summaryrefslogtreecommitdiffstats
path: root/drivers/mtd/spi-nor/macronix.c
blob: 830da21eea08fe4e289eb1d62faccd760b1a05f4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
// SPDX-License-Identifier: GPL-2.0
/*
 * Copyright (C) 2005, Intec Automation Inc.
 * Copyright (C) 2014, Freescale Semiconductor, Inc.
 */

#include <linux/mtd/spi-nor.h>

#include "core.h"

#define MXIC_NOR_OP_RD_CR2	0x71		/* Read configuration register 2 opcode */
#define MXIC_NOR_OP_WR_CR2	0x72		/* Write configuration register 2 opcode */
#define MXIC_NOR_ADDR_CR2_MODE	0x00000000	/* CR2 address for setting spi/sopi/dopi mode */
#define MXIC_NOR_ADDR_CR2_DC	0x00000300	/* CR2 address for setting dummy cycles */
#define MXIC_NOR_REG_DOPI_EN	0x2		/* Enable Octal DTR */
#define MXIC_NOR_REG_SPI_EN	0x0		/* Enable SPI */

/* Convert dummy cycles to bit pattern */
#define MXIC_NOR_REG_DC(p) \
	((20 - (p)) >> 1)

#define MXIC_NOR_WR_CR2(addr, ndata, buf)			\
	SPI_MEM_OP(SPI_MEM_OP_CMD(MXIC_NOR_OP_WR_CR2, 0),	\
		   SPI_MEM_OP_ADDR(4, addr, 0),			\
		   SPI_MEM_OP_NO_DUMMY,				\
		   SPI_MEM_OP_DATA_OUT(ndata, buf, 0))

static int
mx25l25635_post_bfpt_fixups(struct spi_nor *nor,
			    const struct sfdp_parameter_header *bfpt_header,
			    const struct sfdp_bfpt *bfpt)
{
	/*
	 * MX25L25635F supports 4B opcodes but MX25L25635E does not.
	 * Unfortunately, Macronix has re-used the same JEDEC ID for both
	 * variants which prevents us from defining a new entry in the parts
	 * table.
	 * We need a way to differentiate MX25L25635E and MX25L25635F, and it
	 * seems that the F version advertises support for Fast Read 4-4-4 in
	 * its BFPT table.
	 */
	if (bfpt->dwords[SFDP_DWORD(5)] & BFPT_DWORD5_FAST_READ_4_4_4)
		nor->flags |= SNOR_F_4B_OPCODES;

	return 0;
}

static const struct spi_nor_fixups mx25l25635_fixups = {
	.post_bfpt = mx25l25635_post_bfpt_fixups,
};

static const struct flash_info macronix_nor_parts[] = {
	{
		.id = SNOR_ID(0xc2, 0x20, 0x10),
		.name = "mx25l512e",
		.size = SZ_64K,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x12),
		.name = "mx25l2005a",
		.size = SZ_256K,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x13),
		.name = "mx25l4005a",
		.size = SZ_512K,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x14),
		.name = "mx25l8005",
		.size = SZ_1M,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x15),
		.name = "mx25l1606e",
		.size = SZ_2M,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x16),
		.name = "mx25l3205d",
		.size = SZ_4M,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x17),
		.name = "mx25l6405d",
		.size = SZ_8M,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x18),
		.name = "mx25l12805d",
		.size = SZ_16M,
		.flags = SPI_NOR_HAS_LOCK | SPI_NOR_4BIT_BP,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x19),
		.name = "mx25l25635e",
		.size = SZ_32M,
		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
		.fixups = &mx25l25635_fixups
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x1a),
		.name = "mx66l51235f",
		.size = SZ_64M,
		.no_sfdp_flags = SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
		.fixup_flags = SPI_NOR_4B_OPCODES,
	}, {
		.id = SNOR_ID(0xc2, 0x20, 0x1b),
		.name = "mx66l1g45g",
		.size = SZ_128M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
	}, {
		.id = SNOR_ID(0xc2, 0x23, 0x14),
		.name = "mx25v8035f",
		.size = SZ_1M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x32),
		.name = "mx25u2033e",
		.size = SZ_256K,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x33),
		.name = "mx25u4035",
		.size = SZ_512K,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x34),
		.name = "mx25u8035",
		.size = SZ_1M,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x36),
		.name = "mx25u3235f",
		.size = SZ_4M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x37),
		.name = "mx25u6435f",
		.size = SZ_8M,
		.no_sfdp_flags = SECT_4K,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x38),
		.name = "mx25u12835f",
		.size = SZ_16M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x39),
		.name = "mx25u25635f",
		.size = SZ_32M,
		.no_sfdp_flags = SECT_4K,
		.fixup_flags = SPI_NOR_4B_OPCODES,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x3a),
		.name = "mx25u51245g",
		.size = SZ_64M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
		.fixup_flags = SPI_NOR_4B_OPCODES,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x3a),
		.name = "mx66u51235f",
		.size = SZ_64M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
		.fixup_flags = SPI_NOR_4B_OPCODES,
	}, {
		.id = SNOR_ID(0xc2, 0x25, 0x3c),
		.name = "mx66u2g45g",
		.size = SZ_256M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
		.fixup_flags = SPI_NOR_4B_OPCODES,
	}, {
		.id = SNOR_ID(0xc2, 0x26, 0x18),
		.name = "mx25l12855e",
		.size = SZ_16M,
	}, {
		.id = SNOR_ID(0xc2, 0x26, 0x19),
		.name = "mx25l25655e",
		.size = SZ_32M,
	}, {
		.id = SNOR_ID(0xc2, 0x26, 0x1b),
		.name = "mx66l1g55g",
		.size = SZ_128M,
		.no_sfdp_flags = SPI_NOR_QUAD_READ,
	}, {
		.id = SNOR_ID(0xc2, 0x28, 0x15),
		.name = "mx25r1635f",
		.size = SZ_2M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
	}, {
		.id = SNOR_ID(0xc2, 0x28, 0x16),
		.name = "mx25r3235f",
		.size = SZ_4M,
		.no_sfdp_flags = SECT_4K | SPI_NOR_DUAL_READ | SPI_NOR_QUAD_READ,
	}, {
		.id = SNOR_ID(0xc2, 0x81, 0x3a),
		.name = "mx25uw51245g",
		.n_banks = 4,
		.flags = SPI_NOR_RWW,
	}, {
		.id = SNOR_ID(0xc2, 0x9e, 0x16),
		.name = "mx25l3255e",
		.size = SZ_4M,
		.no_sfdp_flags = SECT_4K,
	},
	/*
	 * This spares us of adding new flash entries for flashes that can be
	 * initialized solely based on the SFDP data, but still need the
	 * manufacturer hooks to set parameters that can't be discovered at SFDP
	 * parsing time.
	 */
	{ .id = SNOR_ID(0xc2) }
};

static int macronix_nor_octal_dtr_en(struct spi_nor *nor)
{
	struct spi_mem_op op;
	u8 *buf = nor->bouncebuf, i;
	int ret;

	/* Use dummy cycles which is parse by SFDP and convert to bit pattern. */
	buf[0] = MXIC_NOR_REG_DC(nor->params->reads[SNOR_CMD_READ_8_8_8_DTR].num_wait_states);
	op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_DC, 1, buf);
	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
	if (ret)
		return ret;

	/* Set the octal and DTR enable bits. */
	buf[0] = MXIC_NOR_REG_DOPI_EN;
	op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_MODE, 1, buf);
	ret = spi_nor_write_any_volatile_reg(nor, &op, nor->reg_proto);
	if (ret)
		return ret;

	/* Read flash ID to make sure the switch was successful. */
	ret = spi_nor_read_id(nor, 4, 4, buf, SNOR_PROTO_8_8_8_DTR);
	if (ret) {
		dev_dbg(nor->dev, "error %d reading JEDEC ID after enabling 8D-8D-8D mode\n", ret);
		return ret;
	}

	/* Macronix SPI-NOR flash 8D-8D-8D read ID would get 6 bytes data A-A-B-B-C-C */
	for (i = 0; i < nor->info->id->len; i++)
		if (buf[i * 2] != buf[(i * 2) + 1] || buf[i * 2] != nor->info->id->bytes[i])
			return -EINVAL;

	return 0;
}

static int macronix_nor_octal_dtr_dis(struct spi_nor *nor)
{
	struct spi_mem_op op;
	u8 *buf = nor->bouncebuf;
	int ret;

	/*
	 * The register is 1-byte wide, but 1-byte transactions are not
	 * allowed in 8D-8D-8D mode. Since there is no register at the
	 * next location, just initialize the value to 0 and let the
	 * transaction go on.
	 */
	buf[0] = MXIC_NOR_REG_SPI_EN;
	buf[1] = 0x0;
	op = (struct spi_mem_op)MXIC_NOR_WR_CR2(MXIC_NOR_ADDR_CR2_MODE, 2, buf);
	ret = spi_nor_write_any_volatile_reg(nor, &op, SNOR_PROTO_8_8_8_DTR);
	if (ret)
		return ret;

	/* Read flash ID to make sure the switch was successful. */
	ret = spi_nor_read_id(nor, 0, 0, buf, SNOR_PROTO_1_1_1);
	if (ret) {
		dev_dbg(nor->dev, "error %d reading JEDEC ID after disabling 8D-8D-8D mode\n", ret);
		return ret;
	}

	if (memcmp(buf, nor->info->id->bytes, nor->info->id->len))
		return -EINVAL;

	return 0;
}

static int macronix_nor_set_octal_dtr(struct spi_nor *nor, bool enable)
{
	return enable ? macronix_nor_octal_dtr_en(nor) : macronix_nor_octal_dtr_dis(nor);
}

static void macronix_nor_default_init(struct spi_nor *nor)
{
	nor->params->quad_enable = spi_nor_sr1_bit6_quad_enable;
}

static int macronix_nor_late_init(struct spi_nor *nor)
{
	if (!nor->params->set_4byte_addr_mode)
		nor->params->set_4byte_addr_mode = spi_nor_set_4byte_addr_mode_en4b_ex4b;
	nor->params->set_octal_dtr = macronix_nor_set_octal_dtr;

	return 0;
}

static const struct spi_nor_fixups macronix_nor_fixups = {
	.default_init = macronix_nor_default_init,
	.late_init = macronix_nor_late_init,
};

const struct spi_nor_manufacturer spi_nor_macronix = {
	.name = "macronix",
	.parts = macronix_nor_parts,
	.nparts = ARRAY_SIZE(macronix_nor_parts),
	.fixups = &macronix_nor_fixups,
};