summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/nand/raw/atmel/nand-controller.c
blob: f9ccfd02e804567b67512d7d16a9643f283644d9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright 2017 ATMEL
 * Copyright 2017 Free Electrons
 *
 * Author: Boris Brezillon <boris.brezillon@free-electrons.com>
 *
 * Derived from the atmel_nand.c driver which contained the following
 * copyrights:
 *
 *   Copyright 2003 Rick Bronson
 *
 *   Derived from drivers/mtd/nand/autcpu12.c (removed in v3.8)
 *	Copyright 2001 Thomas Gleixner (gleixner@autronix.de)
 *
 *   Derived from drivers/mtd/spia.c (removed in v3.8)
 *	Copyright 2000 Steven J. Hill (sjhill@cotw.com)
 *
 *
 *   Add Hardware ECC support for AT91SAM9260 / AT91SAM9263
 *	Richard Genoud (richard.genoud@gmail.com), Adeneo Copyright 2007
 *
 *   Derived from Das U-Boot source code
 *	(u-boot-1.1.5/board/atmel/at91sam9263ek/nand.c)
 *	Copyright 2006 ATMEL Rousset, Lacressonniere Nicolas
 *
 *   Add Programmable Multibit ECC support for various AT91 SoC
 *	Copyright 2012 ATMEL, Hong Xu
 *
 *   Add Nand Flash Controller support for SAMA5 SoC
 *	Copyright 2013 ATMEL, Josh Wu (josh.wu@atmel.com)
 *
 * A few words about the naming convention in this file. This convention
 * applies to structure and function names.
 *
 * Prefixes:
 *
 * - atmel_nand_: all generic structures/functions
 * - atmel_smc_nand_: all structures/functions specific to the SMC interface
 *		      (at91sam9 and avr32 SoCs)
 * - atmel_hsmc_nand_: all structures/functions specific to the HSMC interface
 *		       (sama5 SoCs and later)
 * - atmel_nfc_: all structures/functions used to manipulate the NFC sub-block
 *		 that is available in the HSMC block
 * - <soc>_nand_: all SoC specific structures/functions
 */

#include <linux/clk.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/genalloc.h>
#include <linux/gpio/consumer.h>
#include <linux/interrupt.h>
#include <linux/mfd/syscon.h>
#include <linux/mfd/syscon/atmel-matrix.h>
#include <linux/mfd/syscon/atmel-smc.h>
#include <linux/module.h>
#include <linux/mtd/rawnand.h>
#include <linux/of_address.h>
#include <linux/of_irq.h>
#include <linux/of_platform.h>
#include <linux/iopoll.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <soc/at91/atmel-sfr.h>

#include "pmecc.h"

#define ATMEL_HSMC_NFC_CFG			0x0
#define ATMEL_HSMC_NFC_CFG_SPARESIZE(x)		(((x) / 4) << 24)
#define ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK	GENMASK(30, 24)
#define ATMEL_HSMC_NFC_CFG_DTO(cyc, mul)	(((cyc) << 16) | ((mul) << 20))
#define ATMEL_HSMC_NFC_CFG_DTO_MAX		GENMASK(22, 16)
#define ATMEL_HSMC_NFC_CFG_RBEDGE		BIT(13)
#define ATMEL_HSMC_NFC_CFG_FALLING_EDGE		BIT(12)
#define ATMEL_HSMC_NFC_CFG_RSPARE		BIT(9)
#define ATMEL_HSMC_NFC_CFG_WSPARE		BIT(8)
#define ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK	GENMASK(2, 0)
#define ATMEL_HSMC_NFC_CFG_PAGESIZE(x)		(fls((x) / 512) - 1)

#define ATMEL_HSMC_NFC_CTRL			0x4
#define ATMEL_HSMC_NFC_CTRL_EN			BIT(0)
#define ATMEL_HSMC_NFC_CTRL_DIS			BIT(1)

#define ATMEL_HSMC_NFC_SR			0x8
#define ATMEL_HSMC_NFC_IER			0xc
#define ATMEL_HSMC_NFC_IDR			0x10
#define ATMEL_HSMC_NFC_IMR			0x14
#define ATMEL_HSMC_NFC_SR_ENABLED		BIT(1)
#define ATMEL_HSMC_NFC_SR_RB_RISE		BIT(4)
#define ATMEL_HSMC_NFC_SR_RB_FALL		BIT(5)
#define ATMEL_HSMC_NFC_SR_BUSY			BIT(8)
#define ATMEL_HSMC_NFC_SR_WR			BIT(11)
#define ATMEL_HSMC_NFC_SR_CSID			GENMASK(14, 12)
#define ATMEL_HSMC_NFC_SR_XFRDONE		BIT(16)
#define ATMEL_HSMC_NFC_SR_CMDDONE		BIT(17)
#define ATMEL_HSMC_NFC_SR_DTOE			BIT(20)
#define ATMEL_HSMC_NFC_SR_UNDEF			BIT(21)
#define ATMEL_HSMC_NFC_SR_AWB			BIT(22)
#define ATMEL_HSMC_NFC_SR_NFCASE		BIT(23)
#define ATMEL_HSMC_NFC_SR_ERRORS		(ATMEL_HSMC_NFC_SR_DTOE | \
						 ATMEL_HSMC_NFC_SR_UNDEF | \
						 ATMEL_HSMC_NFC_SR_AWB | \
						 ATMEL_HSMC_NFC_SR_NFCASE)
#define ATMEL_HSMC_NFC_SR_RBEDGE(x)		BIT((x) + 24)

#define ATMEL_HSMC_NFC_ADDR			0x18
#define ATMEL_HSMC_NFC_BANK			0x1c

#define ATMEL_NFC_MAX_RB_ID			7

#define ATMEL_NFC_SRAM_SIZE			0x2400

#define ATMEL_NFC_CMD(pos, cmd)			((cmd) << (((pos) * 8) + 2))
#define ATMEL_NFC_VCMD2				BIT(18)
#define ATMEL_NFC_ACYCLE(naddrs)		((naddrs) << 19)
#define ATMEL_NFC_CSID(cs)			((cs) << 22)
#define ATMEL_NFC_DATAEN			BIT(25)
#define ATMEL_NFC_NFCWR				BIT(26)

#define ATMEL_NFC_MAX_ADDR_CYCLES		5

#define ATMEL_NAND_ALE_OFFSET			BIT(21)
#define ATMEL_NAND_CLE_OFFSET			BIT(22)

#define DEFAULT_TIMEOUT_MS			1000
#define MIN_DMA_LEN				128

static bool atmel_nand_avoid_dma __read_mostly;

MODULE_PARM_DESC(avoiddma, "Avoid using DMA");
module_param_named(avoiddma, atmel_nand_avoid_dma, bool, 0400);

enum atmel_nand_rb_type {
	ATMEL_NAND_NO_RB,
	ATMEL_NAND_NATIVE_RB,
	ATMEL_NAND_GPIO_RB,
};

struct atmel_nand_rb {
	enum atmel_nand_rb_type type;
	union {
		struct gpio_desc *gpio;
		int id;
	};
};

struct atmel_nand_cs {
	int id;
	struct atmel_nand_rb rb;
	struct gpio_desc *csgpio;
	struct {
		void __iomem *virt;
		dma_addr_t dma;
	} io;

	struct atmel_smc_cs_conf smcconf;
};

struct atmel_nand {
	struct list_head node;
	struct device *dev;
	struct nand_chip base;
	struct atmel_nand_cs *activecs;
	struct atmel_pmecc_user *pmecc;
	struct gpio_desc *cdgpio;
	int numcs;
	struct atmel_nand_cs cs[] __counted_by(numcs);
};

static inline struct atmel_nand *to_atmel_nand(struct nand_chip *chip)
{
	return container_of(chip, struct atmel_nand, base);
}

enum atmel_nfc_data_xfer {
	ATMEL_NFC_NO_DATA,
	ATMEL_NFC_READ_DATA,
	ATMEL_NFC_WRITE_DATA,
};

struct atmel_nfc_op {
	u8 cs;
	u8 ncmds;
	u8 cmds[2];
	u8 naddrs;
	u8 addrs[5];
	enum atmel_nfc_data_xfer data;
	u32 wait;
	u32 errors;
};

struct atmel_nand_controller;
struct atmel_nand_controller_caps;

struct atmel_nand_controller_ops {
	int (*probe)(struct platform_device *pdev,
		     const struct atmel_nand_controller_caps *caps);
	int (*remove)(struct atmel_nand_controller *nc);
	void (*nand_init)(struct atmel_nand_controller *nc,
			  struct atmel_nand *nand);
	int (*ecc_init)(struct nand_chip *chip);
	int (*setup_interface)(struct atmel_nand *nand, int csline,
			       const struct nand_interface_config *conf);
	int (*exec_op)(struct atmel_nand *nand,
		       const struct nand_operation *op, bool check_only);
};

struct atmel_nand_controller_caps {
	bool has_dma;
	bool legacy_of_bindings;
	u32 ale_offs;
	u32 cle_offs;
	const char *ebi_csa_regmap_name;
	const struct atmel_nand_controller_ops *ops;
};

struct atmel_nand_controller {
	struct nand_controller base;
	const struct atmel_nand_controller_caps *caps;
	struct device *dev;
	struct regmap *smc;
	struct dma_chan *dmac;
	struct atmel_pmecc *pmecc;
	struct list_head chips;
	struct clk *mck;
};

static inline struct atmel_nand_controller *
to_nand_controller(struct nand_controller *ctl)
{
	return container_of(ctl, struct atmel_nand_controller, base);
}

struct atmel_smc_nand_ebi_csa_cfg {
	u32 offs;
	u32 nfd0_on_d16;
};

struct atmel_smc_nand_controller {
	struct atmel_nand_controller base;
	struct regmap *ebi_csa_regmap;
	struct atmel_smc_nand_ebi_csa_cfg *ebi_csa;
};

static inline struct atmel_smc_nand_controller *
to_smc_nand_controller(struct nand_controller *ctl)
{
	return container_of(to_nand_controller(ctl),
			    struct atmel_smc_nand_controller, base);
}

struct atmel_hsmc_nand_controller {
	struct atmel_nand_controller base;
	struct {
		struct gen_pool *pool;
		void __iomem *virt;
		dma_addr_t dma;
	} sram;
	const struct atmel_hsmc_reg_layout *hsmc_layout;
	struct regmap *io;
	struct atmel_nfc_op op;
	struct completion complete;
	u32 cfg;
	int irq;

	/* Only used when instantiating from legacy DT bindings. */
	struct clk *clk;
};

static inline struct atmel_hsmc_nand_controller *
to_hsmc_nand_controller(struct nand_controller *ctl)
{
	return container_of(to_nand_controller(ctl),
			    struct atmel_hsmc_nand_controller, base);
}

static bool atmel_nfc_op_done(struct atmel_nfc_op *op, u32 status)
{
	op->errors |= status & ATMEL_HSMC_NFC_SR_ERRORS;
	op->wait ^= status & op->wait;

	return !op->wait || op->errors;
}

static irqreturn_t atmel_nfc_interrupt(int irq, void *data)
{
	struct atmel_hsmc_nand_controller *nc = data;
	u32 sr, rcvd;
	bool done;

	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &sr);

	rcvd = sr & (nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
	done = atmel_nfc_op_done(&nc->op, sr);

	if (rcvd)
		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, rcvd);

	if (done)
		complete(&nc->complete);

	return rcvd ? IRQ_HANDLED : IRQ_NONE;
}

static int atmel_nfc_wait(struct atmel_hsmc_nand_controller *nc, bool poll,
			  unsigned int timeout_ms)
{
	int ret;

	if (!timeout_ms)
		timeout_ms = DEFAULT_TIMEOUT_MS;

	if (poll) {
		u32 status;

		ret = regmap_read_poll_timeout(nc->base.smc,
					       ATMEL_HSMC_NFC_SR, status,
					       atmel_nfc_op_done(&nc->op,
								 status),
					       0, timeout_ms * 1000);
	} else {
		init_completion(&nc->complete);
		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IER,
			     nc->op.wait | ATMEL_HSMC_NFC_SR_ERRORS);
		ret = wait_for_completion_timeout(&nc->complete,
						msecs_to_jiffies(timeout_ms));
		if (!ret)
			ret = -ETIMEDOUT;
		else
			ret = 0;

		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
	}

	if (nc->op.errors & ATMEL_HSMC_NFC_SR_DTOE) {
		dev_err(nc->base.dev, "Waiting NAND R/B Timeout\n");
		ret = -ETIMEDOUT;
	}

	if (nc->op.errors & ATMEL_HSMC_NFC_SR_UNDEF) {
		dev_err(nc->base.dev, "Access to an undefined area\n");
		ret = -EIO;
	}

	if (nc->op.errors & ATMEL_HSMC_NFC_SR_AWB) {
		dev_err(nc->base.dev, "Access while busy\n");
		ret = -EIO;
	}

	if (nc->op.errors & ATMEL_HSMC_NFC_SR_NFCASE) {
		dev_err(nc->base.dev, "Wrong access size\n");
		ret = -EIO;
	}

	return ret;
}

static void atmel_nand_dma_transfer_finished(void *data)
{
	struct completion *finished = data;

	complete(finished);
}

static int atmel_nand_dma_transfer(struct atmel_nand_controller *nc,
				   void *buf, dma_addr_t dev_dma, size_t len,
				   enum dma_data_direction dir)
{
	DECLARE_COMPLETION_ONSTACK(finished);
	dma_addr_t src_dma, dst_dma, buf_dma;
	struct dma_async_tx_descriptor *tx;
	dma_cookie_t cookie;

	buf_dma = dma_map_single(nc->dev, buf, len, dir);
	if (dma_mapping_error(nc->dev, dev_dma)) {
		dev_err(nc->dev,
			"Failed to prepare a buffer for DMA access\n");
		goto err;
	}

	if (dir == DMA_FROM_DEVICE) {
		src_dma = dev_dma;
		dst_dma = buf_dma;
	} else {
		src_dma = buf_dma;
		dst_dma = dev_dma;
	}

	tx = dmaengine_prep_dma_memcpy(nc->dmac, dst_dma, src_dma, len,
				       DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
	if (!tx) {
		dev_err(nc->dev, "Failed to prepare DMA memcpy\n");
		goto err_unmap;
	}

	tx->callback = atmel_nand_dma_transfer_finished;
	tx->callback_param = &finished;

	cookie = dmaengine_submit(tx);
	if (dma_submit_error(cookie)) {
		dev_err(nc->dev, "Failed to do DMA tx_submit\n");
		goto err_unmap;
	}

	dma_async_issue_pending(nc->dmac);
	wait_for_completion(&finished);
	dma_unmap_single(nc->dev, buf_dma, len, dir);

	return 0;

err_unmap:
	dma_unmap_single(nc->dev, buf_dma, len, dir);

err:
	dev_dbg(nc->dev, "Fall back to CPU I/O\n");

	return -EIO;
}

static int atmel_nfc_exec_op(struct atmel_hsmc_nand_controller *nc, bool poll)
{
	u8 *addrs = nc->op.addrs;
	unsigned int op = 0;
	u32 addr, val;
	int i, ret;

	nc->op.wait = ATMEL_HSMC_NFC_SR_CMDDONE;

	for (i = 0; i < nc->op.ncmds; i++)
		op |= ATMEL_NFC_CMD(i, nc->op.cmds[i]);

	if (nc->op.naddrs == ATMEL_NFC_MAX_ADDR_CYCLES)
		regmap_write(nc->base.smc, ATMEL_HSMC_NFC_ADDR, *addrs++);

	op |= ATMEL_NFC_CSID(nc->op.cs) |
	      ATMEL_NFC_ACYCLE(nc->op.naddrs);

	if (nc->op.ncmds > 1)
		op |= ATMEL_NFC_VCMD2;

	addr = addrs[0] | (addrs[1] << 8) | (addrs[2] << 16) |
	       (addrs[3] << 24);

	if (nc->op.data != ATMEL_NFC_NO_DATA) {
		op |= ATMEL_NFC_DATAEN;
		nc->op.wait |= ATMEL_HSMC_NFC_SR_XFRDONE;

		if (nc->op.data == ATMEL_NFC_WRITE_DATA)
			op |= ATMEL_NFC_NFCWR;
	}

	/* Clear all flags. */
	regmap_read(nc->base.smc, ATMEL_HSMC_NFC_SR, &val);

	/* Send the command. */
	regmap_write(nc->io, op, addr);

	ret = atmel_nfc_wait(nc, poll, 0);
	if (ret)
		dev_err(nc->base.dev,
			"Failed to send NAND command (err = %d)!",
			ret);

	/* Reset the op state. */
	memset(&nc->op, 0, sizeof(nc->op));

	return ret;
}

static void atmel_nand_data_in(struct atmel_nand *nand, void *buf,
			       unsigned int len, bool force_8bit)
{
	struct atmel_nand_controller *nc;

	nc = to_nand_controller(nand->base.controller);

	/*
	 * If the controller supports DMA, the buffer address is DMA-able and
	 * len is long enough to make DMA transfers profitable, let's trigger
	 * a DMA transfer. If it fails, fallback to PIO mode.
	 */
	if (nc->dmac && virt_addr_valid(buf) &&
	    len >= MIN_DMA_LEN && !force_8bit &&
	    !atmel_nand_dma_transfer(nc, buf, nand->activecs->io.dma, len,
				     DMA_FROM_DEVICE))
		return;

	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
		ioread16_rep(nand->activecs->io.virt, buf, len / 2);
	else
		ioread8_rep(nand->activecs->io.virt, buf, len);
}

static void atmel_nand_data_out(struct atmel_nand *nand, const void *buf,
				unsigned int len, bool force_8bit)
{
	struct atmel_nand_controller *nc;

	nc = to_nand_controller(nand->base.controller);

	/*
	 * If the controller supports DMA, the buffer address is DMA-able and
	 * len is long enough to make DMA transfers profitable, let's trigger
	 * a DMA transfer. If it fails, fallback to PIO mode.
	 */
	if (nc->dmac && virt_addr_valid(buf) &&
	    len >= MIN_DMA_LEN && !force_8bit &&
	    !atmel_nand_dma_transfer(nc, (void *)buf, nand->activecs->io.dma,
				     len, DMA_TO_DEVICE))
		return;

	if ((nand->base.options & NAND_BUSWIDTH_16) && !force_8bit)
		iowrite16_rep(nand->activecs->io.virt, buf, len / 2);
	else
		iowrite8_rep(nand->activecs->io.virt, buf, len);
}

static int atmel_nand_waitrdy(struct atmel_nand *nand, unsigned int timeout_ms)
{
	if (nand->activecs->rb.type == ATMEL_NAND_NO_RB)
		return nand_soft_waitrdy(&nand->base, timeout_ms);

	return nand_gpio_waitrdy(&nand->base, nand->activecs->rb.gpio,
				 timeout_ms);
}

static int atmel_hsmc_nand_waitrdy(struct atmel_nand *nand,
				   unsigned int timeout_ms)
{
	struct atmel_hsmc_nand_controller *nc;
	u32 status, mask;

	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
		return atmel_nand_waitrdy(nand, timeout_ms);

	nc = to_hsmc_nand_controller(nand->base.controller);
	mask = ATMEL_HSMC_NFC_SR_RBEDGE(nand->activecs->rb.id);
	return regmap_read_poll_timeout_atomic(nc->base.smc, ATMEL_HSMC_NFC_SR,
					       status, status & mask,
					       10, timeout_ms * 1000);
}

static void atmel_nand_select_target(struct atmel_nand *nand,
				     unsigned int cs)
{
	nand->activecs = &nand->cs[cs];
}

static void atmel_hsmc_nand_select_target(struct atmel_nand *nand,
					  unsigned int cs)
{
	struct mtd_info *mtd = nand_to_mtd(&nand->base);
	struct atmel_hsmc_nand_controller *nc;
	u32 cfg = ATMEL_HSMC_NFC_CFG_PAGESIZE(mtd->writesize) |
		  ATMEL_HSMC_NFC_CFG_SPARESIZE(mtd->oobsize) |
		  ATMEL_HSMC_NFC_CFG_RSPARE;

	nand->activecs = &nand->cs[cs];
	nc = to_hsmc_nand_controller(nand->base.controller);
	if (nc->cfg == cfg)
		return;

	regmap_update_bits(nc->base.smc, ATMEL_HSMC_NFC_CFG,
			   ATMEL_HSMC_NFC_CFG_PAGESIZE_MASK |
			   ATMEL_HSMC_NFC_CFG_SPARESIZE_MASK |
			   ATMEL_HSMC_NFC_CFG_RSPARE |
			   ATMEL_HSMC_NFC_CFG_WSPARE,
			   cfg);
	nc->cfg = cfg;
}

static int atmel_smc_nand_exec_instr(struct atmel_nand *nand,
				     const struct nand_op_instr *instr)
{
	struct atmel_nand_controller *nc;
	unsigned int i;

	nc = to_nand_controller(nand->base.controller);
	switch (instr->type) {
	case NAND_OP_CMD_INSTR:
		writeb(instr->ctx.cmd.opcode,
		       nand->activecs->io.virt + nc->caps->cle_offs);
		return 0;
	case NAND_OP_ADDR_INSTR:
		for (i = 0; i < instr->ctx.addr.naddrs; i++)
			writeb(instr->ctx.addr.addrs[i],
			       nand->activecs->io.virt + nc->caps->ale_offs);
		return 0;
	case NAND_OP_DATA_IN_INSTR:
		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
				   instr->ctx.data.len,
				   instr->ctx.data.force_8bit);
		return 0;
	case NAND_OP_DATA_OUT_INSTR:
		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
				    instr->ctx.data.len,
				    instr->ctx.data.force_8bit);
		return 0;
	case NAND_OP_WAITRDY_INSTR:
		return atmel_nand_waitrdy(nand,
					  instr->ctx.waitrdy.timeout_ms);
	default:
		break;
	}

	return -EINVAL;
}

static int atmel_smc_nand_exec_op(struct atmel_nand *nand,
				  const struct nand_operation *op,
				  bool check_only)
{
	unsigned int i;
	int ret = 0;

	if (check_only)
		return 0;

	atmel_nand_select_target(nand, op->cs);
	gpiod_set_value(nand->activecs->csgpio, 0);
	for (i = 0; i < op->ninstrs; i++) {
		ret = atmel_smc_nand_exec_instr(nand, &op->instrs[i]);
		if (ret)
			break;
	}
	gpiod_set_value(nand->activecs->csgpio, 1);

	return ret;
}

static int atmel_hsmc_exec_cmd_addr(struct nand_chip *chip,
				    const struct nand_subop *subop)
{
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct atmel_hsmc_nand_controller *nc;
	unsigned int i, j;

	nc = to_hsmc_nand_controller(chip->controller);

	nc->op.cs = nand->activecs->id;
	for (i = 0; i < subop->ninstrs; i++) {
		const struct nand_op_instr *instr = &subop->instrs[i];

		if (instr->type == NAND_OP_CMD_INSTR) {
			nc->op.cmds[nc->op.ncmds++] = instr->ctx.cmd.opcode;
			continue;
		}

		for (j = nand_subop_get_addr_start_off(subop, i);
		     j < nand_subop_get_num_addr_cyc(subop, i); j++) {
			nc->op.addrs[nc->op.naddrs] = instr->ctx.addr.addrs[j];
			nc->op.naddrs++;
		}
	}

	return atmel_nfc_exec_op(nc, true);
}

static int atmel_hsmc_exec_rw(struct nand_chip *chip,
			      const struct nand_subop *subop)
{
	const struct nand_op_instr *instr = subop->instrs;
	struct atmel_nand *nand = to_atmel_nand(chip);

	if (instr->type == NAND_OP_DATA_IN_INSTR)
		atmel_nand_data_in(nand, instr->ctx.data.buf.in,
				   instr->ctx.data.len,
				   instr->ctx.data.force_8bit);
	else
		atmel_nand_data_out(nand, instr->ctx.data.buf.out,
				    instr->ctx.data.len,
				    instr->ctx.data.force_8bit);

	return 0;
}

static int atmel_hsmc_exec_waitrdy(struct nand_chip *chip,
				   const struct nand_subop *subop)
{
	const struct nand_op_instr *instr = subop->instrs;
	struct atmel_nand *nand = to_atmel_nand(chip);

	return atmel_hsmc_nand_waitrdy(nand, instr->ctx.waitrdy.timeout_ms);
}

static const struct nand_op_parser atmel_hsmc_op_parser = NAND_OP_PARSER(
	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_cmd_addr,
		NAND_OP_PARSER_PAT_CMD_ELEM(true),
		NAND_OP_PARSER_PAT_ADDR_ELEM(true, 5),
		NAND_OP_PARSER_PAT_CMD_ELEM(true)),
	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
		NAND_OP_PARSER_PAT_DATA_IN_ELEM(false, 0)),
	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_rw,
		NAND_OP_PARSER_PAT_DATA_OUT_ELEM(false, 0)),
	NAND_OP_PARSER_PATTERN(atmel_hsmc_exec_waitrdy,
		NAND_OP_PARSER_PAT_WAITRDY_ELEM(false)),
);

static int atmel_hsmc_nand_exec_op(struct atmel_nand *nand,
				   const struct nand_operation *op,
				   bool check_only)
{
	int ret;

	if (check_only)
		return nand_op_parser_exec_op(&nand->base,
					      &atmel_hsmc_op_parser, op, true);

	atmel_hsmc_nand_select_target(nand, op->cs);
	ret = nand_op_parser_exec_op(&nand->base, &atmel_hsmc_op_parser, op,
				     false);

	return ret;
}

static void atmel_nfc_copy_to_sram(struct nand_chip *chip, const u8 *buf,
				   bool oob_required)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct atmel_hsmc_nand_controller *nc;
	int ret = -EIO;

	nc = to_hsmc_nand_controller(chip->controller);

	if (nc->base.dmac)
		ret = atmel_nand_dma_transfer(&nc->base, (void *)buf,
					      nc->sram.dma, mtd->writesize,
					      DMA_TO_DEVICE);

	/* Falling back to CPU copy. */
	if (ret)
		memcpy_toio(nc->sram.virt, buf, mtd->writesize);

	if (oob_required)
		memcpy_toio(nc->sram.virt + mtd->writesize, chip->oob_poi,
			    mtd->oobsize);
}

static void atmel_nfc_copy_from_sram(struct nand_chip *chip, u8 *buf,
				     bool oob_required)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct atmel_hsmc_nand_controller *nc;
	int ret = -EIO;

	nc = to_hsmc_nand_controller(chip->controller);

	if (nc->base.dmac)
		ret = atmel_nand_dma_transfer(&nc->base, buf, nc->sram.dma,
					      mtd->writesize, DMA_FROM_DEVICE);

	/* Falling back to CPU copy. */
	if (ret)
		memcpy_fromio(buf, nc->sram.virt, mtd->writesize);

	if (oob_required)
		memcpy_fromio(chip->oob_poi, nc->sram.virt + mtd->writesize,
			      mtd->oobsize);
}

static void atmel_nfc_set_op_addr(struct nand_chip *chip, int page, int column)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct atmel_hsmc_nand_controller *nc;

	nc = to_hsmc_nand_controller(chip->controller);

	if (column >= 0) {
		nc->op.addrs[nc->op.naddrs++] = column;

		/*
		 * 2 address cycles for the column offset on large page NANDs.
		 */
		if (mtd->writesize > 512)
			nc->op.addrs[nc->op.naddrs++] = column >> 8;
	}

	if (page >= 0) {
		nc->op.addrs[nc->op.naddrs++] = page;
		nc->op.addrs[nc->op.naddrs++] = page >> 8;

		if (chip->options & NAND_ROW_ADDR_3)
			nc->op.addrs[nc->op.naddrs++] = page >> 16;
	}
}

static int atmel_nand_pmecc_enable(struct nand_chip *chip, int op, bool raw)
{
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct atmel_nand_controller *nc;
	int ret;

	nc = to_nand_controller(chip->controller);

	if (raw)
		return 0;

	ret = atmel_pmecc_enable(nand->pmecc, op);
	if (ret)
		dev_err(nc->dev,
			"Failed to enable ECC engine (err = %d)\n", ret);

	return ret;
}

static void atmel_nand_pmecc_disable(struct nand_chip *chip, bool raw)
{
	struct atmel_nand *nand = to_atmel_nand(chip);

	if (!raw)
		atmel_pmecc_disable(nand->pmecc);
}

static int atmel_nand_pmecc_generate_eccbytes(struct nand_chip *chip, bool raw)
{
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct atmel_nand_controller *nc;
	struct mtd_oob_region oobregion;
	void *eccbuf;
	int ret, i;

	nc = to_nand_controller(chip->controller);

	if (raw)
		return 0;

	ret = atmel_pmecc_wait_rdy(nand->pmecc);
	if (ret) {
		dev_err(nc->dev,
			"Failed to transfer NAND page data (err = %d)\n",
			ret);
		return ret;
	}

	mtd_ooblayout_ecc(mtd, 0, &oobregion);
	eccbuf = chip->oob_poi + oobregion.offset;

	for (i = 0; i < chip->ecc.steps; i++) {
		atmel_pmecc_get_generated_eccbytes(nand->pmecc, i,
						   eccbuf);
		eccbuf += chip->ecc.bytes;
	}

	return 0;
}

static int atmel_nand_pmecc_correct_data(struct nand_chip *chip, void *buf,
					 bool raw)
{
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct atmel_nand_controller *nc;
	struct mtd_oob_region oobregion;
	int ret, i, max_bitflips = 0;
	void *databuf, *eccbuf;

	nc = to_nand_controller(chip->controller);

	if (raw)
		return 0;

	ret = atmel_pmecc_wait_rdy(nand->pmecc);
	if (ret) {
		dev_err(nc->dev,
			"Failed to read NAND page data (err = %d)\n",
			ret);
		return ret;
	}

	mtd_ooblayout_ecc(mtd, 0, &oobregion);
	eccbuf = chip->oob_poi + oobregion.offset;
	databuf = buf;

	for (i = 0; i < chip->ecc.steps; i++) {
		ret = atmel_pmecc_correct_sector(nand->pmecc, i, databuf,
						 eccbuf);
		if (ret < 0 && !atmel_pmecc_correct_erased_chunks(nand->pmecc))
			ret = nand_check_erased_ecc_chunk(databuf,
							  chip->ecc.size,
							  eccbuf,
							  chip->ecc.bytes,
							  NULL, 0,
							  chip->ecc.strength);

		if (ret >= 0) {
			mtd->ecc_stats.corrected += ret;
			max_bitflips = max(ret, max_bitflips);
		} else {
			mtd->ecc_stats.failed++;
		}

		databuf += chip->ecc.size;
		eccbuf += chip->ecc.bytes;
	}

	return max_bitflips;
}

static int atmel_nand_pmecc_write_pg(struct nand_chip *chip, const u8 *buf,
				     bool oob_required, int page, bool raw)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct atmel_nand *nand = to_atmel_nand(chip);
	int ret;

	nand_prog_page_begin_op(chip, page, 0, NULL, 0);

	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
	if (ret)
		return ret;

	nand_write_data_op(chip, buf, mtd->writesize, false);

	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);
	if (ret) {
		atmel_pmecc_disable(nand->pmecc);
		return ret;
	}

	atmel_nand_pmecc_disable(chip, raw);

	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);

	return nand_prog_page_end_op(chip);
}

static int atmel_nand_pmecc_write_page(struct nand_chip *chip, const u8 *buf,
				       int oob_required, int page)
{
	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, false);
}

static int atmel_nand_pmecc_write_page_raw(struct nand_chip *chip,
					   const u8 *buf, int oob_required,
					   int page)
{
	return atmel_nand_pmecc_write_pg(chip, buf, oob_required, page, true);
}

static int atmel_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
				    bool oob_required, int page, bool raw)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	nand_read_page_op(chip, page, 0, NULL, 0);

	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
	if (ret)
		return ret;

	ret = nand_read_data_op(chip, buf, mtd->writesize, false, false);
	if (ret)
		goto out_disable;

	ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false, false);
	if (ret)
		goto out_disable;

	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);

out_disable:
	atmel_nand_pmecc_disable(chip, raw);

	return ret;
}

static int atmel_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
				      int oob_required, int page)
{
	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, false);
}

static int atmel_nand_pmecc_read_page_raw(struct nand_chip *chip, u8 *buf,
					  int oob_required, int page)
{
	return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page, true);
}

static int atmel_hsmc_nand_pmecc_write_pg(struct nand_chip *chip,
					  const u8 *buf, bool oob_required,
					  int page, bool raw)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct atmel_hsmc_nand_controller *nc;
	int ret;

	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
	nc = to_hsmc_nand_controller(chip->controller);

	atmel_nfc_copy_to_sram(chip, buf, false);

	nc->op.cmds[0] = NAND_CMD_SEQIN;
	nc->op.ncmds = 1;
	atmel_nfc_set_op_addr(chip, page, 0x0);
	nc->op.cs = nand->activecs->id;
	nc->op.data = ATMEL_NFC_WRITE_DATA;

	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_WRITE, raw);
	if (ret)
		return ret;

	ret = atmel_nfc_exec_op(nc, false);
	if (ret) {
		atmel_nand_pmecc_disable(chip, raw);
		dev_err(nc->base.dev,
			"Failed to transfer NAND page data (err = %d)\n",
			ret);
		return ret;
	}

	ret = atmel_nand_pmecc_generate_eccbytes(chip, raw);

	atmel_nand_pmecc_disable(chip, raw);

	if (ret)
		return ret;

	nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);

	return nand_prog_page_end_op(chip);
}

static int atmel_hsmc_nand_pmecc_write_page(struct nand_chip *chip,
					    const u8 *buf, int oob_required,
					    int page)
{
	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
					      false);
}

static int atmel_hsmc_nand_pmecc_write_page_raw(struct nand_chip *chip,
						const u8 *buf,
						int oob_required, int page)
{
	return atmel_hsmc_nand_pmecc_write_pg(chip, buf, oob_required, page,
					      true);
}

static int atmel_hsmc_nand_pmecc_read_pg(struct nand_chip *chip, u8 *buf,
					 bool oob_required, int page,
					 bool raw)
{
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct atmel_hsmc_nand_controller *nc;
	int ret;

	atmel_hsmc_nand_select_target(nand, chip->cur_cs);
	nc = to_hsmc_nand_controller(chip->controller);

	/*
	 * Optimized read page accessors only work when the NAND R/B pin is
	 * connected to a native SoC R/B pin. If that's not the case, fallback
	 * to the non-optimized one.
	 */
	if (nand->activecs->rb.type != ATMEL_NAND_NATIVE_RB)
		return atmel_nand_pmecc_read_pg(chip, buf, oob_required, page,
						raw);

	nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READ0;

	if (mtd->writesize > 512)
		nc->op.cmds[nc->op.ncmds++] = NAND_CMD_READSTART;

	atmel_nfc_set_op_addr(chip, page, 0x0);
	nc->op.cs = nand->activecs->id;
	nc->op.data = ATMEL_NFC_READ_DATA;

	ret = atmel_nand_pmecc_enable(chip, NAND_ECC_READ, raw);
	if (ret)
		return ret;

	ret = atmel_nfc_exec_op(nc, false);
	if (ret) {
		atmel_nand_pmecc_disable(chip, raw);
		dev_err(nc->base.dev,
			"Failed to load NAND page data (err = %d)\n",
			ret);
		return ret;
	}

	atmel_nfc_copy_from_sram(chip, buf, true);

	ret = atmel_nand_pmecc_correct_data(chip, buf, raw);

	atmel_nand_pmecc_disable(chip, raw);

	return ret;
}

static int atmel_hsmc_nand_pmecc_read_page(struct nand_chip *chip, u8 *buf,
					   int oob_required, int page)
{
	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
					     false);
}

static int atmel_hsmc_nand_pmecc_read_page_raw(struct nand_chip *chip,
					       u8 *buf, int oob_required,
					       int page)
{
	return atmel_hsmc_nand_pmecc_read_pg(chip, buf, oob_required, page,
					     true);
}

static int atmel_nand_pmecc_init(struct nand_chip *chip)
{
	const struct nand_ecc_props *requirements =
		nanddev_get_ecc_requirements(&chip->base);
	struct mtd_info *mtd = nand_to_mtd(chip);
	struct nand_device *nanddev = mtd_to_nanddev(mtd);
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct atmel_nand_controller *nc;
	struct atmel_pmecc_user_req req;

	nc = to_nand_controller(chip->controller);

	if (!nc->pmecc) {
		dev_err(nc->dev, "HW ECC not supported\n");
		return -ENOTSUPP;
	}

	if (nc->caps->legacy_of_bindings) {
		u32 val;

		if (!of_property_read_u32(nc->dev->of_node, "atmel,pmecc-cap",
					  &val))
			chip->ecc.strength = val;

		if (!of_property_read_u32(nc->dev->of_node,
					  "atmel,pmecc-sector-size",
					  &val))
			chip->ecc.size = val;
	}

	if (nanddev->ecc.user_conf.flags & NAND_ECC_MAXIMIZE_STRENGTH)
		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;
	else if (chip->ecc.strength)
		req.ecc.strength = chip->ecc.strength;
	else if (requirements->strength)
		req.ecc.strength = requirements->strength;
	else
		req.ecc.strength = ATMEL_PMECC_MAXIMIZE_ECC_STRENGTH;

	if (chip->ecc.size)
		req.ecc.sectorsize = chip->ecc.size;
	else if (requirements->step_size)
		req.ecc.sectorsize = requirements->step_size;
	else
		req.ecc.sectorsize = ATMEL_PMECC_SECTOR_SIZE_AUTO;

	req.pagesize = mtd->writesize;
	req.oobsize = mtd->oobsize;

	if (mtd->writesize <= 512) {
		req.ecc.bytes = 4;
		req.ecc.ooboffset = 0;
	} else {
		req.ecc.bytes = mtd->oobsize - 2;
		req.ecc.ooboffset = ATMEL_PMECC_OOBOFFSET_AUTO;
	}

	nand->pmecc = atmel_pmecc_create_user(nc->pmecc, &req);
	if (IS_ERR(nand->pmecc))
		return PTR_ERR(nand->pmecc);

	chip->ecc.algo = NAND_ECC_ALGO_BCH;
	chip->ecc.size = req.ecc.sectorsize;
	chip->ecc.bytes = req.ecc.bytes / req.ecc.nsectors;
	chip->ecc.strength = req.ecc.strength;

	chip->options |= NAND_NO_SUBPAGE_WRITE;

	mtd_set_ooblayout(mtd, nand_get_large_page_ooblayout());

	return 0;
}

static int atmel_nand_ecc_init(struct nand_chip *chip)
{
	struct atmel_nand_controller *nc;
	int ret;

	nc = to_nand_controller(chip->controller);

	switch (chip->ecc.engine_type) {
	case NAND_ECC_ENGINE_TYPE_NONE:
	case NAND_ECC_ENGINE_TYPE_SOFT:
		/*
		 * Nothing to do, the core will initialize everything for us.
		 */
		break;

	case NAND_ECC_ENGINE_TYPE_ON_HOST:
		ret = atmel_nand_pmecc_init(chip);
		if (ret)
			return ret;

		chip->ecc.read_page = atmel_nand_pmecc_read_page;
		chip->ecc.write_page = atmel_nand_pmecc_write_page;
		chip->ecc.read_page_raw = atmel_nand_pmecc_read_page_raw;
		chip->ecc.write_page_raw = atmel_nand_pmecc_write_page_raw;
		break;

	default:
		/* Other modes are not supported. */
		dev_err(nc->dev, "Unsupported ECC mode: %d\n",
			chip->ecc.engine_type);
		return -ENOTSUPP;
	}

	return 0;
}

static int atmel_hsmc_nand_ecc_init(struct nand_chip *chip)
{
	int ret;

	ret = atmel_nand_ecc_init(chip);
	if (ret)
		return ret;

	if (chip->ecc.engine_type != NAND_ECC_ENGINE_TYPE_ON_HOST)
		return 0;

	/* Adjust the ECC operations for the HSMC IP. */
	chip->ecc.read_page = atmel_hsmc_nand_pmecc_read_page;
	chip->ecc.write_page = atmel_hsmc_nand_pmecc_write_page;
	chip->ecc.read_page_raw = atmel_hsmc_nand_pmecc_read_page_raw;
	chip->ecc.write_page_raw = atmel_hsmc_nand_pmecc_write_page_raw;

	return 0;
}

static int atmel_smc_nand_prepare_smcconf(struct atmel_nand *nand,
					const struct nand_interface_config *conf,
					struct atmel_smc_cs_conf *smcconf)
{
	u32 ncycles, totalcycles, timeps, mckperiodps;
	struct atmel_nand_controller *nc;
	int ret;

	nc = to_nand_controller(nand->base.controller);

	/* DDR interface not supported. */
	if (!nand_interface_is_sdr(conf))
		return -ENOTSUPP;

	/*
	 * tRC < 30ns implies EDO mode. This controller does not support this
	 * mode.
	 */
	if (conf->timings.sdr.tRC_min < 30000)
		return -ENOTSUPP;

	atmel_smc_cs_conf_init(smcconf);

	mckperiodps = NSEC_PER_SEC / clk_get_rate(nc->mck);
	mckperiodps *= 1000;

	/*
	 * Set write pulse timing. This one is easy to extract:
	 *
	 * NWE_PULSE = tWP
	 */
	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWP_min, mckperiodps);
	totalcycles = ncycles;
	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NWE_SHIFT,
					  ncycles);
	if (ret)
		return ret;

	/*
	 * The write setup timing depends on the operation done on the NAND.
	 * All operations goes through the same data bus, but the operation
	 * type depends on the address we are writing to (ALE/CLE address
	 * lines).
	 * Since we have no way to differentiate the different operations at
	 * the SMC level, we must consider the worst case (the biggest setup
	 * time among all operation types):
	 *
	 * NWE_SETUP = max(tCLS, tCS, tALS, tDS) - NWE_PULSE
	 */
	timeps = max3(conf->timings.sdr.tCLS_min, conf->timings.sdr.tCS_min,
		      conf->timings.sdr.tALS_min);
	timeps = max(timeps, conf->timings.sdr.tDS_min);
	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
	ncycles = ncycles > totalcycles ? ncycles - totalcycles : 0;
	totalcycles += ncycles;
	ret = atmel_smc_cs_conf_set_setup(smcconf, ATMEL_SMC_NWE_SHIFT,
					  ncycles);
	if (ret)
		return ret;

	/*
	 * As for the write setup timing, the write hold timing depends on the
	 * operation done on the NAND:
	 *
	 * NWE_HOLD = max(tCLH, tCH, tALH, tDH, tWH)
	 */
	timeps = max3(conf->timings.sdr.tCLH_min, conf->timings.sdr.tCH_min,
		      conf->timings.sdr.tALH_min);
	timeps = max3(timeps, conf->timings.sdr.tDH_min,
		      conf->timings.sdr.tWH_min);
	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
	totalcycles += ncycles;

	/*
	 * The write cycle timing is directly matching tWC, but is also
	 * dependent on the other timings on the setup and hold timings we
	 * calculated earlier, which gives:
	 *
	 * NWE_CYCLE = max(tWC, NWE_SETUP + NWE_PULSE + NWE_HOLD)
	 */
	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWC_min, mckperiodps);
	ncycles = max(totalcycles, ncycles);
	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NWE_SHIFT,
					  ncycles);
	if (ret)
		return ret;

	/*
	 * We don't want the CS line to be toggled between each byte/word
	 * transfer to the NAND. The only way to guarantee that is to have the
	 * NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
	 *
	 * NCS_WR_PULSE = NWE_CYCLE
	 */
	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_WR_SHIFT,
					  ncycles);
	if (ret)
		return ret;

	/*
	 * As for the write setup timing, the read hold timing depends on the
	 * operation done on the NAND:
	 *
	 * NRD_HOLD = max(tREH, tRHOH)
	 */
	timeps = max(conf->timings.sdr.tREH_min, conf->timings.sdr.tRHOH_min);
	ncycles = DIV_ROUND_UP(timeps, mckperiodps);
	totalcycles = ncycles;

	/*
	 * TDF = tRHZ - NRD_HOLD
	 */
	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRHZ_max, mckperiodps);
	ncycles -= totalcycles;

	/*
	 * In ONFI 4.0 specs, tRHZ has been increased to support EDO NANDs and
	 * we might end up with a config that does not fit in the TDF field.
	 * Just take the max value in this case and hope that the NAND is more
	 * tolerant than advertised.
	 */
	if (ncycles > ATMEL_SMC_MODE_TDF_MAX)
		ncycles = ATMEL_SMC_MODE_TDF_MAX;
	else if (ncycles < ATMEL_SMC_MODE_TDF_MIN)
		ncycles = ATMEL_SMC_MODE_TDF_MIN;

	smcconf->mode |= ATMEL_SMC_MODE_TDF(ncycles) |
			 ATMEL_SMC_MODE_TDFMODE_OPTIMIZED;

	/*
	 * Read pulse timing directly matches tRP:
	 *
	 * NRD_PULSE = tRP
	 */
	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRP_min, mckperiodps);
	totalcycles += ncycles;
	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NRD_SHIFT,
					  ncycles);
	if (ret)
		return ret;

	/*
	 * The read cycle timing is directly matching tRC, but is also
	 * dependent on the setup and hold timings we calculated earlier,
	 * which gives:
	 *
	 * NRD_CYCLE = max(tRC, NRD_PULSE + NRD_HOLD)
	 *
	 * NRD_SETUP is always 0.
	 */
	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRC_min, mckperiodps);
	ncycles = max(totalcycles, ncycles);
	ret = atmel_smc_cs_conf_set_cycle(smcconf, ATMEL_SMC_NRD_SHIFT,
					  ncycles);
	if (ret)
		return ret;

	/*
	 * We don't want the CS line to be toggled between each byte/word
	 * transfer from the NAND. The only way to guarantee that is to have
	 * the NCS_{WR,RD}_{SETUP,HOLD} timings set to 0, which in turn means:
	 *
	 * NCS_RD_PULSE = NRD_CYCLE
	 */
	ret = atmel_smc_cs_conf_set_pulse(smcconf, ATMEL_SMC_NCS_RD_SHIFT,
					  ncycles);
	if (ret)
		return ret;

	/* Txxx timings are directly matching tXXX ones. */
	ncycles = DIV_ROUND_UP(conf->timings.sdr.tCLR_min, mckperiodps);
	ret = atmel_smc_cs_conf_set_timing(smcconf,
					   ATMEL_HSMC_TIMINGS_TCLR_SHIFT,
					   ncycles);
	if (ret)
		return ret;

	ncycles = DIV_ROUND_UP(conf->timings.sdr.tADL_min, mckperiodps);
	ret = atmel_smc_cs_conf_set_timing(smcconf,
					   ATMEL_HSMC_TIMINGS_TADL_SHIFT,
					   ncycles);
	/*
	 * Version 4 of the ONFI spec mandates that tADL be at least 400
	 * nanoseconds, but, depending on the master clock rate, 400 ns may not
	 * fit in the tADL field of the SMC reg. We need to relax the check and
	 * accept the -ERANGE return code.
	 *
	 * Note that previous versions of the ONFI spec had a lower tADL_min
	 * (100 or 200 ns). It's not clear why this timing constraint got
	 * increased but it seems most NANDs are fine with values lower than
	 * 400ns, so we should be safe.
	 */
	if (ret && ret != -ERANGE)
		return ret;

	ncycles = DIV_ROUND_UP(conf->timings.sdr.tAR_min, mckperiodps);
	ret = atmel_smc_cs_conf_set_timing(smcconf,
					   ATMEL_HSMC_TIMINGS_TAR_SHIFT,
					   ncycles);
	if (ret)
		return ret;

	ncycles = DIV_ROUND_UP(conf->timings.sdr.tRR_min, mckperiodps);
	ret = atmel_smc_cs_conf_set_timing(smcconf,
					   ATMEL_HSMC_TIMINGS_TRR_SHIFT,
					   ncycles);
	if (ret)
		return ret;

	ncycles = DIV_ROUND_UP(conf->timings.sdr.tWB_max, mckperiodps);
	ret = atmel_smc_cs_conf_set_timing(smcconf,
					   ATMEL_HSMC_TIMINGS_TWB_SHIFT,
					   ncycles);
	if (ret)
		return ret;

	/* Attach the CS line to the NFC logic. */
	smcconf->timings |= ATMEL_HSMC_TIMINGS_NFSEL;

	/* Set the appropriate data bus width. */
	if (nand->base.options & NAND_BUSWIDTH_16)
		smcconf->mode |= ATMEL_SMC_MODE_DBW_16;

	/* Operate in NRD/NWE READ/WRITEMODE. */
	smcconf->mode |= ATMEL_SMC_MODE_READMODE_NRD |
			 ATMEL_SMC_MODE_WRITEMODE_NWE;

	return 0;
}

static int atmel_smc_nand_setup_interface(struct atmel_nand *nand,
					int csline,
					const struct nand_interface_config *conf)
{
	struct atmel_nand_controller *nc;
	struct atmel_smc_cs_conf smcconf;
	struct atmel_nand_cs *cs;
	int ret;

	nc = to_nand_controller(nand->base.controller);

	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
	if (ret)
		return ret;

	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	cs = &nand->cs[csline];
	cs->smcconf = smcconf;
	atmel_smc_cs_conf_apply(nc->smc, cs->id, &cs->smcconf);

	return 0;
}

static int atmel_hsmc_nand_setup_interface(struct atmel_nand *nand,
					int csline,
					const struct nand_interface_config *conf)
{
	struct atmel_hsmc_nand_controller *nc;
	struct atmel_smc_cs_conf smcconf;
	struct atmel_nand_cs *cs;
	int ret;

	nc = to_hsmc_nand_controller(nand->base.controller);

	ret = atmel_smc_nand_prepare_smcconf(nand, conf, &smcconf);
	if (ret)
		return ret;

	if (csline == NAND_DATA_IFACE_CHECK_ONLY)
		return 0;

	cs = &nand->cs[csline];
	cs->smcconf = smcconf;

	if (cs->rb.type == ATMEL_NAND_NATIVE_RB)
		cs->smcconf.timings |= ATMEL_HSMC_TIMINGS_RBNSEL(cs->rb.id);

	atmel_hsmc_cs_conf_apply(nc->base.smc, nc->hsmc_layout, cs->id,
				 &cs->smcconf);

	return 0;
}

static int atmel_nand_setup_interface(struct nand_chip *chip, int csline,
				      const struct nand_interface_config *conf)
{
	struct atmel_nand *nand = to_atmel_nand(chip);
	const struct nand_sdr_timings *sdr;
	struct atmel_nand_controller *nc;

	sdr = nand_get_sdr_timings(conf);
	if (IS_ERR(sdr))
		return PTR_ERR(sdr);

	nc = to_nand_controller(nand->base.controller);

	if (csline >= nand->numcs ||
	    (csline < 0 && csline != NAND_DATA_IFACE_CHECK_ONLY))
		return -EINVAL;

	return nc->caps->ops->setup_interface(nand, csline, conf);
}

static int atmel_nand_exec_op(struct nand_chip *chip,
			      const struct nand_operation *op,
			      bool check_only)
{
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct atmel_nand_controller *nc;

	nc = to_nand_controller(nand->base.controller);

	return nc->caps->ops->exec_op(nand, op, check_only);
}

static void atmel_nand_init(struct atmel_nand_controller *nc,
			    struct atmel_nand *nand)
{
	struct nand_chip *chip = &nand->base;
	struct mtd_info *mtd = nand_to_mtd(chip);

	mtd->dev.parent = nc->dev;
	nand->base.controller = &nc->base;

	if (!nc->mck || !nc->caps->ops->setup_interface)
		chip->options |= NAND_KEEP_TIMINGS;

	/*
	 * Use a bounce buffer when the buffer passed by the MTD user is not
	 * suitable for DMA.
	 */
	if (nc->dmac)
		chip->options |= NAND_USES_DMA;

	/* Default to HW ECC if pmecc is available. */
	if (nc->pmecc)
		chip->ecc.engine_type = NAND_ECC_ENGINE_TYPE_ON_HOST;
}

static void atmel_smc_nand_init(struct atmel_nand_controller *nc,
				struct atmel_nand *nand)
{
	struct nand_chip *chip = &nand->base;
	struct atmel_smc_nand_controller *smc_nc;
	int i;

	atmel_nand_init(nc, nand);

	smc_nc = to_smc_nand_controller(chip->controller);
	if (!smc_nc->ebi_csa_regmap)
		return;

	/* Attach the CS to the NAND Flash logic. */
	for (i = 0; i < nand->numcs; i++)
		regmap_update_bits(smc_nc->ebi_csa_regmap,
				   smc_nc->ebi_csa->offs,
				   BIT(nand->cs[i].id), BIT(nand->cs[i].id));

	if (smc_nc->ebi_csa->nfd0_on_d16)
		regmap_update_bits(smc_nc->ebi_csa_regmap,
				   smc_nc->ebi_csa->offs,
				   smc_nc->ebi_csa->nfd0_on_d16,
				   smc_nc->ebi_csa->nfd0_on_d16);
}

static int atmel_nand_controller_remove_nand(struct atmel_nand *nand)
{
	struct nand_chip *chip = &nand->base;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	ret = mtd_device_unregister(mtd);
	if (ret)
		return ret;

	nand_cleanup(chip);
	list_del(&nand->node);

	return 0;
}

static struct atmel_nand *atmel_nand_create(struct atmel_nand_controller *nc,
					    struct device_node *np,
					    int reg_cells)
{
	struct atmel_nand *nand;
	struct gpio_desc *gpio;
	int numcs, ret, i;

	numcs = of_property_count_elems_of_size(np, "reg",
						reg_cells * sizeof(u32));
	if (numcs < 1) {
		dev_err(nc->dev, "Missing or invalid reg property\n");
		return ERR_PTR(-EINVAL);
	}

	nand = devm_kzalloc(nc->dev, struct_size(nand, cs, numcs), GFP_KERNEL);
	if (!nand)
		return ERR_PTR(-ENOMEM);

	nand->numcs = numcs;

	gpio = devm_fwnode_gpiod_get(nc->dev, of_fwnode_handle(np),
				     "det", GPIOD_IN, "nand-det");
	if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
		dev_err(nc->dev,
			"Failed to get detect gpio (err = %ld)\n",
			PTR_ERR(gpio));
		return ERR_CAST(gpio);
	}

	if (!IS_ERR(gpio))
		nand->cdgpio = gpio;

	for (i = 0; i < numcs; i++) {
		struct resource res;
		u32 val;

		ret = of_address_to_resource(np, 0, &res);
		if (ret) {
			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
				ret);
			return ERR_PTR(ret);
		}

		ret = of_property_read_u32_index(np, "reg", i * reg_cells,
						 &val);
		if (ret) {
			dev_err(nc->dev, "Invalid reg property (err = %d)\n",
				ret);
			return ERR_PTR(ret);
		}

		nand->cs[i].id = val;

		nand->cs[i].io.dma = res.start;
		nand->cs[i].io.virt = devm_ioremap_resource(nc->dev, &res);
		if (IS_ERR(nand->cs[i].io.virt))
			return ERR_CAST(nand->cs[i].io.virt);

		if (!of_property_read_u32(np, "atmel,rb", &val)) {
			if (val > ATMEL_NFC_MAX_RB_ID)
				return ERR_PTR(-EINVAL);

			nand->cs[i].rb.type = ATMEL_NAND_NATIVE_RB;
			nand->cs[i].rb.id = val;
		} else {
			gpio = devm_fwnode_gpiod_get_index(nc->dev,
							   of_fwnode_handle(np),
							   "rb", i, GPIOD_IN,
							   "nand-rb");
			if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
				dev_err(nc->dev,
					"Failed to get R/B gpio (err = %ld)\n",
					PTR_ERR(gpio));
				return ERR_CAST(gpio);
			}

			if (!IS_ERR(gpio)) {
				nand->cs[i].rb.type = ATMEL_NAND_GPIO_RB;
				nand->cs[i].rb.gpio = gpio;
			}
		}

		gpio = devm_fwnode_gpiod_get_index(nc->dev,
						   of_fwnode_handle(np),
						   "cs", i, GPIOD_OUT_HIGH,
						   "nand-cs");
		if (IS_ERR(gpio) && PTR_ERR(gpio) != -ENOENT) {
			dev_err(nc->dev,
				"Failed to get CS gpio (err = %ld)\n",
				PTR_ERR(gpio));
			return ERR_CAST(gpio);
		}

		if (!IS_ERR(gpio))
			nand->cs[i].csgpio = gpio;
	}

	nand_set_flash_node(&nand->base, np);

	return nand;
}

static int
atmel_nand_controller_add_nand(struct atmel_nand_controller *nc,
			       struct atmel_nand *nand)
{
	struct nand_chip *chip = &nand->base;
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	/* No card inserted, skip this NAND. */
	if (nand->cdgpio && gpiod_get_value(nand->cdgpio)) {
		dev_info(nc->dev, "No SmartMedia card inserted.\n");
		return 0;
	}

	nc->caps->ops->nand_init(nc, nand);

	ret = nand_scan(chip, nand->numcs);
	if (ret) {
		dev_err(nc->dev, "NAND scan failed: %d\n", ret);
		return ret;
	}

	ret = mtd_device_register(mtd, NULL, 0);
	if (ret) {
		dev_err(nc->dev, "Failed to register mtd device: %d\n", ret);
		nand_cleanup(chip);
		return ret;
	}

	list_add_tail(&nand->node, &nc->chips);

	return 0;
}

static int
atmel_nand_controller_remove_nands(struct atmel_nand_controller *nc)
{
	struct atmel_nand *nand, *tmp;
	int ret;

	list_for_each_entry_safe(nand, tmp, &nc->chips, node) {
		ret = atmel_nand_controller_remove_nand(nand);
		if (ret)
			return ret;
	}

	return 0;
}

static int
atmel_nand_controller_legacy_add_nands(struct atmel_nand_controller *nc)
{
	struct device *dev = nc->dev;
	struct platform_device *pdev = to_platform_device(dev);
	struct atmel_nand *nand;
	struct gpio_desc *gpio;
	struct resource *res;

	/*
	 * Legacy bindings only allow connecting a single NAND with a unique CS
	 * line to the controller.
	 */
	nand = devm_kzalloc(nc->dev, sizeof(*nand) + sizeof(*nand->cs),
			    GFP_KERNEL);
	if (!nand)
		return -ENOMEM;

	nand->numcs = 1;

	nand->cs[0].io.virt = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
	if (IS_ERR(nand->cs[0].io.virt))
		return PTR_ERR(nand->cs[0].io.virt);

	nand->cs[0].io.dma = res->start;

	/*
	 * The old driver was hardcoding the CS id to 3 for all sama5
	 * controllers. Since this id is only meaningful for the sama5
	 * controller we can safely assign this id to 3 no matter the
	 * controller.
	 * If one wants to connect a NAND to a different CS line, he will
	 * have to use the new bindings.
	 */
	nand->cs[0].id = 3;

	/* R/B GPIO. */
	gpio = devm_gpiod_get_index_optional(dev, NULL, 0,  GPIOD_IN);
	if (IS_ERR(gpio)) {
		dev_err(dev, "Failed to get R/B gpio (err = %ld)\n",
			PTR_ERR(gpio));
		return PTR_ERR(gpio);
	}

	if (gpio) {
		nand->cs[0].rb.type = ATMEL_NAND_GPIO_RB;
		nand->cs[0].rb.gpio = gpio;
	}

	/* CS GPIO. */
	gpio = devm_gpiod_get_index_optional(dev, NULL, 1, GPIOD_OUT_HIGH);
	if (IS_ERR(gpio)) {
		dev_err(dev, "Failed to get CS gpio (err = %ld)\n",
			PTR_ERR(gpio));
		return PTR_ERR(gpio);
	}

	nand->cs[0].csgpio = gpio;

	/* Card detect GPIO. */
	gpio = devm_gpiod_get_index_optional(nc->dev, NULL, 2, GPIOD_IN);
	if (IS_ERR(gpio)) {
		dev_err(dev,
			"Failed to get detect gpio (err = %ld)\n",
			PTR_ERR(gpio));
		return PTR_ERR(gpio);
	}

	nand->cdgpio = gpio;

	nand_set_flash_node(&nand->base, nc->dev->of_node);

	return atmel_nand_controller_add_nand(nc, nand);
}

static int atmel_nand_controller_add_nands(struct atmel_nand_controller *nc)
{
	struct device_node *np, *nand_np;
	struct device *dev = nc->dev;
	int ret, reg_cells;
	u32 val;

	/* We do not retrieve the SMC syscon when parsing old DTs. */
	if (nc->caps->legacy_of_bindings)
		return atmel_nand_controller_legacy_add_nands(nc);

	np = dev->of_node;

	ret = of_property_read_u32(np, "#address-cells", &val);
	if (ret) {
		dev_err(dev, "missing #address-cells property\n");
		return ret;
	}

	reg_cells = val;

	ret = of_property_read_u32(np, "#size-cells", &val);
	if (ret) {
		dev_err(dev, "missing #size-cells property\n");
		return ret;
	}

	reg_cells += val;

	for_each_child_of_node(np, nand_np) {
		struct atmel_nand *nand;

		nand = atmel_nand_create(nc, nand_np, reg_cells);
		if (IS_ERR(nand)) {
			ret = PTR_ERR(nand);
			goto err;
		}

		ret = atmel_nand_controller_add_nand(nc, nand);
		if (ret)
			goto err;
	}

	return 0;

err:
	atmel_nand_controller_remove_nands(nc);

	return ret;
}

static void atmel_nand_controller_cleanup(struct atmel_nand_controller *nc)
{
	if (nc->dmac)
		dma_release_channel(nc->dmac);

	clk_put(nc->mck);
}

static const struct atmel_smc_nand_ebi_csa_cfg at91sam9260_ebi_csa = {
	.offs = AT91SAM9260_MATRIX_EBICSA,
};

static const struct atmel_smc_nand_ebi_csa_cfg at91sam9261_ebi_csa = {
	.offs = AT91SAM9261_MATRIX_EBICSA,
};

static const struct atmel_smc_nand_ebi_csa_cfg at91sam9263_ebi_csa = {
	.offs = AT91SAM9263_MATRIX_EBI0CSA,
};

static const struct atmel_smc_nand_ebi_csa_cfg at91sam9rl_ebi_csa = {
	.offs = AT91SAM9RL_MATRIX_EBICSA,
};

static const struct atmel_smc_nand_ebi_csa_cfg at91sam9g45_ebi_csa = {
	.offs = AT91SAM9G45_MATRIX_EBICSA,
};

static const struct atmel_smc_nand_ebi_csa_cfg at91sam9n12_ebi_csa = {
	.offs = AT91SAM9N12_MATRIX_EBICSA,
};

static const struct atmel_smc_nand_ebi_csa_cfg at91sam9x5_ebi_csa = {
	.offs = AT91SAM9X5_MATRIX_EBICSA,
};

static const struct atmel_smc_nand_ebi_csa_cfg sam9x60_ebi_csa = {
	.offs = AT91_SFR_CCFG_EBICSA,
	.nfd0_on_d16 = AT91_SFR_CCFG_NFD0_ON_D16,
};

static const struct of_device_id __maybe_unused atmel_ebi_csa_regmap_of_ids[] = {
	{
		.compatible = "atmel,at91sam9260-matrix",
		.data = &at91sam9260_ebi_csa,
	},
	{
		.compatible = "atmel,at91sam9261-matrix",
		.data = &at91sam9261_ebi_csa,
	},
	{
		.compatible = "atmel,at91sam9263-matrix",
		.data = &at91sam9263_ebi_csa,
	},
	{
		.compatible = "atmel,at91sam9rl-matrix",
		.data = &at91sam9rl_ebi_csa,
	},
	{
		.compatible = "atmel,at91sam9g45-matrix",
		.data = &at91sam9g45_ebi_csa,
	},
	{
		.compatible = "atmel,at91sam9n12-matrix",
		.data = &at91sam9n12_ebi_csa,
	},
	{
		.compatible = "atmel,at91sam9x5-matrix",
		.data = &at91sam9x5_ebi_csa,
	},
	{
		.compatible = "microchip,sam9x60-sfr",
		.data = &sam9x60_ebi_csa,
	},
	{ /* sentinel */ },
};

static int atmel_nand_attach_chip(struct nand_chip *chip)
{
	struct atmel_nand_controller *nc = to_nand_controller(chip->controller);
	struct atmel_nand *nand = to_atmel_nand(chip);
	struct mtd_info *mtd = nand_to_mtd(chip);
	int ret;

	ret = nc->caps->ops->ecc_init(chip);
	if (ret)
		return ret;

	if (nc->caps->legacy_of_bindings || !nc->dev->of_node) {
		/*
		 * We keep the MTD name unchanged to avoid breaking platforms
		 * where the MTD cmdline parser is used and the bootloader
		 * has not been updated to use the new naming scheme.
		 */
		mtd->name = "atmel_nand";
	} else if (!mtd->name) {
		/*
		 * If the new bindings are used and the bootloader has not been
		 * updated to pass a new mtdparts parameter on the cmdline, you
		 * should define the following property in your nand node:
		 *
		 *	label = "atmel_nand";
		 *
		 * This way, mtd->name will be set by the core when
		 * nand_set_flash_node() is called.
		 */
		mtd->name = devm_kasprintf(nc->dev, GFP_KERNEL,
					   "%s:nand.%d", dev_name(nc->dev),
					   nand->cs[0].id);
		if (!mtd->name) {
			dev_err(nc->dev, "Failed to allocate mtd->name\n");
			return -ENOMEM;
		}
	}

	return 0;
}

static const struct nand_controller_ops atmel_nand_controller_ops = {
	.attach_chip = atmel_nand_attach_chip,
	.setup_interface = atmel_nand_setup_interface,
	.exec_op = atmel_nand_exec_op,
};

static int atmel_nand_controller_init(struct atmel_nand_controller *nc,
				struct platform_device *pdev,
				const struct atmel_nand_controller_caps *caps)
{
	struct device *dev = &pdev->dev;
	struct device_node *np = dev->of_node;
	int ret;

	nand_controller_init(&nc->base);
	nc->base.ops = &atmel_nand_controller_ops;
	INIT_LIST_HEAD(&nc->chips);
	nc->dev = dev;
	nc->caps = caps;

	platform_set_drvdata(pdev, nc);

	nc->pmecc = devm_atmel_pmecc_get(dev);
	if (IS_ERR(nc->pmecc))
		return dev_err_probe(dev, PTR_ERR(nc->pmecc),
				     "Could not get PMECC object\n");

	if (nc->caps->has_dma && !atmel_nand_avoid_dma) {
		dma_cap_mask_t mask;

		dma_cap_zero(mask);
		dma_cap_set(DMA_MEMCPY, mask);

		nc->dmac = dma_request_channel(mask, NULL, NULL);
		if (nc->dmac)
			dev_info(nc->dev, "using %s for DMA transfers\n",
				 dma_chan_name(nc->dmac));
		else
			dev_err(nc->dev, "Failed to request DMA channel\n");
	}

	/* We do not retrieve the SMC syscon when parsing old DTs. */
	if (nc->caps->legacy_of_bindings)
		return 0;

	nc->mck = of_clk_get(dev->parent->of_node, 0);
	if (IS_ERR(nc->mck)) {
		dev_err(dev, "Failed to retrieve MCK clk\n");
		ret = PTR_ERR(nc->mck);
		goto out_release_dma;
	}

	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
	if (!np) {
		dev_err(dev, "Missing or invalid atmel,smc property\n");
		ret = -EINVAL;
		goto out_release_dma;
	}

	nc->smc = syscon_node_to_regmap(np);
	of_node_put(np);
	if (IS_ERR(nc->smc)) {
		ret = PTR_ERR(nc->smc);
		dev_err(dev, "Could not get SMC regmap (err = %d)\n", ret);
		goto out_release_dma;
	}

	return 0;

out_release_dma:
	if (nc->dmac)
		dma_release_channel(nc->dmac);

	return ret;
}

static int
atmel_smc_nand_controller_init(struct atmel_smc_nand_controller *nc)
{
	struct device *dev = nc->base.dev;
	const struct of_device_id *match;
	struct device_node *np;
	int ret;

	/* We do not retrieve the EBICSA regmap when parsing old DTs. */
	if (nc->base.caps->legacy_of_bindings)
		return 0;

	np = of_parse_phandle(dev->parent->of_node,
			      nc->base.caps->ebi_csa_regmap_name, 0);
	if (!np)
		return 0;

	match = of_match_node(atmel_ebi_csa_regmap_of_ids, np);
	if (!match) {
		of_node_put(np);
		return 0;
	}

	nc->ebi_csa_regmap = syscon_node_to_regmap(np);
	of_node_put(np);
	if (IS_ERR(nc->ebi_csa_regmap)) {
		ret = PTR_ERR(nc->ebi_csa_regmap);
		dev_err(dev, "Could not get EBICSA regmap (err = %d)\n", ret);
		return ret;
	}

	nc->ebi_csa = (struct atmel_smc_nand_ebi_csa_cfg *)match->data;

	/*
	 * The at91sam9263 has 2 EBIs, if the NAND controller is under EBI1
	 * add 4 to ->ebi_csa->offs.
	 */
	if (of_device_is_compatible(dev->parent->of_node,
				    "atmel,at91sam9263-ebi1"))
		nc->ebi_csa->offs += 4;

	return 0;
}

static int
atmel_hsmc_nand_controller_legacy_init(struct atmel_hsmc_nand_controller *nc)
{
	struct regmap_config regmap_conf = {
		.reg_bits = 32,
		.val_bits = 32,
		.reg_stride = 4,
	};

	struct device *dev = nc->base.dev;
	struct device_node *nand_np, *nfc_np;
	void __iomem *iomem;
	struct resource res;
	int ret;

	nand_np = dev->of_node;
	nfc_np = of_get_compatible_child(dev->of_node, "atmel,sama5d3-nfc");
	if (!nfc_np) {
		dev_err(dev, "Could not find device node for sama5d3-nfc\n");
		return -ENODEV;
	}

	nc->clk = of_clk_get(nfc_np, 0);
	if (IS_ERR(nc->clk)) {
		ret = PTR_ERR(nc->clk);
		dev_err(dev, "Failed to retrieve HSMC clock (err = %d)\n",
			ret);
		goto out;
	}

	ret = clk_prepare_enable(nc->clk);
	if (ret) {
		dev_err(dev, "Failed to enable the HSMC clock (err = %d)\n",
			ret);
		goto out;
	}

	nc->irq = of_irq_get(nand_np, 0);
	if (nc->irq <= 0) {
		ret = nc->irq ?: -ENXIO;
		if (ret != -EPROBE_DEFER)
			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
				ret);
		goto out;
	}

	ret = of_address_to_resource(nfc_np, 0, &res);
	if (ret) {
		dev_err(dev, "Invalid or missing NFC IO resource (err = %d)\n",
			ret);
		goto out;
	}

	iomem = devm_ioremap_resource(dev, &res);
	if (IS_ERR(iomem)) {
		ret = PTR_ERR(iomem);
		goto out;
	}

	regmap_conf.name = "nfc-io";
	regmap_conf.max_register = resource_size(&res) - 4;
	nc->io = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
	if (IS_ERR(nc->io)) {
		ret = PTR_ERR(nc->io);
		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
			ret);
		goto out;
	}

	ret = of_address_to_resource(nfc_np, 1, &res);
	if (ret) {
		dev_err(dev, "Invalid or missing HSMC resource (err = %d)\n",
			ret);
		goto out;
	}

	iomem = devm_ioremap_resource(dev, &res);
	if (IS_ERR(iomem)) {
		ret = PTR_ERR(iomem);
		goto out;
	}

	regmap_conf.name = "smc";
	regmap_conf.max_register = resource_size(&res) - 4;
	nc->base.smc = devm_regmap_init_mmio(dev, iomem, &regmap_conf);
	if (IS_ERR(nc->base.smc)) {
		ret = PTR_ERR(nc->base.smc);
		dev_err(dev, "Could not create NFC IO regmap (err = %d)\n",
			ret);
		goto out;
	}

	ret = of_address_to_resource(nfc_np, 2, &res);
	if (ret) {
		dev_err(dev, "Invalid or missing SRAM resource (err = %d)\n",
			ret);
		goto out;
	}

	nc->sram.virt = devm_ioremap_resource(dev, &res);
	if (IS_ERR(nc->sram.virt)) {
		ret = PTR_ERR(nc->sram.virt);
		goto out;
	}

	nc->sram.dma = res.start;

out:
	of_node_put(nfc_np);

	return ret;
}

static int
atmel_hsmc_nand_controller_init(struct atmel_hsmc_nand_controller *nc)
{
	struct device *dev = nc->base.dev;
	struct device_node *np;
	int ret;

	np = of_parse_phandle(dev->parent->of_node, "atmel,smc", 0);
	if (!np) {
		dev_err(dev, "Missing or invalid atmel,smc property\n");
		return -EINVAL;
	}

	nc->hsmc_layout = atmel_hsmc_get_reg_layout(np);

	nc->irq = of_irq_get(np, 0);
	of_node_put(np);
	if (nc->irq <= 0) {
		ret = nc->irq ?: -ENXIO;
		if (ret != -EPROBE_DEFER)
			dev_err(dev, "Failed to get IRQ number (err = %d)\n",
				ret);
		return ret;
	}

	np = of_parse_phandle(dev->of_node, "atmel,nfc-io", 0);
	if (!np) {
		dev_err(dev, "Missing or invalid atmel,nfc-io property\n");
		return -EINVAL;
	}

	nc->io = syscon_node_to_regmap(np);
	of_node_put(np);
	if (IS_ERR(nc->io)) {
		ret = PTR_ERR(nc->io);
		dev_err(dev, "Could not get NFC IO regmap (err = %d)\n", ret);
		return ret;
	}

	nc->sram.pool = of_gen_pool_get(nc->base.dev->of_node,
					 "atmel,nfc-sram", 0);
	if (!nc->sram.pool) {
		dev_err(nc->base.dev, "Missing SRAM\n");
		return -ENOMEM;
	}

	nc->sram.virt = (void __iomem *)gen_pool_dma_alloc(nc->sram.pool,
							   ATMEL_NFC_SRAM_SIZE,
							   &nc->sram.dma);
	if (!nc->sram.virt) {
		dev_err(nc->base.dev,
			"Could not allocate memory from the NFC SRAM pool\n");
		return -ENOMEM;
	}

	return 0;
}

static int
atmel_hsmc_nand_controller_remove(struct atmel_nand_controller *nc)
{
	struct atmel_hsmc_nand_controller *hsmc_nc;
	int ret;

	ret = atmel_nand_controller_remove_nands(nc);
	if (ret)
		return ret;

	hsmc_nc = container_of(nc, struct atmel_hsmc_nand_controller, base);
	regmap_write(hsmc_nc->base.smc, ATMEL_HSMC_NFC_CTRL,
		     ATMEL_HSMC_NFC_CTRL_DIS);

	if (hsmc_nc->sram.pool)
		gen_pool_free(hsmc_nc->sram.pool,
			      (unsigned long)hsmc_nc->sram.virt,
			      ATMEL_NFC_SRAM_SIZE);

	if (hsmc_nc->clk) {
		clk_disable_unprepare(hsmc_nc->clk);
		clk_put(hsmc_nc->clk);
	}

	atmel_nand_controller_cleanup(nc);

	return 0;
}

static int atmel_hsmc_nand_controller_probe(struct platform_device *pdev,
				const struct atmel_nand_controller_caps *caps)
{
	struct device *dev = &pdev->dev;
	struct atmel_hsmc_nand_controller *nc;
	int ret;

	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
	if (!nc)
		return -ENOMEM;

	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
	if (ret)
		return ret;

	if (caps->legacy_of_bindings)
		ret = atmel_hsmc_nand_controller_legacy_init(nc);
	else
		ret = atmel_hsmc_nand_controller_init(nc);

	if (ret)
		return ret;

	/* Make sure all irqs are masked before registering our IRQ handler. */
	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_IDR, 0xffffffff);
	ret = devm_request_irq(dev, nc->irq, atmel_nfc_interrupt,
			       IRQF_SHARED, "nfc", nc);
	if (ret) {
		dev_err(dev,
			"Could not get register NFC interrupt handler (err = %d)\n",
			ret);
		goto err;
	}

	/* Initial NFC configuration. */
	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CFG,
		     ATMEL_HSMC_NFC_CFG_DTO_MAX);
	regmap_write(nc->base.smc, ATMEL_HSMC_NFC_CTRL,
		     ATMEL_HSMC_NFC_CTRL_EN);

	ret = atmel_nand_controller_add_nands(&nc->base);
	if (ret)
		goto err;

	return 0;

err:
	atmel_hsmc_nand_controller_remove(&nc->base);

	return ret;
}

static const struct atmel_nand_controller_ops atmel_hsmc_nc_ops = {
	.probe = atmel_hsmc_nand_controller_probe,
	.remove = atmel_hsmc_nand_controller_remove,
	.ecc_init = atmel_hsmc_nand_ecc_init,
	.nand_init = atmel_nand_init,
	.setup_interface = atmel_hsmc_nand_setup_interface,
	.exec_op = atmel_hsmc_nand_exec_op,
};

static const struct atmel_nand_controller_caps atmel_sama5_nc_caps = {
	.has_dma = true,
	.ale_offs = BIT(21),
	.cle_offs = BIT(22),
	.ops = &atmel_hsmc_nc_ops,
};

/* Only used to parse old bindings. */
static const struct atmel_nand_controller_caps atmel_sama5_nand_caps = {
	.has_dma = true,
	.ale_offs = BIT(21),
	.cle_offs = BIT(22),
	.ops = &atmel_hsmc_nc_ops,
	.legacy_of_bindings = true,
};

static int atmel_smc_nand_controller_probe(struct platform_device *pdev,
				const struct atmel_nand_controller_caps *caps)
{
	struct device *dev = &pdev->dev;
	struct atmel_smc_nand_controller *nc;
	int ret;

	nc = devm_kzalloc(dev, sizeof(*nc), GFP_KERNEL);
	if (!nc)
		return -ENOMEM;

	ret = atmel_nand_controller_init(&nc->base, pdev, caps);
	if (ret)
		return ret;

	ret = atmel_smc_nand_controller_init(nc);
	if (ret)
		return ret;

	return atmel_nand_controller_add_nands(&nc->base);
}

static int
atmel_smc_nand_controller_remove(struct atmel_nand_controller *nc)
{
	int ret;

	ret = atmel_nand_controller_remove_nands(nc);
	if (ret)
		return ret;

	atmel_nand_controller_cleanup(nc);

	return 0;
}

/*
 * The SMC reg layout of at91rm9200 is completely different which prevents us
 * from re-using atmel_smc_nand_setup_interface() for the
 * ->setup_interface() hook.
 * At this point, there's no support for the at91rm9200 SMC IP, so we leave
 * ->setup_interface() unassigned.
 */
static const struct atmel_nand_controller_ops at91rm9200_nc_ops = {
	.probe = atmel_smc_nand_controller_probe,
	.remove = atmel_smc_nand_controller_remove,
	.ecc_init = atmel_nand_ecc_init,
	.nand_init = atmel_smc_nand_init,
	.exec_op = atmel_smc_nand_exec_op,
};

static const struct atmel_nand_controller_caps atmel_rm9200_nc_caps = {
	.ale_offs = BIT(21),
	.cle_offs = BIT(22),
	.ebi_csa_regmap_name = "atmel,matrix",
	.ops = &at91rm9200_nc_ops,
};

static const struct atmel_nand_controller_ops atmel_smc_nc_ops = {
	.probe = atmel_smc_nand_controller_probe,
	.remove = atmel_smc_nand_controller_remove,
	.ecc_init = atmel_nand_ecc_init,
	.nand_init = atmel_smc_nand_init,
	.setup_interface = atmel_smc_nand_setup_interface,
	.exec_op = atmel_smc_nand_exec_op,
};

static const struct atmel_nand_controller_caps atmel_sam9260_nc_caps = {
	.ale_offs = BIT(21),
	.cle_offs = BIT(22),
	.ebi_csa_regmap_name = "atmel,matrix",
	.ops = &atmel_smc_nc_ops,
};

static const struct atmel_nand_controller_caps atmel_sam9261_nc_caps = {
	.ale_offs = BIT(22),
	.cle_offs = BIT(21),
	.ebi_csa_regmap_name = "atmel,matrix",
	.ops = &atmel_smc_nc_ops,
};

static const struct atmel_nand_controller_caps atmel_sam9g45_nc_caps = {
	.has_dma = true,
	.ale_offs = BIT(21),
	.cle_offs = BIT(22),
	.ebi_csa_regmap_name = "atmel,matrix",
	.ops = &atmel_smc_nc_ops,
};

static const struct atmel_nand_controller_caps microchip_sam9x60_nc_caps = {
	.has_dma = true,
	.ale_offs = BIT(21),
	.cle_offs = BIT(22),
	.ebi_csa_regmap_name = "microchip,sfr",
	.ops = &atmel_smc_nc_ops,
};

/* Only used to parse old bindings. */
static const struct atmel_nand_controller_caps atmel_rm9200_nand_caps = {
	.ale_offs = BIT(21),
	.cle_offs = BIT(22),
	.ops = &atmel_smc_nc_ops,
	.legacy_of_bindings = true,
};

static const struct atmel_nand_controller_caps atmel_sam9261_nand_caps = {
	.ale_offs = BIT(22),
	.cle_offs = BIT(21),
	.ops = &atmel_smc_nc_ops,
	.legacy_of_bindings = true,
};

static const struct atmel_nand_controller_caps atmel_sam9g45_nand_caps = {
	.has_dma = true,
	.ale_offs = BIT(21),
	.cle_offs = BIT(22),
	.ops = &atmel_smc_nc_ops,
	.legacy_of_bindings = true,
};

static const struct of_device_id atmel_nand_controller_of_ids[] = {
	{
		.compatible = "atmel,at91rm9200-nand-controller",
		.data = &atmel_rm9200_nc_caps,
	},
	{
		.compatible = "atmel,at91sam9260-nand-controller",
		.data = &atmel_sam9260_nc_caps,
	},
	{
		.compatible = "atmel,at91sam9261-nand-controller",
		.data = &atmel_sam9261_nc_caps,
	},
	{
		.compatible = "atmel,at91sam9g45-nand-controller",
		.data = &atmel_sam9g45_nc_caps,
	},
	{
		.compatible = "atmel,sama5d3-nand-controller",
		.data = &atmel_sama5_nc_caps,
	},
	{
		.compatible = "microchip,sam9x60-nand-controller",
		.data = &microchip_sam9x60_nc_caps,
	},
	/* Support for old/deprecated bindings: */
	{
		.compatible = "atmel,at91rm9200-nand",
		.data = &atmel_rm9200_nand_caps,
	},
	{
		.compatible = "atmel,sama5d4-nand",
		.data = &atmel_rm9200_nand_caps,
	},
	{
		.compatible = "atmel,sama5d2-nand",
		.data = &atmel_rm9200_nand_caps,
	},
	{ /* sentinel */ },
};
MODULE_DEVICE_TABLE(of, atmel_nand_controller_of_ids);

static int atmel_nand_controller_probe(struct platform_device *pdev)
{
	const struct atmel_nand_controller_caps *caps;

	if (pdev->id_entry)
		caps = (void *)pdev->id_entry->driver_data;
	else
		caps = of_device_get_match_data(&pdev->dev);

	if (!caps) {
		dev_err(&pdev->dev, "Could not retrieve NFC caps\n");
		return -EINVAL;
	}

	if (caps->legacy_of_bindings) {
		struct device_node *nfc_node;
		u32 ale_offs = 21;

		/*
		 * If we are parsing legacy DT props and the DT contains a
		 * valid NFC node, forward the request to the sama5 logic.
		 */
		nfc_node = of_get_compatible_child(pdev->dev.of_node,
						   "atmel,sama5d3-nfc");
		if (nfc_node) {
			caps = &atmel_sama5_nand_caps;
			of_node_put(nfc_node);
		}

		/*
		 * Even if the compatible says we are dealing with an
		 * at91rm9200 controller, the atmel,nand-has-dma specify that
		 * this controller supports DMA, which means we are in fact
		 * dealing with an at91sam9g45+ controller.
		 */
		if (!caps->has_dma &&
		    of_property_read_bool(pdev->dev.of_node,
					  "atmel,nand-has-dma"))
			caps = &atmel_sam9g45_nand_caps;

		/*
		 * All SoCs except the at91sam9261 are assigning ALE to A21 and
		 * CLE to A22. If atmel,nand-addr-offset != 21 this means we're
		 * actually dealing with an at91sam9261 controller.
		 */
		of_property_read_u32(pdev->dev.of_node,
				     "atmel,nand-addr-offset", &ale_offs);
		if (ale_offs != 21)
			caps = &atmel_sam9261_nand_caps;
	}

	return caps->ops->probe(pdev, caps);
}

static void atmel_nand_controller_remove(struct platform_device *pdev)
{
	struct atmel_nand_controller *nc = platform_get_drvdata(pdev);

	WARN_ON(nc->caps->ops->remove(nc));
}

static __maybe_unused int atmel_nand_controller_resume(struct device *dev)
{
	struct atmel_nand_controller *nc = dev_get_drvdata(dev);
	struct atmel_nand *nand;

	if (nc->pmecc)
		atmel_pmecc_reset(nc->pmecc);

	list_for_each_entry(nand, &nc->chips, node) {
		int i;

		for (i = 0; i < nand->numcs; i++)
			nand_reset(&nand->base, i);
	}

	return 0;
}

static SIMPLE_DEV_PM_OPS(atmel_nand_controller_pm_ops, NULL,
			 atmel_nand_controller_resume);

static struct platform_driver atmel_nand_controller_driver = {
	.driver = {
		.name = "atmel-nand-controller",
		.of_match_table = atmel_nand_controller_of_ids,
		.pm = &atmel_nand_controller_pm_ops,
	},
	.probe = atmel_nand_controller_probe,
	.remove_new = atmel_nand_controller_remove,
};
module_platform_driver(atmel_nand_controller_driver);

MODULE_LICENSE("GPL");
MODULE_AUTHOR("Boris Brezillon <boris.brezillon@free-electrons.com>");
MODULE_DESCRIPTION("NAND Flash Controller driver for Atmel SoCs");
MODULE_ALIAS("platform:atmel-nand-controller");