
			bb->cs[bb->len++] = upper_32_bits(addr);

			xe_res_next(cur, min_t(u32, size, PAGE_SIZE));
			cur_ofs += 8;
		}
	}
}

#define EMIT_COPY_CCS_DW 5
static void emit_copy_ccs(struct xe_gt *gt, struct xe_bb *bb,
			  u64 dst_ofs, bool dst_is_indirect,
			  u64 src_ofs, bool src_is_indirect,
			  u32 size)
{
	struct xe_device *xe = gt_to_xe(gt);
	u32 *cs = bb->cs + bb->len;
	u32 num_ccs_blks;
	u32 num_pages;
	u32 ccs_copy_size;
	u32 mocs;

	if (GRAPHICS_VERx100(xe) >= 2000) {
		num_pages = DIV_ROUND_UP(size, XE_PAGE_SIZE);
		xe_gt_assert(gt, FIELD_FIT(XE2_CCS_SIZE_MASK, num_pages - 1));

		ccs_copy_size = REG_FIELD_PREP(XE2_CCS_SIZE_MASK, num_pages - 1);
		mocs = FIELD_PREP(XE2_XY_CTRL_SURF_MOCS_INDEX_MASK, gt->mocs.uc_index);

	} else {
		num_ccs_blks = DIV_ROUND_UP(xe_device_ccs_bytes(gt_to_xe(gt), size),
					    NUM_CCS_BYTES_PER_BLOCK);
		xe_gt_assert(gt, FIELD_FIT(CCS_SIZE_MASK, num_ccs_blks - 1));

		ccs_copy_size = REG_FIELD_PREP(CCS_SIZE_MASK, num_ccs_blks - 1);
		mocs = FIELD_PREP(XY_CTRL_SURF_MOCS_MASK, gt->mocs.uc_index);
	}

	*cs++ = XY_CTRL_SURF_COPY_BLT |
		(src_is_indirect ? 0x0 : 0x1) << SRC_ACCESS_TYPE_SHIFT |
		(dst_is_indirect ? 0x0 : 0x1) << DST_ACCESS_TYPE_SHIFT |
		ccs_copy_size;
	*cs++ = lower_32_bits(src_ofs);
	*cs++ = upper_32_bits(src_ofs) | mocs;
	*cs++ = lower_32_bits(dst_ofs);
	*cs++ = upper_32_bits(dst_ofs) | mocs;

	bb->len = cs - bb->cs;
}

#define EMIT_COPY_DW 10
static void emit_copy(struct xe_gt *gt, struct xe_bb *bb,
		      u64 src_ofs, u64 dst_ofs, unsigned int size,
		      unsigned int pitch)
{
	struct xe_device *xe = gt_to_xe(gt);
	u32 mocs = 0;
	u32 tile_y = 0;

	xe_gt_assert(gt, size / pitch <= S16_MAX);
	xe_gt_assert(gt, pitch / 4 <= S16_MAX);
	xe_gt_assert(gt, pitch <= U16_MAX);

	if (GRAPHICS_VER(xe) >= 20)
		mocs = FIELD_PREP(XE2_XY_FAST_COPY_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index);

	if (GRAPHICS_VERx100(xe) >= 1250)
		tile_y = XY_FAST_COPY_BLT_D1_SRC_TILE4 | XY_FAST_COPY_BLT_D1_DST_TILE4;

	bb->cs[bb->len++] = XY_FAST_COPY_BLT_CMD | (10 - 2);
	bb->cs[bb->len++] = XY_FAST_COPY_BLT_DEPTH_32 | pitch | tile_y | mocs;
	bb->cs[bb->len++] = 0;
	bb->cs[bb->len++] = (size / pitch) << 16 | pitch / 4;
	bb->cs[bb->len++] = lower_32_bits(dst_ofs);
	bb->cs[bb->len++] = upper_32_bits(dst_ofs);
	bb->cs[bb->len++] = 0;
	bb->cs[bb->len++] = pitch | mocs;
	bb->cs[bb->len++] = lower_32_bits(src_ofs);
	bb->cs[bb->len++] = upper_32_bits(src_ofs);
}

static u64 xe_migrate_batch_base(struct xe_migrate *m, bool usm)
{
	return usm ? m->usm_batch_base_ofs : m->batch_base_ofs;
}

static u32 xe_migrate_ccs_copy(struct xe_migrate *m,
			       struct xe_bb *bb,
			       u64 src_ofs, bool src_is_indirect,
			       u64 dst_ofs, bool dst_is_indirect, u32 dst_size,
			       u64 ccs_ofs, bool copy_ccs)
{
	struct xe_gt *gt = m->tile->primary_gt;
	u32 flush_flags = 0;

	if (!copy_ccs && dst_is_indirect) {
		/*
		 * If the src is already in vram, then it should already
		 * have been cleared by us, or has been populated by the
		 * user. Make sure we copy the CCS aux state as-is.
		 *
		 * Otherwise if the bo doesn't have any CCS metadata attached,
		 * we still need to clear it for security reasons.
		 */
		u64 ccs_src_ofs =  src_is_indirect ? src_ofs : m->cleared_mem_ofs;

		emit_copy_ccs(gt, bb,
			      dst_ofs, true,
			      ccs_src_ofs, src_is_indirect, dst_size);

		flush_flags = MI_FLUSH_DW_CCS;
	} else if (copy_ccs) {
		if (!src_is_indirect)
			src_ofs = ccs_ofs;
		else if (!dst_is_indirect)
			dst_ofs = ccs_ofs;

		xe_gt_assert(gt, src_is_indirect || dst_is_indirect);

		emit_copy_ccs(gt, bb, dst_ofs, dst_is_indirect, src_ofs,
			      src_is_indirect, dst_size);
		if (dst_is_indirect)
			flush_flags = MI_FLUSH_DW_CCS;
	}

	return flush_flags;
}

/**
 * xe_migrate_copy() - Copy content of TTM resources.
 * @m: The migration context.
 * @src_bo: The buffer object @src is currently bound to.
 * @dst_bo: If copying between resources created for the same bo, set this to
 * the same value as @src_bo. If copying between buffer objects, set it to
 * the buffer object @dst is currently bound to.
 * @src: The source TTM resource.
 * @dst: The dst TTM resource.
 * @copy_only_ccs: If true copy only CCS metadata
 *
 * Copies the contents of @src to @dst: On flat CCS devices,
 * the CCS metadata is copied as well if needed, or if not present,
 * the CCS metadata of @dst is cleared for security reasons.
 *
 * Return: Pointer to a dma_fence representing the last copy batch, or
 * an error pointer on failure. If there is a failure, any copy operation
 * started by the function call has been synced.
 */
struct dma_fence *xe_migrate_copy(struct xe_migrate *m,
				  struct xe_bo *src_bo,
				  struct xe_bo *dst_bo,
				  struct ttm_resource *src,
				  struct ttm_resource *dst,
				  bool copy_only_ccs)
{
	struct xe_gt *gt = m->tile->primary_gt;
	struct xe_device *xe = gt_to_xe(gt);
	struct dma_fence *fence = NULL;
	u64 size = src_bo->size;
	struct xe_res_cursor src_it, dst_it, ccs_it;
	u64 src_L0_ofs, dst_L0_ofs;
	u32 src_L0_pt, dst_L0_pt;
	u64 src_L0, dst_L0;
	int pass = 0;
	int err;
	bool src_is_pltt = src->mem_type == XE_PL_TT;
	bool dst_is_pltt = dst->mem_type == XE_PL_TT;
	bool src_is_vram = mem_type_is_vram(src->mem_type);
	bool dst_is_vram = mem_type_is_vram(dst->mem_type);
	bool copy_ccs = xe_device_has_flat_ccs(xe) &&
		xe_bo_needs_ccs_pages(src_bo) && xe_bo_needs_ccs_pages(dst_bo);
	bool copy_system_ccs = copy_ccs && (!src_is_vram || !dst_is_vram);
	bool use_comp_pat = xe_device_has_flat_ccs(xe) &&
		GRAPHICS_VER(xe) >= 20 && src_is_vram && !dst_is_vram;

	/* Copying CCS between two different BOs is not supported yet. */
	if (XE_WARN_ON(copy_ccs && src_bo != dst_bo))
		return ERR_PTR(-EINVAL);

	if (src_bo != dst_bo && XE_WARN_ON(src_bo->size != dst_bo->size))
		return ERR_PTR(-EINVAL);

	if (!src_is_vram)
		xe_res_first_sg(xe_bo_sg(src_bo), 0, size, &src_it);
	else
		xe_res_first(src, 0, size, &src_it);
	if (!dst_is_vram)
		xe_res_first_sg(xe_bo_sg(dst_bo), 0, size, &dst_it);
	else
		xe_res_first(dst, 0, size, &dst_it);

	if (copy_system_ccs)
		xe_res_first_sg(xe_bo_sg(src_bo), xe_bo_ccs_pages_start(src_bo),
				PAGE_ALIGN(xe_device_ccs_bytes(xe, size)),
				&ccs_it);

	while (size) {
		u32 batch_size = 2; /* arb_clear() + MI_BATCH_BUFFER_END */
		struct xe_sched_job *job;
		struct xe_bb *bb;
		u32 flush_flags = 0;
		u32 update_idx;
		u64 ccs_ofs, ccs_size;
		u32 ccs_pt;
		u32 pte_flags;

		bool usm = xe->info.has_usm;
		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;

		src_L0 = xe_migrate_res_sizes(m, &src_it);
		dst_L0 = xe_migrate_res_sizes(m, &dst_it);

		drm_dbg(&xe->drm, "Pass %u, sizes: %llu & %llu\n",
			pass++, src_L0, dst_L0);

		src_L0 = min(src_L0, dst_L0);

		pte_flags = src_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
		pte_flags |= use_comp_pat ? PTE_UPDATE_FLAG_IS_COMP_PTE : 0;
		batch_size += pte_update_size(m, pte_flags, src, &src_it, &src_L0,
					      &src_L0_ofs, &src_L0_pt, 0, 0,
					      avail_pts);

		pte_flags = dst_is_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
		batch_size += pte_update_size(m, pte_flags, dst, &dst_it, &src_L0,
					      &dst_L0_ofs, &dst_L0_pt, 0,
					      avail_pts, avail_pts);

		if (copy_system_ccs) {
			ccs_size = xe_device_ccs_bytes(xe, src_L0);
			batch_size += pte_update_size(m, 0, NULL, &ccs_it, &ccs_size,
						      &ccs_ofs, &ccs_pt, 0,
						      2 * avail_pts,
						      avail_pts);
			xe_assert(xe, IS_ALIGNED(ccs_it.start, PAGE_SIZE));
		}

		/* Add copy commands size here */
		batch_size += ((copy_only_ccs) ? 0 : EMIT_COPY_DW) +
			((xe_migrate_needs_ccs_emit(xe) ? EMIT_COPY_CCS_DW : 0));

		bb = xe_bb_new(gt, batch_size, usm);
		if (IS_ERR(bb)) {
			err = PTR_ERR(bb);
			goto err_sync;
		}

		if (src_is_vram && xe_migrate_allow_identity(src_L0, &src_it))
			xe_res_next(&src_it, src_L0);
		else
			emit_pte(m, bb, src_L0_pt, src_is_vram, copy_system_ccs,
				 &src_it, src_L0, src);

		if (dst_is_vram && xe_migrate_allow_identity(src_L0, &dst_it))
			xe_res_next(&dst_it, src_L0);
		else
			emit_pte(m, bb, dst_L0_pt, dst_is_vram, copy_system_ccs,
				 &dst_it, src_L0, dst);

		if (copy_system_ccs)
			emit_pte(m, bb, ccs_pt, false, false, &ccs_it, ccs_size, src);

		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
		update_idx = bb->len;

		if (!copy_only_ccs)
			emit_copy(gt, bb, src_L0_ofs, dst_L0_ofs, src_L0, XE_PAGE_SIZE);

		if (xe_migrate_needs_ccs_emit(xe))
			flush_flags = xe_migrate_ccs_copy(m, bb, src_L0_ofs,
							  IS_DGFX(xe) ? src_is_vram : src_is_pltt,
							  dst_L0_ofs,
							  IS_DGFX(xe) ? dst_is_vram : dst_is_pltt,
							  src_L0, ccs_ofs, copy_ccs);

		job = xe_bb_create_migration_job(m->q, bb,
						 xe_migrate_batch_base(m, usm),
						 update_idx);
		if (IS_ERR(job)) {
			err = PTR_ERR(job);
			goto err;
		}

		xe_sched_job_add_migrate_flush(job, flush_flags);
		if (!fence) {
			err = xe_sched_job_add_deps(job, src_bo->ttm.base.resv,
						    DMA_RESV_USAGE_BOOKKEEP);
			if (!err && src_bo != dst_bo)
				err = xe_sched_job_add_deps(job, dst_bo->ttm.base.resv,
							    DMA_RESV_USAGE_BOOKKEEP);
			if (err)
				goto err_job;
		}

		mutex_lock(&m->job_mutex);
		xe_sched_job_arm(job);
		dma_fence_put(fence);
		fence = dma_fence_get(&job->drm.s_fence->finished);
		xe_sched_job_push(job);

		dma_fence_put(m->fence);
		m->fence = dma_fence_get(fence);

		mutex_unlock(&m->job_mutex);

		xe_bb_free(bb, fence);
		size -= src_L0;
		continue;

err_job:
		xe_sched_job_put(job);
err:
		xe_bb_free(bb, NULL);

err_sync:
		/* Sync partial copy if any. FIXME: under job_mutex? */
		if (fence) {
			dma_fence_wait(fence, false);
			dma_fence_put(fence);
		}

		return ERR_PTR(err);
	}

	return fence;
}

static void emit_clear_link_copy(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
				 u32 size, u32 pitch)
{
	struct xe_device *xe = gt_to_xe(gt);
	u32 *cs = bb->cs + bb->len;
	u32 len = PVC_MEM_SET_CMD_LEN_DW;

	*cs++ = PVC_MEM_SET_CMD | PVC_MEM_SET_MATRIX | (len - 2);
	*cs++ = pitch - 1;
	*cs++ = (size / pitch) - 1;
	*cs++ = pitch - 1;
	*cs++ = lower_32_bits(src_ofs);
	*cs++ = upper_32_bits(src_ofs);
	if (GRAPHICS_VERx100(xe) >= 2000)
		*cs++ = FIELD_PREP(XE2_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);
	else
		*cs++ = FIELD_PREP(PVC_MEM_SET_MOCS_INDEX_MASK, gt->mocs.uc_index);

	xe_gt_assert(gt, cs - bb->cs == len + bb->len);

	bb->len += len;
}

static void emit_clear_main_copy(struct xe_gt *gt, struct xe_bb *bb,
				 u64 src_ofs, u32 size, u32 pitch, bool is_vram)
{
	struct xe_device *xe = gt_to_xe(gt);
	u32 *cs = bb->cs + bb->len;
	u32 len = XY_FAST_COLOR_BLT_DW;

	if (GRAPHICS_VERx100(xe) < 1250)
		len = 11;

	*cs++ = XY_FAST_COLOR_BLT_CMD | XY_FAST_COLOR_BLT_DEPTH_32 |
		(len - 2);
	if (GRAPHICS_VERx100(xe) >= 2000)
		*cs++ = FIELD_PREP(XE2_XY_FAST_COLOR_BLT_MOCS_INDEX_MASK, gt->mocs.uc_index) |
			(pitch - 1);
	else
		*cs++ = FIELD_PREP(XY_FAST_COLOR_BLT_MOCS_MASK, gt->mocs.uc_index) |
			(pitch - 1);
	*cs++ = 0;
	*cs++ = (size / pitch) << 16 | pitch / 4;
	*cs++ = lower_32_bits(src_ofs);
	*cs++ = upper_32_bits(src_ofs);
	*cs++ = (is_vram ? 0x0 : 0x1) <<  XY_FAST_COLOR_BLT_MEM_TYPE_SHIFT;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = 0;
	*cs++ = 0;

	if (len > 11) {
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
		*cs++ = 0;
	}

	xe_gt_assert(gt, cs - bb->cs == len + bb->len);

	bb->len += len;
}

static bool has_service_copy_support(struct xe_gt *gt)
{
	/*
	 * What we care about is whether the architecture was designed with
	 * service copy functionality (specifically the new MEM_SET / MEM_COPY
	 * instructions) so check the architectural engine list rather than the
	 * actual list since these instructions are usable on BCS0 even if
	 * all of the actual service copy engines (BCS1-BCS8) have been fused
	 * off.
	 */
	return gt->info.engine_mask & GENMASK(XE_HW_ENGINE_BCS8,
					      XE_HW_ENGINE_BCS1);
}

static u32 emit_clear_cmd_len(struct xe_gt *gt)
{
	if (has_service_copy_support(gt))
		return PVC_MEM_SET_CMD_LEN_DW;
	else
		return XY_FAST_COLOR_BLT_DW;
}

static void emit_clear(struct xe_gt *gt, struct xe_bb *bb, u64 src_ofs,
		       u32 size, u32 pitch, bool is_vram)
{
	if (has_service_copy_support(gt))
		emit_clear_link_copy(gt, bb, src_ofs, size, pitch);
	else
		emit_clear_main_copy(gt, bb, src_ofs, size, pitch,
				     is_vram);
}

/**
 * xe_migrate_clear() - Copy content of TTM resources.
 * @m: The migration context.
 * @bo: The buffer object @dst is currently bound to.
 * @dst: The dst TTM resource to be cleared.
 *
 * Clear the contents of @dst to zero. On flat CCS devices,
 * the CCS metadata is cleared to zero as well on VRAM destinations.
 * TODO: Eliminate the @bo argument.
 *
 * Return: Pointer to a dma_fence representing the last clear batch, or
 * an error pointer on failure. If there is a failure, any clear operation
 * started by the function call has been synced.
 */
struct dma_fence *xe_migrate_clear(struct xe_migrate *m,
				   struct xe_bo *bo,
				   struct ttm_resource *dst)
{
	bool clear_vram = mem_type_is_vram(dst->mem_type);
	struct xe_gt *gt = m->tile->primary_gt;
	struct xe_device *xe = gt_to_xe(gt);
	bool clear_system_ccs = (xe_bo_needs_ccs_pages(bo) && !IS_DGFX(xe)) ? true : false;
	struct dma_fence *fence = NULL;
	u64 size = bo->size;
	struct xe_res_cursor src_it;
	struct ttm_resource *src = dst;
	int err;

	if (!clear_vram)
		xe_res_first_sg(xe_bo_sg(bo), 0, bo->size, &src_it);
	else
		xe_res_first(src, 0, bo->size, &src_it);

	while (size) {
		u64 clear_L0_ofs;
		u32 clear_L0_pt;
		u32 flush_flags = 0;
		u64 clear_L0;
		struct xe_sched_job *job;
		struct xe_bb *bb;
		u32 batch_size, update_idx;
		u32 pte_flags;

		bool usm = xe->info.has_usm;
		u32 avail_pts = max_mem_transfer_per_pass(xe) / LEVEL0_PAGE_TABLE_ENCODE_SIZE;

		clear_L0 = xe_migrate_res_sizes(m, &src_it);

		/* Calculate final sizes and batch size.. */
		pte_flags = clear_vram ? PTE_UPDATE_FLAG_IS_VRAM : 0;
		batch_size = 2 +
			pte_update_size(m, pte_flags, src, &src_it,
					&clear_L0, &clear_L0_ofs, &clear_L0_pt,
					clear_system_ccs ? 0 : emit_clear_cmd_len(gt), 0,
					avail_pts);

		if (xe_migrate_needs_ccs_emit(xe))
			batch_size += EMIT_COPY_CCS_DW;

		/* Clear commands */

		if (WARN_ON_ONCE(!clear_L0))
			break;

		bb = xe_bb_new(gt, batch_size, usm);
		if (IS_ERR(bb)) {
			err = PTR_ERR(bb);
			goto err_sync;
		}

		size -= clear_L0;
		/* Preemption is enabled again by the ring ops. */
		if (clear_vram && xe_migrate_allow_identity(clear_L0, &src_it))
			xe_res_next(&src_it, clear_L0);
		else
			emit_pte(m, bb, clear_L0_pt, clear_vram, clear_system_ccs,
				 &src_it, clear_L0, dst);

		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
		update_idx = bb->len;

		if (!clear_system_ccs)
			emit_clear(gt, bb, clear_L0_ofs, clear_L0, XE_PAGE_SIZE, clear_vram);

		if (xe_migrate_needs_ccs_emit(xe)) {
			emit_copy_ccs(gt, bb, clear_L0_ofs, true,
				      m->cleared_mem_ofs, false, clear_L0);
			flush_flags = MI_FLUSH_DW_CCS;
		}

		job = xe_bb_create_migration_job(m->q, bb,
						 xe_migrate_batch_base(m, usm),
						 update_idx);
		if (IS_ERR(job)) {
			err = PTR_ERR(job);
			goto err;
		}

		xe_sched_job_add_migrate_flush(job, flush_flags);
		if (!fence) {
			/*
			 * There can't be anything userspace related at this
			 * point, so we just need to respect any potential move
			 * fences, which are always tracked as
			 * DMA_RESV_USAGE_KERNEL.
			 */
			err = xe_sched_job_add_deps(job, bo->ttm.base.resv,
						    DMA_RESV_USAGE_KERNEL);
			if (err)
				goto err_job;
		}

		mutex_lock(&m->job_mutex);
		xe_sched_job_arm(job);
		dma_fence_put(fence);
		fence = dma_fence_get(&job->drm.s_fence->finished);
		xe_sched_job_push(job);

		dma_fence_put(m->fence);
		m->fence = dma_fence_get(fence);

		mutex_unlock(&m->job_mutex);

		xe_bb_free(bb, fence);
		continue;

err_job:
		xe_sched_job_put(job);
err:
		xe_bb_free(bb, NULL);
err_sync:
		/* Sync partial copies if any. FIXME: job_mutex? */
		if (fence) {
			dma_fence_wait(m->fence, false);
			dma_fence_put(fence);
		}

		return ERR_PTR(err);
	}

	if (clear_system_ccs)
		bo->ccs_cleared = true;

	return fence;
}

static void write_pgtable(struct xe_tile *tile, struct xe_bb *bb, u64 ppgtt_ofs,
			  const struct xe_vm_pgtable_update_op *pt_op,
			  const struct xe_vm_pgtable_update *update,
			  struct xe_migrate_pt_update *pt_update)
{
	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
	u32 chunk;
	u32 ofs = update->ofs, size = update->qwords;

	/*
	 * If we have 512 entries (max), we would populate it ourselves,
	 * and update the PDE above it to the new pointer.
	 * The only time this can only happen if we have to update the top
	 * PDE. This requires a BO that is almost vm->size big.
	 *
	 * This shouldn't be possible in practice.. might change when 16K
	 * pages are used. Hence the assert.
	 */
	xe_tile_assert(tile, update->qwords < MAX_NUM_PTE);
	if (!ppgtt_ofs)
		ppgtt_ofs = xe_migrate_vram_ofs(tile_to_xe(tile),
						xe_bo_addr(update->pt_bo, 0,
							   XE_PAGE_SIZE), false);

	do {
		u64 addr = ppgtt_ofs + ofs * 8;

		chunk = min(size, MAX_PTE_PER_SDI);

		/* Ensure populatefn can do memset64 by aligning bb->cs */
		if (!(bb->len & 1))
			bb->cs[bb->len++] = MI_NOOP;

		bb->cs[bb->len++] = MI_STORE_DATA_IMM | MI_SDI_NUM_QW(chunk);
		bb->cs[bb->len++] = lower_32_bits(addr);
		bb->cs[bb->len++] = upper_32_bits(addr);
		if (pt_op->bind)
			ops->populate(pt_update, tile, NULL, bb->cs + bb->len,
				      ofs, chunk, update);
		else
			ops->clear(pt_update, tile, NULL, bb->cs + bb->len,
				   ofs, chunk, update);

		bb->len += chunk * 2;
		ofs += chunk;
		size -= chunk;
	} while (size);
}

struct xe_vm *xe_migrate_get_vm(struct xe_migrate *m)
{
	return xe_vm_get(m->q->vm);
}

#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
struct migrate_test_params {
	struct xe_test_priv base;
	bool force_gpu;
};

#define to_migrate_test_params(_priv) \
	container_of(_priv, struct migrate_test_params, base)
#endif

static struct dma_fence *
xe_migrate_update_pgtables_cpu(struct xe_migrate *m,
			       struct xe_migrate_pt_update *pt_update)
{
	XE_TEST_DECLARE(struct migrate_test_params *test =
			to_migrate_test_params
			(xe_cur_kunit_priv(XE_TEST_LIVE_MIGRATE));)
	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
	struct xe_vm *vm = pt_update->vops->vm;
	struct xe_vm_pgtable_update_ops *pt_update_ops =
		&pt_update->vops->pt_update_ops[pt_update->tile_id];
	int err;
	u32 i, j;

	if (XE_TEST_ONLY(test && test->force_gpu))
		return ERR_PTR(-ETIME);

	if (ops->pre_commit) {
		pt_update->job = NULL;
		err = ops->pre_commit(pt_update);
		if (err)
			return ERR_PTR(err);
	}

	for (i = 0; i < pt_update_ops->num_ops; ++i) {
		const struct xe_vm_pgtable_update_op *pt_op =
			&pt_update_ops->ops[i];

		for (j = 0; j < pt_op->num_entries; j++) {
			const struct xe_vm_pgtable_update *update =
				&pt_op->entries[j];

			if (pt_op->bind)
				ops->populate(pt_update, m->tile,
					      &update->pt_bo->vmap, NULL,
					      update->ofs, update->qwords,
					      update);
			else
				ops->clear(pt_update, m->tile,
					   &update->pt_bo->vmap, NULL,
					   update->ofs, update->qwords, update);
		}
	}

	trace_xe_vm_cpu_bind(vm);
	xe_device_wmb(vm->xe);

	return dma_fence_get_stub();
}

static struct dma_fence *
__xe_migrate_update_pgtables(struct xe_migrate *m,
			     struct xe_migrate_pt_update *pt_update,
			     struct xe_vm_pgtable_update_ops *pt_update_ops)
{
	const struct xe_migrate_pt_update_ops *ops = pt_update->ops;
	struct xe_tile *tile = m->tile;
	struct xe_gt *gt = tile->primary_gt;
	struct xe_device *xe = tile_to_xe(tile);
	struct xe_sched_job *job;
	struct dma_fence *fence;
	struct drm_suballoc *sa_bo = NULL;
	struct xe_bb *bb;
	u32 i, j, batch_size = 0, ppgtt_ofs, update_idx, page_ofs = 0;
	u32 num_updates = 0, current_update = 0;
	u64 addr;
	int err = 0;
	bool is_migrate = pt_update_ops->q == m->q;
	bool usm = is_migrate && xe->info.has_usm;

	for (i = 0; i < pt_update_ops->num_ops; ++i) {
		struct xe_vm_pgtable_update_op *pt_op = &pt_update_ops->ops[i];
		struct xe_vm_pgtable_update *updates = pt_op->entries;

		num_updates += pt_op->num_entries;
		for (j = 0; j < pt_op->num_entries; ++j) {
			u32 num_cmds = DIV_ROUND_UP(updates[j].qwords,
						    MAX_PTE_PER_SDI);

			/* align noop + MI_STORE_DATA_IMM cmd prefix */
			batch_size += 4 * num_cmds + updates[j].qwords * 2;
		}
	}

	/* fixed + PTE entries */
	if (IS_DGFX(xe))
		batch_size += 2;
	else
		batch_size += 6 * (num_updates / MAX_PTE_PER_SDI + 1) +
			num_updates * 2;

	bb = xe_bb_new(gt, batch_size, usm);
	if (IS_ERR(bb))
		return ERR_CAST(bb);

	/* For sysmem PTE's, need to map them in our hole.. */
	if (!IS_DGFX(xe)) {
		u32 ptes, ofs;

		ppgtt_ofs = NUM_KERNEL_PDE - 1;
		if (!is_migrate) {
			u32 num_units = DIV_ROUND_UP(num_updates,
						     NUM_VMUSA_WRITES_PER_UNIT);

			if (num_units > m->vm_update_sa.size) {
				err = -ENOBUFS;
				goto err_bb;
			}
			sa_bo = drm_suballoc_new(&m->vm_update_sa, num_units,
						 GFP_KERNEL, true, 0);
			if (IS_ERR(sa_bo)) {
				err = PTR_ERR(sa_bo);
				goto err_bb;
			}

			ppgtt_ofs = NUM_KERNEL_PDE +
				(drm_suballoc_soffset(sa_bo) /
				 NUM_VMUSA_UNIT_PER_PAGE);
			page_ofs = (drm_suballoc_soffset(sa_bo) %
				    NUM_VMUSA_UNIT_PER_PAGE) *
				VM_SA_UPDATE_UNIT_SIZE;
		}

		/* Map our PT's to gtt */
		i = 0;
		j = 0;
		ptes = num_updates;
		ofs = ppgtt_ofs * XE_PAGE_SIZE + page_ofs;
		while (ptes) {
			u32 chunk = min(MAX_PTE_PER_SDI, ptes);
			u32 idx = 0;

			bb->cs[bb->len++] = MI_STORE_DATA_IMM |
				MI_SDI_NUM_QW(chunk);
			bb->cs[bb->len++] = ofs;
			bb->cs[bb->len++] = 0; /* upper_32_bits */

			for (; i < pt_update_ops->num_ops; ++i) {
				struct xe_vm_pgtable_update_op *pt_op =
					&pt_update_ops->ops[i];
				struct xe_vm_pgtable_update *updates = pt_op->entries;

				for (; j < pt_op->num_entries; ++j, ++current_update, ++idx) {
					struct xe_vm *vm = pt_update->vops->vm;
					struct xe_bo *pt_bo = updates[j].pt_bo;

					if (idx == chunk)
						goto next_cmd;

					xe_tile_assert(tile, pt_bo->size == SZ_4K);

					/* Map a PT at most once */
					if (pt_bo->update_index < 0)
						pt_bo->update_index = current_update;

					addr = vm->pt_ops->pte_encode_bo(pt_bo, 0,
									 XE_CACHE_WB, 0);
					bb->cs[bb->len++] = lower_32_bits(addr);
					bb->cs[bb->len++] = upper_32_bits(addr);
				}

				j = 0;
			}

next_cmd:
			ptes -= chunk;
			ofs += chunk * sizeof(u64);
		}

		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
		update_idx = bb->len;

		addr = xe_migrate_vm_addr(ppgtt_ofs, 0) +
			(page_ofs / sizeof(u64)) * XE_PAGE_SIZE;
		for (i = 0; i < pt_update_ops->num_ops; ++i) {
			struct xe_vm_pgtable_update_op *pt_op =
				&pt_update_ops->ops[i];
			struct xe_vm_pgtable_update *updates = pt_op->entries;

			for (j = 0; j < pt_op->num_entries; ++j) {
				struct xe_bo *pt_bo = updates[j].pt_bo;

				write_pgtable(tile, bb, addr +
					      pt_bo->update_index * XE_PAGE_SIZE,
					      pt_op, &updates[j], pt_update);
			}
		}
	} else {
		/* phys pages, no preamble required */
		bb->cs[bb->len++] = MI_BATCH_BUFFER_END;
		update_idx = bb->len;

		for (i = 0; i < pt_update_ops->num_ops; ++i) {
			struct xe_vm_pgtable_update_op *pt_op =
				&pt_update_ops->ops[i];
			struct xe_vm_pgtable_update *updates = pt_op->entries;

			for (j = 0; j < pt_op->num_entries; ++j)
				write_pgtable(tile, bb, 0, pt_op, &updates[j],
					      pt_update);
		}
	}

	job = xe_bb_create_migration_job(pt_update_ops->q, bb,
					 xe_migrate_batch_base(m, usm),
					 update_idx);
	if (IS_ERR(job)) {
		err = PTR_ERR(job);
		goto err_sa;
	}

	if (ops->pre_commit) {
		pt_update->job = job;
		err = ops->pre_commit(pt_update);
		if (err)
			goto err_job;
	}
	if (is_migrate)
		mutex_lock(&m->job_mutex);

	xe_sched_job_arm(job);
	fence = dma_fence_get(&job->drm.s_fence->finished);
	xe_sched_job_push(job);

	if (is_migrate)
		mutex_unlock(&m->job_mutex);

	xe_bb_free(bb, fence);
	drm_suballoc_free(sa_bo, fence);

	return fence;

err_job:
	xe_sched_job_put(job);
err_sa:
	drm_suballoc_free(sa_bo, NULL);
err_bb:
	xe_bb_free(bb, NULL);
	return ERR_PTR(err);
}

/**
 * xe_migrate_update_pgtables() - Pipelined page-table update
 * @m: The migrate context.
 * @pt_update: PT update arguments
 *
 * Perform a pipelined page-table update. The update descriptors are typically
 * built under the same lock critical section as a call to this function. If
 * using the default engine for the updates, they will be performed in the
 * order they grab the job_mutex. If different engines are used, external
 * synchronization is needed for overlapping updates to maintain page-table
 * consistency. Note that the meaing of "overlapping" is that the updates
 * touch the same page-table, which might be a higher-level page-directory.
 * If no pipelining is needed, then updates may be performed by the cpu.
 *
 * Return: A dma_fence that, when signaled, indicates the update completion.
 */
struct dma_fence *
xe_migrate_update_pgtables(struct xe_migrate *m,
			   struct xe_migrate_pt_update *pt_update)

{
	struct xe_vm_pgtable_update_ops *pt_update_ops =
		&pt_update->vops->pt_update_ops[pt_update->tile_id];
	struct dma_fence *fence;

	fence =  xe_migrate_update_pgtables_cpu(m, pt_update);

	/* -ETIME indicates a job is needed, anything else is legit error */
	if (!IS_ERR(fence) || PTR_ERR(fence) != -ETIME)
		return fence;

	return __xe_migrate_update_pgtables(m, pt_update, pt_update_ops);
}

/**
 * xe_migrate_wait() - Complete all operations using the xe_migrate context
 * @m: Migrate context to wait for.
 *
 * Waits until the GPU no longer uses the migrate context's default engine
 * or its page-table objects. FIXME: What about separate page-table update
 * engines?
 */
void xe_migrate_wait(struct xe_migrate *m)
{
	if (m->fence)
		dma_fence_wait(m->fence, false);
}

#if IS_ENABLED(CONFIG_DRM_XE_KUNIT_TEST)
#include "tests/xe_migrate.c"
#endif