1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
|
// SPDX-License-Identifier: GPL-2.0
/*
* Microchip KSZ8795 switch driver
*
* Copyright (C) 2017 Microchip Technology Inc.
* Tristram Ha <Tristram.Ha@microchip.com>
*/
#include <linux/bitfield.h>
#include <linux/delay.h>
#include <linux/export.h>
#include <linux/gpio.h>
#include <linux/if_vlan.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/platform_data/microchip-ksz.h>
#include <linux/phy.h>
#include <linux/etherdevice.h>
#include <linux/if_bridge.h>
#include <linux/micrel_phy.h>
#include <net/dsa.h>
#include <net/switchdev.h>
#include <linux/phylink.h>
#include "ksz_common.h"
#include "ksz8795_reg.h"
#include "ksz8.h"
static void ksz_cfg(struct ksz_device *dev, u32 addr, u8 bits, bool set)
{
regmap_update_bits(ksz_regmap_8(dev), addr, bits, set ? bits : 0);
}
static void ksz_port_cfg(struct ksz_device *dev, int port, int offset, u8 bits,
bool set)
{
regmap_update_bits(ksz_regmap_8(dev), PORT_CTRL_ADDR(port, offset),
bits, set ? bits : 0);
}
static int ksz8_ind_write8(struct ksz_device *dev, u8 table, u16 addr, u8 data)
{
const u16 *regs;
u16 ctrl_addr;
int ret = 0;
regs = dev->info->regs;
mutex_lock(&dev->alu_mutex);
ctrl_addr = IND_ACC_TABLE(table) | addr;
ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
if (!ret)
ret = ksz_write8(dev, regs[REG_IND_BYTE], data);
mutex_unlock(&dev->alu_mutex);
return ret;
}
int ksz8_reset_switch(struct ksz_device *dev)
{
if (ksz_is_ksz88x3(dev)) {
/* reset switch */
ksz_cfg(dev, KSZ8863_REG_SW_RESET,
KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, true);
ksz_cfg(dev, KSZ8863_REG_SW_RESET,
KSZ8863_GLOBAL_SOFTWARE_RESET | KSZ8863_PCS_RESET, false);
} else {
/* reset switch */
ksz_write8(dev, REG_POWER_MANAGEMENT_1,
SW_SOFTWARE_POWER_DOWN << SW_POWER_MANAGEMENT_MODE_S);
ksz_write8(dev, REG_POWER_MANAGEMENT_1, 0);
}
return 0;
}
static int ksz8863_change_mtu(struct ksz_device *dev, int frame_size)
{
u8 ctrl2 = 0;
if (frame_size <= KSZ8_LEGAL_PACKET_SIZE)
ctrl2 |= KSZ8863_LEGAL_PACKET_ENABLE;
else if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
ctrl2 |= KSZ8863_HUGE_PACKET_ENABLE;
return ksz_rmw8(dev, REG_SW_CTRL_2, KSZ8863_LEGAL_PACKET_ENABLE |
KSZ8863_HUGE_PACKET_ENABLE, ctrl2);
}
static int ksz8795_change_mtu(struct ksz_device *dev, int frame_size)
{
u8 ctrl1 = 0, ctrl2 = 0;
int ret;
if (frame_size > KSZ8_LEGAL_PACKET_SIZE)
ctrl2 |= SW_LEGAL_PACKET_DISABLE;
if (frame_size > KSZ8863_NORMAL_PACKET_SIZE)
ctrl1 |= SW_HUGE_PACKET;
ret = ksz_rmw8(dev, REG_SW_CTRL_1, SW_HUGE_PACKET, ctrl1);
if (ret)
return ret;
return ksz_rmw8(dev, REG_SW_CTRL_2, SW_LEGAL_PACKET_DISABLE, ctrl2);
}
int ksz8_change_mtu(struct ksz_device *dev, int port, int mtu)
{
u16 frame_size;
if (!dsa_is_cpu_port(dev->ds, port))
return 0;
frame_size = mtu + VLAN_ETH_HLEN + ETH_FCS_LEN;
switch (dev->chip_id) {
case KSZ8795_CHIP_ID:
case KSZ8794_CHIP_ID:
case KSZ8765_CHIP_ID:
return ksz8795_change_mtu(dev, frame_size);
case KSZ8830_CHIP_ID:
return ksz8863_change_mtu(dev, frame_size);
}
return -EOPNOTSUPP;
}
static void ksz8795_set_prio_queue(struct ksz_device *dev, int port, int queue)
{
u8 hi, lo;
/* Number of queues can only be 1, 2, or 4. */
switch (queue) {
case 4:
case 3:
queue = PORT_QUEUE_SPLIT_4;
break;
case 2:
queue = PORT_QUEUE_SPLIT_2;
break;
default:
queue = PORT_QUEUE_SPLIT_1;
}
ksz_pread8(dev, port, REG_PORT_CTRL_0, &lo);
ksz_pread8(dev, port, P_DROP_TAG_CTRL, &hi);
lo &= ~PORT_QUEUE_SPLIT_L;
if (queue & PORT_QUEUE_SPLIT_2)
lo |= PORT_QUEUE_SPLIT_L;
hi &= ~PORT_QUEUE_SPLIT_H;
if (queue & PORT_QUEUE_SPLIT_4)
hi |= PORT_QUEUE_SPLIT_H;
ksz_pwrite8(dev, port, REG_PORT_CTRL_0, lo);
ksz_pwrite8(dev, port, P_DROP_TAG_CTRL, hi);
/* Default is port based for egress rate limit. */
if (queue != PORT_QUEUE_SPLIT_1)
ksz_cfg(dev, REG_SW_CTRL_19, SW_OUT_RATE_LIMIT_QUEUE_BASED,
true);
}
void ksz8_r_mib_cnt(struct ksz_device *dev, int port, u16 addr, u64 *cnt)
{
const u32 *masks;
const u16 *regs;
u16 ctrl_addr;
u32 data;
u8 check;
int loop;
masks = dev->info->masks;
regs = dev->info->regs;
ctrl_addr = addr + dev->info->reg_mib_cnt * port;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
/* It is almost guaranteed to always read the valid bit because of
* slow SPI speed.
*/
for (loop = 2; loop > 0; loop--) {
ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
if (check & masks[MIB_COUNTER_VALID]) {
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
if (check & masks[MIB_COUNTER_OVERFLOW])
*cnt += MIB_COUNTER_VALUE + 1;
*cnt += data & MIB_COUNTER_VALUE;
break;
}
}
mutex_unlock(&dev->alu_mutex);
}
static void ksz8795_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
const u32 *masks;
const u16 *regs;
u16 ctrl_addr;
u32 data;
u8 check;
int loop;
masks = dev->info->masks;
regs = dev->info->regs;
addr -= dev->info->reg_mib_cnt;
ctrl_addr = (KSZ8795_MIB_TOTAL_RX_1 - KSZ8795_MIB_TOTAL_RX_0) * port;
ctrl_addr += addr + KSZ8795_MIB_TOTAL_RX_0;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
/* It is almost guaranteed to always read the valid bit because of
* slow SPI speed.
*/
for (loop = 2; loop > 0; loop--) {
ksz_read8(dev, regs[REG_IND_MIB_CHECK], &check);
if (check & masks[MIB_COUNTER_VALID]) {
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
if (addr < 2) {
u64 total;
total = check & MIB_TOTAL_BYTES_H;
total <<= 32;
*cnt += total;
*cnt += data;
if (check & masks[MIB_COUNTER_OVERFLOW]) {
total = MIB_TOTAL_BYTES_H + 1;
total <<= 32;
*cnt += total;
}
} else {
if (check & masks[MIB_COUNTER_OVERFLOW])
*cnt += MIB_PACKET_DROPPED + 1;
*cnt += data & MIB_PACKET_DROPPED;
}
break;
}
}
mutex_unlock(&dev->alu_mutex);
}
static void ksz8863_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
u32 *last = (u32 *)dropped;
const u16 *regs;
u16 ctrl_addr;
u32 data;
u32 cur;
regs = dev->info->regs;
addr -= dev->info->reg_mib_cnt;
ctrl_addr = addr ? KSZ8863_MIB_PACKET_DROPPED_TX_0 :
KSZ8863_MIB_PACKET_DROPPED_RX_0;
ctrl_addr += port;
ctrl_addr |= IND_ACC_TABLE(TABLE_MIB | TABLE_READ);
mutex_lock(&dev->alu_mutex);
ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
ksz_read32(dev, regs[REG_IND_DATA_LO], &data);
mutex_unlock(&dev->alu_mutex);
data &= MIB_PACKET_DROPPED;
cur = last[addr];
if (data != cur) {
last[addr] = data;
if (data < cur)
data += MIB_PACKET_DROPPED + 1;
data -= cur;
*cnt += data;
}
}
void ksz8_r_mib_pkt(struct ksz_device *dev, int port, u16 addr,
u64 *dropped, u64 *cnt)
{
if (ksz_is_ksz88x3(dev))
ksz8863_r_mib_pkt(dev, port, addr, dropped, cnt);
else
ksz8795_r_mib_pkt(dev, port, addr, dropped, cnt);
}
void ksz8_freeze_mib(struct ksz_device *dev, int port, bool freeze)
{
if (ksz_is_ksz88x3(dev))
return;
/* enable the port for flush/freeze function */
if (freeze)
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FREEZE, freeze);
/* disable the port after freeze is done */
if (!freeze)
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
}
void ksz8_port_init_cnt(struct ksz_device *dev, int port)
{
struct ksz_port_mib *mib = &dev->ports[port].mib;
u64 *dropped;
if (!ksz_is_ksz88x3(dev)) {
/* flush all enabled port MIB counters */
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), true);
ksz_cfg(dev, REG_SW_CTRL_6, SW_MIB_COUNTER_FLUSH, true);
ksz_cfg(dev, REG_SW_CTRL_6, BIT(port), false);
}
mib->cnt_ptr = 0;
/* Some ports may not have MIB counters before SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->info->reg_mib_cnt) {
dev->dev_ops->r_mib_cnt(dev, port, mib->cnt_ptr,
&mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
/* last one in storage */
dropped = &mib->counters[dev->info->mib_cnt];
/* Some ports may not have MIB counters after SWITCH_COUNTER_NUM. */
while (mib->cnt_ptr < dev->info->mib_cnt) {
dev->dev_ops->r_mib_pkt(dev, port, mib->cnt_ptr,
dropped, &mib->counters[mib->cnt_ptr]);
++mib->cnt_ptr;
}
}
static int ksz8_r_table(struct ksz_device *dev, int table, u16 addr, u64 *data)
{
const u16 *regs;
u16 ctrl_addr;
int ret;
regs = dev->info->regs;
ctrl_addr = IND_ACC_TABLE(table | TABLE_READ) | addr;
mutex_lock(&dev->alu_mutex);
ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
if (ret)
goto unlock_alu;
ret = ksz_read64(dev, regs[REG_IND_DATA_HI], data);
unlock_alu:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz8_w_table(struct ksz_device *dev, int table, u16 addr, u64 data)
{
const u16 *regs;
u16 ctrl_addr;
int ret;
regs = dev->info->regs;
ctrl_addr = IND_ACC_TABLE(table) | addr;
mutex_lock(&dev->alu_mutex);
ret = ksz_write64(dev, regs[REG_IND_DATA_HI], data);
if (ret)
goto unlock_alu;
ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
unlock_alu:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz8_valid_dyn_entry(struct ksz_device *dev, u8 *data)
{
int timeout = 100;
const u32 *masks;
const u16 *regs;
int ret;
masks = dev->info->masks;
regs = dev->info->regs;
do {
ret = ksz_read8(dev, regs[REG_IND_DATA_CHECK], data);
if (ret)
return ret;
timeout--;
} while ((*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) && timeout);
/* Entry is not ready for accessing. */
if (*data & masks[DYNAMIC_MAC_TABLE_NOT_READY]) {
return -ETIMEDOUT;
/* Entry is ready for accessing. */
} else {
ret = ksz_read8(dev, regs[REG_IND_DATA_8], data);
if (ret)
return ret;
/* There is no valid entry in the table. */
if (*data & masks[DYNAMIC_MAC_TABLE_MAC_EMPTY])
return -ENXIO;
}
return 0;
}
static int ksz8_r_dyn_mac_table(struct ksz_device *dev, u16 addr, u8 *mac_addr,
u8 *fid, u8 *src_port, u16 *entries)
{
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
const u16 *regs;
u16 ctrl_addr;
u64 buf = 0;
u8 data;
int cnt;
int ret;
shifts = dev->info->shifts;
masks = dev->info->masks;
regs = dev->info->regs;
ctrl_addr = IND_ACC_TABLE(TABLE_DYNAMIC_MAC | TABLE_READ) | addr;
mutex_lock(&dev->alu_mutex);
ret = ksz_write16(dev, regs[REG_IND_CTRL_0], ctrl_addr);
if (ret)
goto unlock_alu;
ret = ksz8_valid_dyn_entry(dev, &data);
if (ret == -ENXIO) {
*entries = 0;
goto unlock_alu;
}
if (ret)
goto unlock_alu;
ret = ksz_read64(dev, regs[REG_IND_DATA_HI], &buf);
if (ret)
goto unlock_alu;
data_hi = (u32)(buf >> 32);
data_lo = (u32)buf;
/* Check out how many valid entry in the table. */
cnt = data & masks[DYNAMIC_MAC_TABLE_ENTRIES_H];
cnt <<= shifts[DYNAMIC_MAC_ENTRIES_H];
cnt |= (data_hi & masks[DYNAMIC_MAC_TABLE_ENTRIES]) >>
shifts[DYNAMIC_MAC_ENTRIES];
*entries = cnt + 1;
*fid = (data_hi & masks[DYNAMIC_MAC_TABLE_FID]) >>
shifts[DYNAMIC_MAC_FID];
*src_port = (data_hi & masks[DYNAMIC_MAC_TABLE_SRC_PORT]) >>
shifts[DYNAMIC_MAC_SRC_PORT];
mac_addr[5] = (u8)data_lo;
mac_addr[4] = (u8)(data_lo >> 8);
mac_addr[3] = (u8)(data_lo >> 16);
mac_addr[2] = (u8)(data_lo >> 24);
mac_addr[1] = (u8)data_hi;
mac_addr[0] = (u8)(data_hi >> 8);
unlock_alu:
mutex_unlock(&dev->alu_mutex);
return ret;
}
static int ksz8_r_sta_mac_table(struct ksz_device *dev, u16 addr,
struct alu_struct *alu, bool *valid)
{
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
u64 data;
int ret;
shifts = dev->info->shifts;
masks = dev->info->masks;
ret = ksz8_r_table(dev, TABLE_STATIC_MAC, addr, &data);
if (ret)
return ret;
data_hi = data >> 32;
data_lo = (u32)data;
if (!(data_hi & (masks[STATIC_MAC_TABLE_VALID] |
masks[STATIC_MAC_TABLE_OVERRIDE]))) {
*valid = false;
return 0;
}
alu->mac[5] = (u8)data_lo;
alu->mac[4] = (u8)(data_lo >> 8);
alu->mac[3] = (u8)(data_lo >> 16);
alu->mac[2] = (u8)(data_lo >> 24);
alu->mac[1] = (u8)data_hi;
alu->mac[0] = (u8)(data_hi >> 8);
alu->port_forward =
(data_hi & masks[STATIC_MAC_TABLE_FWD_PORTS]) >>
shifts[STATIC_MAC_FWD_PORTS];
alu->is_override = (data_hi & masks[STATIC_MAC_TABLE_OVERRIDE]) ? 1 : 0;
/* KSZ8795 family switches have STATIC_MAC_TABLE_USE_FID and
* STATIC_MAC_TABLE_FID definitions off by 1 when doing read on the
* static MAC table compared to doing write.
*/
if (ksz_is_ksz87xx(dev))
data_hi >>= 1;
alu->is_static = true;
alu->is_use_fid = (data_hi & masks[STATIC_MAC_TABLE_USE_FID]) ? 1 : 0;
alu->fid = (data_hi & masks[STATIC_MAC_TABLE_FID]) >>
shifts[STATIC_MAC_FID];
*valid = true;
return 0;
}
static int ksz8_w_sta_mac_table(struct ksz_device *dev, u16 addr,
struct alu_struct *alu)
{
u32 data_hi, data_lo;
const u8 *shifts;
const u32 *masks;
u64 data;
shifts = dev->info->shifts;
masks = dev->info->masks;
data_lo = ((u32)alu->mac[2] << 24) |
((u32)alu->mac[3] << 16) |
((u32)alu->mac[4] << 8) | alu->mac[5];
data_hi = ((u32)alu->mac[0] << 8) | alu->mac[1];
data_hi |= (u32)alu->port_forward << shifts[STATIC_MAC_FWD_PORTS];
if (alu->is_override)
data_hi |= masks[STATIC_MAC_TABLE_OVERRIDE];
if (alu->is_use_fid) {
data_hi |= masks[STATIC_MAC_TABLE_USE_FID];
data_hi |= (u32)alu->fid << shifts[STATIC_MAC_FID];
}
if (alu->is_static)
data_hi |= masks[STATIC_MAC_TABLE_VALID];
else
data_hi &= ~masks[STATIC_MAC_TABLE_OVERRIDE];
data = (u64)data_hi << 32 | data_lo;
return ksz8_w_table(dev, TABLE_STATIC_MAC, addr, data);
}
static void ksz8_from_vlan(struct ksz_device *dev, u32 vlan, u8 *fid,
u8 *member, u8 *valid)
{
const u8 *shifts;
const u32 *masks;
shifts = dev->info->shifts;
masks = dev->info->masks;
*fid = vlan & masks[VLAN_TABLE_FID];
*member = (vlan & masks[VLAN_TABLE_MEMBERSHIP]) >>
shifts[VLAN_TABLE_MEMBERSHIP_S];
*valid = !!(vlan & masks[VLAN_TABLE_VALID]);
}
static void ksz8_to_vlan(struct ksz_device *dev, u8 fid, u8 member, u8 valid,
u16 *vlan)
{
const u8 *shifts;
const u32 *masks;
shifts = dev->info->shifts;
masks = dev->info->masks;
*vlan = fid;
*vlan |= (u16)member << shifts[VLAN_TABLE_MEMBERSHIP_S];
if (valid)
*vlan |= masks[VLAN_TABLE_VALID];
}
static void ksz8_r_vlan_entries(struct ksz_device *dev, u16 addr)
{
const u8 *shifts;
u64 data;
int i;
shifts = dev->info->shifts;
ksz8_r_table(dev, TABLE_VLAN, addr, &data);
addr *= 4;
for (i = 0; i < 4; i++) {
dev->vlan_cache[addr + i].table[0] = (u16)data;
data >>= shifts[VLAN_TABLE];
}
}
static void ksz8_r_vlan_table(struct ksz_device *dev, u16 vid, u16 *vlan)
{
int index;
u16 *data;
u16 addr;
u64 buf;
data = (u16 *)&buf;
addr = vid / 4;
index = vid & 3;
ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
*vlan = data[index];
}
static void ksz8_w_vlan_table(struct ksz_device *dev, u16 vid, u16 vlan)
{
int index;
u16 *data;
u16 addr;
u64 buf;
data = (u16 *)&buf;
addr = vid / 4;
index = vid & 3;
ksz8_r_table(dev, TABLE_VLAN, addr, &buf);
data[index] = vlan;
dev->vlan_cache[vid].table[0] = vlan;
ksz8_w_table(dev, TABLE_VLAN, addr, buf);
}
/**
* ksz879x_get_loopback - KSZ879x specific function to get loopback
* configuration status for a specific port
* @dev: Pointer to the device structure
* @port: Port number to query
* @val: Pointer to store the result
*
* This function reads the SMI registers to determine whether loopback mode
* is enabled for a specific port.
*
* Return: 0 on success, error code on failure.
*/
static int ksz879x_get_loopback(struct ksz_device *dev, u16 port,
u16 *val)
{
u8 stat3;
int ret;
ret = ksz_pread8(dev, port, REG_PORT_STATUS_3, &stat3);
if (ret)
return ret;
if (stat3 & PORT_PHY_LOOPBACK)
*val |= BMCR_LOOPBACK;
return 0;
}
/**
* ksz879x_set_loopback - KSZ879x specific function to set loopback mode for
* a specific port
* @dev: Pointer to the device structure.
* @port: Port number to modify.
* @val: Value indicating whether to enable or disable loopback mode.
*
* This function translates loopback bit of the BMCR register into the
* corresponding hardware register bit value and writes it to the SMI interface.
*
* Return: 0 on success, error code on failure.
*/
static int ksz879x_set_loopback(struct ksz_device *dev, u16 port, u16 val)
{
u8 stat3 = 0;
if (val & BMCR_LOOPBACK)
stat3 |= PORT_PHY_LOOPBACK;
return ksz_prmw8(dev, port, REG_PORT_STATUS_3, PORT_PHY_LOOPBACK,
stat3);
}
/**
* ksz8_r_phy_ctrl - Translates and reads from the SMI interface to a MIIM PHY
* Control register (Reg. 31).
* @dev: The KSZ device instance.
* @port: The port number to be read.
* @val: The value read from the SMI interface.
*
* This function reads the SMI interface and translates the hardware register
* bit values into their corresponding control settings for a MIIM PHY Control
* register.
*
* Return: 0 on success, error code on failure.
*/
static int ksz8_r_phy_ctrl(struct ksz_device *dev, int port, u16 *val)
{
const u16 *regs = dev->info->regs;
u8 reg_val;
int ret;
*val = 0;
ret = ksz_pread8(dev, port, regs[P_LINK_STATUS], ®_val);
if (ret < 0)
return ret;
if (reg_val & PORT_MDIX_STATUS)
*val |= KSZ886X_CTRL_MDIX_STAT;
ret = ksz_pread8(dev, port, REG_PORT_LINK_MD_CTRL, ®_val);
if (ret < 0)
return ret;
if (reg_val & PORT_FORCE_LINK)
*val |= KSZ886X_CTRL_FORCE_LINK;
if (reg_val & PORT_POWER_SAVING)
*val |= KSZ886X_CTRL_PWRSAVE;
if (reg_val & PORT_PHY_REMOTE_LOOPBACK)
*val |= KSZ886X_CTRL_REMOTE_LOOPBACK;
return 0;
}
/**
* ksz8_r_phy_bmcr - Translates and reads from the SMI interface to a MIIM PHY
* Basic mode control register (Reg. 0).
* @dev: The KSZ device instance.
* @port: The port number to be read.
* @val: The value read from the SMI interface.
*
* This function reads the SMI interface and translates the hardware register
* bit values into their corresponding control settings for a MIIM PHY Basic
* mode control register.
*
* MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
* -------------------------------------------------------------------
* MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
* ----------------------------+-----------------------------+----------------
* Bit 15 - Soft Reset | 0xF/4 | Not supported
* Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
* Bit 13 - Force 100 | 0xC/6 = 0xC/6
* Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
* Bit 11 - Power Down | 0xD/3 = 0xD/3
* Bit 10 - PHY Isolate | 0xF/5 | Not supported
* Bit 9 - Restart AN | 0xD/5 = 0xD/5
* Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
* Bit 7 - Collision Test/Res. | Not supported | Not supported
* Bit 6 - Reserved | Not supported | Not supported
* Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
* Bit 4 - Force MDI | 0xD/1 = 0xD/1
* Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
* Bit 2 - Disable Far-End F. | ???? | 0xD/4
* Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
* Bit 0 - Disable LED | 0xD/7 = 0xD/7
* -------------------------------------------------------------------
*
* Return: 0 on success, error code on failure.
*/
static int ksz8_r_phy_bmcr(struct ksz_device *dev, u16 port, u16 *val)
{
const u16 *regs = dev->info->regs;
u8 restart, speed, ctrl;
int ret;
*val = 0;
ret = ksz_pread8(dev, port, regs[P_NEG_RESTART_CTRL], &restart);
if (ret)
return ret;
ret = ksz_pread8(dev, port, regs[P_SPEED_STATUS], &speed);
if (ret)
return ret;
ret = ksz_pread8(dev, port, regs[P_FORCE_CTRL], &ctrl);
if (ret)
return ret;
if (ctrl & PORT_FORCE_100_MBIT)
*val |= BMCR_SPEED100;
if (ksz_is_ksz88x3(dev)) {
if (restart & KSZ8873_PORT_PHY_LOOPBACK)
*val |= BMCR_LOOPBACK;
if ((ctrl & PORT_AUTO_NEG_ENABLE))
*val |= BMCR_ANENABLE;
} else {
ret = ksz879x_get_loopback(dev, port, val);
if (ret)
return ret;
if (!(ctrl & PORT_AUTO_NEG_DISABLE))
*val |= BMCR_ANENABLE;
}
if (restart & PORT_POWER_DOWN)
*val |= BMCR_PDOWN;
if (restart & PORT_AUTO_NEG_RESTART)
*val |= BMCR_ANRESTART;
if (ctrl & PORT_FORCE_FULL_DUPLEX)
*val |= BMCR_FULLDPLX;
if (speed & PORT_HP_MDIX)
*val |= KSZ886X_BMCR_HP_MDIX;
if (restart & PORT_FORCE_MDIX)
*val |= KSZ886X_BMCR_FORCE_MDI;
if (restart & PORT_AUTO_MDIX_DISABLE)
*val |= KSZ886X_BMCR_DISABLE_AUTO_MDIX;
if (restart & PORT_TX_DISABLE)
*val |= KSZ886X_BMCR_DISABLE_TRANSMIT;
if (restart & PORT_LED_OFF)
*val |= KSZ886X_BMCR_DISABLE_LED;
return 0;
}
int ksz8_r_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 *val)
{
u8 ctrl, link, val1, val2;
int processed = true;
const u16 *regs;
u16 data = 0;
u16 p = phy;
int ret;
regs = dev->info->regs;
switch (reg) {
case MII_BMCR:
ret = ksz8_r_phy_bmcr(dev, p, &data);
if (ret)
return ret;
break;
case MII_BMSR:
ret = ksz_pread8(dev, p, regs[P_LINK_STATUS], &link);
if (ret)
return ret;
data = BMSR_100FULL |
BMSR_100HALF |
BMSR_10FULL |
BMSR_10HALF |
BMSR_ANEGCAPABLE;
if (link & PORT_AUTO_NEG_COMPLETE)
data |= BMSR_ANEGCOMPLETE;
if (link & PORT_STAT_LINK_GOOD)
data |= BMSR_LSTATUS;
break;
case MII_PHYSID1:
data = KSZ8795_ID_HI;
break;
case MII_PHYSID2:
if (ksz_is_ksz88x3(dev))
data = KSZ8863_ID_LO;
else
data = KSZ8795_ID_LO;
break;
case MII_ADVERTISE:
ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
if (ret)
return ret;
data = ADVERTISE_CSMA;
if (ctrl & PORT_AUTO_NEG_SYM_PAUSE)
data |= ADVERTISE_PAUSE_CAP;
if (ctrl & PORT_AUTO_NEG_100BTX_FD)
data |= ADVERTISE_100FULL;
if (ctrl & PORT_AUTO_NEG_100BTX)
data |= ADVERTISE_100HALF;
if (ctrl & PORT_AUTO_NEG_10BT_FD)
data |= ADVERTISE_10FULL;
if (ctrl & PORT_AUTO_NEG_10BT)
data |= ADVERTISE_10HALF;
break;
case MII_LPA:
ret = ksz_pread8(dev, p, regs[P_REMOTE_STATUS], &link);
if (ret)
return ret;
data = LPA_SLCT;
if (link & PORT_REMOTE_SYM_PAUSE)
data |= LPA_PAUSE_CAP;
if (link & PORT_REMOTE_100BTX_FD)
data |= LPA_100FULL;
if (link & PORT_REMOTE_100BTX)
data |= LPA_100HALF;
if (link & PORT_REMOTE_10BT_FD)
data |= LPA_10FULL;
if (link & PORT_REMOTE_10BT)
data |= LPA_10HALF;
if (data & ~LPA_SLCT)
data |= LPA_LPACK;
break;
case PHY_REG_LINK_MD:
ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_CTRL, &val1);
if (ret)
return ret;
ret = ksz_pread8(dev, p, REG_PORT_LINK_MD_RESULT, &val2);
if (ret)
return ret;
if (val1 & PORT_START_CABLE_DIAG)
data |= PHY_START_CABLE_DIAG;
if (val1 & PORT_CABLE_10M_SHORT)
data |= PHY_CABLE_10M_SHORT;
data |= FIELD_PREP(PHY_CABLE_DIAG_RESULT_M,
FIELD_GET(PORT_CABLE_DIAG_RESULT_M, val1));
data |= FIELD_PREP(PHY_CABLE_FAULT_COUNTER_M,
(FIELD_GET(PORT_CABLE_FAULT_COUNTER_H, val1) << 8) |
FIELD_GET(PORT_CABLE_FAULT_COUNTER_L, val2));
break;
case PHY_REG_PHY_CTRL:
ret = ksz8_r_phy_ctrl(dev, p, &data);
if (ret)
return ret;
break;
default:
processed = false;
break;
}
if (processed)
*val = data;
return 0;
}
/**
* ksz8_w_phy_ctrl - Translates and writes to the SMI interface from a MIIM PHY
* Control register (Reg. 31).
* @dev: The KSZ device instance.
* @port: The port number to be configured.
* @val: The register value to be written.
*
* This function translates control settings from a MIIM PHY Control register
* into their corresponding hardware register bit values for the SMI
* interface.
*
* Return: 0 on success, error code on failure.
*/
static int ksz8_w_phy_ctrl(struct ksz_device *dev, int port, u16 val)
{
u8 reg_val = 0;
int ret;
if (val & KSZ886X_CTRL_FORCE_LINK)
reg_val |= PORT_FORCE_LINK;
if (val & KSZ886X_CTRL_PWRSAVE)
reg_val |= PORT_POWER_SAVING;
if (val & KSZ886X_CTRL_REMOTE_LOOPBACK)
reg_val |= PORT_PHY_REMOTE_LOOPBACK;
ret = ksz_prmw8(dev, port, REG_PORT_LINK_MD_CTRL, PORT_FORCE_LINK |
PORT_POWER_SAVING | PORT_PHY_REMOTE_LOOPBACK, reg_val);
return ret;
}
/**
* ksz8_w_phy_bmcr - Translates and writes to the SMI interface from a MIIM PHY
* Basic mode control register (Reg. 0).
* @dev: The KSZ device instance.
* @port: The port number to be configured.
* @val: The register value to be written.
*
* This function translates control settings from a MIIM PHY Basic mode control
* register into their corresponding hardware register bit values for the SMI
* interface.
*
* MIIM Bit Mapping Comparison between KSZ8794 and KSZ8873
* -------------------------------------------------------------------
* MIIM Bit | KSZ8794 Reg/Bit | KSZ8873 Reg/Bit
* ----------------------------+-----------------------------+----------------
* Bit 15 - Soft Reset | 0xF/4 | Not supported
* Bit 14 - Loopback | 0xD/0 (MAC), 0xF/7 (PHY) ~ 0xD/0 (PHY)
* Bit 13 - Force 100 | 0xC/6 = 0xC/6
* Bit 12 - AN Enable | 0xC/7 (reverse logic) ~ 0xC/7
* Bit 11 - Power Down | 0xD/3 = 0xD/3
* Bit 10 - PHY Isolate | 0xF/5 | Not supported
* Bit 9 - Restart AN | 0xD/5 = 0xD/5
* Bit 8 - Force Full-Duplex | 0xC/5 = 0xC/5
* Bit 7 - Collision Test/Res. | Not supported | Not supported
* Bit 6 - Reserved | Not supported | Not supported
* Bit 5 - Hp_mdix | 0x9/7 ~ 0xF/7
* Bit 4 - Force MDI | 0xD/1 = 0xD/1
* Bit 3 - Disable MDIX | 0xD/2 = 0xD/2
* Bit 2 - Disable Far-End F. | ???? | 0xD/4
* Bit 1 - Disable Transmit | 0xD/6 = 0xD/6
* Bit 0 - Disable LED | 0xD/7 = 0xD/7
* -------------------------------------------------------------------
*
* Return: 0 on success, error code on failure.
*/
static int ksz8_w_phy_bmcr(struct ksz_device *dev, u16 port, u16 val)
{
u8 restart, speed, ctrl, restart_mask;
const u16 *regs = dev->info->regs;
int ret;
/* Do not support PHY reset function. */
if (val & BMCR_RESET)
return 0;
speed = 0;
if (val & KSZ886X_BMCR_HP_MDIX)
speed |= PORT_HP_MDIX;
ret = ksz_prmw8(dev, port, regs[P_SPEED_STATUS], PORT_HP_MDIX, speed);
if (ret)
return ret;
ctrl = 0;
if (ksz_is_ksz88x3(dev)) {
if ((val & BMCR_ANENABLE))
ctrl |= PORT_AUTO_NEG_ENABLE;
} else {
if (!(val & BMCR_ANENABLE))
ctrl |= PORT_AUTO_NEG_DISABLE;
/* Fiber port does not support auto-negotiation. */
if (dev->ports[port].fiber)
ctrl |= PORT_AUTO_NEG_DISABLE;
}
if (val & BMCR_SPEED100)
ctrl |= PORT_FORCE_100_MBIT;
if (val & BMCR_FULLDPLX)
ctrl |= PORT_FORCE_FULL_DUPLEX;
ret = ksz_prmw8(dev, port, regs[P_FORCE_CTRL], PORT_FORCE_100_MBIT |
/* PORT_AUTO_NEG_ENABLE and PORT_AUTO_NEG_DISABLE are the same
* bits
*/
PORT_FORCE_FULL_DUPLEX | PORT_AUTO_NEG_ENABLE, ctrl);
if (ret)
return ret;
restart = 0;
restart_mask = PORT_LED_OFF | PORT_TX_DISABLE | PORT_AUTO_NEG_RESTART |
PORT_POWER_DOWN | PORT_AUTO_MDIX_DISABLE | PORT_FORCE_MDIX;
if (val & KSZ886X_BMCR_DISABLE_LED)
restart |= PORT_LED_OFF;
if (val & KSZ886X_BMCR_DISABLE_TRANSMIT)
restart |= PORT_TX_DISABLE;
if (val & BMCR_ANRESTART)
restart |= PORT_AUTO_NEG_RESTART;
if (val & BMCR_PDOWN)
restart |= PORT_POWER_DOWN;
if (val & KSZ886X_BMCR_DISABLE_AUTO_MDIX)
restart |= PORT_AUTO_MDIX_DISABLE;
if (val & KSZ886X_BMCR_FORCE_MDI)
restart |= PORT_FORCE_MDIX;
if (ksz_is_ksz88x3(dev)) {
restart_mask |= KSZ8873_PORT_PHY_LOOPBACK;
if (val & BMCR_LOOPBACK)
restart |= KSZ8873_PORT_PHY_LOOPBACK;
} else {
ret = ksz879x_set_loopback(dev, port, val);
if (ret)
return ret;
}
return ksz_prmw8(dev, port, regs[P_NEG_RESTART_CTRL], restart_mask,
restart);
}
int ksz8_w_phy(struct ksz_device *dev, u16 phy, u16 reg, u16 val)
{
const u16 *regs;
u8 ctrl, data;
u16 p = phy;
int ret;
regs = dev->info->regs;
switch (reg) {
case MII_BMCR:
ret = ksz8_w_phy_bmcr(dev, p, val);
if (ret)
return ret;
break;
case MII_ADVERTISE:
ret = ksz_pread8(dev, p, regs[P_LOCAL_CTRL], &ctrl);
if (ret)
return ret;
data = ctrl;
data &= ~(PORT_AUTO_NEG_SYM_PAUSE |
PORT_AUTO_NEG_100BTX_FD |
PORT_AUTO_NEG_100BTX |
PORT_AUTO_NEG_10BT_FD |
PORT_AUTO_NEG_10BT);
if (val & ADVERTISE_PAUSE_CAP)
data |= PORT_AUTO_NEG_SYM_PAUSE;
if (val & ADVERTISE_100FULL)
data |= PORT_AUTO_NEG_100BTX_FD;
if (val & ADVERTISE_100HALF)
data |= PORT_AUTO_NEG_100BTX;
if (val & ADVERTISE_10FULL)
data |= PORT_AUTO_NEG_10BT_FD;
if (val & ADVERTISE_10HALF)
data |= PORT_AUTO_NEG_10BT;
if (data != ctrl) {
ret = ksz_pwrite8(dev, p, regs[P_LOCAL_CTRL], data);
if (ret)
return ret;
}
break;
case PHY_REG_LINK_MD:
if (val & PHY_START_CABLE_DIAG)
ksz_port_cfg(dev, p, REG_PORT_LINK_MD_CTRL, PORT_START_CABLE_DIAG, true);
break;
case PHY_REG_PHY_CTRL:
ret = ksz8_w_phy_ctrl(dev, p, val);
if (ret)
return ret;
break;
default:
break;
}
return 0;
}
void ksz8_cfg_port_member(struct ksz_device *dev, int port, u8 member)
{
u8 data;
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
data &= ~PORT_VLAN_MEMBERSHIP;
data |= (member & dev->port_mask);
ksz_pwrite8(dev, port, P_MIRROR_CTRL, data);
}
void ksz8_flush_dyn_mac_table(struct ksz_device *dev, int port)
{
u8 learn[DSA_MAX_PORTS];
int first, index, cnt;
const u16 *regs;
regs = dev->info->regs;
if ((uint)port < dev->info->port_cnt) {
first = port;
cnt = port + 1;
} else {
/* Flush all ports. */
first = 0;
cnt = dev->info->port_cnt;
}
for (index = first; index < cnt; index++) {
ksz_pread8(dev, index, regs[P_STP_CTRL], &learn[index]);
if (!(learn[index] & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, index, regs[P_STP_CTRL],
learn[index] | PORT_LEARN_DISABLE);
}
ksz_cfg(dev, S_FLUSH_TABLE_CTRL, SW_FLUSH_DYN_MAC_TABLE, true);
for (index = first; index < cnt; index++) {
if (!(learn[index] & PORT_LEARN_DISABLE))
ksz_pwrite8(dev, index, regs[P_STP_CTRL], learn[index]);
}
}
int ksz8_fdb_dump(struct ksz_device *dev, int port,
dsa_fdb_dump_cb_t *cb, void *data)
{
u8 mac[ETH_ALEN];
u8 src_port, fid;
u16 entries = 0;
int ret, i;
for (i = 0; i < KSZ8_DYN_MAC_ENTRIES; i++) {
ret = ksz8_r_dyn_mac_table(dev, i, mac, &fid, &src_port,
&entries);
if (ret == -ENXIO)
return 0;
if (ret)
return ret;
if (i >= entries)
return 0;
if (port == src_port) {
ret = cb(mac, fid, false, data);
if (ret)
return ret;
}
}
return 0;
}
static int ksz8_add_sta_mac(struct ksz_device *dev, int port,
const unsigned char *addr, u16 vid)
{
struct alu_struct alu;
int index, ret;
int empty = 0;
alu.port_forward = 0;
for (index = 0; index < dev->info->num_statics; index++) {
bool valid;
ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
if (ret)
return ret;
if (!valid) {
/* Remember the first empty entry. */
if (!empty)
empty = index + 1;
continue;
}
if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
break;
}
/* no available entry */
if (index == dev->info->num_statics && !empty)
return -ENOSPC;
/* add entry */
if (index == dev->info->num_statics) {
index = empty - 1;
memset(&alu, 0, sizeof(alu));
memcpy(alu.mac, addr, ETH_ALEN);
alu.is_static = true;
}
alu.port_forward |= BIT(port);
if (vid) {
alu.is_use_fid = true;
/* Need a way to map VID to FID. */
alu.fid = vid;
}
return ksz8_w_sta_mac_table(dev, index, &alu);
}
static int ksz8_del_sta_mac(struct ksz_device *dev, int port,
const unsigned char *addr, u16 vid)
{
struct alu_struct alu;
int index, ret;
for (index = 0; index < dev->info->num_statics; index++) {
bool valid;
ret = ksz8_r_sta_mac_table(dev, index, &alu, &valid);
if (ret)
return ret;
if (!valid)
continue;
if (!memcmp(alu.mac, addr, ETH_ALEN) && alu.fid == vid)
break;
}
/* no available entry */
if (index == dev->info->num_statics)
return 0;
/* clear port */
alu.port_forward &= ~BIT(port);
if (!alu.port_forward)
alu.is_static = false;
return ksz8_w_sta_mac_table(dev, index, &alu);
}
int ksz8_mdb_add(struct ksz_device *dev, int port,
const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
{
return ksz8_add_sta_mac(dev, port, mdb->addr, mdb->vid);
}
int ksz8_mdb_del(struct ksz_device *dev, int port,
const struct switchdev_obj_port_mdb *mdb, struct dsa_db db)
{
return ksz8_del_sta_mac(dev, port, mdb->addr, mdb->vid);
}
int ksz8_fdb_add(struct ksz_device *dev, int port, const unsigned char *addr,
u16 vid, struct dsa_db db)
{
return ksz8_add_sta_mac(dev, port, addr, vid);
}
int ksz8_fdb_del(struct ksz_device *dev, int port, const unsigned char *addr,
u16 vid, struct dsa_db db)
{
return ksz8_del_sta_mac(dev, port, addr, vid);
}
int ksz8_port_vlan_filtering(struct ksz_device *dev, int port, bool flag,
struct netlink_ext_ack *extack)
{
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
/* Discard packets with VID not enabled on the switch */
ksz_cfg(dev, S_MIRROR_CTRL, SW_VLAN_ENABLE, flag);
/* Discard packets with VID not enabled on the ingress port */
for (port = 0; port < dev->phy_port_cnt; ++port)
ksz_port_cfg(dev, port, REG_PORT_CTRL_2, PORT_INGRESS_FILTER,
flag);
return 0;
}
static void ksz8_port_enable_pvid(struct ksz_device *dev, int port, bool state)
{
if (ksz_is_ksz88x3(dev)) {
ksz_cfg(dev, REG_SW_INSERT_SRC_PVID,
0x03 << (4 - 2 * port), state);
} else {
ksz_pwrite8(dev, port, REG_PORT_CTRL_12, state ? 0x0f : 0x00);
}
}
int ksz8_port_vlan_add(struct ksz_device *dev, int port,
const struct switchdev_obj_port_vlan *vlan,
struct netlink_ext_ack *extack)
{
bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
struct ksz_port *p = &dev->ports[port];
u16 data, new_pvid = 0;
u8 fid, member, valid;
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
/* If a VLAN is added with untagged flag different from the
* port's Remove Tag flag, we need to change the latter.
* Ignore VID 0, which is always untagged.
* Ignore CPU port, which will always be tagged.
*/
if (untagged != p->remove_tag && vlan->vid != 0 &&
port != dev->cpu_port) {
unsigned int vid;
/* Reject attempts to add a VLAN that requires the
* Remove Tag flag to be changed, unless there are no
* other VLANs currently configured.
*/
for (vid = 1; vid < dev->info->num_vlans; ++vid) {
/* Skip the VID we are going to add or reconfigure */
if (vid == vlan->vid)
continue;
ksz8_from_vlan(dev, dev->vlan_cache[vid].table[0],
&fid, &member, &valid);
if (valid && (member & BIT(port)))
return -EINVAL;
}
ksz_port_cfg(dev, port, P_TAG_CTRL, PORT_REMOVE_TAG, untagged);
p->remove_tag = untagged;
}
ksz8_r_vlan_table(dev, vlan->vid, &data);
ksz8_from_vlan(dev, data, &fid, &member, &valid);
/* First time to setup the VLAN entry. */
if (!valid) {
/* Need to find a way to map VID to FID. */
fid = 1;
valid = 1;
}
member |= BIT(port);
ksz8_to_vlan(dev, fid, member, valid, &data);
ksz8_w_vlan_table(dev, vlan->vid, data);
/* change PVID */
if (vlan->flags & BRIDGE_VLAN_INFO_PVID)
new_pvid = vlan->vid;
if (new_pvid) {
u16 vid;
ksz_pread16(dev, port, REG_PORT_CTRL_VID, &vid);
vid &= ~VLAN_VID_MASK;
vid |= new_pvid;
ksz_pwrite16(dev, port, REG_PORT_CTRL_VID, vid);
ksz8_port_enable_pvid(dev, port, true);
}
return 0;
}
int ksz8_port_vlan_del(struct ksz_device *dev, int port,
const struct switchdev_obj_port_vlan *vlan)
{
u16 data, pvid;
u8 fid, member, valid;
if (ksz_is_ksz88x3(dev))
return -ENOTSUPP;
ksz_pread16(dev, port, REG_PORT_CTRL_VID, &pvid);
pvid = pvid & 0xFFF;
ksz8_r_vlan_table(dev, vlan->vid, &data);
ksz8_from_vlan(dev, data, &fid, &member, &valid);
member &= ~BIT(port);
/* Invalidate the entry if no more member. */
if (!member) {
fid = 0;
valid = 0;
}
ksz8_to_vlan(dev, fid, member, valid, &data);
ksz8_w_vlan_table(dev, vlan->vid, data);
if (pvid == vlan->vid)
ksz8_port_enable_pvid(dev, port, false);
return 0;
}
int ksz8_port_mirror_add(struct ksz_device *dev, int port,
struct dsa_mall_mirror_tc_entry *mirror,
bool ingress, struct netlink_ext_ack *extack)
{
if (ingress) {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, true);
dev->mirror_rx |= BIT(port);
} else {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, true);
dev->mirror_tx |= BIT(port);
}
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_SNIFFER, false);
/* configure mirror port */
if (dev->mirror_rx || dev->mirror_tx)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, true);
return 0;
}
void ksz8_port_mirror_del(struct ksz_device *dev, int port,
struct dsa_mall_mirror_tc_entry *mirror)
{
u8 data;
if (mirror->ingress) {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_RX, false);
dev->mirror_rx &= ~BIT(port);
} else {
ksz_port_cfg(dev, port, P_MIRROR_CTRL, PORT_MIRROR_TX, false);
dev->mirror_tx &= ~BIT(port);
}
ksz_pread8(dev, port, P_MIRROR_CTRL, &data);
if (!dev->mirror_rx && !dev->mirror_tx)
ksz_port_cfg(dev, mirror->to_local_port, P_MIRROR_CTRL,
PORT_MIRROR_SNIFFER, false);
}
static void ksz8795_cpu_interface_select(struct ksz_device *dev, int port)
{
struct ksz_port *p = &dev->ports[port];
if (!ksz_is_ksz87xx(dev))
return;
if (!p->interface && dev->compat_interface) {
dev_warn(dev->dev,
"Using legacy switch \"phy-mode\" property, because it is missing on port %d node. "
"Please update your device tree.\n",
port);
p->interface = dev->compat_interface;
}
}
void ksz8_port_setup(struct ksz_device *dev, int port, bool cpu_port)
{
struct dsa_switch *ds = dev->ds;
const u32 *masks;
u8 member;
masks = dev->info->masks;
/* enable broadcast storm limit */
ksz_port_cfg(dev, port, P_BCAST_STORM_CTRL, PORT_BROADCAST_STORM, true);
if (!ksz_is_ksz88x3(dev))
ksz8795_set_prio_queue(dev, port, 4);
/* disable DiffServ priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_DIFFSERV_ENABLE, false);
/* replace priority */
ksz_port_cfg(dev, port, P_802_1P_CTRL,
masks[PORT_802_1P_REMAPPING], false);
/* enable 802.1p priority */
ksz_port_cfg(dev, port, P_PRIO_CTRL, PORT_802_1P_ENABLE, true);
if (cpu_port)
member = dsa_user_ports(ds);
else
member = BIT(dsa_upstream_port(ds, port));
ksz8_cfg_port_member(dev, port, member);
}
static void ksz88x3_config_rmii_clk(struct ksz_device *dev)
{
struct dsa_port *cpu_dp = dsa_to_port(dev->ds, dev->cpu_port);
bool rmii_clk_internal;
if (!ksz_is_ksz88x3(dev))
return;
rmii_clk_internal = of_property_read_bool(cpu_dp->dn,
"microchip,rmii-clk-internal");
ksz_cfg(dev, KSZ88X3_REG_FVID_AND_HOST_MODE,
KSZ88X3_PORT3_RMII_CLK_INTERNAL, rmii_clk_internal);
}
void ksz8_config_cpu_port(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
struct ksz_port *p;
const u32 *masks;
const u16 *regs;
u8 remote;
int i;
masks = dev->info->masks;
regs = dev->info->regs;
ksz_cfg(dev, regs[S_TAIL_TAG_CTRL], masks[SW_TAIL_TAG_ENABLE], true);
ksz8_port_setup(dev, dev->cpu_port, true);
ksz8795_cpu_interface_select(dev, dev->cpu_port);
ksz88x3_config_rmii_clk(dev);
for (i = 0; i < dev->phy_port_cnt; i++) {
ksz_port_stp_state_set(ds, i, BR_STATE_DISABLED);
}
for (i = 0; i < dev->phy_port_cnt; i++) {
p = &dev->ports[i];
if (!ksz_is_ksz88x3(dev)) {
ksz_pread8(dev, i, regs[P_REMOTE_STATUS], &remote);
if (remote & KSZ8_PORT_FIBER_MODE)
p->fiber = 1;
}
if (p->fiber)
ksz_port_cfg(dev, i, regs[P_STP_CTRL],
PORT_FORCE_FLOW_CTRL, true);
else
ksz_port_cfg(dev, i, regs[P_STP_CTRL],
PORT_FORCE_FLOW_CTRL, false);
}
}
/**
* ksz8_phy_port_link_up - Configures ports with integrated PHYs
* @dev: The KSZ device instance.
* @port: The port number to configure.
* @duplex: The desired duplex mode.
* @tx_pause: If true, enables transmit pause.
* @rx_pause: If true, enables receive pause.
*
* Description:
* The function configures flow control settings for a given port based on the
* desired settings and current duplex mode.
*
* According to the KSZ8873 datasheet, the PORT_FORCE_FLOW_CTRL bit in the
* Port Control 2 register (0x1A for Port 1, 0x22 for Port 2, 0x32 for Port 3)
* determines how flow control is handled on the port:
* "1 = will always enable full-duplex flow control on the port, regardless
* of AN result.
* 0 = full-duplex flow control is enabled based on AN result."
*
* This means that the flow control behavior depends on the state of this bit:
* - If PORT_FORCE_FLOW_CTRL is set to 1, the switch will ignore AN results and
* force flow control on the port.
* - If PORT_FORCE_FLOW_CTRL is set to 0, the switch will enable or disable
* flow control based on the AN results.
*
* However, there is a potential limitation in this configuration. It is
* currently not possible to force disable flow control on a port if we still
* advertise pause support. While such a configuration is not currently
* supported by Linux, and may not make practical sense, it's important to be
* aware of this limitation when working with the KSZ8873 and similar devices.
*/
static void ksz8_phy_port_link_up(struct ksz_device *dev, int port, int duplex,
bool tx_pause, bool rx_pause)
{
const u16 *regs = dev->info->regs;
u8 sctrl = 0;
/* The KSZ8795 switch differs from the KSZ8873 by supporting
* asymmetric pause control. However, since a single bit is used to
* control both RX and TX pause, we can't enforce asymmetric pause
* control - both TX and RX pause will be either enabled or disabled
* together.
*
* If auto-negotiation is enabled, we usually allow the flow control to
* be determined by the auto-negotiation process based on the
* capabilities of both link partners. However, for KSZ8873, the
* PORT_FORCE_FLOW_CTRL bit may be set by the hardware bootstrap,
* ignoring the auto-negotiation result. Thus, even in auto-negotiation
* mode, we need to ensure that the PORT_FORCE_FLOW_CTRL bit is
* properly cleared.
*
* In the absence of pause auto-negotiation, we will enforce symmetric
* pause control for both variants of switches - KSZ8873 and KSZ8795.
*
* Autoneg Pause Autoneg rx,tx PORT_FORCE_FLOW_CTRL
* 1 1 x 0
* 0 1 x 0 (flow control probably disabled)
* x 0 1 1 (flow control force enabled)
* 1 0 0 0 (flow control still depends on
* aneg result due to hardware)
* 0 0 0 0 (flow control probably disabled)
*/
if (dev->ports[port].manual_flow && tx_pause)
sctrl |= PORT_FORCE_FLOW_CTRL;
ksz_prmw8(dev, port, regs[P_STP_CTRL], PORT_FORCE_FLOW_CTRL, sctrl);
}
/**
* ksz8_cpu_port_link_up - Configures the CPU port of the switch.
* @dev: The KSZ device instance.
* @speed: The desired link speed.
* @duplex: The desired duplex mode.
* @tx_pause: If true, enables transmit pause.
* @rx_pause: If true, enables receive pause.
*
* Description:
* The function configures flow control and speed settings for the CPU
* port of the switch based on the desired settings, current duplex mode, and
* speed.
*/
static void ksz8_cpu_port_link_up(struct ksz_device *dev, int speed, int duplex,
bool tx_pause, bool rx_pause)
{
const u16 *regs = dev->info->regs;
u8 ctrl = 0;
/* SW_FLOW_CTRL, SW_HALF_DUPLEX, and SW_10_MBIT bits are bootstrappable
* at least on KSZ8873. They can have different values depending on your
* board setup.
*/
if (tx_pause || rx_pause)
ctrl |= SW_FLOW_CTRL;
if (duplex == DUPLEX_HALF)
ctrl |= SW_HALF_DUPLEX;
/* This hardware only supports SPEED_10 and SPEED_100. For SPEED_10
* we need to set the SW_10_MBIT bit. Otherwise, we can leave it 0.
*/
if (speed == SPEED_10)
ctrl |= SW_10_MBIT;
ksz_rmw8(dev, regs[S_BROADCAST_CTRL], SW_HALF_DUPLEX | SW_FLOW_CTRL |
SW_10_MBIT, ctrl);
}
void ksz8_phylink_mac_link_up(struct ksz_device *dev, int port,
unsigned int mode, phy_interface_t interface,
struct phy_device *phydev, int speed, int duplex,
bool tx_pause, bool rx_pause)
{
/* If the port is the CPU port, apply special handling. Only the CPU
* port is configured via global registers.
*/
if (dev->cpu_port == port)
ksz8_cpu_port_link_up(dev, speed, duplex, tx_pause, rx_pause);
else if (dev->info->internal_phy[port])
ksz8_phy_port_link_up(dev, port, duplex, tx_pause, rx_pause);
}
static int ksz8_handle_global_errata(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int ret = 0;
/* KSZ87xx Errata DS80000687C.
* Module 2: Link drops with some EEE link partners.
* An issue with the EEE next page exchange between the
* KSZ879x/KSZ877x/KSZ876x and some EEE link partners may result in
* the link dropping.
*/
if (dev->info->ksz87xx_eee_link_erratum)
ret = ksz8_ind_write8(dev, TABLE_EEE, REG_IND_EEE_GLOB2_HI, 0);
return ret;
}
int ksz8_enable_stp_addr(struct ksz_device *dev)
{
struct alu_struct alu;
/* Setup STP address for STP operation. */
memset(&alu, 0, sizeof(alu));
ether_addr_copy(alu.mac, eth_stp_addr);
alu.is_static = true;
alu.is_override = true;
alu.port_forward = dev->info->cpu_ports;
return ksz8_w_sta_mac_table(dev, 0, &alu);
}
int ksz8_setup(struct dsa_switch *ds)
{
struct ksz_device *dev = ds->priv;
int i;
ds->mtu_enforcement_ingress = true;
/* We rely on software untagging on the CPU port, so that we
* can support both tagged and untagged VLANs
*/
ds->untag_bridge_pvid = true;
/* VLAN filtering is partly controlled by the global VLAN
* Enable flag
*/
ds->vlan_filtering_is_global = true;
/* Enable automatic fast aging when link changed detected. */
ksz_cfg(dev, S_LINK_AGING_CTRL, SW_LINK_AUTO_AGING, true);
/* Enable aggressive back off algorithm in half duplex mode. */
regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_1,
SW_AGGR_BACKOFF, SW_AGGR_BACKOFF);
/*
* Make sure unicast VLAN boundary is set as default and
* enable no excessive collision drop.
*/
regmap_update_bits(ksz_regmap_8(dev), REG_SW_CTRL_2,
UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP,
UNICAST_VLAN_BOUNDARY | NO_EXC_COLLISION_DROP);
ksz_cfg(dev, S_REPLACE_VID_CTRL, SW_REPLACE_VID, false);
ksz_cfg(dev, S_MIRROR_CTRL, SW_MIRROR_RX_TX, false);
if (!ksz_is_ksz88x3(dev))
ksz_cfg(dev, REG_SW_CTRL_19, SW_INS_TAG_ENABLE, true);
for (i = 0; i < (dev->info->num_vlans / 4); i++)
ksz8_r_vlan_entries(dev, i);
return ksz8_handle_global_errata(ds);
}
void ksz8_get_caps(struct ksz_device *dev, int port,
struct phylink_config *config)
{
config->mac_capabilities = MAC_10 | MAC_100;
/* Silicon Errata Sheet (DS80000830A):
* "Port 1 does not respond to received flow control PAUSE frames"
* So, disable Pause support on "Port 1" (port == 0) for all ksz88x3
* switches.
*/
if (!ksz_is_ksz88x3(dev) || port)
config->mac_capabilities |= MAC_SYM_PAUSE;
/* Asym pause is not supported on KSZ8863 and KSZ8873 */
if (!ksz_is_ksz88x3(dev))
config->mac_capabilities |= MAC_ASYM_PAUSE;
}
u32 ksz8_get_port_addr(int port, int offset)
{
return PORT_CTRL_ADDR(port, offset);
}
int ksz8_switch_init(struct ksz_device *dev)
{
dev->cpu_port = fls(dev->info->cpu_ports) - 1;
dev->phy_port_cnt = dev->info->port_cnt - 1;
dev->port_mask = (BIT(dev->phy_port_cnt) - 1) | dev->info->cpu_ports;
return 0;
}
void ksz8_switch_exit(struct ksz_device *dev)
{
ksz8_reset_switch(dev);
}
MODULE_AUTHOR("Tristram Ha <Tristram.Ha@microchip.com>");
MODULE_DESCRIPTION("Microchip KSZ8795 Series Switch DSA Driver");
MODULE_LICENSE("GPL");
|