summaryrefslogtreecommitdiffstats
path: root/drivers/iommu/arm/arm-smmu-v3/arm-smmu-v3.c
blob: a31460f9f3d4216b00ab27e0f051ea0cb42e9752 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
// SPDX-License-Identifier: GPL-2.0
/*
 * IOMMU API for ARM architected SMMUv3 implementations.
 *
 * Copyright (C) 2015 ARM Limited
 *
 * Author: Will Deacon <will.deacon@arm.com>
 *
 * This driver is powered by bad coffee and bombay mix.
 */

#include <linux/acpi.h>
#include <linux/acpi_iort.h>
#include <linux/bitops.h>
#include <linux/crash_dump.h>
#include <linux/delay.h>
#include <linux/err.h>
#include <linux/interrupt.h>
#include <linux/io-pgtable.h>
#include <linux/iopoll.h>
#include <linux/module.h>
#include <linux/msi.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <linux/of_platform.h>
#include <linux/pci.h>
#include <linux/pci-ats.h>
#include <linux/platform_device.h>
#include <kunit/visibility.h>
#include <uapi/linux/iommufd.h>

#include "arm-smmu-v3.h"
#include "../../dma-iommu.h"

static bool disable_msipolling;
module_param(disable_msipolling, bool, 0444);
MODULE_PARM_DESC(disable_msipolling,
	"Disable MSI-based polling for CMD_SYNC completion.");

static struct iommu_ops arm_smmu_ops;
static struct iommu_dirty_ops arm_smmu_dirty_ops;

enum arm_smmu_msi_index {
	EVTQ_MSI_INDEX,
	GERROR_MSI_INDEX,
	PRIQ_MSI_INDEX,
	ARM_SMMU_MAX_MSIS,
};

#define NUM_ENTRY_QWORDS 8
static_assert(sizeof(struct arm_smmu_ste) == NUM_ENTRY_QWORDS * sizeof(u64));
static_assert(sizeof(struct arm_smmu_cd) == NUM_ENTRY_QWORDS * sizeof(u64));

static phys_addr_t arm_smmu_msi_cfg[ARM_SMMU_MAX_MSIS][3] = {
	[EVTQ_MSI_INDEX] = {
		ARM_SMMU_EVTQ_IRQ_CFG0,
		ARM_SMMU_EVTQ_IRQ_CFG1,
		ARM_SMMU_EVTQ_IRQ_CFG2,
	},
	[GERROR_MSI_INDEX] = {
		ARM_SMMU_GERROR_IRQ_CFG0,
		ARM_SMMU_GERROR_IRQ_CFG1,
		ARM_SMMU_GERROR_IRQ_CFG2,
	},
	[PRIQ_MSI_INDEX] = {
		ARM_SMMU_PRIQ_IRQ_CFG0,
		ARM_SMMU_PRIQ_IRQ_CFG1,
		ARM_SMMU_PRIQ_IRQ_CFG2,
	},
};

struct arm_smmu_option_prop {
	u32 opt;
	const char *prop;
};

DEFINE_XARRAY_ALLOC1(arm_smmu_asid_xa);
DEFINE_MUTEX(arm_smmu_asid_lock);

static struct arm_smmu_option_prop arm_smmu_options[] = {
	{ ARM_SMMU_OPT_SKIP_PREFETCH, "hisilicon,broken-prefetch-cmd" },
	{ ARM_SMMU_OPT_PAGE0_REGS_ONLY, "cavium,cn9900-broken-page1-regspace"},
	{ 0, NULL},
};

static int arm_smmu_domain_finalise(struct arm_smmu_domain *smmu_domain,
				    struct arm_smmu_device *smmu, u32 flags);
static int arm_smmu_alloc_cd_tables(struct arm_smmu_master *master);

static void parse_driver_options(struct arm_smmu_device *smmu)
{
	int i = 0;

	do {
		if (of_property_read_bool(smmu->dev->of_node,
						arm_smmu_options[i].prop)) {
			smmu->options |= arm_smmu_options[i].opt;
			dev_notice(smmu->dev, "option %s\n",
				arm_smmu_options[i].prop);
		}
	} while (arm_smmu_options[++i].opt);
}

/* Low-level queue manipulation functions */
static bool queue_has_space(struct arm_smmu_ll_queue *q, u32 n)
{
	u32 space, prod, cons;

	prod = Q_IDX(q, q->prod);
	cons = Q_IDX(q, q->cons);

	if (Q_WRP(q, q->prod) == Q_WRP(q, q->cons))
		space = (1 << q->max_n_shift) - (prod - cons);
	else
		space = cons - prod;

	return space >= n;
}

static bool queue_full(struct arm_smmu_ll_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) != Q_WRP(q, q->cons);
}

static bool queue_empty(struct arm_smmu_ll_queue *q)
{
	return Q_IDX(q, q->prod) == Q_IDX(q, q->cons) &&
	       Q_WRP(q, q->prod) == Q_WRP(q, q->cons);
}

static bool queue_consumed(struct arm_smmu_ll_queue *q, u32 prod)
{
	return ((Q_WRP(q, q->cons) == Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) > Q_IDX(q, prod))) ||
	       ((Q_WRP(q, q->cons) != Q_WRP(q, prod)) &&
		(Q_IDX(q, q->cons) <= Q_IDX(q, prod)));
}

static void queue_sync_cons_out(struct arm_smmu_queue *q)
{
	/*
	 * Ensure that all CPU accesses (reads and writes) to the queue
	 * are complete before we update the cons pointer.
	 */
	__iomb();
	writel_relaxed(q->llq.cons, q->cons_reg);
}

static void queue_inc_cons(struct arm_smmu_ll_queue *q)
{
	u32 cons = (Q_WRP(q, q->cons) | Q_IDX(q, q->cons)) + 1;
	q->cons = Q_OVF(q->cons) | Q_WRP(q, cons) | Q_IDX(q, cons);
}

static void queue_sync_cons_ovf(struct arm_smmu_queue *q)
{
	struct arm_smmu_ll_queue *llq = &q->llq;

	if (likely(Q_OVF(llq->prod) == Q_OVF(llq->cons)))
		return;

	llq->cons = Q_OVF(llq->prod) | Q_WRP(llq, llq->cons) |
		      Q_IDX(llq, llq->cons);
	queue_sync_cons_out(q);
}

static int queue_sync_prod_in(struct arm_smmu_queue *q)
{
	u32 prod;
	int ret = 0;

	/*
	 * We can't use the _relaxed() variant here, as we must prevent
	 * speculative reads of the queue before we have determined that
	 * prod has indeed moved.
	 */
	prod = readl(q->prod_reg);

	if (Q_OVF(prod) != Q_OVF(q->llq.prod))
		ret = -EOVERFLOW;

	q->llq.prod = prod;
	return ret;
}

static u32 queue_inc_prod_n(struct arm_smmu_ll_queue *q, int n)
{
	u32 prod = (Q_WRP(q, q->prod) | Q_IDX(q, q->prod)) + n;
	return Q_OVF(q->prod) | Q_WRP(q, prod) | Q_IDX(q, prod);
}

static void queue_poll_init(struct arm_smmu_device *smmu,
			    struct arm_smmu_queue_poll *qp)
{
	qp->delay = 1;
	qp->spin_cnt = 0;
	qp->wfe = !!(smmu->features & ARM_SMMU_FEAT_SEV);
	qp->timeout = ktime_add_us(ktime_get(), ARM_SMMU_POLL_TIMEOUT_US);
}

static int queue_poll(struct arm_smmu_queue_poll *qp)
{
	if (ktime_compare(ktime_get(), qp->timeout) > 0)
		return -ETIMEDOUT;

	if (qp->wfe) {
		wfe();
	} else if (++qp->spin_cnt < ARM_SMMU_POLL_SPIN_COUNT) {
		cpu_relax();
	} else {
		udelay(qp->delay);
		qp->delay *= 2;
		qp->spin_cnt = 0;
	}

	return 0;
}

static void queue_write(__le64 *dst, u64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = cpu_to_le64(*src++);
}

static void queue_read(u64 *dst, __le64 *src, size_t n_dwords)
{
	int i;

	for (i = 0; i < n_dwords; ++i)
		*dst++ = le64_to_cpu(*src++);
}

static int queue_remove_raw(struct arm_smmu_queue *q, u64 *ent)
{
	if (queue_empty(&q->llq))
		return -EAGAIN;

	queue_read(ent, Q_ENT(q, q->llq.cons), q->ent_dwords);
	queue_inc_cons(&q->llq);
	queue_sync_cons_out(q);
	return 0;
}

/* High-level queue accessors */
static int arm_smmu_cmdq_build_cmd(u64 *cmd, struct arm_smmu_cmdq_ent *ent)
{
	memset(cmd, 0, 1 << CMDQ_ENT_SZ_SHIFT);
	cmd[0] |= FIELD_PREP(CMDQ_0_OP, ent->opcode);

	switch (ent->opcode) {
	case CMDQ_OP_TLBI_EL2_ALL:
	case CMDQ_OP_TLBI_NSNH_ALL:
		break;
	case CMDQ_OP_PREFETCH_CFG:
		cmd[0] |= FIELD_PREP(CMDQ_PREFETCH_0_SID, ent->prefetch.sid);
		break;
	case CMDQ_OP_CFGI_CD:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SSID, ent->cfgi.ssid);
		fallthrough;
	case CMDQ_OP_CFGI_STE:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_LEAF, ent->cfgi.leaf);
		break;
	case CMDQ_OP_CFGI_CD_ALL:
		cmd[0] |= FIELD_PREP(CMDQ_CFGI_0_SID, ent->cfgi.sid);
		break;
	case CMDQ_OP_CFGI_ALL:
		/* Cover the entire SID range */
		cmd[1] |= FIELD_PREP(CMDQ_CFGI_1_RANGE, 31);
		break;
	case CMDQ_OP_TLBI_NH_VA:
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		fallthrough;
	case CMDQ_OP_TLBI_EL2_VA:
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_VA_MASK;
		break;
	case CMDQ_OP_TLBI_S2_IPA:
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_NUM, ent->tlbi.num);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_SCALE, ent->tlbi.scale);
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_LEAF, ent->tlbi.leaf);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TTL, ent->tlbi.ttl);
		cmd[1] |= FIELD_PREP(CMDQ_TLBI_1_TG, ent->tlbi.tg);
		cmd[1] |= ent->tlbi.addr & CMDQ_TLBI_1_IPA_MASK;
		break;
	case CMDQ_OP_TLBI_NH_ASID:
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		fallthrough;
	case CMDQ_OP_TLBI_S12_VMALL:
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_VMID, ent->tlbi.vmid);
		break;
	case CMDQ_OP_TLBI_EL2_ASID:
		cmd[0] |= FIELD_PREP(CMDQ_TLBI_0_ASID, ent->tlbi.asid);
		break;
	case CMDQ_OP_ATC_INV:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_GLOBAL, ent->atc.global);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SSID, ent->atc.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_ATC_0_SID, ent->atc.sid);
		cmd[1] |= FIELD_PREP(CMDQ_ATC_1_SIZE, ent->atc.size);
		cmd[1] |= ent->atc.addr & CMDQ_ATC_1_ADDR_MASK;
		break;
	case CMDQ_OP_PRI_RESP:
		cmd[0] |= FIELD_PREP(CMDQ_0_SSV, ent->substream_valid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SSID, ent->pri.ssid);
		cmd[0] |= FIELD_PREP(CMDQ_PRI_0_SID, ent->pri.sid);
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_GRPID, ent->pri.grpid);
		switch (ent->pri.resp) {
		case PRI_RESP_DENY:
		case PRI_RESP_FAIL:
		case PRI_RESP_SUCC:
			break;
		default:
			return -EINVAL;
		}
		cmd[1] |= FIELD_PREP(CMDQ_PRI_1_RESP, ent->pri.resp);
		break;
	case CMDQ_OP_RESUME:
		cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_SID, ent->resume.sid);
		cmd[0] |= FIELD_PREP(CMDQ_RESUME_0_RESP, ent->resume.resp);
		cmd[1] |= FIELD_PREP(CMDQ_RESUME_1_STAG, ent->resume.stag);
		break;
	case CMDQ_OP_CMD_SYNC:
		if (ent->sync.msiaddr) {
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_IRQ);
			cmd[1] |= ent->sync.msiaddr & CMDQ_SYNC_1_MSIADDR_MASK;
		} else {
			cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_CS, CMDQ_SYNC_0_CS_SEV);
		}
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSH, ARM_SMMU_SH_ISH);
		cmd[0] |= FIELD_PREP(CMDQ_SYNC_0_MSIATTR, ARM_SMMU_MEMATTR_OIWB);
		break;
	default:
		return -ENOENT;
	}

	return 0;
}

static struct arm_smmu_cmdq *arm_smmu_get_cmdq(struct arm_smmu_device *smmu)
{
	return &smmu->cmdq;
}

static void arm_smmu_cmdq_build_sync_cmd(u64 *cmd, struct arm_smmu_device *smmu,
					 struct arm_smmu_queue *q, u32 prod)
{
	struct arm_smmu_cmdq_ent ent = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	/*
	 * Beware that Hi16xx adds an extra 32 bits of goodness to its MSI
	 * payload, so the write will zero the entire command on that platform.
	 */
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL) {
		ent.sync.msiaddr = q->base_dma + Q_IDX(&q->llq, prod) *
				   q->ent_dwords * 8;
	}

	arm_smmu_cmdq_build_cmd(cmd, &ent);
}

static void __arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu,
				     struct arm_smmu_queue *q)
{
	static const char * const cerror_str[] = {
		[CMDQ_ERR_CERROR_NONE_IDX]	= "No error",
		[CMDQ_ERR_CERROR_ILL_IDX]	= "Illegal command",
		[CMDQ_ERR_CERROR_ABT_IDX]	= "Abort on command fetch",
		[CMDQ_ERR_CERROR_ATC_INV_IDX]	= "ATC invalidate timeout",
	};

	int i;
	u64 cmd[CMDQ_ENT_DWORDS];
	u32 cons = readl_relaxed(q->cons_reg);
	u32 idx = FIELD_GET(CMDQ_CONS_ERR, cons);
	struct arm_smmu_cmdq_ent cmd_sync = {
		.opcode = CMDQ_OP_CMD_SYNC,
	};

	dev_err(smmu->dev, "CMDQ error (cons 0x%08x): %s\n", cons,
		idx < ARRAY_SIZE(cerror_str) ?  cerror_str[idx] : "Unknown");

	switch (idx) {
	case CMDQ_ERR_CERROR_ABT_IDX:
		dev_err(smmu->dev, "retrying command fetch\n");
		return;
	case CMDQ_ERR_CERROR_NONE_IDX:
		return;
	case CMDQ_ERR_CERROR_ATC_INV_IDX:
		/*
		 * ATC Invalidation Completion timeout. CONS is still pointing
		 * at the CMD_SYNC. Attempt to complete other pending commands
		 * by repeating the CMD_SYNC, though we might well end up back
		 * here since the ATC invalidation may still be pending.
		 */
		return;
	case CMDQ_ERR_CERROR_ILL_IDX:
	default:
		break;
	}

	/*
	 * We may have concurrent producers, so we need to be careful
	 * not to touch any of the shadow cmdq state.
	 */
	queue_read(cmd, Q_ENT(q, cons), q->ent_dwords);
	dev_err(smmu->dev, "skipping command in error state:\n");
	for (i = 0; i < ARRAY_SIZE(cmd); ++i)
		dev_err(smmu->dev, "\t0x%016llx\n", (unsigned long long)cmd[i]);

	/* Convert the erroneous command into a CMD_SYNC */
	arm_smmu_cmdq_build_cmd(cmd, &cmd_sync);

	queue_write(Q_ENT(q, cons), cmd, q->ent_dwords);
}

static void arm_smmu_cmdq_skip_err(struct arm_smmu_device *smmu)
{
	__arm_smmu_cmdq_skip_err(smmu, &smmu->cmdq.q);
}

/*
 * Command queue locking.
 * This is a form of bastardised rwlock with the following major changes:
 *
 * - The only LOCK routines are exclusive_trylock() and shared_lock().
 *   Neither have barrier semantics, and instead provide only a control
 *   dependency.
 *
 * - The UNLOCK routines are supplemented with shared_tryunlock(), which
 *   fails if the caller appears to be the last lock holder (yes, this is
 *   racy). All successful UNLOCK routines have RELEASE semantics.
 */
static void arm_smmu_cmdq_shared_lock(struct arm_smmu_cmdq *cmdq)
{
	int val;

	/*
	 * We can try to avoid the cmpxchg() loop by simply incrementing the
	 * lock counter. When held in exclusive state, the lock counter is set
	 * to INT_MIN so these increments won't hurt as the value will remain
	 * negative.
	 */
	if (atomic_fetch_inc_relaxed(&cmdq->lock) >= 0)
		return;

	do {
		val = atomic_cond_read_relaxed(&cmdq->lock, VAL >= 0);
	} while (atomic_cmpxchg_relaxed(&cmdq->lock, val, val + 1) != val);
}

static void arm_smmu_cmdq_shared_unlock(struct arm_smmu_cmdq *cmdq)
{
	(void)atomic_dec_return_release(&cmdq->lock);
}

static bool arm_smmu_cmdq_shared_tryunlock(struct arm_smmu_cmdq *cmdq)
{
	if (atomic_read(&cmdq->lock) == 1)
		return false;

	arm_smmu_cmdq_shared_unlock(cmdq);
	return true;
}

#define arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)		\
({									\
	bool __ret;							\
	local_irq_save(flags);						\
	__ret = !atomic_cmpxchg_relaxed(&cmdq->lock, 0, INT_MIN);	\
	if (!__ret)							\
		local_irq_restore(flags);				\
	__ret;								\
})

#define arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags)		\
({									\
	atomic_set_release(&cmdq->lock, 0);				\
	local_irq_restore(flags);					\
})


/*
 * Command queue insertion.
 * This is made fiddly by our attempts to achieve some sort of scalability
 * since there is one queue shared amongst all of the CPUs in the system.  If
 * you like mixed-size concurrency, dependency ordering and relaxed atomics,
 * then you'll *love* this monstrosity.
 *
 * The basic idea is to split the queue up into ranges of commands that are
 * owned by a given CPU; the owner may not have written all of the commands
 * itself, but is responsible for advancing the hardware prod pointer when
 * the time comes. The algorithm is roughly:
 *
 * 	1. Allocate some space in the queue. At this point we also discover
 *	   whether the head of the queue is currently owned by another CPU,
 *	   or whether we are the owner.
 *
 *	2. Write our commands into our allocated slots in the queue.
 *
 *	3. Mark our slots as valid in arm_smmu_cmdq.valid_map.
 *
 *	4. If we are an owner:
 *		a. Wait for the previous owner to finish.
 *		b. Mark the queue head as unowned, which tells us the range
 *		   that we are responsible for publishing.
 *		c. Wait for all commands in our owned range to become valid.
 *		d. Advance the hardware prod pointer.
 *		e. Tell the next owner we've finished.
 *
 *	5. If we are inserting a CMD_SYNC (we may or may not have been an
 *	   owner), then we need to stick around until it has completed:
 *		a. If we have MSIs, the SMMU can write back into the CMD_SYNC
 *		   to clear the first 4 bytes.
 *		b. Otherwise, we spin waiting for the hardware cons pointer to
 *		   advance past our command.
 *
 * The devil is in the details, particularly the use of locking for handling
 * SYNC completion and freeing up space in the queue before we think that it is
 * full.
 */
static void __arm_smmu_cmdq_poll_set_valid_map(struct arm_smmu_cmdq *cmdq,
					       u32 sprod, u32 eprod, bool set)
{
	u32 swidx, sbidx, ewidx, ebidx;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= sprod,
	};

	ewidx = BIT_WORD(Q_IDX(&llq, eprod));
	ebidx = Q_IDX(&llq, eprod) % BITS_PER_LONG;

	while (llq.prod != eprod) {
		unsigned long mask;
		atomic_long_t *ptr;
		u32 limit = BITS_PER_LONG;

		swidx = BIT_WORD(Q_IDX(&llq, llq.prod));
		sbidx = Q_IDX(&llq, llq.prod) % BITS_PER_LONG;

		ptr = &cmdq->valid_map[swidx];

		if ((swidx == ewidx) && (sbidx < ebidx))
			limit = ebidx;

		mask = GENMASK(limit - 1, sbidx);

		/*
		 * The valid bit is the inverse of the wrap bit. This means
		 * that a zero-initialised queue is invalid and, after marking
		 * all entries as valid, they become invalid again when we
		 * wrap.
		 */
		if (set) {
			atomic_long_xor(mask, ptr);
		} else { /* Poll */
			unsigned long valid;

			valid = (ULONG_MAX + !!Q_WRP(&llq, llq.prod)) & mask;
			atomic_long_cond_read_relaxed(ptr, (VAL & mask) == valid);
		}

		llq.prod = queue_inc_prod_n(&llq, limit - sbidx);
	}
}

/* Mark all entries in the range [sprod, eprod) as valid */
static void arm_smmu_cmdq_set_valid_map(struct arm_smmu_cmdq *cmdq,
					u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, true);
}

/* Wait for all entries in the range [sprod, eprod) to become valid */
static void arm_smmu_cmdq_poll_valid_map(struct arm_smmu_cmdq *cmdq,
					 u32 sprod, u32 eprod)
{
	__arm_smmu_cmdq_poll_set_valid_map(cmdq, sprod, eprod, false);
}

/* Wait for the command queue to become non-full */
static int arm_smmu_cmdq_poll_until_not_full(struct arm_smmu_device *smmu,
					     struct arm_smmu_ll_queue *llq)
{
	unsigned long flags;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
	int ret = 0;

	/*
	 * Try to update our copy of cons by grabbing exclusive cmdq access. If
	 * that fails, spin until somebody else updates it for us.
	 */
	if (arm_smmu_cmdq_exclusive_trylock_irqsave(cmdq, flags)) {
		WRITE_ONCE(cmdq->q.llq.cons, readl_relaxed(cmdq->q.cons_reg));
		arm_smmu_cmdq_exclusive_unlock_irqrestore(cmdq, flags);
		llq->val = READ_ONCE(cmdq->q.llq.val);
		return 0;
	}

	queue_poll_init(smmu, &qp);
	do {
		llq->val = READ_ONCE(cmdq->q.llq.val);
		if (!queue_full(llq))
			break;

		ret = queue_poll(&qp);
	} while (!ret);

	return ret;
}

/*
 * Wait until the SMMU signals a CMD_SYNC completion MSI.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_msi(struct arm_smmu_device *smmu,
					  struct arm_smmu_ll_queue *llq)
{
	int ret = 0;
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
	u32 *cmd = (u32 *)(Q_ENT(&cmdq->q, llq->prod));

	queue_poll_init(smmu, &qp);

	/*
	 * The MSI won't generate an event, since it's being written back
	 * into the command queue.
	 */
	qp.wfe = false;
	smp_cond_load_relaxed(cmd, !VAL || (ret = queue_poll(&qp)));
	llq->cons = ret ? llq->prod : queue_inc_prod_n(llq, 1);
	return ret;
}

/*
 * Wait until the SMMU cons index passes llq->prod.
 * Must be called with the cmdq lock held in some capacity.
 */
static int __arm_smmu_cmdq_poll_until_consumed(struct arm_smmu_device *smmu,
					       struct arm_smmu_ll_queue *llq)
{
	struct arm_smmu_queue_poll qp;
	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
	u32 prod = llq->prod;
	int ret = 0;

	queue_poll_init(smmu, &qp);
	llq->val = READ_ONCE(cmdq->q.llq.val);
	do {
		if (queue_consumed(llq, prod))
			break;

		ret = queue_poll(&qp);

		/*
		 * This needs to be a readl() so that our subsequent call
		 * to arm_smmu_cmdq_shared_tryunlock() can fail accurately.
		 *
		 * Specifically, we need to ensure that we observe all
		 * shared_lock()s by other CMD_SYNCs that share our owner,
		 * so that a failing call to tryunlock() means that we're
		 * the last one out and therefore we can safely advance
		 * cmdq->q.llq.cons. Roughly speaking:
		 *
		 * CPU 0		CPU1			CPU2 (us)
		 *
		 * if (sync)
		 * 	shared_lock();
		 *
		 * dma_wmb();
		 * set_valid_map();
		 *
		 * 			if (owner) {
		 *				poll_valid_map();
		 *				<control dependency>
		 *				writel(prod_reg);
		 *
		 *						readl(cons_reg);
		 *						tryunlock();
		 *
		 * Requires us to see CPU 0's shared_lock() acquisition.
		 */
		llq->cons = readl(cmdq->q.cons_reg);
	} while (!ret);

	return ret;
}

static int arm_smmu_cmdq_poll_until_sync(struct arm_smmu_device *smmu,
					 struct arm_smmu_ll_queue *llq)
{
	if (smmu->options & ARM_SMMU_OPT_MSIPOLL)
		return __arm_smmu_cmdq_poll_until_msi(smmu, llq);

	return __arm_smmu_cmdq_poll_until_consumed(smmu, llq);
}

static void arm_smmu_cmdq_write_entries(struct arm_smmu_cmdq *cmdq, u64 *cmds,
					u32 prod, int n)
{
	int i;
	struct arm_smmu_ll_queue llq = {
		.max_n_shift	= cmdq->q.llq.max_n_shift,
		.prod		= prod,
	};

	for (i = 0; i < n; ++i) {
		u64 *cmd = &cmds[i * CMDQ_ENT_DWORDS];

		prod = queue_inc_prod_n(&llq, i);
		queue_write(Q_ENT(&cmdq->q, prod), cmd, CMDQ_ENT_DWORDS);
	}
}

/*
 * This is the actual insertion function, and provides the following
 * ordering guarantees to callers:
 *
 * - There is a dma_wmb() before publishing any commands to the queue.
 *   This can be relied upon to order prior writes to data structures
 *   in memory (such as a CD or an STE) before the command.
 *
 * - On completion of a CMD_SYNC, there is a control dependency.
 *   This can be relied upon to order subsequent writes to memory (e.g.
 *   freeing an IOVA) after completion of the CMD_SYNC.
 *
 * - Command insertion is totally ordered, so if two CPUs each race to
 *   insert their own list of commands then all of the commands from one
 *   CPU will appear before any of the commands from the other CPU.
 */
static int arm_smmu_cmdq_issue_cmdlist(struct arm_smmu_device *smmu,
				       u64 *cmds, int n, bool sync)
{
	u64 cmd_sync[CMDQ_ENT_DWORDS];
	u32 prod;
	unsigned long flags;
	bool owner;
	struct arm_smmu_cmdq *cmdq = arm_smmu_get_cmdq(smmu);
	struct arm_smmu_ll_queue llq, head;
	int ret = 0;

	llq.max_n_shift = cmdq->q.llq.max_n_shift;

	/* 1. Allocate some space in the queue */
	local_irq_save(flags);
	llq.val = READ_ONCE(cmdq->q.llq.val);
	do {
		u64 old;

		while (!queue_has_space(&llq, n + sync)) {
			local_irq_restore(flags);
			if (arm_smmu_cmdq_poll_until_not_full(smmu, &llq))
				dev_err_ratelimited(smmu->dev, "CMDQ timeout\n");
			local_irq_save(flags);
		}

		head.cons = llq.cons;
		head.prod = queue_inc_prod_n(&llq, n + sync) |
					     CMDQ_PROD_OWNED_FLAG;

		old = cmpxchg_relaxed(&cmdq->q.llq.val, llq.val, head.val);
		if (old == llq.val)
			break;

		llq.val = old;
	} while (1);
	owner = !(llq.prod & CMDQ_PROD_OWNED_FLAG);
	head.prod &= ~CMDQ_PROD_OWNED_FLAG;
	llq.prod &= ~CMDQ_PROD_OWNED_FLAG;

	/*
	 * 2. Write our commands into the queue
	 * Dependency ordering from the cmpxchg() loop above.
	 */
	arm_smmu_cmdq_write_entries(cmdq, cmds, llq.prod, n);
	if (sync) {
		prod = queue_inc_prod_n(&llq, n);
		arm_smmu_cmdq_build_sync_cmd(cmd_sync, smmu, &cmdq->q, prod);
		queue_write(Q_ENT(&cmdq->q, prod), cmd_sync, CMDQ_ENT_DWORDS);

		/*
		 * In order to determine completion of our CMD_SYNC, we must
		 * ensure that the queue can't wrap twice without us noticing.
		 * We achieve that by taking the cmdq lock as shared before
		 * marking our slot as valid.
		 */
		arm_smmu_cmdq_shared_lock(cmdq);
	}

	/* 3. Mark our slots as valid, ensuring commands are visible first */
	dma_wmb();
	arm_smmu_cmdq_set_valid_map(cmdq, llq.prod, head.prod);

	/* 4. If we are the owner, take control of the SMMU hardware */
	if (owner) {
		/* a. Wait for previous owner to finish */
		atomic_cond_read_relaxed(&cmdq->owner_prod, VAL == llq.prod);

		/* b. Stop gathering work by clearing the owned flag */
		prod = atomic_fetch_andnot_relaxed(CMDQ_PROD_OWNED_FLAG,
						   &cmdq->q.llq.atomic.prod);
		prod &= ~CMDQ_PROD_OWNED_FLAG;

		/*
		 * c. Wait for any gathered work to be written to the queue.
		 * Note that we read our own entries so that we have the control
		 * dependency required by (d).
		 */
		arm_smmu_cmdq_poll_valid_map(cmdq, llq.prod, prod);

		/*
		 * d. Advance the hardware prod pointer
		 * Control dependency ordering from the entries becoming valid.
		 */
		writel_relaxed(prod, cmdq->q.prod_reg);

		/*
		 * e. Tell the next owner we're done
		 * Make sure we've updated the hardware first, so that we don't
		 * race to update prod and potentially move it backwards.
		 */
		atomic_set_release(&cmdq->owner_prod, prod);
	}

	/* 5. If we are inserting a CMD_SYNC, we must wait for it to complete */
	if (sync) {
		llq.prod = queue_inc_prod_n(&llq, n);
		ret = arm_smmu_cmdq_poll_until_sync(smmu, &llq);
		if (ret) {
			dev_err_ratelimited(smmu->dev,
					    "CMD_SYNC timeout at 0x%08x [hwprod 0x%08x, hwcons 0x%08x]\n",
					    llq.prod,
					    readl_relaxed(cmdq->q.prod_reg),
					    readl_relaxed(cmdq->q.cons_reg));
		}

		/*
		 * Try to unlock the cmdq lock. This will fail if we're the last
		 * reader, in which case we can safely update cmdq->q.llq.cons
		 */
		if (!arm_smmu_cmdq_shared_tryunlock(cmdq)) {
			WRITE_ONCE(cmdq->q.llq.cons, llq.cons);
			arm_smmu_cmdq_shared_unlock(cmdq);
		}
	}

	local_irq_restore(flags);
	return ret;
}

static int __arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				     struct arm_smmu_cmdq_ent *ent,
				     bool sync)
{
	u64 cmd[CMDQ_ENT_DWORDS];

	if (unlikely(arm_smmu_cmdq_build_cmd(cmd, ent))) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 ent->opcode);
		return -EINVAL;
	}

	return arm_smmu_cmdq_issue_cmdlist(smmu, cmd, 1, sync);
}

static int arm_smmu_cmdq_issue_cmd(struct arm_smmu_device *smmu,
				   struct arm_smmu_cmdq_ent *ent)
{
	return __arm_smmu_cmdq_issue_cmd(smmu, ent, false);
}

static int arm_smmu_cmdq_issue_cmd_with_sync(struct arm_smmu_device *smmu,
					     struct arm_smmu_cmdq_ent *ent)
{
	return __arm_smmu_cmdq_issue_cmd(smmu, ent, true);
}

static void arm_smmu_cmdq_batch_add(struct arm_smmu_device *smmu,
				    struct arm_smmu_cmdq_batch *cmds,
				    struct arm_smmu_cmdq_ent *cmd)
{
	int index;

	if (cmds->num == CMDQ_BATCH_ENTRIES - 1 &&
	    (smmu->options & ARM_SMMU_OPT_CMDQ_FORCE_SYNC)) {
		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
		cmds->num = 0;
	}

	if (cmds->num == CMDQ_BATCH_ENTRIES) {
		arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, false);
		cmds->num = 0;
	}

	index = cmds->num * CMDQ_ENT_DWORDS;
	if (unlikely(arm_smmu_cmdq_build_cmd(&cmds->cmds[index], cmd))) {
		dev_warn(smmu->dev, "ignoring unknown CMDQ opcode 0x%x\n",
			 cmd->opcode);
		return;
	}

	cmds->num++;
}

static int arm_smmu_cmdq_batch_submit(struct arm_smmu_device *smmu,
				      struct arm_smmu_cmdq_batch *cmds)
{
	return arm_smmu_cmdq_issue_cmdlist(smmu, cmds->cmds, cmds->num, true);
}

static void arm_smmu_page_response(struct device *dev, struct iopf_fault *unused,
				   struct iommu_page_response *resp)
{
	struct arm_smmu_cmdq_ent cmd = {0};
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
	int sid = master->streams[0].id;

	if (WARN_ON(!master->stall_enabled))
		return;

	cmd.opcode		= CMDQ_OP_RESUME;
	cmd.resume.sid		= sid;
	cmd.resume.stag		= resp->grpid;
	switch (resp->code) {
	case IOMMU_PAGE_RESP_INVALID:
	case IOMMU_PAGE_RESP_FAILURE:
		cmd.resume.resp = CMDQ_RESUME_0_RESP_ABORT;
		break;
	case IOMMU_PAGE_RESP_SUCCESS:
		cmd.resume.resp = CMDQ_RESUME_0_RESP_RETRY;
		break;
	default:
		break;
	}

	arm_smmu_cmdq_issue_cmd(master->smmu, &cmd);
	/*
	 * Don't send a SYNC, it doesn't do anything for RESUME or PRI_RESP.
	 * RESUME consumption guarantees that the stalled transaction will be
	 * terminated... at some point in the future. PRI_RESP is fire and
	 * forget.
	 */
}

/* Context descriptor manipulation functions */
void arm_smmu_tlb_inv_asid(struct arm_smmu_device *smmu, u16 asid)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= smmu->features & ARM_SMMU_FEAT_E2H ?
			CMDQ_OP_TLBI_EL2_ASID : CMDQ_OP_TLBI_NH_ASID,
		.tlbi.asid = asid,
	};

	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
}

/*
 * Based on the value of ent report which bits of the STE the HW will access. It
 * would be nice if this was complete according to the spec, but minimally it
 * has to capture the bits this driver uses.
 */
VISIBLE_IF_KUNIT
void arm_smmu_get_ste_used(const __le64 *ent, __le64 *used_bits)
{
	unsigned int cfg = FIELD_GET(STRTAB_STE_0_CFG, le64_to_cpu(ent[0]));

	used_bits[0] = cpu_to_le64(STRTAB_STE_0_V);
	if (!(ent[0] & cpu_to_le64(STRTAB_STE_0_V)))
		return;

	used_bits[0] |= cpu_to_le64(STRTAB_STE_0_CFG);

	/* S1 translates */
	if (cfg & BIT(0)) {
		used_bits[0] |= cpu_to_le64(STRTAB_STE_0_S1FMT |
					    STRTAB_STE_0_S1CTXPTR_MASK |
					    STRTAB_STE_0_S1CDMAX);
		used_bits[1] |=
			cpu_to_le64(STRTAB_STE_1_S1DSS | STRTAB_STE_1_S1CIR |
				    STRTAB_STE_1_S1COR | STRTAB_STE_1_S1CSH |
				    STRTAB_STE_1_S1STALLD | STRTAB_STE_1_STRW |
				    STRTAB_STE_1_EATS);
		used_bits[2] |= cpu_to_le64(STRTAB_STE_2_S2VMID);

		/*
		 * See 13.5 Summary of attribute/permission configuration fields
		 * for the SHCFG behavior.
		 */
		if (FIELD_GET(STRTAB_STE_1_S1DSS, le64_to_cpu(ent[1])) ==
		    STRTAB_STE_1_S1DSS_BYPASS)
			used_bits[1] |= cpu_to_le64(STRTAB_STE_1_SHCFG);
	}

	/* S2 translates */
	if (cfg & BIT(1)) {
		used_bits[1] |=
			cpu_to_le64(STRTAB_STE_1_EATS | STRTAB_STE_1_SHCFG);
		used_bits[2] |=
			cpu_to_le64(STRTAB_STE_2_S2VMID | STRTAB_STE_2_VTCR |
				    STRTAB_STE_2_S2AA64 | STRTAB_STE_2_S2ENDI |
				    STRTAB_STE_2_S2PTW | STRTAB_STE_2_S2R);
		used_bits[3] |= cpu_to_le64(STRTAB_STE_3_S2TTB_MASK);
	}

	if (cfg == STRTAB_STE_0_CFG_BYPASS)
		used_bits[1] |= cpu_to_le64(STRTAB_STE_1_SHCFG);
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_get_ste_used);

/*
 * Figure out if we can do a hitless update of entry to become target. Returns a
 * bit mask where 1 indicates that qword needs to be set disruptively.
 * unused_update is an intermediate value of entry that has unused bits set to
 * their new values.
 */
static u8 arm_smmu_entry_qword_diff(struct arm_smmu_entry_writer *writer,
				    const __le64 *entry, const __le64 *target,
				    __le64 *unused_update)
{
	__le64 target_used[NUM_ENTRY_QWORDS] = {};
	__le64 cur_used[NUM_ENTRY_QWORDS] = {};
	u8 used_qword_diff = 0;
	unsigned int i;

	writer->ops->get_used(entry, cur_used);
	writer->ops->get_used(target, target_used);

	for (i = 0; i != NUM_ENTRY_QWORDS; i++) {
		/*
		 * Check that masks are up to date, the make functions are not
		 * allowed to set a bit to 1 if the used function doesn't say it
		 * is used.
		 */
		WARN_ON_ONCE(target[i] & ~target_used[i]);

		/* Bits can change because they are not currently being used */
		unused_update[i] = (entry[i] & cur_used[i]) |
				   (target[i] & ~cur_used[i]);
		/*
		 * Each bit indicates that a used bit in a qword needs to be
		 * changed after unused_update is applied.
		 */
		if ((unused_update[i] & target_used[i]) != target[i])
			used_qword_diff |= 1 << i;
	}
	return used_qword_diff;
}

static bool entry_set(struct arm_smmu_entry_writer *writer, __le64 *entry,
		      const __le64 *target, unsigned int start,
		      unsigned int len)
{
	bool changed = false;
	unsigned int i;

	for (i = start; len != 0; len--, i++) {
		if (entry[i] != target[i]) {
			WRITE_ONCE(entry[i], target[i]);
			changed = true;
		}
	}

	if (changed)
		writer->ops->sync(writer);
	return changed;
}

/*
 * Update the STE/CD to the target configuration. The transition from the
 * current entry to the target entry takes place over multiple steps that
 * attempts to make the transition hitless if possible. This function takes care
 * not to create a situation where the HW can perceive a corrupted entry. HW is
 * only required to have a 64 bit atomicity with stores from the CPU, while
 * entries are many 64 bit values big.
 *
 * The difference between the current value and the target value is analyzed to
 * determine which of three updates are required - disruptive, hitless or no
 * change.
 *
 * In the most general disruptive case we can make any update in three steps:
 *  - Disrupting the entry (V=0)
 *  - Fill now unused qwords, execpt qword 0 which contains V
 *  - Make qword 0 have the final value and valid (V=1) with a single 64
 *    bit store
 *
 * However this disrupts the HW while it is happening. There are several
 * interesting cases where a STE/CD can be updated without disturbing the HW
 * because only a small number of bits are changing (S1DSS, CONFIG, etc) or
 * because the used bits don't intersect. We can detect this by calculating how
 * many 64 bit values need update after adjusting the unused bits and skip the
 * V=0 process. This relies on the IGNORED behavior described in the
 * specification.
 */
VISIBLE_IF_KUNIT
void arm_smmu_write_entry(struct arm_smmu_entry_writer *writer, __le64 *entry,
			  const __le64 *target)
{
	__le64 unused_update[NUM_ENTRY_QWORDS];
	u8 used_qword_diff;

	used_qword_diff =
		arm_smmu_entry_qword_diff(writer, entry, target, unused_update);
	if (hweight8(used_qword_diff) == 1) {
		/*
		 * Only one qword needs its used bits to be changed. This is a
		 * hitless update, update all bits the current STE/CD is
		 * ignoring to their new values, then update a single "critical
		 * qword" to change the STE/CD and finally 0 out any bits that
		 * are now unused in the target configuration.
		 */
		unsigned int critical_qword_index = ffs(used_qword_diff) - 1;

		/*
		 * Skip writing unused bits in the critical qword since we'll be
		 * writing it in the next step anyways. This can save a sync
		 * when the only change is in that qword.
		 */
		unused_update[critical_qword_index] =
			entry[critical_qword_index];
		entry_set(writer, entry, unused_update, 0, NUM_ENTRY_QWORDS);
		entry_set(writer, entry, target, critical_qword_index, 1);
		entry_set(writer, entry, target, 0, NUM_ENTRY_QWORDS);
	} else if (used_qword_diff) {
		/*
		 * At least two qwords need their inuse bits to be changed. This
		 * requires a breaking update, zero the V bit, write all qwords
		 * but 0, then set qword 0
		 */
		unused_update[0] = 0;
		entry_set(writer, entry, unused_update, 0, 1);
		entry_set(writer, entry, target, 1, NUM_ENTRY_QWORDS - 1);
		entry_set(writer, entry, target, 0, 1);
	} else {
		/*
		 * No inuse bit changed. Sanity check that all unused bits are 0
		 * in the entry. The target was already sanity checked by
		 * compute_qword_diff().
		 */
		WARN_ON_ONCE(
			entry_set(writer, entry, target, 0, NUM_ENTRY_QWORDS));
	}
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_write_entry);

static void arm_smmu_sync_cd(struct arm_smmu_master *master,
			     int ssid, bool leaf)
{
	size_t i;
	struct arm_smmu_cmdq_batch cmds;
	struct arm_smmu_device *smmu = master->smmu;
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_CD,
		.cfgi	= {
			.ssid	= ssid,
			.leaf	= leaf,
		},
	};

	cmds.num = 0;
	for (i = 0; i < master->num_streams; i++) {
		cmd.cfgi.sid = master->streams[i].id;
		arm_smmu_cmdq_batch_add(smmu, &cmds, &cmd);
	}

	arm_smmu_cmdq_batch_submit(smmu, &cmds);
}

static int arm_smmu_alloc_cd_leaf_table(struct arm_smmu_device *smmu,
					struct arm_smmu_l1_ctx_desc *l1_desc)
{
	size_t size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);

	l1_desc->l2ptr = dmam_alloc_coherent(smmu->dev, size,
					     &l1_desc->l2ptr_dma, GFP_KERNEL);
	if (!l1_desc->l2ptr) {
		dev_warn(smmu->dev,
			 "failed to allocate context descriptor table\n");
		return -ENOMEM;
	}
	return 0;
}

static void arm_smmu_write_cd_l1_desc(__le64 *dst,
				      struct arm_smmu_l1_ctx_desc *l1_desc)
{
	u64 val = (l1_desc->l2ptr_dma & CTXDESC_L1_DESC_L2PTR_MASK) |
		  CTXDESC_L1_DESC_V;

	/* The HW has 64 bit atomicity with stores to the L2 CD table */
	WRITE_ONCE(*dst, cpu_to_le64(val));
}

struct arm_smmu_cd *arm_smmu_get_cd_ptr(struct arm_smmu_master *master,
					u32 ssid)
{
	struct arm_smmu_l1_ctx_desc *l1_desc;
	struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;

	if (!cd_table->cdtab)
		return NULL;

	if (cd_table->s1fmt == STRTAB_STE_0_S1FMT_LINEAR)
		return (struct arm_smmu_cd *)(cd_table->cdtab +
					      ssid * CTXDESC_CD_DWORDS);

	l1_desc = &cd_table->l1_desc[ssid / CTXDESC_L2_ENTRIES];
	if (!l1_desc->l2ptr)
		return NULL;
	return &l1_desc->l2ptr[ssid % CTXDESC_L2_ENTRIES];
}

static struct arm_smmu_cd *arm_smmu_alloc_cd_ptr(struct arm_smmu_master *master,
						 u32 ssid)
{
	struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;
	struct arm_smmu_device *smmu = master->smmu;

	might_sleep();
	iommu_group_mutex_assert(master->dev);

	if (!cd_table->cdtab) {
		if (arm_smmu_alloc_cd_tables(master))
			return NULL;
	}

	if (cd_table->s1fmt == STRTAB_STE_0_S1FMT_64K_L2) {
		unsigned int idx = ssid / CTXDESC_L2_ENTRIES;
		struct arm_smmu_l1_ctx_desc *l1_desc;

		l1_desc = &cd_table->l1_desc[idx];
		if (!l1_desc->l2ptr) {
			__le64 *l1ptr;

			if (arm_smmu_alloc_cd_leaf_table(smmu, l1_desc))
				return NULL;

			l1ptr = cd_table->cdtab + idx * CTXDESC_L1_DESC_DWORDS;
			arm_smmu_write_cd_l1_desc(l1ptr, l1_desc);
			/* An invalid L1CD can be cached */
			arm_smmu_sync_cd(master, ssid, false);
		}
	}
	return arm_smmu_get_cd_ptr(master, ssid);
}

struct arm_smmu_cd_writer {
	struct arm_smmu_entry_writer writer;
	unsigned int ssid;
};

VISIBLE_IF_KUNIT
void arm_smmu_get_cd_used(const __le64 *ent, __le64 *used_bits)
{
	used_bits[0] = cpu_to_le64(CTXDESC_CD_0_V);
	if (!(ent[0] & cpu_to_le64(CTXDESC_CD_0_V)))
		return;
	memset(used_bits, 0xFF, sizeof(struct arm_smmu_cd));

	/*
	 * If EPD0 is set by the make function it means
	 * T0SZ/TG0/IR0/OR0/SH0/TTB0 are IGNORED
	 */
	if (ent[0] & cpu_to_le64(CTXDESC_CD_0_TCR_EPD0)) {
		used_bits[0] &= ~cpu_to_le64(
			CTXDESC_CD_0_TCR_T0SZ | CTXDESC_CD_0_TCR_TG0 |
			CTXDESC_CD_0_TCR_IRGN0 | CTXDESC_CD_0_TCR_ORGN0 |
			CTXDESC_CD_0_TCR_SH0);
		used_bits[1] &= ~cpu_to_le64(CTXDESC_CD_1_TTB0_MASK);
	}
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_get_cd_used);

static void arm_smmu_cd_writer_sync_entry(struct arm_smmu_entry_writer *writer)
{
	struct arm_smmu_cd_writer *cd_writer =
		container_of(writer, struct arm_smmu_cd_writer, writer);

	arm_smmu_sync_cd(writer->master, cd_writer->ssid, true);
}

static const struct arm_smmu_entry_writer_ops arm_smmu_cd_writer_ops = {
	.sync = arm_smmu_cd_writer_sync_entry,
	.get_used = arm_smmu_get_cd_used,
};

void arm_smmu_write_cd_entry(struct arm_smmu_master *master, int ssid,
			     struct arm_smmu_cd *cdptr,
			     const struct arm_smmu_cd *target)
{
	bool target_valid = target->data[0] & cpu_to_le64(CTXDESC_CD_0_V);
	bool cur_valid = cdptr->data[0] & cpu_to_le64(CTXDESC_CD_0_V);
	struct arm_smmu_cd_writer cd_writer = {
		.writer = {
			.ops = &arm_smmu_cd_writer_ops,
			.master = master,
		},
		.ssid = ssid,
	};

	if (ssid != IOMMU_NO_PASID && cur_valid != target_valid) {
		if (cur_valid)
			master->cd_table.used_ssids--;
		else
			master->cd_table.used_ssids++;
	}

	arm_smmu_write_entry(&cd_writer.writer, cdptr->data, target->data);
}

void arm_smmu_make_s1_cd(struct arm_smmu_cd *target,
			 struct arm_smmu_master *master,
			 struct arm_smmu_domain *smmu_domain)
{
	struct arm_smmu_ctx_desc *cd = &smmu_domain->cd;
	const struct io_pgtable_cfg *pgtbl_cfg =
		&io_pgtable_ops_to_pgtable(smmu_domain->pgtbl_ops)->cfg;
	typeof(&pgtbl_cfg->arm_lpae_s1_cfg.tcr) tcr =
		&pgtbl_cfg->arm_lpae_s1_cfg.tcr;

	memset(target, 0, sizeof(*target));

	target->data[0] = cpu_to_le64(
		FIELD_PREP(CTXDESC_CD_0_TCR_T0SZ, tcr->tsz) |
		FIELD_PREP(CTXDESC_CD_0_TCR_TG0, tcr->tg) |
		FIELD_PREP(CTXDESC_CD_0_TCR_IRGN0, tcr->irgn) |
		FIELD_PREP(CTXDESC_CD_0_TCR_ORGN0, tcr->orgn) |
		FIELD_PREP(CTXDESC_CD_0_TCR_SH0, tcr->sh) |
#ifdef __BIG_ENDIAN
		CTXDESC_CD_0_ENDI |
#endif
		CTXDESC_CD_0_TCR_EPD1 |
		CTXDESC_CD_0_V |
		FIELD_PREP(CTXDESC_CD_0_TCR_IPS, tcr->ips) |
		CTXDESC_CD_0_AA64 |
		(master->stall_enabled ? CTXDESC_CD_0_S : 0) |
		CTXDESC_CD_0_R |
		CTXDESC_CD_0_A |
		CTXDESC_CD_0_ASET |
		FIELD_PREP(CTXDESC_CD_0_ASID, cd->asid)
		);

	/* To enable dirty flag update, set both Access flag and dirty state update */
	if (pgtbl_cfg->quirks & IO_PGTABLE_QUIRK_ARM_HD)
		target->data[0] |= cpu_to_le64(CTXDESC_CD_0_TCR_HA |
					       CTXDESC_CD_0_TCR_HD);

	target->data[1] = cpu_to_le64(pgtbl_cfg->arm_lpae_s1_cfg.ttbr &
				      CTXDESC_CD_1_TTB0_MASK);
	target->data[3] = cpu_to_le64(pgtbl_cfg->arm_lpae_s1_cfg.mair);
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_s1_cd);

void arm_smmu_clear_cd(struct arm_smmu_master *master, ioasid_t ssid)
{
	struct arm_smmu_cd target = {};
	struct arm_smmu_cd *cdptr;

	if (!master->cd_table.cdtab)
		return;
	cdptr = arm_smmu_get_cd_ptr(master, ssid);
	if (WARN_ON(!cdptr))
		return;
	arm_smmu_write_cd_entry(master, ssid, cdptr, &target);
}

static int arm_smmu_alloc_cd_tables(struct arm_smmu_master *master)
{
	int ret;
	size_t l1size;
	size_t max_contexts;
	struct arm_smmu_device *smmu = master->smmu;
	struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;

	cd_table->s1cdmax = master->ssid_bits;
	max_contexts = 1 << cd_table->s1cdmax;

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB) ||
	    max_contexts <= CTXDESC_L2_ENTRIES) {
		cd_table->s1fmt = STRTAB_STE_0_S1FMT_LINEAR;
		cd_table->num_l1_ents = max_contexts;

		l1size = max_contexts * (CTXDESC_CD_DWORDS << 3);
	} else {
		cd_table->s1fmt = STRTAB_STE_0_S1FMT_64K_L2;
		cd_table->num_l1_ents = DIV_ROUND_UP(max_contexts,
						  CTXDESC_L2_ENTRIES);

		cd_table->l1_desc = devm_kcalloc(smmu->dev, cd_table->num_l1_ents,
					      sizeof(*cd_table->l1_desc),
					      GFP_KERNEL);
		if (!cd_table->l1_desc)
			return -ENOMEM;

		l1size = cd_table->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	}

	cd_table->cdtab = dmam_alloc_coherent(smmu->dev, l1size, &cd_table->cdtab_dma,
					   GFP_KERNEL);
	if (!cd_table->cdtab) {
		dev_warn(smmu->dev, "failed to allocate context descriptor\n");
		ret = -ENOMEM;
		goto err_free_l1;
	}

	return 0;

err_free_l1:
	if (cd_table->l1_desc) {
		devm_kfree(smmu->dev, cd_table->l1_desc);
		cd_table->l1_desc = NULL;
	}
	return ret;
}

static void arm_smmu_free_cd_tables(struct arm_smmu_master *master)
{
	int i;
	size_t size, l1size;
	struct arm_smmu_device *smmu = master->smmu;
	struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;

	if (cd_table->l1_desc) {
		size = CTXDESC_L2_ENTRIES * (CTXDESC_CD_DWORDS << 3);

		for (i = 0; i < cd_table->num_l1_ents; i++) {
			if (!cd_table->l1_desc[i].l2ptr)
				continue;

			dmam_free_coherent(smmu->dev, size,
					   cd_table->l1_desc[i].l2ptr,
					   cd_table->l1_desc[i].l2ptr_dma);
		}
		devm_kfree(smmu->dev, cd_table->l1_desc);
		cd_table->l1_desc = NULL;

		l1size = cd_table->num_l1_ents * (CTXDESC_L1_DESC_DWORDS << 3);
	} else {
		l1size = cd_table->num_l1_ents * (CTXDESC_CD_DWORDS << 3);
	}

	dmam_free_coherent(smmu->dev, l1size, cd_table->cdtab, cd_table->cdtab_dma);
	cd_table->cdtab_dma = 0;
	cd_table->cdtab = NULL;
}

/* Stream table manipulation functions */
static void arm_smmu_write_strtab_l1_desc(__le64 *dst, dma_addr_t l2ptr_dma)
{
	u64 val = 0;

	val |= FIELD_PREP(STRTAB_L1_DESC_SPAN, STRTAB_SPLIT + 1);
	val |= l2ptr_dma & STRTAB_L1_DESC_L2PTR_MASK;

	/* The HW has 64 bit atomicity with stores to the L2 STE table */
	WRITE_ONCE(*dst, cpu_to_le64(val));
}

struct arm_smmu_ste_writer {
	struct arm_smmu_entry_writer writer;
	u32 sid;
};

static void arm_smmu_ste_writer_sync_entry(struct arm_smmu_entry_writer *writer)
{
	struct arm_smmu_ste_writer *ste_writer =
		container_of(writer, struct arm_smmu_ste_writer, writer);
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= CMDQ_OP_CFGI_STE,
		.cfgi	= {
			.sid	= ste_writer->sid,
			.leaf	= true,
		},
	};

	arm_smmu_cmdq_issue_cmd_with_sync(writer->master->smmu, &cmd);
}

static const struct arm_smmu_entry_writer_ops arm_smmu_ste_writer_ops = {
	.sync = arm_smmu_ste_writer_sync_entry,
	.get_used = arm_smmu_get_ste_used,
};

static void arm_smmu_write_ste(struct arm_smmu_master *master, u32 sid,
			       struct arm_smmu_ste *ste,
			       const struct arm_smmu_ste *target)
{
	struct arm_smmu_device *smmu = master->smmu;
	struct arm_smmu_ste_writer ste_writer = {
		.writer = {
			.ops = &arm_smmu_ste_writer_ops,
			.master = master,
		},
		.sid = sid,
	};

	arm_smmu_write_entry(&ste_writer.writer, ste->data, target->data);

	/* It's likely that we'll want to use the new STE soon */
	if (!(smmu->options & ARM_SMMU_OPT_SKIP_PREFETCH)) {
		struct arm_smmu_cmdq_ent
			prefetch_cmd = { .opcode = CMDQ_OP_PREFETCH_CFG,
					 .prefetch = {
						 .sid = sid,
					 } };

		arm_smmu_cmdq_issue_cmd(smmu, &prefetch_cmd);
	}
}

VISIBLE_IF_KUNIT
void arm_smmu_make_abort_ste(struct arm_smmu_ste *target)
{
	memset(target, 0, sizeof(*target));
	target->data[0] = cpu_to_le64(
		STRTAB_STE_0_V |
		FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_ABORT));
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_abort_ste);

VISIBLE_IF_KUNIT
void arm_smmu_make_bypass_ste(struct arm_smmu_device *smmu,
			      struct arm_smmu_ste *target)
{
	memset(target, 0, sizeof(*target));
	target->data[0] = cpu_to_le64(
		STRTAB_STE_0_V |
		FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_BYPASS));

	if (smmu->features & ARM_SMMU_FEAT_ATTR_TYPES_OVR)
		target->data[1] = cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
							 STRTAB_STE_1_SHCFG_INCOMING));
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_bypass_ste);

VISIBLE_IF_KUNIT
void arm_smmu_make_cdtable_ste(struct arm_smmu_ste *target,
			       struct arm_smmu_master *master, bool ats_enabled,
			       unsigned int s1dss)
{
	struct arm_smmu_ctx_desc_cfg *cd_table = &master->cd_table;
	struct arm_smmu_device *smmu = master->smmu;

	memset(target, 0, sizeof(*target));
	target->data[0] = cpu_to_le64(
		STRTAB_STE_0_V |
		FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S1_TRANS) |
		FIELD_PREP(STRTAB_STE_0_S1FMT, cd_table->s1fmt) |
		(cd_table->cdtab_dma & STRTAB_STE_0_S1CTXPTR_MASK) |
		FIELD_PREP(STRTAB_STE_0_S1CDMAX, cd_table->s1cdmax));

	target->data[1] = cpu_to_le64(
		FIELD_PREP(STRTAB_STE_1_S1DSS, s1dss) |
		FIELD_PREP(STRTAB_STE_1_S1CIR, STRTAB_STE_1_S1C_CACHE_WBRA) |
		FIELD_PREP(STRTAB_STE_1_S1COR, STRTAB_STE_1_S1C_CACHE_WBRA) |
		FIELD_PREP(STRTAB_STE_1_S1CSH, ARM_SMMU_SH_ISH) |
		((smmu->features & ARM_SMMU_FEAT_STALLS &&
		  !master->stall_enabled) ?
			 STRTAB_STE_1_S1STALLD :
			 0) |
		FIELD_PREP(STRTAB_STE_1_EATS,
			   ats_enabled ? STRTAB_STE_1_EATS_TRANS : 0));

	if ((smmu->features & ARM_SMMU_FEAT_ATTR_TYPES_OVR) &&
	    s1dss == STRTAB_STE_1_S1DSS_BYPASS)
		target->data[1] |= cpu_to_le64(FIELD_PREP(
			STRTAB_STE_1_SHCFG, STRTAB_STE_1_SHCFG_INCOMING));

	if (smmu->features & ARM_SMMU_FEAT_E2H) {
		/*
		 * To support BTM the streamworld needs to match the
		 * configuration of the CPU so that the ASID broadcasts are
		 * properly matched. This means either S/NS-EL2-E2H (hypervisor)
		 * or NS-EL1 (guest). Since an SVA domain can be installed in a
		 * PASID this should always use a BTM compatible configuration
		 * if the HW supports it.
		 */
		target->data[1] |= cpu_to_le64(
			FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_EL2));
	} else {
		target->data[1] |= cpu_to_le64(
			FIELD_PREP(STRTAB_STE_1_STRW, STRTAB_STE_1_STRW_NSEL1));

		/*
		 * VMID 0 is reserved for stage-2 bypass EL1 STEs, see
		 * arm_smmu_domain_alloc_id()
		 */
		target->data[2] =
			cpu_to_le64(FIELD_PREP(STRTAB_STE_2_S2VMID, 0));
	}
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_cdtable_ste);

VISIBLE_IF_KUNIT
void arm_smmu_make_s2_domain_ste(struct arm_smmu_ste *target,
				 struct arm_smmu_master *master,
				 struct arm_smmu_domain *smmu_domain,
				 bool ats_enabled)
{
	struct arm_smmu_s2_cfg *s2_cfg = &smmu_domain->s2_cfg;
	const struct io_pgtable_cfg *pgtbl_cfg =
		&io_pgtable_ops_to_pgtable(smmu_domain->pgtbl_ops)->cfg;
	typeof(&pgtbl_cfg->arm_lpae_s2_cfg.vtcr) vtcr =
		&pgtbl_cfg->arm_lpae_s2_cfg.vtcr;
	u64 vtcr_val;
	struct arm_smmu_device *smmu = master->smmu;

	memset(target, 0, sizeof(*target));
	target->data[0] = cpu_to_le64(
		STRTAB_STE_0_V |
		FIELD_PREP(STRTAB_STE_0_CFG, STRTAB_STE_0_CFG_S2_TRANS));

	target->data[1] = cpu_to_le64(
		FIELD_PREP(STRTAB_STE_1_EATS,
			   ats_enabled ? STRTAB_STE_1_EATS_TRANS : 0));

	if (smmu->features & ARM_SMMU_FEAT_ATTR_TYPES_OVR)
		target->data[1] |= cpu_to_le64(FIELD_PREP(STRTAB_STE_1_SHCFG,
							  STRTAB_STE_1_SHCFG_INCOMING));

	vtcr_val = FIELD_PREP(STRTAB_STE_2_VTCR_S2T0SZ, vtcr->tsz) |
		   FIELD_PREP(STRTAB_STE_2_VTCR_S2SL0, vtcr->sl) |
		   FIELD_PREP(STRTAB_STE_2_VTCR_S2IR0, vtcr->irgn) |
		   FIELD_PREP(STRTAB_STE_2_VTCR_S2OR0, vtcr->orgn) |
		   FIELD_PREP(STRTAB_STE_2_VTCR_S2SH0, vtcr->sh) |
		   FIELD_PREP(STRTAB_STE_2_VTCR_S2TG, vtcr->tg) |
		   FIELD_PREP(STRTAB_STE_2_VTCR_S2PS, vtcr->ps);
	target->data[2] = cpu_to_le64(
		FIELD_PREP(STRTAB_STE_2_S2VMID, s2_cfg->vmid) |
		FIELD_PREP(STRTAB_STE_2_VTCR, vtcr_val) |
		STRTAB_STE_2_S2AA64 |
#ifdef __BIG_ENDIAN
		STRTAB_STE_2_S2ENDI |
#endif
		STRTAB_STE_2_S2PTW |
		STRTAB_STE_2_S2R);

	target->data[3] = cpu_to_le64(pgtbl_cfg->arm_lpae_s2_cfg.vttbr &
				      STRTAB_STE_3_S2TTB_MASK);
}
EXPORT_SYMBOL_IF_KUNIT(arm_smmu_make_s2_domain_ste);

/*
 * This can safely directly manipulate the STE memory without a sync sequence
 * because the STE table has not been installed in the SMMU yet.
 */
static void arm_smmu_init_initial_stes(struct arm_smmu_ste *strtab,
				       unsigned int nent)
{
	unsigned int i;

	for (i = 0; i < nent; ++i) {
		arm_smmu_make_abort_ste(strtab);
		strtab++;
	}
}

static int arm_smmu_init_l2_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	size_t size;
	void *strtab;
	dma_addr_t l2ptr_dma;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;
	struct arm_smmu_strtab_l1_desc *desc = &cfg->l1_desc[sid >> STRTAB_SPLIT];

	if (desc->l2ptr)
		return 0;

	size = 1 << (STRTAB_SPLIT + ilog2(STRTAB_STE_DWORDS) + 3);
	strtab = &cfg->strtab[(sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS];

	desc->l2ptr = dmam_alloc_coherent(smmu->dev, size, &l2ptr_dma,
					  GFP_KERNEL);
	if (!desc->l2ptr) {
		dev_err(smmu->dev,
			"failed to allocate l2 stream table for SID %u\n",
			sid);
		return -ENOMEM;
	}

	arm_smmu_init_initial_stes(desc->l2ptr, 1 << STRTAB_SPLIT);
	arm_smmu_write_strtab_l1_desc(strtab, l2ptr_dma);
	return 0;
}

static struct arm_smmu_master *
arm_smmu_find_master(struct arm_smmu_device *smmu, u32 sid)
{
	struct rb_node *node;
	struct arm_smmu_stream *stream;

	lockdep_assert_held(&smmu->streams_mutex);

	node = smmu->streams.rb_node;
	while (node) {
		stream = rb_entry(node, struct arm_smmu_stream, node);
		if (stream->id < sid)
			node = node->rb_right;
		else if (stream->id > sid)
			node = node->rb_left;
		else
			return stream->master;
	}

	return NULL;
}

/* IRQ and event handlers */
static int arm_smmu_handle_evt(struct arm_smmu_device *smmu, u64 *evt)
{
	int ret = 0;
	u32 perm = 0;
	struct arm_smmu_master *master;
	bool ssid_valid = evt[0] & EVTQ_0_SSV;
	u32 sid = FIELD_GET(EVTQ_0_SID, evt[0]);
	struct iopf_fault fault_evt = { };
	struct iommu_fault *flt = &fault_evt.fault;

	switch (FIELD_GET(EVTQ_0_ID, evt[0])) {
	case EVT_ID_TRANSLATION_FAULT:
	case EVT_ID_ADDR_SIZE_FAULT:
	case EVT_ID_ACCESS_FAULT:
	case EVT_ID_PERMISSION_FAULT:
		break;
	default:
		return -EOPNOTSUPP;
	}

	/* Stage-2 is always pinned at the moment */
	if (evt[1] & EVTQ_1_S2)
		return -EFAULT;

	if (!(evt[1] & EVTQ_1_STALL))
		return -EOPNOTSUPP;

	if (evt[1] & EVTQ_1_RnW)
		perm |= IOMMU_FAULT_PERM_READ;
	else
		perm |= IOMMU_FAULT_PERM_WRITE;

	if (evt[1] & EVTQ_1_InD)
		perm |= IOMMU_FAULT_PERM_EXEC;

	if (evt[1] & EVTQ_1_PnU)
		perm |= IOMMU_FAULT_PERM_PRIV;

	flt->type = IOMMU_FAULT_PAGE_REQ;
	flt->prm = (struct iommu_fault_page_request) {
		.flags = IOMMU_FAULT_PAGE_REQUEST_LAST_PAGE,
		.grpid = FIELD_GET(EVTQ_1_STAG, evt[1]),
		.perm = perm,
		.addr = FIELD_GET(EVTQ_2_ADDR, evt[2]),
	};

	if (ssid_valid) {
		flt->prm.flags |= IOMMU_FAULT_PAGE_REQUEST_PASID_VALID;
		flt->prm.pasid = FIELD_GET(EVTQ_0_SSID, evt[0]);
	}

	mutex_lock(&smmu->streams_mutex);
	master = arm_smmu_find_master(smmu, sid);
	if (!master) {
		ret = -EINVAL;
		goto out_unlock;
	}

	iommu_report_device_fault(master->dev, &fault_evt);
out_unlock:
	mutex_unlock(&smmu->streams_mutex);
	return ret;
}

static irqreturn_t arm_smmu_evtq_thread(int irq, void *dev)
{
	int i, ret;
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->evtq.q;
	struct arm_smmu_ll_queue *llq = &q->llq;
	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
				      DEFAULT_RATELIMIT_BURST);
	u64 evt[EVTQ_ENT_DWORDS];

	do {
		while (!queue_remove_raw(q, evt)) {
			u8 id = FIELD_GET(EVTQ_0_ID, evt[0]);

			ret = arm_smmu_handle_evt(smmu, evt);
			if (!ret || !__ratelimit(&rs))
				continue;

			dev_info(smmu->dev, "event 0x%02x received:\n", id);
			for (i = 0; i < ARRAY_SIZE(evt); ++i)
				dev_info(smmu->dev, "\t0x%016llx\n",
					 (unsigned long long)evt[i]);

			cond_resched();
		}

		/*
		 * Not much we can do on overflow, so scream and pretend we're
		 * trying harder.
		 */
		if (queue_sync_prod_in(q) == -EOVERFLOW)
			dev_err(smmu->dev, "EVTQ overflow detected -- events lost\n");
	} while (!queue_empty(llq));

	/* Sync our overflow flag, as we believe we're up to speed */
	queue_sync_cons_ovf(q);
	return IRQ_HANDLED;
}

static void arm_smmu_handle_ppr(struct arm_smmu_device *smmu, u64 *evt)
{
	u32 sid, ssid;
	u16 grpid;
	bool ssv, last;

	sid = FIELD_GET(PRIQ_0_SID, evt[0]);
	ssv = FIELD_GET(PRIQ_0_SSID_V, evt[0]);
	ssid = ssv ? FIELD_GET(PRIQ_0_SSID, evt[0]) : IOMMU_NO_PASID;
	last = FIELD_GET(PRIQ_0_PRG_LAST, evt[0]);
	grpid = FIELD_GET(PRIQ_1_PRG_IDX, evt[1]);

	dev_info(smmu->dev, "unexpected PRI request received:\n");
	dev_info(smmu->dev,
		 "\tsid 0x%08x.0x%05x: [%u%s] %sprivileged %s%s%s access at iova 0x%016llx\n",
		 sid, ssid, grpid, last ? "L" : "",
		 evt[0] & PRIQ_0_PERM_PRIV ? "" : "un",
		 evt[0] & PRIQ_0_PERM_READ ? "R" : "",
		 evt[0] & PRIQ_0_PERM_WRITE ? "W" : "",
		 evt[0] & PRIQ_0_PERM_EXEC ? "X" : "",
		 evt[1] & PRIQ_1_ADDR_MASK);

	if (last) {
		struct arm_smmu_cmdq_ent cmd = {
			.opcode			= CMDQ_OP_PRI_RESP,
			.substream_valid	= ssv,
			.pri			= {
				.sid	= sid,
				.ssid	= ssid,
				.grpid	= grpid,
				.resp	= PRI_RESP_DENY,
			},
		};

		arm_smmu_cmdq_issue_cmd(smmu, &cmd);
	}
}

static irqreturn_t arm_smmu_priq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;
	struct arm_smmu_queue *q = &smmu->priq.q;
	struct arm_smmu_ll_queue *llq = &q->llq;
	u64 evt[PRIQ_ENT_DWORDS];

	do {
		while (!queue_remove_raw(q, evt))
			arm_smmu_handle_ppr(smmu, evt);

		if (queue_sync_prod_in(q) == -EOVERFLOW)
			dev_err(smmu->dev, "PRIQ overflow detected -- requests lost\n");
	} while (!queue_empty(llq));

	/* Sync our overflow flag, as we believe we're up to speed */
	queue_sync_cons_ovf(q);
	return IRQ_HANDLED;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu);

static irqreturn_t arm_smmu_gerror_handler(int irq, void *dev)
{
	u32 gerror, gerrorn, active;
	struct arm_smmu_device *smmu = dev;

	gerror = readl_relaxed(smmu->base + ARM_SMMU_GERROR);
	gerrorn = readl_relaxed(smmu->base + ARM_SMMU_GERRORN);

	active = gerror ^ gerrorn;
	if (!(active & GERROR_ERR_MASK))
		return IRQ_NONE; /* No errors pending */

	dev_warn(smmu->dev,
		 "unexpected global error reported (0x%08x), this could be serious\n",
		 active);

	if (active & GERROR_SFM_ERR) {
		dev_err(smmu->dev, "device has entered Service Failure Mode!\n");
		arm_smmu_device_disable(smmu);
	}

	if (active & GERROR_MSI_GERROR_ABT_ERR)
		dev_warn(smmu->dev, "GERROR MSI write aborted\n");

	if (active & GERROR_MSI_PRIQ_ABT_ERR)
		dev_warn(smmu->dev, "PRIQ MSI write aborted\n");

	if (active & GERROR_MSI_EVTQ_ABT_ERR)
		dev_warn(smmu->dev, "EVTQ MSI write aborted\n");

	if (active & GERROR_MSI_CMDQ_ABT_ERR)
		dev_warn(smmu->dev, "CMDQ MSI write aborted\n");

	if (active & GERROR_PRIQ_ABT_ERR)
		dev_err(smmu->dev, "PRIQ write aborted -- events may have been lost\n");

	if (active & GERROR_EVTQ_ABT_ERR)
		dev_err(smmu->dev, "EVTQ write aborted -- events may have been lost\n");

	if (active & GERROR_CMDQ_ERR)
		arm_smmu_cmdq_skip_err(smmu);

	writel(gerror, smmu->base + ARM_SMMU_GERRORN);
	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_thread(int irq, void *dev)
{
	struct arm_smmu_device *smmu = dev;

	arm_smmu_evtq_thread(irq, dev);
	if (smmu->features & ARM_SMMU_FEAT_PRI)
		arm_smmu_priq_thread(irq, dev);

	return IRQ_HANDLED;
}

static irqreturn_t arm_smmu_combined_irq_handler(int irq, void *dev)
{
	arm_smmu_gerror_handler(irq, dev);
	return IRQ_WAKE_THREAD;
}

static void
arm_smmu_atc_inv_to_cmd(int ssid, unsigned long iova, size_t size,
			struct arm_smmu_cmdq_ent *cmd)
{
	size_t log2_span;
	size_t span_mask;
	/* ATC invalidates are always on 4096-bytes pages */
	size_t inval_grain_shift = 12;
	unsigned long page_start, page_end;

	/*
	 * ATS and PASID:
	 *
	 * If substream_valid is clear, the PCIe TLP is sent without a PASID
	 * prefix. In that case all ATC entries within the address range are
	 * invalidated, including those that were requested with a PASID! There
	 * is no way to invalidate only entries without PASID.
	 *
	 * When using STRTAB_STE_1_S1DSS_SSID0 (reserving CD 0 for non-PASID
	 * traffic), translation requests without PASID create ATC entries
	 * without PASID, which must be invalidated with substream_valid clear.
	 * This has the unpleasant side-effect of invalidating all PASID-tagged
	 * ATC entries within the address range.
	 */
	*cmd = (struct arm_smmu_cmdq_ent) {
		.opcode			= CMDQ_OP_ATC_INV,
		.substream_valid	= (ssid != IOMMU_NO_PASID),
		.atc.ssid		= ssid,
	};

	if (!size) {
		cmd->atc.size = ATC_INV_SIZE_ALL;
		return;
	}

	page_start	= iova >> inval_grain_shift;
	page_end	= (iova + size - 1) >> inval_grain_shift;

	/*
	 * In an ATS Invalidate Request, the address must be aligned on the
	 * range size, which must be a power of two number of page sizes. We
	 * thus have to choose between grossly over-invalidating the region, or
	 * splitting the invalidation into multiple commands. For simplicity
	 * we'll go with the first solution, but should refine it in the future
	 * if multiple commands are shown to be more efficient.
	 *
	 * Find the smallest power of two that covers the range. The most
	 * significant differing bit between the start and end addresses,
	 * fls(start ^ end), indicates the required span. For example:
	 *
	 * We want to invalidate pages [8; 11]. This is already the ideal range:
	 *		x = 0b1000 ^ 0b1011 = 0b11
	 *		span = 1 << fls(x) = 4
	 *
	 * To invalidate pages [7; 10], we need to invalidate [0; 15]:
	 *		x = 0b0111 ^ 0b1010 = 0b1101
	 *		span = 1 << fls(x) = 16
	 */
	log2_span	= fls_long(page_start ^ page_end);
	span_mask	= (1ULL << log2_span) - 1;

	page_start	&= ~span_mask;

	cmd->atc.addr	= page_start << inval_grain_shift;
	cmd->atc.size	= log2_span;
}

static int arm_smmu_atc_inv_master(struct arm_smmu_master *master,
				   ioasid_t ssid)
{
	int i;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_cmdq_batch cmds;

	arm_smmu_atc_inv_to_cmd(ssid, 0, 0, &cmd);

	cmds.num = 0;
	for (i = 0; i < master->num_streams; i++) {
		cmd.atc.sid = master->streams[i].id;
		arm_smmu_cmdq_batch_add(master->smmu, &cmds, &cmd);
	}

	return arm_smmu_cmdq_batch_submit(master->smmu, &cmds);
}

int arm_smmu_atc_inv_domain(struct arm_smmu_domain *smmu_domain,
			    unsigned long iova, size_t size)
{
	struct arm_smmu_master_domain *master_domain;
	int i;
	unsigned long flags;
	struct arm_smmu_cmdq_ent cmd;
	struct arm_smmu_cmdq_batch cmds;

	if (!(smmu_domain->smmu->features & ARM_SMMU_FEAT_ATS))
		return 0;

	/*
	 * Ensure that we've completed prior invalidation of the main TLBs
	 * before we read 'nr_ats_masters' in case of a concurrent call to
	 * arm_smmu_enable_ats():
	 *
	 *	// unmap()			// arm_smmu_enable_ats()
	 *	TLBI+SYNC			atomic_inc(&nr_ats_masters);
	 *	smp_mb();			[...]
	 *	atomic_read(&nr_ats_masters);	pci_enable_ats() // writel()
	 *
	 * Ensures that we always see the incremented 'nr_ats_masters' count if
	 * ATS was enabled at the PCI device before completion of the TLBI.
	 */
	smp_mb();
	if (!atomic_read(&smmu_domain->nr_ats_masters))
		return 0;

	cmds.num = 0;

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	list_for_each_entry(master_domain, &smmu_domain->devices,
			    devices_elm) {
		struct arm_smmu_master *master = master_domain->master;

		if (!master->ats_enabled)
			continue;

		arm_smmu_atc_inv_to_cmd(master_domain->ssid, iova, size, &cmd);

		for (i = 0; i < master->num_streams; i++) {
			cmd.atc.sid = master->streams[i].id;
			arm_smmu_cmdq_batch_add(smmu_domain->smmu, &cmds, &cmd);
		}
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);

	return arm_smmu_cmdq_batch_submit(smmu_domain->smmu, &cmds);
}

/* IO_PGTABLE API */
static void arm_smmu_tlb_inv_context(void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	struct arm_smmu_cmdq_ent cmd;

	/*
	 * NOTE: when io-pgtable is in non-strict mode, we may get here with
	 * PTEs previously cleared by unmaps on the current CPU not yet visible
	 * to the SMMU. We are relying on the dma_wmb() implicit during cmd
	 * insertion to guarantee those are observed before the TLBI. Do be
	 * careful, 007.
	 */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		arm_smmu_tlb_inv_asid(smmu, smmu_domain->cd.asid);
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S12_VMALL;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
		arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
	}
	arm_smmu_atc_inv_domain(smmu_domain, 0, 0);
}

static void __arm_smmu_tlb_inv_range(struct arm_smmu_cmdq_ent *cmd,
				     unsigned long iova, size_t size,
				     size_t granule,
				     struct arm_smmu_domain *smmu_domain)
{
	struct arm_smmu_device *smmu = smmu_domain->smmu;
	unsigned long end = iova + size, num_pages = 0, tg = 0;
	size_t inv_range = granule;
	struct arm_smmu_cmdq_batch cmds;

	if (!size)
		return;

	if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
		/* Get the leaf page size */
		tg = __ffs(smmu_domain->domain.pgsize_bitmap);

		num_pages = size >> tg;

		/* Convert page size of 12,14,16 (log2) to 1,2,3 */
		cmd->tlbi.tg = (tg - 10) / 2;

		/*
		 * Determine what level the granule is at. For non-leaf, both
		 * io-pgtable and SVA pass a nominal last-level granule because
		 * they don't know what level(s) actually apply, so ignore that
		 * and leave TTL=0. However for various errata reasons we still
		 * want to use a range command, so avoid the SVA corner case
		 * where both scale and num could be 0 as well.
		 */
		if (cmd->tlbi.leaf)
			cmd->tlbi.ttl = 4 - ((ilog2(granule) - 3) / (tg - 3));
		else if ((num_pages & CMDQ_TLBI_RANGE_NUM_MAX) == 1)
			num_pages++;
	}

	cmds.num = 0;

	while (iova < end) {
		if (smmu->features & ARM_SMMU_FEAT_RANGE_INV) {
			/*
			 * On each iteration of the loop, the range is 5 bits
			 * worth of the aligned size remaining.
			 * The range in pages is:
			 *
			 * range = (num_pages & (0x1f << __ffs(num_pages)))
			 */
			unsigned long scale, num;

			/* Determine the power of 2 multiple number of pages */
			scale = __ffs(num_pages);
			cmd->tlbi.scale = scale;

			/* Determine how many chunks of 2^scale size we have */
			num = (num_pages >> scale) & CMDQ_TLBI_RANGE_NUM_MAX;
			cmd->tlbi.num = num - 1;

			/* range is num * 2^scale * pgsize */
			inv_range = num << (scale + tg);

			/* Clear out the lower order bits for the next iteration */
			num_pages -= num << scale;
		}

		cmd->tlbi.addr = iova;
		arm_smmu_cmdq_batch_add(smmu, &cmds, cmd);
		iova += inv_range;
	}
	arm_smmu_cmdq_batch_submit(smmu, &cmds);
}

static void arm_smmu_tlb_inv_range_domain(unsigned long iova, size_t size,
					  size_t granule, bool leaf,
					  struct arm_smmu_domain *smmu_domain)
{
	struct arm_smmu_cmdq_ent cmd = {
		.tlbi = {
			.leaf	= leaf,
		},
	};

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cmd.opcode	= smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
				  CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA;
		cmd.tlbi.asid	= smmu_domain->cd.asid;
	} else {
		cmd.opcode	= CMDQ_OP_TLBI_S2_IPA;
		cmd.tlbi.vmid	= smmu_domain->s2_cfg.vmid;
	}
	__arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);

	/*
	 * Unfortunately, this can't be leaf-only since we may have
	 * zapped an entire table.
	 */
	arm_smmu_atc_inv_domain(smmu_domain, iova, size);
}

void arm_smmu_tlb_inv_range_asid(unsigned long iova, size_t size, int asid,
				 size_t granule, bool leaf,
				 struct arm_smmu_domain *smmu_domain)
{
	struct arm_smmu_cmdq_ent cmd = {
		.opcode	= smmu_domain->smmu->features & ARM_SMMU_FEAT_E2H ?
			  CMDQ_OP_TLBI_EL2_VA : CMDQ_OP_TLBI_NH_VA,
		.tlbi = {
			.asid	= asid,
			.leaf	= leaf,
		},
	};

	__arm_smmu_tlb_inv_range(&cmd, iova, size, granule, smmu_domain);
}

static void arm_smmu_tlb_inv_page_nosync(struct iommu_iotlb_gather *gather,
					 unsigned long iova, size_t granule,
					 void *cookie)
{
	struct arm_smmu_domain *smmu_domain = cookie;
	struct iommu_domain *domain = &smmu_domain->domain;

	iommu_iotlb_gather_add_page(domain, gather, iova, granule);
}

static void arm_smmu_tlb_inv_walk(unsigned long iova, size_t size,
				  size_t granule, void *cookie)
{
	arm_smmu_tlb_inv_range_domain(iova, size, granule, false, cookie);
}

static const struct iommu_flush_ops arm_smmu_flush_ops = {
	.tlb_flush_all	= arm_smmu_tlb_inv_context,
	.tlb_flush_walk = arm_smmu_tlb_inv_walk,
	.tlb_add_page	= arm_smmu_tlb_inv_page_nosync,
};

static bool arm_smmu_dbm_capable(struct arm_smmu_device *smmu)
{
	u32 features = (ARM_SMMU_FEAT_HD | ARM_SMMU_FEAT_COHERENCY);

	return (smmu->features & features) == features;
}

/* IOMMU API */
static bool arm_smmu_capable(struct device *dev, enum iommu_cap cap)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	switch (cap) {
	case IOMMU_CAP_CACHE_COHERENCY:
		/* Assume that a coherent TCU implies coherent TBUs */
		return master->smmu->features & ARM_SMMU_FEAT_COHERENCY;
	case IOMMU_CAP_NOEXEC:
	case IOMMU_CAP_DEFERRED_FLUSH:
		return true;
	case IOMMU_CAP_DIRTY_TRACKING:
		return arm_smmu_dbm_capable(master->smmu);
	default:
		return false;
	}
}

struct arm_smmu_domain *arm_smmu_domain_alloc(void)
{
	struct arm_smmu_domain *smmu_domain;

	smmu_domain = kzalloc(sizeof(*smmu_domain), GFP_KERNEL);
	if (!smmu_domain)
		return ERR_PTR(-ENOMEM);

	mutex_init(&smmu_domain->init_mutex);
	INIT_LIST_HEAD(&smmu_domain->devices);
	spin_lock_init(&smmu_domain->devices_lock);

	return smmu_domain;
}

static struct iommu_domain *arm_smmu_domain_alloc_paging(struct device *dev)
{
	struct arm_smmu_domain *smmu_domain;

	/*
	 * Allocate the domain and initialise some of its data structures.
	 * We can't really do anything meaningful until we've added a
	 * master.
	 */
	smmu_domain = arm_smmu_domain_alloc();
	if (IS_ERR(smmu_domain))
		return ERR_CAST(smmu_domain);

	if (dev) {
		struct arm_smmu_master *master = dev_iommu_priv_get(dev);
		int ret;

		ret = arm_smmu_domain_finalise(smmu_domain, master->smmu, 0);
		if (ret) {
			kfree(smmu_domain);
			return ERR_PTR(ret);
		}
	}
	return &smmu_domain->domain;
}

static void arm_smmu_domain_free_paging(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_device *smmu = smmu_domain->smmu;

	free_io_pgtable_ops(smmu_domain->pgtbl_ops);

	/* Free the ASID or VMID */
	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		/* Prevent SVA from touching the CD while we're freeing it */
		mutex_lock(&arm_smmu_asid_lock);
		xa_erase(&arm_smmu_asid_xa, smmu_domain->cd.asid);
		mutex_unlock(&arm_smmu_asid_lock);
	} else {
		struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;
		if (cfg->vmid)
			ida_free(&smmu->vmid_map, cfg->vmid);
	}

	kfree(smmu_domain);
}

static int arm_smmu_domain_finalise_s1(struct arm_smmu_device *smmu,
				       struct arm_smmu_domain *smmu_domain)
{
	int ret;
	u32 asid = 0;
	struct arm_smmu_ctx_desc *cd = &smmu_domain->cd;

	/* Prevent SVA from modifying the ASID until it is written to the CD */
	mutex_lock(&arm_smmu_asid_lock);
	ret = xa_alloc(&arm_smmu_asid_xa, &asid, smmu_domain,
		       XA_LIMIT(1, (1 << smmu->asid_bits) - 1), GFP_KERNEL);
	cd->asid	= (u16)asid;
	mutex_unlock(&arm_smmu_asid_lock);
	return ret;
}

static int arm_smmu_domain_finalise_s2(struct arm_smmu_device *smmu,
				       struct arm_smmu_domain *smmu_domain)
{
	int vmid;
	struct arm_smmu_s2_cfg *cfg = &smmu_domain->s2_cfg;

	/* Reserve VMID 0 for stage-2 bypass STEs */
	vmid = ida_alloc_range(&smmu->vmid_map, 1, (1 << smmu->vmid_bits) - 1,
			       GFP_KERNEL);
	if (vmid < 0)
		return vmid;

	cfg->vmid	= (u16)vmid;
	return 0;
}

static int arm_smmu_domain_finalise(struct arm_smmu_domain *smmu_domain,
				    struct arm_smmu_device *smmu, u32 flags)
{
	int ret;
	enum io_pgtable_fmt fmt;
	struct io_pgtable_cfg pgtbl_cfg;
	struct io_pgtable_ops *pgtbl_ops;
	int (*finalise_stage_fn)(struct arm_smmu_device *smmu,
				 struct arm_smmu_domain *smmu_domain);
	bool enable_dirty = flags & IOMMU_HWPT_ALLOC_DIRTY_TRACKING;

	/* Restrict the stage to what we can actually support */
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S1))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	if (!(smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu_domain->stage = ARM_SMMU_DOMAIN_S1;

	pgtbl_cfg = (struct io_pgtable_cfg) {
		.pgsize_bitmap	= smmu->pgsize_bitmap,
		.coherent_walk	= smmu->features & ARM_SMMU_FEAT_COHERENCY,
		.tlb		= &arm_smmu_flush_ops,
		.iommu_dev	= smmu->dev,
	};

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1: {
		unsigned long ias = (smmu->features &
				     ARM_SMMU_FEAT_VAX) ? 52 : 48;

		pgtbl_cfg.ias = min_t(unsigned long, ias, VA_BITS);
		pgtbl_cfg.oas = smmu->ias;
		if (enable_dirty)
			pgtbl_cfg.quirks |= IO_PGTABLE_QUIRK_ARM_HD;
		fmt = ARM_64_LPAE_S1;
		finalise_stage_fn = arm_smmu_domain_finalise_s1;
		break;
	}
	case ARM_SMMU_DOMAIN_S2:
		if (enable_dirty)
			return -EOPNOTSUPP;
		pgtbl_cfg.ias = smmu->ias;
		pgtbl_cfg.oas = smmu->oas;
		fmt = ARM_64_LPAE_S2;
		finalise_stage_fn = arm_smmu_domain_finalise_s2;
		break;
	default:
		return -EINVAL;
	}

	pgtbl_ops = alloc_io_pgtable_ops(fmt, &pgtbl_cfg, smmu_domain);
	if (!pgtbl_ops)
		return -ENOMEM;

	smmu_domain->domain.pgsize_bitmap = pgtbl_cfg.pgsize_bitmap;
	smmu_domain->domain.geometry.aperture_end = (1UL << pgtbl_cfg.ias) - 1;
	smmu_domain->domain.geometry.force_aperture = true;
	if (enable_dirty && smmu_domain->stage == ARM_SMMU_DOMAIN_S1)
		smmu_domain->domain.dirty_ops = &arm_smmu_dirty_ops;

	ret = finalise_stage_fn(smmu, smmu_domain);
	if (ret < 0) {
		free_io_pgtable_ops(pgtbl_ops);
		return ret;
	}

	smmu_domain->pgtbl_ops = pgtbl_ops;
	smmu_domain->smmu = smmu;
	return 0;
}

static struct arm_smmu_ste *
arm_smmu_get_step_for_sid(struct arm_smmu_device *smmu, u32 sid)
{
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB) {
		unsigned int idx1, idx2;

		/* Two-level walk */
		idx1 = (sid >> STRTAB_SPLIT) * STRTAB_L1_DESC_DWORDS;
		idx2 = sid & ((1 << STRTAB_SPLIT) - 1);
		return &cfg->l1_desc[idx1].l2ptr[idx2];
	} else {
		/* Simple linear lookup */
		return (struct arm_smmu_ste *)&cfg
			       ->strtab[sid * STRTAB_STE_DWORDS];
	}
}

static void arm_smmu_install_ste_for_dev(struct arm_smmu_master *master,
					 const struct arm_smmu_ste *target)
{
	int i, j;
	struct arm_smmu_device *smmu = master->smmu;

	master->cd_table.in_ste =
		FIELD_GET(STRTAB_STE_0_CFG, le64_to_cpu(target->data[0])) ==
		STRTAB_STE_0_CFG_S1_TRANS;
	master->ste_ats_enabled =
		FIELD_GET(STRTAB_STE_1_EATS, le64_to_cpu(target->data[1])) ==
		STRTAB_STE_1_EATS_TRANS;

	for (i = 0; i < master->num_streams; ++i) {
		u32 sid = master->streams[i].id;
		struct arm_smmu_ste *step =
			arm_smmu_get_step_for_sid(smmu, sid);

		/* Bridged PCI devices may end up with duplicated IDs */
		for (j = 0; j < i; j++)
			if (master->streams[j].id == sid)
				break;
		if (j < i)
			continue;

		arm_smmu_write_ste(master, sid, step, target);
	}
}

static bool arm_smmu_ats_supported(struct arm_smmu_master *master)
{
	struct device *dev = master->dev;
	struct arm_smmu_device *smmu = master->smmu;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);

	if (!(smmu->features & ARM_SMMU_FEAT_ATS))
		return false;

	if (!(fwspec->flags & IOMMU_FWSPEC_PCI_RC_ATS))
		return false;

	return dev_is_pci(dev) && pci_ats_supported(to_pci_dev(dev));
}

static void arm_smmu_enable_ats(struct arm_smmu_master *master)
{
	size_t stu;
	struct pci_dev *pdev;
	struct arm_smmu_device *smmu = master->smmu;

	/* Smallest Translation Unit: log2 of the smallest supported granule */
	stu = __ffs(smmu->pgsize_bitmap);
	pdev = to_pci_dev(master->dev);

	/*
	 * ATC invalidation of PASID 0 causes the entire ATC to be flushed.
	 */
	arm_smmu_atc_inv_master(master, IOMMU_NO_PASID);
	if (pci_enable_ats(pdev, stu))
		dev_err(master->dev, "Failed to enable ATS (STU %zu)\n", stu);
}

static int arm_smmu_enable_pasid(struct arm_smmu_master *master)
{
	int ret;
	int features;
	int num_pasids;
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return -ENODEV;

	pdev = to_pci_dev(master->dev);

	features = pci_pasid_features(pdev);
	if (features < 0)
		return features;

	num_pasids = pci_max_pasids(pdev);
	if (num_pasids <= 0)
		return num_pasids;

	ret = pci_enable_pasid(pdev, features);
	if (ret) {
		dev_err(&pdev->dev, "Failed to enable PASID\n");
		return ret;
	}

	master->ssid_bits = min_t(u8, ilog2(num_pasids),
				  master->smmu->ssid_bits);
	return 0;
}

static void arm_smmu_disable_pasid(struct arm_smmu_master *master)
{
	struct pci_dev *pdev;

	if (!dev_is_pci(master->dev))
		return;

	pdev = to_pci_dev(master->dev);

	if (!pdev->pasid_enabled)
		return;

	master->ssid_bits = 0;
	pci_disable_pasid(pdev);
}

static struct arm_smmu_master_domain *
arm_smmu_find_master_domain(struct arm_smmu_domain *smmu_domain,
			    struct arm_smmu_master *master,
			    ioasid_t ssid)
{
	struct arm_smmu_master_domain *master_domain;

	lockdep_assert_held(&smmu_domain->devices_lock);

	list_for_each_entry(master_domain, &smmu_domain->devices,
			    devices_elm) {
		if (master_domain->master == master &&
		    master_domain->ssid == ssid)
			return master_domain;
	}
	return NULL;
}

/*
 * If the domain uses the smmu_domain->devices list return the arm_smmu_domain
 * structure, otherwise NULL. These domains track attached devices so they can
 * issue invalidations.
 */
static struct arm_smmu_domain *
to_smmu_domain_devices(struct iommu_domain *domain)
{
	/* The domain can be NULL only when processing the first attach */
	if (!domain)
		return NULL;
	if ((domain->type & __IOMMU_DOMAIN_PAGING) ||
	    domain->type == IOMMU_DOMAIN_SVA)
		return to_smmu_domain(domain);
	return NULL;
}

static void arm_smmu_remove_master_domain(struct arm_smmu_master *master,
					  struct iommu_domain *domain,
					  ioasid_t ssid)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain_devices(domain);
	struct arm_smmu_master_domain *master_domain;
	unsigned long flags;

	if (!smmu_domain)
		return;

	spin_lock_irqsave(&smmu_domain->devices_lock, flags);
	master_domain = arm_smmu_find_master_domain(smmu_domain, master, ssid);
	if (master_domain) {
		list_del(&master_domain->devices_elm);
		kfree(master_domain);
		if (master->ats_enabled)
			atomic_dec(&smmu_domain->nr_ats_masters);
	}
	spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
}

struct arm_smmu_attach_state {
	/* Inputs */
	struct iommu_domain *old_domain;
	struct arm_smmu_master *master;
	bool cd_needs_ats;
	ioasid_t ssid;
	/* Resulting state */
	bool ats_enabled;
};

/*
 * Start the sequence to attach a domain to a master. The sequence contains three
 * steps:
 *  arm_smmu_attach_prepare()
 *  arm_smmu_install_ste_for_dev()
 *  arm_smmu_attach_commit()
 *
 * If prepare succeeds then the sequence must be completed. The STE installed
 * must set the STE.EATS field according to state.ats_enabled.
 *
 * If the device supports ATS then this determines if EATS should be enabled
 * in the STE, and starts sequencing EATS disable if required.
 *
 * The change of the EATS in the STE and the PCI ATS config space is managed by
 * this sequence to be in the right order so that if PCI ATS is enabled then
 * STE.ETAS is enabled.
 *
 * new_domain can be a non-paging domain. In this case ATS will not be enabled,
 * and invalidations won't be tracked.
 */
static int arm_smmu_attach_prepare(struct arm_smmu_attach_state *state,
				   struct iommu_domain *new_domain)
{
	struct arm_smmu_master *master = state->master;
	struct arm_smmu_master_domain *master_domain;
	struct arm_smmu_domain *smmu_domain =
		to_smmu_domain_devices(new_domain);
	unsigned long flags;

	/*
	 * arm_smmu_share_asid() must not see two domains pointing to the same
	 * arm_smmu_master_domain contents otherwise it could randomly write one
	 * or the other to the CD.
	 */
	lockdep_assert_held(&arm_smmu_asid_lock);

	if (smmu_domain || state->cd_needs_ats) {
		/*
		 * The SMMU does not support enabling ATS with bypass/abort.
		 * When the STE is in bypass (STE.Config[2:0] == 0b100), ATS
		 * Translation Requests and Translated transactions are denied
		 * as though ATS is disabled for the stream (STE.EATS == 0b00),
		 * causing F_BAD_ATS_TREQ and F_TRANSL_FORBIDDEN events
		 * (IHI0070Ea 5.2 Stream Table Entry). Thus ATS can only be
		 * enabled if we have arm_smmu_domain, those always have page
		 * tables.
		 */
		state->ats_enabled = arm_smmu_ats_supported(master);
	}

	if (smmu_domain) {
		master_domain = kzalloc(sizeof(*master_domain), GFP_KERNEL);
		if (!master_domain)
			return -ENOMEM;
		master_domain->master = master;
		master_domain->ssid = state->ssid;

		/*
		 * During prepare we want the current smmu_domain and new
		 * smmu_domain to be in the devices list before we change any
		 * HW. This ensures that both domains will send ATS
		 * invalidations to the master until we are done.
		 *
		 * It is tempting to make this list only track masters that are
		 * using ATS, but arm_smmu_share_asid() also uses this to change
		 * the ASID of a domain, unrelated to ATS.
		 *
		 * Notice if we are re-attaching the same domain then the list
		 * will have two identical entries and commit will remove only
		 * one of them.
		 */
		spin_lock_irqsave(&smmu_domain->devices_lock, flags);
		if (state->ats_enabled)
			atomic_inc(&smmu_domain->nr_ats_masters);
		list_add(&master_domain->devices_elm, &smmu_domain->devices);
		spin_unlock_irqrestore(&smmu_domain->devices_lock, flags);
	}

	if (!state->ats_enabled && master->ats_enabled) {
		pci_disable_ats(to_pci_dev(master->dev));
		/*
		 * This is probably overkill, but the config write for disabling
		 * ATS should complete before the STE is configured to generate
		 * UR to avoid AER noise.
		 */
		wmb();
	}
	return 0;
}

/*
 * Commit is done after the STE/CD are configured with the EATS setting. It
 * completes synchronizing the PCI device's ATC and finishes manipulating the
 * smmu_domain->devices list.
 */
static void arm_smmu_attach_commit(struct arm_smmu_attach_state *state)
{
	struct arm_smmu_master *master = state->master;

	lockdep_assert_held(&arm_smmu_asid_lock);

	if (state->ats_enabled && !master->ats_enabled) {
		arm_smmu_enable_ats(master);
	} else if (state->ats_enabled && master->ats_enabled) {
		/*
		 * The translation has changed, flush the ATC. At this point the
		 * SMMU is translating for the new domain and both the old&new
		 * domain will issue invalidations.
		 */
		arm_smmu_atc_inv_master(master, state->ssid);
	} else if (!state->ats_enabled && master->ats_enabled) {
		/* ATS is being switched off, invalidate the entire ATC */
		arm_smmu_atc_inv_master(master, IOMMU_NO_PASID);
	}
	master->ats_enabled = state->ats_enabled;

	arm_smmu_remove_master_domain(master, state->old_domain, state->ssid);
}

static int arm_smmu_attach_dev(struct iommu_domain *domain, struct device *dev)
{
	int ret = 0;
	struct arm_smmu_ste target;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);
	struct arm_smmu_device *smmu;
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_attach_state state = {
		.old_domain = iommu_get_domain_for_dev(dev),
		.ssid = IOMMU_NO_PASID,
	};
	struct arm_smmu_master *master;
	struct arm_smmu_cd *cdptr;

	if (!fwspec)
		return -ENOENT;

	state.master = master = dev_iommu_priv_get(dev);
	smmu = master->smmu;

	mutex_lock(&smmu_domain->init_mutex);

	if (!smmu_domain->smmu) {
		ret = arm_smmu_domain_finalise(smmu_domain, smmu, 0);
	} else if (smmu_domain->smmu != smmu)
		ret = -EINVAL;

	mutex_unlock(&smmu_domain->init_mutex);
	if (ret)
		return ret;

	if (smmu_domain->stage == ARM_SMMU_DOMAIN_S1) {
		cdptr = arm_smmu_alloc_cd_ptr(master, IOMMU_NO_PASID);
		if (!cdptr)
			return -ENOMEM;
	} else if (arm_smmu_ssids_in_use(&master->cd_table))
		return -EBUSY;

	/*
	 * Prevent arm_smmu_share_asid() from trying to change the ASID
	 * of either the old or new domain while we are working on it.
	 * This allows the STE and the smmu_domain->devices list to
	 * be inconsistent during this routine.
	 */
	mutex_lock(&arm_smmu_asid_lock);

	ret = arm_smmu_attach_prepare(&state, domain);
	if (ret) {
		mutex_unlock(&arm_smmu_asid_lock);
		return ret;
	}

	switch (smmu_domain->stage) {
	case ARM_SMMU_DOMAIN_S1: {
		struct arm_smmu_cd target_cd;

		arm_smmu_make_s1_cd(&target_cd, master, smmu_domain);
		arm_smmu_write_cd_entry(master, IOMMU_NO_PASID, cdptr,
					&target_cd);
		arm_smmu_make_cdtable_ste(&target, master, state.ats_enabled,
					  STRTAB_STE_1_S1DSS_SSID0);
		arm_smmu_install_ste_for_dev(master, &target);
		break;
	}
	case ARM_SMMU_DOMAIN_S2:
		arm_smmu_make_s2_domain_ste(&target, master, smmu_domain,
					    state.ats_enabled);
		arm_smmu_install_ste_for_dev(master, &target);
		arm_smmu_clear_cd(master, IOMMU_NO_PASID);
		break;
	}

	arm_smmu_attach_commit(&state);
	mutex_unlock(&arm_smmu_asid_lock);
	return 0;
}

static int arm_smmu_s1_set_dev_pasid(struct iommu_domain *domain,
				      struct device *dev, ioasid_t id)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
	struct arm_smmu_device *smmu = master->smmu;
	struct arm_smmu_cd target_cd;
	int ret = 0;

	mutex_lock(&smmu_domain->init_mutex);
	if (!smmu_domain->smmu)
		ret = arm_smmu_domain_finalise(smmu_domain, smmu, 0);
	else if (smmu_domain->smmu != smmu)
		ret = -EINVAL;
	mutex_unlock(&smmu_domain->init_mutex);
	if (ret)
		return ret;

	if (smmu_domain->stage != ARM_SMMU_DOMAIN_S1)
		return -EINVAL;

	/*
	 * We can read cd.asid outside the lock because arm_smmu_set_pasid()
	 * will fix it
	 */
	arm_smmu_make_s1_cd(&target_cd, master, smmu_domain);
	return arm_smmu_set_pasid(master, to_smmu_domain(domain), id,
				  &target_cd);
}

static void arm_smmu_update_ste(struct arm_smmu_master *master,
				struct iommu_domain *sid_domain,
				bool ats_enabled)
{
	unsigned int s1dss = STRTAB_STE_1_S1DSS_TERMINATE;
	struct arm_smmu_ste ste;

	if (master->cd_table.in_ste && master->ste_ats_enabled == ats_enabled)
		return;

	if (sid_domain->type == IOMMU_DOMAIN_IDENTITY)
		s1dss = STRTAB_STE_1_S1DSS_BYPASS;
	else
		WARN_ON(sid_domain->type != IOMMU_DOMAIN_BLOCKED);

	/*
	 * Change the STE into a cdtable one with SID IDENTITY/BLOCKED behavior
	 * using s1dss if necessary. If the cd_table is already installed then
	 * the S1DSS is correct and this will just update the EATS. Otherwise it
	 * installs the entire thing. This will be hitless.
	 */
	arm_smmu_make_cdtable_ste(&ste, master, ats_enabled, s1dss);
	arm_smmu_install_ste_for_dev(master, &ste);
}

int arm_smmu_set_pasid(struct arm_smmu_master *master,
		       struct arm_smmu_domain *smmu_domain, ioasid_t pasid,
		       struct arm_smmu_cd *cd)
{
	struct iommu_domain *sid_domain = iommu_get_domain_for_dev(master->dev);
	struct arm_smmu_attach_state state = {
		.master = master,
		/*
		 * For now the core code prevents calling this when a domain is
		 * already attached, no need to set old_domain.
		 */
		.ssid = pasid,
	};
	struct arm_smmu_cd *cdptr;
	int ret;

	/* The core code validates pasid */

	if (smmu_domain->smmu != master->smmu)
		return -EINVAL;

	if (!master->cd_table.in_ste &&
	    sid_domain->type != IOMMU_DOMAIN_IDENTITY &&
	    sid_domain->type != IOMMU_DOMAIN_BLOCKED)
		return -EINVAL;

	cdptr = arm_smmu_alloc_cd_ptr(master, pasid);
	if (!cdptr)
		return -ENOMEM;

	mutex_lock(&arm_smmu_asid_lock);
	ret = arm_smmu_attach_prepare(&state, &smmu_domain->domain);
	if (ret)
		goto out_unlock;

	/*
	 * We don't want to obtain to the asid_lock too early, so fix up the
	 * caller set ASID under the lock in case it changed.
	 */
	cd->data[0] &= ~cpu_to_le64(CTXDESC_CD_0_ASID);
	cd->data[0] |= cpu_to_le64(
		FIELD_PREP(CTXDESC_CD_0_ASID, smmu_domain->cd.asid));

	arm_smmu_write_cd_entry(master, pasid, cdptr, cd);
	arm_smmu_update_ste(master, sid_domain, state.ats_enabled);

	arm_smmu_attach_commit(&state);

out_unlock:
	mutex_unlock(&arm_smmu_asid_lock);
	return ret;
}

static void arm_smmu_remove_dev_pasid(struct device *dev, ioasid_t pasid,
				      struct iommu_domain *domain)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
	struct arm_smmu_domain *smmu_domain;

	smmu_domain = to_smmu_domain(domain);

	mutex_lock(&arm_smmu_asid_lock);
	arm_smmu_clear_cd(master, pasid);
	if (master->ats_enabled)
		arm_smmu_atc_inv_master(master, pasid);
	arm_smmu_remove_master_domain(master, &smmu_domain->domain, pasid);
	mutex_unlock(&arm_smmu_asid_lock);

	/*
	 * When the last user of the CD table goes away downgrade the STE back
	 * to a non-cd_table one.
	 */
	if (!arm_smmu_ssids_in_use(&master->cd_table)) {
		struct iommu_domain *sid_domain =
			iommu_get_domain_for_dev(master->dev);

		if (sid_domain->type == IOMMU_DOMAIN_IDENTITY ||
		    sid_domain->type == IOMMU_DOMAIN_BLOCKED)
			sid_domain->ops->attach_dev(sid_domain, dev);
	}
}

static void arm_smmu_attach_dev_ste(struct iommu_domain *domain,
				    struct device *dev,
				    struct arm_smmu_ste *ste,
				    unsigned int s1dss)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
	struct arm_smmu_attach_state state = {
		.master = master,
		.old_domain = iommu_get_domain_for_dev(dev),
		.ssid = IOMMU_NO_PASID,
	};

	/*
	 * Do not allow any ASID to be changed while are working on the STE,
	 * otherwise we could miss invalidations.
	 */
	mutex_lock(&arm_smmu_asid_lock);

	/*
	 * If the CD table is not in use we can use the provided STE, otherwise
	 * we use a cdtable STE with the provided S1DSS.
	 */
	if (arm_smmu_ssids_in_use(&master->cd_table)) {
		/*
		 * If a CD table has to be present then we need to run with ATS
		 * on even though the RID will fail ATS queries with UR. This is
		 * because we have no idea what the PASID's need.
		 */
		state.cd_needs_ats = true;
		arm_smmu_attach_prepare(&state, domain);
		arm_smmu_make_cdtable_ste(ste, master, state.ats_enabled, s1dss);
	} else {
		arm_smmu_attach_prepare(&state, domain);
	}
	arm_smmu_install_ste_for_dev(master, ste);
	arm_smmu_attach_commit(&state);
	mutex_unlock(&arm_smmu_asid_lock);

	/*
	 * This has to be done after removing the master from the
	 * arm_smmu_domain->devices to avoid races updating the same context
	 * descriptor from arm_smmu_share_asid().
	 */
	arm_smmu_clear_cd(master, IOMMU_NO_PASID);
}

static int arm_smmu_attach_dev_identity(struct iommu_domain *domain,
					struct device *dev)
{
	struct arm_smmu_ste ste;
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	arm_smmu_make_bypass_ste(master->smmu, &ste);
	arm_smmu_attach_dev_ste(domain, dev, &ste, STRTAB_STE_1_S1DSS_BYPASS);
	return 0;
}

static const struct iommu_domain_ops arm_smmu_identity_ops = {
	.attach_dev = arm_smmu_attach_dev_identity,
};

static struct iommu_domain arm_smmu_identity_domain = {
	.type = IOMMU_DOMAIN_IDENTITY,
	.ops = &arm_smmu_identity_ops,
};

static int arm_smmu_attach_dev_blocked(struct iommu_domain *domain,
					struct device *dev)
{
	struct arm_smmu_ste ste;

	arm_smmu_make_abort_ste(&ste);
	arm_smmu_attach_dev_ste(domain, dev, &ste,
				STRTAB_STE_1_S1DSS_TERMINATE);
	return 0;
}

static const struct iommu_domain_ops arm_smmu_blocked_ops = {
	.attach_dev = arm_smmu_attach_dev_blocked,
};

static struct iommu_domain arm_smmu_blocked_domain = {
	.type = IOMMU_DOMAIN_BLOCKED,
	.ops = &arm_smmu_blocked_ops,
};

static struct iommu_domain *
arm_smmu_domain_alloc_user(struct device *dev, u32 flags,
			   struct iommu_domain *parent,
			   const struct iommu_user_data *user_data)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);
	const u32 PAGING_FLAGS = IOMMU_HWPT_ALLOC_DIRTY_TRACKING;
	struct arm_smmu_domain *smmu_domain;
	int ret;

	if (flags & ~PAGING_FLAGS)
		return ERR_PTR(-EOPNOTSUPP);
	if (parent || user_data)
		return ERR_PTR(-EOPNOTSUPP);

	smmu_domain = arm_smmu_domain_alloc();
	if (!smmu_domain)
		return ERR_PTR(-ENOMEM);

	smmu_domain->domain.type = IOMMU_DOMAIN_UNMANAGED;
	smmu_domain->domain.ops = arm_smmu_ops.default_domain_ops;
	ret = arm_smmu_domain_finalise(smmu_domain, master->smmu, flags);
	if (ret)
		goto err_free;
	return &smmu_domain->domain;

err_free:
	kfree(smmu_domain);
	return ERR_PTR(ret);
}

static int arm_smmu_map_pages(struct iommu_domain *domain, unsigned long iova,
			      phys_addr_t paddr, size_t pgsize, size_t pgcount,
			      int prot, gfp_t gfp, size_t *mapped)
{
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;

	if (!ops)
		return -ENODEV;

	return ops->map_pages(ops, iova, paddr, pgsize, pgcount, prot, gfp, mapped);
}

static size_t arm_smmu_unmap_pages(struct iommu_domain *domain, unsigned long iova,
				   size_t pgsize, size_t pgcount,
				   struct iommu_iotlb_gather *gather)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;

	if (!ops)
		return 0;

	return ops->unmap_pages(ops, iova, pgsize, pgcount, gather);
}

static void arm_smmu_flush_iotlb_all(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (smmu_domain->smmu)
		arm_smmu_tlb_inv_context(smmu_domain);
}

static void arm_smmu_iotlb_sync(struct iommu_domain *domain,
				struct iommu_iotlb_gather *gather)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);

	if (!gather->pgsize)
		return;

	arm_smmu_tlb_inv_range_domain(gather->start,
				      gather->end - gather->start + 1,
				      gather->pgsize, true, smmu_domain);
}

static phys_addr_t
arm_smmu_iova_to_phys(struct iommu_domain *domain, dma_addr_t iova)
{
	struct io_pgtable_ops *ops = to_smmu_domain(domain)->pgtbl_ops;

	if (!ops)
		return 0;

	return ops->iova_to_phys(ops, iova);
}

static struct platform_driver arm_smmu_driver;

static
struct arm_smmu_device *arm_smmu_get_by_fwnode(struct fwnode_handle *fwnode)
{
	struct device *dev = driver_find_device_by_fwnode(&arm_smmu_driver.driver,
							  fwnode);
	put_device(dev);
	return dev ? dev_get_drvdata(dev) : NULL;
}

static bool arm_smmu_sid_in_range(struct arm_smmu_device *smmu, u32 sid)
{
	unsigned long limit = smmu->strtab_cfg.num_l1_ents;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		limit *= 1UL << STRTAB_SPLIT;

	return sid < limit;
}

static int arm_smmu_init_sid_strtab(struct arm_smmu_device *smmu, u32 sid)
{
	/* Check the SIDs are in range of the SMMU and our stream table */
	if (!arm_smmu_sid_in_range(smmu, sid))
		return -ERANGE;

	/* Ensure l2 strtab is initialised */
	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		return arm_smmu_init_l2_strtab(smmu, sid);

	return 0;
}

static int arm_smmu_insert_master(struct arm_smmu_device *smmu,
				  struct arm_smmu_master *master)
{
	int i;
	int ret = 0;
	struct arm_smmu_stream *new_stream, *cur_stream;
	struct rb_node **new_node, *parent_node = NULL;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);

	master->streams = kcalloc(fwspec->num_ids, sizeof(*master->streams),
				  GFP_KERNEL);
	if (!master->streams)
		return -ENOMEM;
	master->num_streams = fwspec->num_ids;

	mutex_lock(&smmu->streams_mutex);
	for (i = 0; i < fwspec->num_ids; i++) {
		u32 sid = fwspec->ids[i];

		new_stream = &master->streams[i];
		new_stream->id = sid;
		new_stream->master = master;

		ret = arm_smmu_init_sid_strtab(smmu, sid);
		if (ret)
			break;

		/* Insert into SID tree */
		new_node = &(smmu->streams.rb_node);
		while (*new_node) {
			cur_stream = rb_entry(*new_node, struct arm_smmu_stream,
					      node);
			parent_node = *new_node;
			if (cur_stream->id > new_stream->id) {
				new_node = &((*new_node)->rb_left);
			} else if (cur_stream->id < new_stream->id) {
				new_node = &((*new_node)->rb_right);
			} else {
				dev_warn(master->dev,
					 "stream %u already in tree\n",
					 cur_stream->id);
				ret = -EINVAL;
				break;
			}
		}
		if (ret)
			break;

		rb_link_node(&new_stream->node, parent_node, new_node);
		rb_insert_color(&new_stream->node, &smmu->streams);
	}

	if (ret) {
		for (i--; i >= 0; i--)
			rb_erase(&master->streams[i].node, &smmu->streams);
		kfree(master->streams);
	}
	mutex_unlock(&smmu->streams_mutex);

	return ret;
}

static void arm_smmu_remove_master(struct arm_smmu_master *master)
{
	int i;
	struct arm_smmu_device *smmu = master->smmu;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(master->dev);

	if (!smmu || !master->streams)
		return;

	mutex_lock(&smmu->streams_mutex);
	for (i = 0; i < fwspec->num_ids; i++)
		rb_erase(&master->streams[i].node, &smmu->streams);
	mutex_unlock(&smmu->streams_mutex);

	kfree(master->streams);
}

static struct iommu_device *arm_smmu_probe_device(struct device *dev)
{
	int ret;
	struct arm_smmu_device *smmu;
	struct arm_smmu_master *master;
	struct iommu_fwspec *fwspec = dev_iommu_fwspec_get(dev);

	if (WARN_ON_ONCE(dev_iommu_priv_get(dev)))
		return ERR_PTR(-EBUSY);

	smmu = arm_smmu_get_by_fwnode(fwspec->iommu_fwnode);
	if (!smmu)
		return ERR_PTR(-ENODEV);

	master = kzalloc(sizeof(*master), GFP_KERNEL);
	if (!master)
		return ERR_PTR(-ENOMEM);

	master->dev = dev;
	master->smmu = smmu;
	dev_iommu_priv_set(dev, master);

	ret = arm_smmu_insert_master(smmu, master);
	if (ret)
		goto err_free_master;

	device_property_read_u32(dev, "pasid-num-bits", &master->ssid_bits);
	master->ssid_bits = min(smmu->ssid_bits, master->ssid_bits);

	/*
	 * Note that PASID must be enabled before, and disabled after ATS:
	 * PCI Express Base 4.0r1.0 - 10.5.1.3 ATS Control Register
	 *
	 *   Behavior is undefined if this bit is Set and the value of the PASID
	 *   Enable, Execute Requested Enable, or Privileged Mode Requested bits
	 *   are changed.
	 */
	arm_smmu_enable_pasid(master);

	if (!(smmu->features & ARM_SMMU_FEAT_2_LVL_CDTAB))
		master->ssid_bits = min_t(u8, master->ssid_bits,
					  CTXDESC_LINEAR_CDMAX);

	if ((smmu->features & ARM_SMMU_FEAT_STALLS &&
	     device_property_read_bool(dev, "dma-can-stall")) ||
	    smmu->features & ARM_SMMU_FEAT_STALL_FORCE)
		master->stall_enabled = true;

	return &smmu->iommu;

err_free_master:
	kfree(master);
	return ERR_PTR(ret);
}

static void arm_smmu_release_device(struct device *dev)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	if (WARN_ON(arm_smmu_master_sva_enabled(master)))
		iopf_queue_remove_device(master->smmu->evtq.iopf, dev);

	/* Put the STE back to what arm_smmu_init_strtab() sets */
	if (dev->iommu->require_direct)
		arm_smmu_attach_dev_identity(&arm_smmu_identity_domain, dev);
	else
		arm_smmu_attach_dev_blocked(&arm_smmu_blocked_domain, dev);

	arm_smmu_disable_pasid(master);
	arm_smmu_remove_master(master);
	if (master->cd_table.cdtab)
		arm_smmu_free_cd_tables(master);
	kfree(master);
}

static int arm_smmu_read_and_clear_dirty(struct iommu_domain *domain,
					 unsigned long iova, size_t size,
					 unsigned long flags,
					 struct iommu_dirty_bitmap *dirty)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	struct io_pgtable_ops *ops = smmu_domain->pgtbl_ops;

	return ops->read_and_clear_dirty(ops, iova, size, flags, dirty);
}

static int arm_smmu_set_dirty_tracking(struct iommu_domain *domain,
				       bool enabled)
{
	/*
	 * Always enabled and the dirty bitmap is cleared prior to
	 * set_dirty_tracking().
	 */
	return 0;
}

static struct iommu_group *arm_smmu_device_group(struct device *dev)
{
	struct iommu_group *group;

	/*
	 * We don't support devices sharing stream IDs other than PCI RID
	 * aliases, since the necessary ID-to-device lookup becomes rather
	 * impractical given a potential sparse 32-bit stream ID space.
	 */
	if (dev_is_pci(dev))
		group = pci_device_group(dev);
	else
		group = generic_device_group(dev);

	return group;
}

static int arm_smmu_enable_nesting(struct iommu_domain *domain)
{
	struct arm_smmu_domain *smmu_domain = to_smmu_domain(domain);
	int ret = 0;

	mutex_lock(&smmu_domain->init_mutex);
	if (smmu_domain->smmu)
		ret = -EPERM;
	else
		smmu_domain->stage = ARM_SMMU_DOMAIN_S2;
	mutex_unlock(&smmu_domain->init_mutex);

	return ret;
}

static int arm_smmu_of_xlate(struct device *dev,
			     const struct of_phandle_args *args)
{
	return iommu_fwspec_add_ids(dev, args->args, 1);
}

static void arm_smmu_get_resv_regions(struct device *dev,
				      struct list_head *head)
{
	struct iommu_resv_region *region;
	int prot = IOMMU_WRITE | IOMMU_NOEXEC | IOMMU_MMIO;

	region = iommu_alloc_resv_region(MSI_IOVA_BASE, MSI_IOVA_LENGTH,
					 prot, IOMMU_RESV_SW_MSI, GFP_KERNEL);
	if (!region)
		return;

	list_add_tail(&region->list, head);

	iommu_dma_get_resv_regions(dev, head);
}

static int arm_smmu_dev_enable_feature(struct device *dev,
				       enum iommu_dev_features feat)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	if (!master)
		return -ENODEV;

	switch (feat) {
	case IOMMU_DEV_FEAT_IOPF:
		if (!arm_smmu_master_iopf_supported(master))
			return -EINVAL;
		if (master->iopf_enabled)
			return -EBUSY;
		master->iopf_enabled = true;
		return 0;
	case IOMMU_DEV_FEAT_SVA:
		if (!arm_smmu_master_sva_supported(master))
			return -EINVAL;
		if (arm_smmu_master_sva_enabled(master))
			return -EBUSY;
		return arm_smmu_master_enable_sva(master);
	default:
		return -EINVAL;
	}
}

static int arm_smmu_dev_disable_feature(struct device *dev,
					enum iommu_dev_features feat)
{
	struct arm_smmu_master *master = dev_iommu_priv_get(dev);

	if (!master)
		return -EINVAL;

	switch (feat) {
	case IOMMU_DEV_FEAT_IOPF:
		if (!master->iopf_enabled)
			return -EINVAL;
		if (master->sva_enabled)
			return -EBUSY;
		master->iopf_enabled = false;
		return 0;
	case IOMMU_DEV_FEAT_SVA:
		if (!arm_smmu_master_sva_enabled(master))
			return -EINVAL;
		return arm_smmu_master_disable_sva(master);
	default:
		return -EINVAL;
	}
}

/*
 * HiSilicon PCIe tune and trace device can be used to trace TLP headers on the
 * PCIe link and save the data to memory by DMA. The hardware is restricted to
 * use identity mapping only.
 */
#define IS_HISI_PTT_DEVICE(pdev)	((pdev)->vendor == PCI_VENDOR_ID_HUAWEI && \
					 (pdev)->device == 0xa12e)

static int arm_smmu_def_domain_type(struct device *dev)
{
	if (dev_is_pci(dev)) {
		struct pci_dev *pdev = to_pci_dev(dev);

		if (IS_HISI_PTT_DEVICE(pdev))
			return IOMMU_DOMAIN_IDENTITY;
	}

	return 0;
}

static struct iommu_ops arm_smmu_ops = {
	.identity_domain	= &arm_smmu_identity_domain,
	.blocked_domain		= &arm_smmu_blocked_domain,
	.capable		= arm_smmu_capable,
	.domain_alloc_paging    = arm_smmu_domain_alloc_paging,
	.domain_alloc_sva       = arm_smmu_sva_domain_alloc,
	.domain_alloc_user	= arm_smmu_domain_alloc_user,
	.probe_device		= arm_smmu_probe_device,
	.release_device		= arm_smmu_release_device,
	.device_group		= arm_smmu_device_group,
	.of_xlate		= arm_smmu_of_xlate,
	.get_resv_regions	= arm_smmu_get_resv_regions,
	.remove_dev_pasid	= arm_smmu_remove_dev_pasid,
	.dev_enable_feat	= arm_smmu_dev_enable_feature,
	.dev_disable_feat	= arm_smmu_dev_disable_feature,
	.page_response		= arm_smmu_page_response,
	.def_domain_type	= arm_smmu_def_domain_type,
	.pgsize_bitmap		= -1UL, /* Restricted during device attach */
	.owner			= THIS_MODULE,
	.default_domain_ops = &(const struct iommu_domain_ops) {
		.attach_dev		= arm_smmu_attach_dev,
		.set_dev_pasid		= arm_smmu_s1_set_dev_pasid,
		.map_pages		= arm_smmu_map_pages,
		.unmap_pages		= arm_smmu_unmap_pages,
		.flush_iotlb_all	= arm_smmu_flush_iotlb_all,
		.iotlb_sync		= arm_smmu_iotlb_sync,
		.iova_to_phys		= arm_smmu_iova_to_phys,
		.enable_nesting		= arm_smmu_enable_nesting,
		.free			= arm_smmu_domain_free_paging,
	}
};

static struct iommu_dirty_ops arm_smmu_dirty_ops = {
	.read_and_clear_dirty	= arm_smmu_read_and_clear_dirty,
	.set_dirty_tracking     = arm_smmu_set_dirty_tracking,
};

/* Probing and initialisation functions */
static int arm_smmu_init_one_queue(struct arm_smmu_device *smmu,
				   struct arm_smmu_queue *q,
				   void __iomem *page,
				   unsigned long prod_off,
				   unsigned long cons_off,
				   size_t dwords, const char *name)
{
	size_t qsz;

	do {
		qsz = ((1 << q->llq.max_n_shift) * dwords) << 3;
		q->base = dmam_alloc_coherent(smmu->dev, qsz, &q->base_dma,
					      GFP_KERNEL);
		if (q->base || qsz < PAGE_SIZE)
			break;

		q->llq.max_n_shift--;
	} while (1);

	if (!q->base) {
		dev_err(smmu->dev,
			"failed to allocate queue (0x%zx bytes) for %s\n",
			qsz, name);
		return -ENOMEM;
	}

	if (!WARN_ON(q->base_dma & (qsz - 1))) {
		dev_info(smmu->dev, "allocated %u entries for %s\n",
			 1 << q->llq.max_n_shift, name);
	}

	q->prod_reg	= page + prod_off;
	q->cons_reg	= page + cons_off;
	q->ent_dwords	= dwords;

	q->q_base  = Q_BASE_RWA;
	q->q_base |= q->base_dma & Q_BASE_ADDR_MASK;
	q->q_base |= FIELD_PREP(Q_BASE_LOG2SIZE, q->llq.max_n_shift);

	q->llq.prod = q->llq.cons = 0;
	return 0;
}

static int arm_smmu_cmdq_init(struct arm_smmu_device *smmu)
{
	struct arm_smmu_cmdq *cmdq = &smmu->cmdq;
	unsigned int nents = 1 << cmdq->q.llq.max_n_shift;

	atomic_set(&cmdq->owner_prod, 0);
	atomic_set(&cmdq->lock, 0);

	cmdq->valid_map = (atomic_long_t *)devm_bitmap_zalloc(smmu->dev, nents,
							      GFP_KERNEL);
	if (!cmdq->valid_map)
		return -ENOMEM;

	return 0;
}

static int arm_smmu_init_queues(struct arm_smmu_device *smmu)
{
	int ret;

	/* cmdq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->cmdq.q, smmu->base,
				      ARM_SMMU_CMDQ_PROD, ARM_SMMU_CMDQ_CONS,
				      CMDQ_ENT_DWORDS, "cmdq");
	if (ret)
		return ret;

	ret = arm_smmu_cmdq_init(smmu);
	if (ret)
		return ret;

	/* evtq */
	ret = arm_smmu_init_one_queue(smmu, &smmu->evtq.q, smmu->page1,
				      ARM_SMMU_EVTQ_PROD, ARM_SMMU_EVTQ_CONS,
				      EVTQ_ENT_DWORDS, "evtq");
	if (ret)
		return ret;

	if ((smmu->features & ARM_SMMU_FEAT_SVA) &&
	    (smmu->features & ARM_SMMU_FEAT_STALLS)) {
		smmu->evtq.iopf = iopf_queue_alloc(dev_name(smmu->dev));
		if (!smmu->evtq.iopf)
			return -ENOMEM;
	}

	/* priq */
	if (!(smmu->features & ARM_SMMU_FEAT_PRI))
		return 0;

	return arm_smmu_init_one_queue(smmu, &smmu->priq.q, smmu->page1,
				       ARM_SMMU_PRIQ_PROD, ARM_SMMU_PRIQ_CONS,
				       PRIQ_ENT_DWORDS, "priq");
}

static int arm_smmu_init_strtab_2lvl(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size, l1size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	/* Calculate the L1 size, capped to the SIDSIZE. */
	size = STRTAB_L1_SZ_SHIFT - (ilog2(STRTAB_L1_DESC_DWORDS) + 3);
	size = min(size, smmu->sid_bits - STRTAB_SPLIT);
	cfg->num_l1_ents = 1 << size;

	size += STRTAB_SPLIT;
	if (size < smmu->sid_bits)
		dev_warn(smmu->dev,
			 "2-level strtab only covers %u/%u bits of SID\n",
			 size, smmu->sid_bits);

	l1size = cfg->num_l1_ents * (STRTAB_L1_DESC_DWORDS << 3);
	strtab = dmam_alloc_coherent(smmu->dev, l1size, &cfg->strtab_dma,
				     GFP_KERNEL);
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate l1 stream table (%u bytes)\n",
			l1size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;

	/* Configure strtab_base_cfg for 2 levels */
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_2LVL);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, size);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_SPLIT, STRTAB_SPLIT);
	cfg->strtab_base_cfg = reg;

	cfg->l1_desc = devm_kcalloc(smmu->dev, cfg->num_l1_ents,
				    sizeof(*cfg->l1_desc), GFP_KERNEL);
	if (!cfg->l1_desc)
		return -ENOMEM;

	return 0;
}

static int arm_smmu_init_strtab_linear(struct arm_smmu_device *smmu)
{
	void *strtab;
	u64 reg;
	u32 size;
	struct arm_smmu_strtab_cfg *cfg = &smmu->strtab_cfg;

	size = (1 << smmu->sid_bits) * (STRTAB_STE_DWORDS << 3);
	strtab = dmam_alloc_coherent(smmu->dev, size, &cfg->strtab_dma,
				     GFP_KERNEL);
	if (!strtab) {
		dev_err(smmu->dev,
			"failed to allocate linear stream table (%u bytes)\n",
			size);
		return -ENOMEM;
	}
	cfg->strtab = strtab;
	cfg->num_l1_ents = 1 << smmu->sid_bits;

	/* Configure strtab_base_cfg for a linear table covering all SIDs */
	reg  = FIELD_PREP(STRTAB_BASE_CFG_FMT, STRTAB_BASE_CFG_FMT_LINEAR);
	reg |= FIELD_PREP(STRTAB_BASE_CFG_LOG2SIZE, smmu->sid_bits);
	cfg->strtab_base_cfg = reg;

	arm_smmu_init_initial_stes(strtab, cfg->num_l1_ents);
	return 0;
}

static int arm_smmu_init_strtab(struct arm_smmu_device *smmu)
{
	u64 reg;
	int ret;

	if (smmu->features & ARM_SMMU_FEAT_2_LVL_STRTAB)
		ret = arm_smmu_init_strtab_2lvl(smmu);
	else
		ret = arm_smmu_init_strtab_linear(smmu);

	if (ret)
		return ret;

	/* Set the strtab base address */
	reg  = smmu->strtab_cfg.strtab_dma & STRTAB_BASE_ADDR_MASK;
	reg |= STRTAB_BASE_RA;
	smmu->strtab_cfg.strtab_base = reg;

	ida_init(&smmu->vmid_map);

	return 0;
}

static int arm_smmu_init_structures(struct arm_smmu_device *smmu)
{
	int ret;

	mutex_init(&smmu->streams_mutex);
	smmu->streams = RB_ROOT;

	ret = arm_smmu_init_queues(smmu);
	if (ret)
		return ret;

	return arm_smmu_init_strtab(smmu);
}

static int arm_smmu_write_reg_sync(struct arm_smmu_device *smmu, u32 val,
				   unsigned int reg_off, unsigned int ack_off)
{
	u32 reg;

	writel_relaxed(val, smmu->base + reg_off);
	return readl_relaxed_poll_timeout(smmu->base + ack_off, reg, reg == val,
					  1, ARM_SMMU_POLL_TIMEOUT_US);
}

/* GBPA is "special" */
static int arm_smmu_update_gbpa(struct arm_smmu_device *smmu, u32 set, u32 clr)
{
	int ret;
	u32 reg, __iomem *gbpa = smmu->base + ARM_SMMU_GBPA;

	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);
	if (ret)
		return ret;

	reg &= ~clr;
	reg |= set;
	writel_relaxed(reg | GBPA_UPDATE, gbpa);
	ret = readl_relaxed_poll_timeout(gbpa, reg, !(reg & GBPA_UPDATE),
					 1, ARM_SMMU_POLL_TIMEOUT_US);

	if (ret)
		dev_err(smmu->dev, "GBPA not responding to update\n");
	return ret;
}

static void arm_smmu_free_msis(void *data)
{
	struct device *dev = data;

	platform_device_msi_free_irqs_all(dev);
}

static void arm_smmu_write_msi_msg(struct msi_desc *desc, struct msi_msg *msg)
{
	phys_addr_t doorbell;
	struct device *dev = msi_desc_to_dev(desc);
	struct arm_smmu_device *smmu = dev_get_drvdata(dev);
	phys_addr_t *cfg = arm_smmu_msi_cfg[desc->msi_index];

	doorbell = (((u64)msg->address_hi) << 32) | msg->address_lo;
	doorbell &= MSI_CFG0_ADDR_MASK;

	writeq_relaxed(doorbell, smmu->base + cfg[0]);
	writel_relaxed(msg->data, smmu->base + cfg[1]);
	writel_relaxed(ARM_SMMU_MEMATTR_DEVICE_nGnRE, smmu->base + cfg[2]);
}

static void arm_smmu_setup_msis(struct arm_smmu_device *smmu)
{
	int ret, nvec = ARM_SMMU_MAX_MSIS;
	struct device *dev = smmu->dev;

	/* Clear the MSI address regs */
	writeq_relaxed(0, smmu->base + ARM_SMMU_GERROR_IRQ_CFG0);
	writeq_relaxed(0, smmu->base + ARM_SMMU_EVTQ_IRQ_CFG0);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		writeq_relaxed(0, smmu->base + ARM_SMMU_PRIQ_IRQ_CFG0);
	else
		nvec--;

	if (!(smmu->features & ARM_SMMU_FEAT_MSI))
		return;

	if (!dev->msi.domain) {
		dev_info(smmu->dev, "msi_domain absent - falling back to wired irqs\n");
		return;
	}

	/* Allocate MSIs for evtq, gerror and priq. Ignore cmdq */
	ret = platform_device_msi_init_and_alloc_irqs(dev, nvec, arm_smmu_write_msi_msg);
	if (ret) {
		dev_warn(dev, "failed to allocate MSIs - falling back to wired irqs\n");
		return;
	}

	smmu->evtq.q.irq = msi_get_virq(dev, EVTQ_MSI_INDEX);
	smmu->gerr_irq = msi_get_virq(dev, GERROR_MSI_INDEX);
	smmu->priq.q.irq = msi_get_virq(dev, PRIQ_MSI_INDEX);

	/* Add callback to free MSIs on teardown */
	devm_add_action_or_reset(dev, arm_smmu_free_msis, dev);
}

static void arm_smmu_setup_unique_irqs(struct arm_smmu_device *smmu)
{
	int irq, ret;

	arm_smmu_setup_msis(smmu);

	/* Request interrupt lines */
	irq = smmu->evtq.q.irq;
	if (irq) {
		ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
						arm_smmu_evtq_thread,
						IRQF_ONESHOT,
						"arm-smmu-v3-evtq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable evtq irq\n");
	} else {
		dev_warn(smmu->dev, "no evtq irq - events will not be reported!\n");
	}

	irq = smmu->gerr_irq;
	if (irq) {
		ret = devm_request_irq(smmu->dev, irq, arm_smmu_gerror_handler,
				       0, "arm-smmu-v3-gerror", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable gerror irq\n");
	} else {
		dev_warn(smmu->dev, "no gerr irq - errors will not be reported!\n");
	}

	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		irq = smmu->priq.q.irq;
		if (irq) {
			ret = devm_request_threaded_irq(smmu->dev, irq, NULL,
							arm_smmu_priq_thread,
							IRQF_ONESHOT,
							"arm-smmu-v3-priq",
							smmu);
			if (ret < 0)
				dev_warn(smmu->dev,
					 "failed to enable priq irq\n");
		} else {
			dev_warn(smmu->dev, "no priq irq - PRI will be broken\n");
		}
	}
}

static int arm_smmu_setup_irqs(struct arm_smmu_device *smmu)
{
	int ret, irq;
	u32 irqen_flags = IRQ_CTRL_EVTQ_IRQEN | IRQ_CTRL_GERROR_IRQEN;

	/* Disable IRQs first */
	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_IRQ_CTRL,
				      ARM_SMMU_IRQ_CTRLACK);
	if (ret) {
		dev_err(smmu->dev, "failed to disable irqs\n");
		return ret;
	}

	irq = smmu->combined_irq;
	if (irq) {
		/*
		 * Cavium ThunderX2 implementation doesn't support unique irq
		 * lines. Use a single irq line for all the SMMUv3 interrupts.
		 */
		ret = devm_request_threaded_irq(smmu->dev, irq,
					arm_smmu_combined_irq_handler,
					arm_smmu_combined_irq_thread,
					IRQF_ONESHOT,
					"arm-smmu-v3-combined-irq", smmu);
		if (ret < 0)
			dev_warn(smmu->dev, "failed to enable combined irq\n");
	} else
		arm_smmu_setup_unique_irqs(smmu);

	if (smmu->features & ARM_SMMU_FEAT_PRI)
		irqen_flags |= IRQ_CTRL_PRIQ_IRQEN;

	/* Enable interrupt generation on the SMMU */
	ret = arm_smmu_write_reg_sync(smmu, irqen_flags,
				      ARM_SMMU_IRQ_CTRL, ARM_SMMU_IRQ_CTRLACK);
	if (ret)
		dev_warn(smmu->dev, "failed to enable irqs\n");

	return 0;
}

static int arm_smmu_device_disable(struct arm_smmu_device *smmu)
{
	int ret;

	ret = arm_smmu_write_reg_sync(smmu, 0, ARM_SMMU_CR0, ARM_SMMU_CR0ACK);
	if (ret)
		dev_err(smmu->dev, "failed to clear cr0\n");

	return ret;
}

static int arm_smmu_device_reset(struct arm_smmu_device *smmu)
{
	int ret;
	u32 reg, enables;
	struct arm_smmu_cmdq_ent cmd;

	/* Clear CR0 and sync (disables SMMU and queue processing) */
	reg = readl_relaxed(smmu->base + ARM_SMMU_CR0);
	if (reg & CR0_SMMUEN) {
		dev_warn(smmu->dev, "SMMU currently enabled! Resetting...\n");
		arm_smmu_update_gbpa(smmu, GBPA_ABORT, 0);
	}

	ret = arm_smmu_device_disable(smmu);
	if (ret)
		return ret;

	/* CR1 (table and queue memory attributes) */
	reg = FIELD_PREP(CR1_TABLE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_TABLE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_TABLE_IC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_SH, ARM_SMMU_SH_ISH) |
	      FIELD_PREP(CR1_QUEUE_OC, CR1_CACHE_WB) |
	      FIELD_PREP(CR1_QUEUE_IC, CR1_CACHE_WB);
	writel_relaxed(reg, smmu->base + ARM_SMMU_CR1);

	/* CR2 (random crap) */
	reg = CR2_PTM | CR2_RECINVSID;

	if (smmu->features & ARM_SMMU_FEAT_E2H)
		reg |= CR2_E2H;

	writel_relaxed(reg, smmu->base + ARM_SMMU_CR2);

	/* Stream table */
	writeq_relaxed(smmu->strtab_cfg.strtab_base,
		       smmu->base + ARM_SMMU_STRTAB_BASE);
	writel_relaxed(smmu->strtab_cfg.strtab_base_cfg,
		       smmu->base + ARM_SMMU_STRTAB_BASE_CFG);

	/* Command queue */
	writeq_relaxed(smmu->cmdq.q.q_base, smmu->base + ARM_SMMU_CMDQ_BASE);
	writel_relaxed(smmu->cmdq.q.llq.prod, smmu->base + ARM_SMMU_CMDQ_PROD);
	writel_relaxed(smmu->cmdq.q.llq.cons, smmu->base + ARM_SMMU_CMDQ_CONS);

	enables = CR0_CMDQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable command queue\n");
		return ret;
	}

	/* Invalidate any cached configuration */
	cmd.opcode = CMDQ_OP_CFGI_ALL;
	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);

	/* Invalidate any stale TLB entries */
	if (smmu->features & ARM_SMMU_FEAT_HYP) {
		cmd.opcode = CMDQ_OP_TLBI_EL2_ALL;
		arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);
	}

	cmd.opcode = CMDQ_OP_TLBI_NSNH_ALL;
	arm_smmu_cmdq_issue_cmd_with_sync(smmu, &cmd);

	/* Event queue */
	writeq_relaxed(smmu->evtq.q.q_base, smmu->base + ARM_SMMU_EVTQ_BASE);
	writel_relaxed(smmu->evtq.q.llq.prod, smmu->page1 + ARM_SMMU_EVTQ_PROD);
	writel_relaxed(smmu->evtq.q.llq.cons, smmu->page1 + ARM_SMMU_EVTQ_CONS);

	enables |= CR0_EVTQEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable event queue\n");
		return ret;
	}

	/* PRI queue */
	if (smmu->features & ARM_SMMU_FEAT_PRI) {
		writeq_relaxed(smmu->priq.q.q_base,
			       smmu->base + ARM_SMMU_PRIQ_BASE);
		writel_relaxed(smmu->priq.q.llq.prod,
			       smmu->page1 + ARM_SMMU_PRIQ_PROD);
		writel_relaxed(smmu->priq.q.llq.cons,
			       smmu->page1 + ARM_SMMU_PRIQ_CONS);

		enables |= CR0_PRIQEN;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable PRI queue\n");
			return ret;
		}
	}

	if (smmu->features & ARM_SMMU_FEAT_ATS) {
		enables |= CR0_ATSCHK;
		ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
					      ARM_SMMU_CR0ACK);
		if (ret) {
			dev_err(smmu->dev, "failed to enable ATS check\n");
			return ret;
		}
	}

	ret = arm_smmu_setup_irqs(smmu);
	if (ret) {
		dev_err(smmu->dev, "failed to setup irqs\n");
		return ret;
	}

	if (is_kdump_kernel())
		enables &= ~(CR0_EVTQEN | CR0_PRIQEN);

	/* Enable the SMMU interface */
	enables |= CR0_SMMUEN;
	ret = arm_smmu_write_reg_sync(smmu, enables, ARM_SMMU_CR0,
				      ARM_SMMU_CR0ACK);
	if (ret) {
		dev_err(smmu->dev, "failed to enable SMMU interface\n");
		return ret;
	}

	return 0;
}

#define IIDR_IMPLEMENTER_ARM		0x43b
#define IIDR_PRODUCTID_ARM_MMU_600	0x483
#define IIDR_PRODUCTID_ARM_MMU_700	0x487

static void arm_smmu_device_iidr_probe(struct arm_smmu_device *smmu)
{
	u32 reg;
	unsigned int implementer, productid, variant, revision;

	reg = readl_relaxed(smmu->base + ARM_SMMU_IIDR);
	implementer = FIELD_GET(IIDR_IMPLEMENTER, reg);
	productid = FIELD_GET(IIDR_PRODUCTID, reg);
	variant = FIELD_GET(IIDR_VARIANT, reg);
	revision = FIELD_GET(IIDR_REVISION, reg);

	switch (implementer) {
	case IIDR_IMPLEMENTER_ARM:
		switch (productid) {
		case IIDR_PRODUCTID_ARM_MMU_600:
			/* Arm erratum 1076982 */
			if (variant == 0 && revision <= 2)
				smmu->features &= ~ARM_SMMU_FEAT_SEV;
			/* Arm erratum 1209401 */
			if (variant < 2)
				smmu->features &= ~ARM_SMMU_FEAT_NESTING;
			break;
		case IIDR_PRODUCTID_ARM_MMU_700:
			/* Arm erratum 2812531 */
			smmu->features &= ~ARM_SMMU_FEAT_BTM;
			smmu->options |= ARM_SMMU_OPT_CMDQ_FORCE_SYNC;
			/* Arm errata 2268618, 2812531 */
			smmu->features &= ~ARM_SMMU_FEAT_NESTING;
			break;
		}
		break;
	}
}

static void arm_smmu_get_httu(struct arm_smmu_device *smmu, u32 reg)
{
	u32 fw_features = smmu->features & (ARM_SMMU_FEAT_HA | ARM_SMMU_FEAT_HD);
	u32 hw_features = 0;

	switch (FIELD_GET(IDR0_HTTU, reg)) {
	case IDR0_HTTU_ACCESS_DIRTY:
		hw_features |= ARM_SMMU_FEAT_HD;
		fallthrough;
	case IDR0_HTTU_ACCESS:
		hw_features |= ARM_SMMU_FEAT_HA;
	}

	if (smmu->dev->of_node)
		smmu->features |= hw_features;
	else if (hw_features != fw_features)
		/* ACPI IORT sets the HTTU bits */
		dev_warn(smmu->dev,
			 "IDR0.HTTU features(0x%x) overridden by FW configuration (0x%x)\n",
			  hw_features, fw_features);
}

static int arm_smmu_device_hw_probe(struct arm_smmu_device *smmu)
{
	u32 reg;
	bool coherent = smmu->features & ARM_SMMU_FEAT_COHERENCY;

	/* IDR0 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR0);

	/* 2-level structures */
	if (FIELD_GET(IDR0_ST_LVL, reg) == IDR0_ST_LVL_2LVL)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_STRTAB;

	if (reg & IDR0_CD2L)
		smmu->features |= ARM_SMMU_FEAT_2_LVL_CDTAB;

	/*
	 * Translation table endianness.
	 * We currently require the same endianness as the CPU, but this
	 * could be changed later by adding a new IO_PGTABLE_QUIRK.
	 */
	switch (FIELD_GET(IDR0_TTENDIAN, reg)) {
	case IDR0_TTENDIAN_MIXED:
		smmu->features |= ARM_SMMU_FEAT_TT_LE | ARM_SMMU_FEAT_TT_BE;
		break;
#ifdef __BIG_ENDIAN
	case IDR0_TTENDIAN_BE:
		smmu->features |= ARM_SMMU_FEAT_TT_BE;
		break;
#else
	case IDR0_TTENDIAN_LE:
		smmu->features |= ARM_SMMU_FEAT_TT_LE;
		break;
#endif
	default:
		dev_err(smmu->dev, "unknown/unsupported TT endianness!\n");
		return -ENXIO;
	}

	/* Boolean feature flags */
	if (IS_ENABLED(CONFIG_PCI_PRI) && reg & IDR0_PRI)
		smmu->features |= ARM_SMMU_FEAT_PRI;

	if (IS_ENABLED(CONFIG_PCI_ATS) && reg & IDR0_ATS)
		smmu->features |= ARM_SMMU_FEAT_ATS;

	if (reg & IDR0_SEV)
		smmu->features |= ARM_SMMU_FEAT_SEV;

	if (reg & IDR0_MSI) {
		smmu->features |= ARM_SMMU_FEAT_MSI;
		if (coherent && !disable_msipolling)
			smmu->options |= ARM_SMMU_OPT_MSIPOLL;
	}

	if (reg & IDR0_HYP) {
		smmu->features |= ARM_SMMU_FEAT_HYP;
		if (cpus_have_cap(ARM64_HAS_VIRT_HOST_EXTN))
			smmu->features |= ARM_SMMU_FEAT_E2H;
	}

	arm_smmu_get_httu(smmu, reg);

	/*
	 * The coherency feature as set by FW is used in preference to the ID
	 * register, but warn on mismatch.
	 */
	if (!!(reg & IDR0_COHACC) != coherent)
		dev_warn(smmu->dev, "IDR0.COHACC overridden by FW configuration (%s)\n",
			 coherent ? "true" : "false");

	switch (FIELD_GET(IDR0_STALL_MODEL, reg)) {
	case IDR0_STALL_MODEL_FORCE:
		smmu->features |= ARM_SMMU_FEAT_STALL_FORCE;
		fallthrough;
	case IDR0_STALL_MODEL_STALL:
		smmu->features |= ARM_SMMU_FEAT_STALLS;
	}

	if (reg & IDR0_S1P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S1;

	if (reg & IDR0_S2P)
		smmu->features |= ARM_SMMU_FEAT_TRANS_S2;

	if (!(reg & (IDR0_S1P | IDR0_S2P))) {
		dev_err(smmu->dev, "no translation support!\n");
		return -ENXIO;
	}

	/* We only support the AArch64 table format at present */
	switch (FIELD_GET(IDR0_TTF, reg)) {
	case IDR0_TTF_AARCH32_64:
		smmu->ias = 40;
		fallthrough;
	case IDR0_TTF_AARCH64:
		break;
	default:
		dev_err(smmu->dev, "AArch64 table format not supported!\n");
		return -ENXIO;
	}

	/* ASID/VMID sizes */
	smmu->asid_bits = reg & IDR0_ASID16 ? 16 : 8;
	smmu->vmid_bits = reg & IDR0_VMID16 ? 16 : 8;

	/* IDR1 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR1);
	if (reg & (IDR1_TABLES_PRESET | IDR1_QUEUES_PRESET | IDR1_REL)) {
		dev_err(smmu->dev, "embedded implementation not supported\n");
		return -ENXIO;
	}

	if (reg & IDR1_ATTR_TYPES_OVR)
		smmu->features |= ARM_SMMU_FEAT_ATTR_TYPES_OVR;

	/* Queue sizes, capped to ensure natural alignment */
	smmu->cmdq.q.llq.max_n_shift = min_t(u32, CMDQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_CMDQS, reg));
	if (smmu->cmdq.q.llq.max_n_shift <= ilog2(CMDQ_BATCH_ENTRIES)) {
		/*
		 * We don't support splitting up batches, so one batch of
		 * commands plus an extra sync needs to fit inside the command
		 * queue. There's also no way we can handle the weird alignment
		 * restrictions on the base pointer for a unit-length queue.
		 */
		dev_err(smmu->dev, "command queue size <= %d entries not supported\n",
			CMDQ_BATCH_ENTRIES);
		return -ENXIO;
	}

	smmu->evtq.q.llq.max_n_shift = min_t(u32, EVTQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_EVTQS, reg));
	smmu->priq.q.llq.max_n_shift = min_t(u32, PRIQ_MAX_SZ_SHIFT,
					     FIELD_GET(IDR1_PRIQS, reg));

	/* SID/SSID sizes */
	smmu->ssid_bits = FIELD_GET(IDR1_SSIDSIZE, reg);
	smmu->sid_bits = FIELD_GET(IDR1_SIDSIZE, reg);
	smmu->iommu.max_pasids = 1UL << smmu->ssid_bits;

	/*
	 * If the SMMU supports fewer bits than would fill a single L2 stream
	 * table, use a linear table instead.
	 */
	if (smmu->sid_bits <= STRTAB_SPLIT)
		smmu->features &= ~ARM_SMMU_FEAT_2_LVL_STRTAB;

	/* IDR3 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR3);
	if (FIELD_GET(IDR3_RIL, reg))
		smmu->features |= ARM_SMMU_FEAT_RANGE_INV;

	/* IDR5 */
	reg = readl_relaxed(smmu->base + ARM_SMMU_IDR5);

	/* Maximum number of outstanding stalls */
	smmu->evtq.max_stalls = FIELD_GET(IDR5_STALL_MAX, reg);

	/* Page sizes */
	if (reg & IDR5_GRAN64K)
		smmu->pgsize_bitmap |= SZ_64K | SZ_512M;
	if (reg & IDR5_GRAN16K)
		smmu->pgsize_bitmap |= SZ_16K | SZ_32M;
	if (reg & IDR5_GRAN4K)
		smmu->pgsize_bitmap |= SZ_4K | SZ_2M | SZ_1G;

	/* Input address size */
	if (FIELD_GET(IDR5_VAX, reg) == IDR5_VAX_52_BIT)
		smmu->features |= ARM_SMMU_FEAT_VAX;

	/* Output address size */
	switch (FIELD_GET(IDR5_OAS, reg)) {
	case IDR5_OAS_32_BIT:
		smmu->oas = 32;
		break;
	case IDR5_OAS_36_BIT:
		smmu->oas = 36;
		break;
	case IDR5_OAS_40_BIT:
		smmu->oas = 40;
		break;
	case IDR5_OAS_42_BIT:
		smmu->oas = 42;
		break;
	case IDR5_OAS_44_BIT:
		smmu->oas = 44;
		break;
	case IDR5_OAS_52_BIT:
		smmu->oas = 52;
		smmu->pgsize_bitmap |= 1ULL << 42; /* 4TB */
		break;
	default:
		dev_info(smmu->dev,
			"unknown output address size. Truncating to 48-bit\n");
		fallthrough;
	case IDR5_OAS_48_BIT:
		smmu->oas = 48;
	}

	if (arm_smmu_ops.pgsize_bitmap == -1UL)
		arm_smmu_ops.pgsize_bitmap = smmu->pgsize_bitmap;
	else
		arm_smmu_ops.pgsize_bitmap |= smmu->pgsize_bitmap;

	/* Set the DMA mask for our table walker */
	if (dma_set_mask_and_coherent(smmu->dev, DMA_BIT_MASK(smmu->oas)))
		dev_warn(smmu->dev,
			 "failed to set DMA mask for table walker\n");

	smmu->ias = max(smmu->ias, smmu->oas);

	if ((smmu->features & ARM_SMMU_FEAT_TRANS_S1) &&
	    (smmu->features & ARM_SMMU_FEAT_TRANS_S2))
		smmu->features |= ARM_SMMU_FEAT_NESTING;

	arm_smmu_device_iidr_probe(smmu);

	if (arm_smmu_sva_supported(smmu))
		smmu->features |= ARM_SMMU_FEAT_SVA;

	dev_info(smmu->dev, "ias %lu-bit, oas %lu-bit (features 0x%08x)\n",
		 smmu->ias, smmu->oas, smmu->features);
	return 0;
}

#ifdef CONFIG_ACPI
static void acpi_smmu_get_options(u32 model, struct arm_smmu_device *smmu)
{
	switch (model) {
	case ACPI_IORT_SMMU_V3_CAVIUM_CN99XX:
		smmu->options |= ARM_SMMU_OPT_PAGE0_REGS_ONLY;
		break;
	case ACPI_IORT_SMMU_V3_HISILICON_HI161X:
		smmu->options |= ARM_SMMU_OPT_SKIP_PREFETCH;
		break;
	}

	dev_notice(smmu->dev, "option mask 0x%x\n", smmu->options);
}

static int arm_smmu_device_acpi_probe(struct platform_device *pdev,
				      struct arm_smmu_device *smmu)
{
	struct acpi_iort_smmu_v3 *iort_smmu;
	struct device *dev = smmu->dev;
	struct acpi_iort_node *node;

	node = *(struct acpi_iort_node **)dev_get_platdata(dev);

	/* Retrieve SMMUv3 specific data */
	iort_smmu = (struct acpi_iort_smmu_v3 *)node->node_data;

	acpi_smmu_get_options(iort_smmu->model, smmu);

	if (iort_smmu->flags & ACPI_IORT_SMMU_V3_COHACC_OVERRIDE)
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	switch (FIELD_GET(ACPI_IORT_SMMU_V3_HTTU_OVERRIDE, iort_smmu->flags)) {
	case IDR0_HTTU_ACCESS_DIRTY:
		smmu->features |= ARM_SMMU_FEAT_HD;
		fallthrough;
	case IDR0_HTTU_ACCESS:
		smmu->features |= ARM_SMMU_FEAT_HA;
	}

	return 0;
}
#else
static inline int arm_smmu_device_acpi_probe(struct platform_device *pdev,
					     struct arm_smmu_device *smmu)
{
	return -ENODEV;
}
#endif

static int arm_smmu_device_dt_probe(struct platform_device *pdev,
				    struct arm_smmu_device *smmu)
{
	struct device *dev = &pdev->dev;
	u32 cells;
	int ret = -EINVAL;

	if (of_property_read_u32(dev->of_node, "#iommu-cells", &cells))
		dev_err(dev, "missing #iommu-cells property\n");
	else if (cells != 1)
		dev_err(dev, "invalid #iommu-cells value (%d)\n", cells);
	else
		ret = 0;

	parse_driver_options(smmu);

	if (of_dma_is_coherent(dev->of_node))
		smmu->features |= ARM_SMMU_FEAT_COHERENCY;

	return ret;
}

static unsigned long arm_smmu_resource_size(struct arm_smmu_device *smmu)
{
	if (smmu->options & ARM_SMMU_OPT_PAGE0_REGS_ONLY)
		return SZ_64K;
	else
		return SZ_128K;
}

static void __iomem *arm_smmu_ioremap(struct device *dev, resource_size_t start,
				      resource_size_t size)
{
	struct resource res = DEFINE_RES_MEM(start, size);

	return devm_ioremap_resource(dev, &res);
}

static void arm_smmu_rmr_install_bypass_ste(struct arm_smmu_device *smmu)
{
	struct list_head rmr_list;
	struct iommu_resv_region *e;

	INIT_LIST_HEAD(&rmr_list);
	iort_get_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);

	list_for_each_entry(e, &rmr_list, list) {
		struct iommu_iort_rmr_data *rmr;
		int ret, i;

		rmr = container_of(e, struct iommu_iort_rmr_data, rr);
		for (i = 0; i < rmr->num_sids; i++) {
			ret = arm_smmu_init_sid_strtab(smmu, rmr->sids[i]);
			if (ret) {
				dev_err(smmu->dev, "RMR SID(0x%x) bypass failed\n",
					rmr->sids[i]);
				continue;
			}

			/*
			 * STE table is not programmed to HW, see
			 * arm_smmu_initial_bypass_stes()
			 */
			arm_smmu_make_bypass_ste(smmu,
				arm_smmu_get_step_for_sid(smmu, rmr->sids[i]));
		}
	}

	iort_put_rmr_sids(dev_fwnode(smmu->dev), &rmr_list);
}

static int arm_smmu_device_probe(struct platform_device *pdev)
{
	int irq, ret;
	struct resource *res;
	resource_size_t ioaddr;
	struct arm_smmu_device *smmu;
	struct device *dev = &pdev->dev;

	smmu = devm_kzalloc(dev, sizeof(*smmu), GFP_KERNEL);
	if (!smmu)
		return -ENOMEM;
	smmu->dev = dev;

	if (dev->of_node) {
		ret = arm_smmu_device_dt_probe(pdev, smmu);
	} else {
		ret = arm_smmu_device_acpi_probe(pdev, smmu);
	}
	if (ret)
		return ret;

	/* Base address */
	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
	if (!res)
		return -EINVAL;
	if (resource_size(res) < arm_smmu_resource_size(smmu)) {
		dev_err(dev, "MMIO region too small (%pr)\n", res);
		return -EINVAL;
	}
	ioaddr = res->start;

	/*
	 * Don't map the IMPLEMENTATION DEFINED regions, since they may contain
	 * the PMCG registers which are reserved by the PMU driver.
	 */
	smmu->base = arm_smmu_ioremap(dev, ioaddr, ARM_SMMU_REG_SZ);
	if (IS_ERR(smmu->base))
		return PTR_ERR(smmu->base);

	if (arm_smmu_resource_size(smmu) > SZ_64K) {
		smmu->page1 = arm_smmu_ioremap(dev, ioaddr + SZ_64K,
					       ARM_SMMU_REG_SZ);
		if (IS_ERR(smmu->page1))
			return PTR_ERR(smmu->page1);
	} else {
		smmu->page1 = smmu->base;
	}

	/* Interrupt lines */

	irq = platform_get_irq_byname_optional(pdev, "combined");
	if (irq > 0)
		smmu->combined_irq = irq;
	else {
		irq = platform_get_irq_byname_optional(pdev, "eventq");
		if (irq > 0)
			smmu->evtq.q.irq = irq;

		irq = platform_get_irq_byname_optional(pdev, "priq");
		if (irq > 0)
			smmu->priq.q.irq = irq;

		irq = platform_get_irq_byname_optional(pdev, "gerror");
		if (irq > 0)
			smmu->gerr_irq = irq;
	}
	/* Probe the h/w */
	ret = arm_smmu_device_hw_probe(smmu);
	if (ret)
		return ret;

	/* Initialise in-memory data structures */
	ret = arm_smmu_init_structures(smmu);
	if (ret)
		return ret;

	/* Record our private device structure */
	platform_set_drvdata(pdev, smmu);

	/* Check for RMRs and install bypass STEs if any */
	arm_smmu_rmr_install_bypass_ste(smmu);

	/* Reset the device */
	ret = arm_smmu_device_reset(smmu);
	if (ret)
		return ret;

	/* And we're up. Go go go! */
	ret = iommu_device_sysfs_add(&smmu->iommu, dev, NULL,
				     "smmu3.%pa", &ioaddr);
	if (ret)
		return ret;

	ret = iommu_device_register(&smmu->iommu, &arm_smmu_ops, dev);
	if (ret) {
		dev_err(dev, "Failed to register iommu\n");
		iommu_device_sysfs_remove(&smmu->iommu);
		return ret;
	}

	return 0;
}

static void arm_smmu_device_remove(struct platform_device *pdev)
{
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);

	iommu_device_unregister(&smmu->iommu);
	iommu_device_sysfs_remove(&smmu->iommu);
	arm_smmu_device_disable(smmu);
	iopf_queue_free(smmu->evtq.iopf);
	ida_destroy(&smmu->vmid_map);
}

static void arm_smmu_device_shutdown(struct platform_device *pdev)
{
	struct arm_smmu_device *smmu = platform_get_drvdata(pdev);

	arm_smmu_device_disable(smmu);
}

static const struct of_device_id arm_smmu_of_match[] = {
	{ .compatible = "arm,smmu-v3", },
	{ },
};
MODULE_DEVICE_TABLE(of, arm_smmu_of_match);

static void arm_smmu_driver_unregister(struct platform_driver *drv)
{
	arm_smmu_sva_notifier_synchronize();
	platform_driver_unregister(drv);
}

static struct platform_driver arm_smmu_driver = {
	.driver	= {
		.name			= "arm-smmu-v3",
		.of_match_table		= arm_smmu_of_match,
		.suppress_bind_attrs	= true,
	},
	.probe	= arm_smmu_device_probe,
	.remove_new = arm_smmu_device_remove,
	.shutdown = arm_smmu_device_shutdown,
};
module_driver(arm_smmu_driver, platform_driver_register,
	      arm_smmu_driver_unregister);

MODULE_DESCRIPTION("IOMMU API for ARM architected SMMUv3 implementations");
MODULE_AUTHOR("Will Deacon <will@kernel.org>");
MODULE_ALIAS("platform:arm-smmu-v3");
MODULE_LICENSE("GPL v2");