summaryrefslogtreecommitdiffstats
path: root/drivers/net/wan/z85230.c
blob: 982a03488a00756109f8b7e20110f2b1c6bdad0a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
// SPDX-License-Identifier: GPL-2.0-or-later
/*	(c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
 *	(c) Copyright 2000, 2001 Red Hat Inc
 *
 *	Development of this driver was funded by Equiinet Ltd
 *			http://www.equiinet.com
 *
 *	ChangeLog:
 *
 *	Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
 *	unification of all the Z85x30 asynchronous drivers for real.
 *
 *	DMA now uses get_free_page as kmalloc buffers may span a 64K
 *	boundary.
 *
 *	Modified for SMP safety and SMP locking by Alan Cox
 *					<alan@lxorguk.ukuu.org.uk>
 *
 *	Performance
 *
 *	Z85230:
 *	Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
 *	X.25 is not unrealistic on all machines. DMA mode can in theory
 *	handle T1/E1 quite nicely. In practice the limit seems to be about
 *	512Kbit->1Mbit depending on motherboard.
 *
 *	Z85C30:
 *	64K will take DMA, 9600 baud X.25 should be ok.
 *
 *	Z8530:
 *	Synchronous mode without DMA is unlikely to pass about 2400 baud.
 */

#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/mm.h>
#include <linux/net.h>
#include <linux/skbuff.h>
#include <linux/netdevice.h>
#include <linux/if_arp.h>
#include <linux/delay.h>
#include <linux/hdlc.h>
#include <linux/ioport.h>
#include <linux/init.h>
#include <linux/gfp.h>
#include <asm/dma.h>
#include <asm/io.h>
#define RT_LOCK
#define RT_UNLOCK
#include <linux/spinlock.h>

#include "z85230.h"

/**
 *	z8530_read_port - Architecture specific interface function
 *	@p: port to read
 *
 *	Provided port access methods. The Comtrol SV11 requires no delays
 *	between accesses and uses PC I/O. Some drivers may need a 5uS delay
 *
 *	In the longer term this should become an architecture specific
 *	section so that this can become a generic driver interface for all
 *	platforms. For now we only handle PC I/O ports with or without the
 *	dread 5uS sanity delay.
 *
 *	The caller must hold sufficient locks to avoid violating the horrible
 *	5uS delay rule.
 */

static inline int z8530_read_port(unsigned long p)
{
	u8 r = inb(Z8530_PORT_OF(p));

	if (p & Z8530_PORT_SLEEP) /* gcc should figure this out efficiently ! */
		udelay(5);
	return r;
}

/**
 *	z8530_write_port - Architecture specific interface function
 *	@p: port to write
 *	@d: value to write
 *
 *	Write a value to a port with delays if need be. Note that the
 *	caller must hold locks to avoid read/writes from other contexts
 *	violating the 5uS rule
 *
 *	In the longer term this should become an architecture specific
 *	section so that this can become a generic driver interface for all
 *	platforms. For now we only handle PC I/O ports with or without the
 *	dread 5uS sanity delay.
 */

static inline void z8530_write_port(unsigned long p, u8 d)
{
	outb(d, Z8530_PORT_OF(p));
	if (p & Z8530_PORT_SLEEP)
		udelay(5);
}

static void z8530_rx_done(struct z8530_channel *c);
static void z8530_tx_done(struct z8530_channel *c);

/**
 *	read_zsreg - Read a register from a Z85230
 *	@c: Z8530 channel to read from (2 per chip)
 *	@reg: Register to read
 *	FIXME: Use a spinlock.
 *
 *	Most of the Z8530 registers are indexed off the control registers.
 *	A read is done by writing to the control register and reading the
 *	register back.  The caller must hold the lock
 */

static inline u8 read_zsreg(struct z8530_channel *c, u8 reg)
{
	if (reg)
		z8530_write_port(c->ctrlio, reg);
	return z8530_read_port(c->ctrlio);
}

/**
 *	read_zsdata - Read the data port of a Z8530 channel
 *	@c: The Z8530 channel to read the data port from
 *
 *	The data port provides fast access to some things. We still
 *	have all the 5uS delays to worry about.
 */

static inline u8 read_zsdata(struct z8530_channel *c)
{
	u8 r;

	r = z8530_read_port(c->dataio);
	return r;
}

/**
 *	write_zsreg - Write to a Z8530 channel register
 *	@c: The Z8530 channel
 *	@reg: Register number
 *	@val: Value to write
 *
 *	Write a value to an indexed register. The caller must hold the lock
 *	to honour the irritating delay rules. We know about register 0
 *	being fast to access.
 *
 *      Assumes c->lock is held.
 */
static inline void write_zsreg(struct z8530_channel *c, u8 reg, u8 val)
{
	if (reg)
		z8530_write_port(c->ctrlio, reg);
	z8530_write_port(c->ctrlio, val);
}

/**
 *	write_zsctrl - Write to a Z8530 control register
 *	@c: The Z8530 channel
 *	@val: Value to write
 *
 *	Write directly to the control register on the Z8530
 */

static inline void write_zsctrl(struct z8530_channel *c, u8 val)
{
	z8530_write_port(c->ctrlio, val);
}

/**
 *	write_zsdata - Write to a Z8530 control register
 *	@c: The Z8530 channel
 *	@val: Value to write
 *
 *	Write directly to the data register on the Z8530
 */
static inline void write_zsdata(struct z8530_channel *c, u8 val)
{
	z8530_write_port(c->dataio, val);
}

/*	Register loading parameters for a dead port
 */

u8 z8530_dead_port[] = {
	255
};
EXPORT_SYMBOL(z8530_dead_port);

/*	Register loading parameters for currently supported circuit types
 */

/*	Data clocked by telco end. This is the correct data for the UK
 *	"kilostream" service, and most other similar services.
 */

u8 z8530_hdlc_kilostream[] = {
	4,	SYNC_ENAB | SDLC | X1CLK,
	2,	0,	/* No vector */
	1,	0,
	3,	ENT_HM | RxCRC_ENAB | Rx8,
	5,	TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
	9,	0,		/* Disable interrupts */
	6,	0xFF,
	7,	FLAG,
	10,	ABUNDER | NRZ | CRCPS,/*MARKIDLE ??*/
	11,	TCTRxCP,
	14,	DISDPLL,
	15,	DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
	1,	EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
	9,	NV | MIE | NORESET,
	255
};
EXPORT_SYMBOL(z8530_hdlc_kilostream);

/*	As above but for enhanced chips.
 */

u8 z8530_hdlc_kilostream_85230[] = {
	4,	SYNC_ENAB | SDLC | X1CLK,
	2,	0,	/* No vector */
	1,	0,
	3,	ENT_HM | RxCRC_ENAB | Rx8,
	5,	TxCRC_ENAB | RTS | TxENAB | Tx8 | DTR,
	9,	0,		/* Disable interrupts */
	6,	0xFF,
	7,	FLAG,
	10,	ABUNDER | NRZ | CRCPS,	/* MARKIDLE?? */
	11,	TCTRxCP,
	14,	DISDPLL,
	15,	DCDIE | SYNCIE | CTSIE | TxUIE | BRKIE,
	1,	EXT_INT_ENAB | TxINT_ENAB | INT_ALL_Rx,
	9,	NV | MIE | NORESET,
	23,	3,		/* Extended mode AUTO TX and EOM*/

	255
};
EXPORT_SYMBOL(z8530_hdlc_kilostream_85230);

/**
 *	z8530_flush_fifo - Flush on chip RX FIFO
 *	@c: Channel to flush
 *
 *	Flush the receive FIFO. There is no specific option for this, we
 *	blindly read bytes and discard them. Reading when there is no data
 *	is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
 *
 *	All locking is handled for the caller. On return data may still be
 *	present if it arrived during the flush.
 */

static void z8530_flush_fifo(struct z8530_channel *c)
{
	read_zsreg(c, R1);
	read_zsreg(c, R1);
	read_zsreg(c, R1);
	read_zsreg(c, R1);
	if (c->dev->type == Z85230) {
		read_zsreg(c, R1);
		read_zsreg(c, R1);
		read_zsreg(c, R1);
		read_zsreg(c, R1);
	}
}

/**
 *	z8530_rtsdtr - Control the outgoing DTS/RTS line
 *	@c: The Z8530 channel to control;
 *	@set: 1 to set, 0 to clear
 *
 *	Sets or clears DTR/RTS on the requested line. All locking is handled
 *	by the caller. For now we assume all boards use the actual RTS/DTR
 *	on the chip. Apparently one or two don't. We'll scream about them
 *	later.
 */

static void z8530_rtsdtr(struct z8530_channel *c, int set)
{
	if (set)
		c->regs[5] |= (RTS | DTR);
	else
		c->regs[5] &= ~(RTS | DTR);
	write_zsreg(c, R5, c->regs[5]);
}

/**
 *	z8530_rx - Handle a PIO receive event
 *	@c: Z8530 channel to process
 *
 *	Receive handler for receiving in PIO mode. This is much like the
 *	async one but not quite the same or as complex
 *
 *	Note: Its intended that this handler can easily be separated from
 *	the main code to run realtime. That'll be needed for some machines
 *	(eg to ever clock 64kbits on a sparc ;)).
 *
 *	The RT_LOCK macros don't do anything now. Keep the code covered
 *	by them as short as possible in all circumstances - clocks cost
 *	baud. The interrupt handler is assumed to be atomic w.r.t. to
 *	other code - this is true in the RT case too.
 *
 *	We only cover the sync cases for this. If you want 2Mbit async
 *	do it yourself but consider medical assistance first. This non DMA
 *	synchronous mode is portable code. The DMA mode assumes PCI like
 *	ISA DMA
 *
 *	Called with the device lock held
 */

static void z8530_rx(struct z8530_channel *c)
{
	u8 ch, stat;

	while (1) {
		/* FIFO empty ? */
		if (!(read_zsreg(c, R0) & 1))
			break;
		ch = read_zsdata(c);
		stat = read_zsreg(c, R1);

		/*	Overrun ?
		 */
		if (c->count < c->max) {
			*c->dptr++ = ch;
			c->count++;
		}

		if (stat & END_FR) {
			/*	Error ?
			 */
			if (stat & (Rx_OVR | CRC_ERR)) {
				/* Rewind the buffer and return */
				if (c->skb)
					c->dptr = c->skb->data;
				c->count = 0;
				if (stat & Rx_OVR) {
					pr_warn("%s: overrun\n", c->dev->name);
					c->rx_overrun++;
				}
				if (stat & CRC_ERR) {
					c->rx_crc_err++;
					/* printk("crc error\n"); */
				}
				/* Shove the frame upstream */
			} else {
				/*	Drop the lock for RX processing, or
				 *	there are deadlocks
				 */
				z8530_rx_done(c);
				write_zsctrl(c, RES_Rx_CRC);
			}
		}
	}
	/*	Clear irq
	 */
	write_zsctrl(c, ERR_RES);
	write_zsctrl(c, RES_H_IUS);
}

/**
 *	z8530_tx - Handle a PIO transmit event
 *	@c: Z8530 channel to process
 *
 *	Z8530 transmit interrupt handler for the PIO mode. The basic
 *	idea is to attempt to keep the FIFO fed. We fill as many bytes
 *	in as possible, its quite possible that we won't keep up with the
 *	data rate otherwise.
 */

static void z8530_tx(struct z8530_channel *c)
{
	while (c->txcount) {
		/* FIFO full ? */
		if (!(read_zsreg(c, R0) & 4))
			return;
		c->txcount--;
		/*	Shovel out the byte
		 */
		write_zsreg(c, R8, *c->tx_ptr++);
		write_zsctrl(c, RES_H_IUS);
		/* We are about to underflow */
		if (c->txcount == 0) {
			write_zsctrl(c, RES_EOM_L);
			write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
		}
	}

	/*	End of frame TX - fire another one
	 */

	write_zsctrl(c, RES_Tx_P);

	z8530_tx_done(c);
	write_zsctrl(c, RES_H_IUS);
}

/**
 *	z8530_status - Handle a PIO status exception
 *	@chan: Z8530 channel to process
 *
 *	A status event occurred in PIO synchronous mode. There are several
 *	reasons the chip will bother us here. A transmit underrun means we
 *	failed to feed the chip fast enough and just broke a packet. A DCD
 *	change is a line up or down.
 */

static void z8530_status(struct z8530_channel *chan)
{
	u8 status, altered;

	status = read_zsreg(chan, R0);
	altered = chan->status ^ status;

	chan->status = status;

	if (status & TxEOM) {
/*		printk("%s: Tx underrun.\n", chan->dev->name); */
		chan->netdevice->stats.tx_fifo_errors++;
		write_zsctrl(chan, ERR_RES);
		z8530_tx_done(chan);
	}

	if (altered & chan->dcdcheck) {
		if (status & chan->dcdcheck) {
			pr_info("%s: DCD raised\n", chan->dev->name);
			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
			if (chan->netdevice)
				netif_carrier_on(chan->netdevice);
		} else {
			pr_info("%s: DCD lost\n", chan->dev->name);
			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
			z8530_flush_fifo(chan);
			if (chan->netdevice)
				netif_carrier_off(chan->netdevice);
		}
	}
	write_zsctrl(chan, RES_EXT_INT);
	write_zsctrl(chan, RES_H_IUS);
}

struct z8530_irqhandler z8530_sync = {
	.rx = z8530_rx,
	.tx = z8530_tx,
	.status = z8530_status,
};
EXPORT_SYMBOL(z8530_sync);

/**
 *	z8530_dma_rx - Handle a DMA RX event
 *	@chan: Channel to handle
 *
 *	Non bus mastering DMA interfaces for the Z8x30 devices. This
 *	is really pretty PC specific. The DMA mode means that most receive
 *	events are handled by the DMA hardware. We get a kick here only if
 *	a frame ended.
 */

static void z8530_dma_rx(struct z8530_channel *chan)
{
	if (chan->rxdma_on) {
		/* Special condition check only */
		u8 status;

		read_zsreg(chan, R7);
		read_zsreg(chan, R6);

		status = read_zsreg(chan, R1);

		if (status & END_FR)
			z8530_rx_done(chan);	/* Fire up the next one */

		write_zsctrl(chan, ERR_RES);
		write_zsctrl(chan, RES_H_IUS);
	} else {
		/* DMA is off right now, drain the slow way */
		z8530_rx(chan);
	}
}

/**
 *	z8530_dma_tx - Handle a DMA TX event
 *	@chan:	The Z8530 channel to handle
 *
 *	We have received an interrupt while doing DMA transmissions. It
 *	shouldn't happen. Scream loudly if it does.
 */
static void z8530_dma_tx(struct z8530_channel *chan)
{
	if (!chan->dma_tx) {
		pr_warn("Hey who turned the DMA off?\n");
		z8530_tx(chan);
		return;
	}
	/* This shouldn't occur in DMA mode */
	pr_err("DMA tx - bogus event!\n");
	z8530_tx(chan);
}

/**
 *	z8530_dma_status - Handle a DMA status exception
 *	@chan: Z8530 channel to process
 *
 *	A status event occurred on the Z8530. We receive these for two reasons
 *	when in DMA mode. Firstly if we finished a packet transfer we get one
 *	and kick the next packet out. Secondly we may see a DCD change.
 *
 */
static void z8530_dma_status(struct z8530_channel *chan)
{
	u8 status, altered;

	status = read_zsreg(chan, R0);
	altered = chan->status ^ status;

	chan->status = status;

	if (chan->dma_tx) {
		if (status & TxEOM) {
			unsigned long flags;

			flags = claim_dma_lock();
			disable_dma(chan->txdma);
			clear_dma_ff(chan->txdma);
			chan->txdma_on = 0;
			release_dma_lock(flags);
			z8530_tx_done(chan);
		}
	}

	if (altered & chan->dcdcheck) {
		if (status & chan->dcdcheck) {
			pr_info("%s: DCD raised\n", chan->dev->name);
			write_zsreg(chan, R3, chan->regs[3] | RxENABLE);
			if (chan->netdevice)
				netif_carrier_on(chan->netdevice);
		} else {
			pr_info("%s: DCD lost\n", chan->dev->name);
			write_zsreg(chan, R3, chan->regs[3] & ~RxENABLE);
			z8530_flush_fifo(chan);
			if (chan->netdevice)
				netif_carrier_off(chan->netdevice);
		}
	}

	write_zsctrl(chan, RES_EXT_INT);
	write_zsctrl(chan, RES_H_IUS);
}

static struct z8530_irqhandler z8530_dma_sync = {
	.rx = z8530_dma_rx,
	.tx = z8530_dma_tx,
	.status = z8530_dma_status,
};

static struct z8530_irqhandler z8530_txdma_sync = {
	.rx = z8530_rx,
	.tx = z8530_dma_tx,
	.status = z8530_dma_status,
};

/**
 *	z8530_rx_clear - Handle RX events from a stopped chip
 *	@c: Z8530 channel to shut up
 *
 *	Receive interrupt vectors for a Z8530 that is in 'parked' mode.
 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 *	(eg the MacII) we must clear the interrupt cause or die.
 */

static void z8530_rx_clear(struct z8530_channel *c)
{
	/*	Data and status bytes
	 */
	u8 stat;

	read_zsdata(c);
	stat = read_zsreg(c, R1);

	if (stat & END_FR)
		write_zsctrl(c, RES_Rx_CRC);
	/*	Clear irq
	 */
	write_zsctrl(c, ERR_RES);
	write_zsctrl(c, RES_H_IUS);
}

/**
 *	z8530_tx_clear - Handle TX events from a stopped chip
 *	@c: Z8530 channel to shut up
 *
 *	Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 *	(eg the MacII) we must clear the interrupt cause or die.
 */

static void z8530_tx_clear(struct z8530_channel *c)
{
	write_zsctrl(c, RES_Tx_P);
	write_zsctrl(c, RES_H_IUS);
}

/**
 *	z8530_status_clear - Handle status events from a stopped chip
 *	@chan: Z8530 channel to shut up
 *
 *	Status interrupt vectors for a Z8530 that is in 'parked' mode.
 *	For machines with PCI Z85x30 cards, or level triggered interrupts
 *	(eg the MacII) we must clear the interrupt cause or die.
 */

static void z8530_status_clear(struct z8530_channel *chan)
{
	u8 status = read_zsreg(chan, R0);

	if (status & TxEOM)
		write_zsctrl(chan, ERR_RES);
	write_zsctrl(chan, RES_EXT_INT);
	write_zsctrl(chan, RES_H_IUS);
}

struct z8530_irqhandler z8530_nop = {
	.rx = z8530_rx_clear,
	.tx = z8530_tx_clear,
	.status = z8530_status_clear,
};
EXPORT_SYMBOL(z8530_nop);

/**
 *	z8530_interrupt - Handle an interrupt from a Z8530
 *	@irq: Interrupt number
 *	@dev_id: The Z8530 device that is interrupting.
 *
 *	A Z85[2]30 device has stuck its hand in the air for attention.
 *	We scan both the channels on the chip for events and then call
 *	the channel specific call backs for each channel that has events.
 *	We have to use callback functions because the two channels can be
 *	in different modes.
 *
 *	Locking is done for the handlers. Note that locking is done
 *	at the chip level (the 5uS delay issue is per chip not per
 *	channel). c->lock for both channels points to dev->lock
 */

irqreturn_t z8530_interrupt(int irq, void *dev_id)
{
	struct z8530_dev *dev = dev_id;
	u8 intr;
	static volatile int locker=0;
	int work = 0;
	struct z8530_irqhandler *irqs;

	if (locker) {
		pr_err("IRQ re-enter\n");
		return IRQ_NONE;
	}
	locker = 1;

	spin_lock(&dev->lock);

	while (++work < 5000) {
		intr = read_zsreg(&dev->chanA, R3);
		if (!(intr &
		   (CHARxIP | CHATxIP | CHAEXT | CHBRxIP | CHBTxIP | CHBEXT)))
			break;

		/* This holds the IRQ status. On the 8530 you must read it
		 * from chan A even though it applies to the whole chip
		 */

		/* Now walk the chip and see what it is wanting - it may be
		 * an IRQ for someone else remember
		 */

		irqs = dev->chanA.irqs;

		if (intr & (CHARxIP | CHATxIP | CHAEXT)) {
			if (intr & CHARxIP)
				irqs->rx(&dev->chanA);
			if (intr & CHATxIP)
				irqs->tx(&dev->chanA);
			if (intr & CHAEXT)
				irqs->status(&dev->chanA);
		}

		irqs = dev->chanB.irqs;

		if (intr & (CHBRxIP | CHBTxIP | CHBEXT)) {
			if (intr & CHBRxIP)
				irqs->rx(&dev->chanB);
			if (intr & CHBTxIP)
				irqs->tx(&dev->chanB);
			if (intr & CHBEXT)
				irqs->status(&dev->chanB);
		}
	}
	spin_unlock(&dev->lock);
	if (work == 5000)
		pr_err("%s: interrupt jammed - abort(0x%X)!\n",
		       dev->name, intr);
	/* Ok all done */
	locker = 0;
	return IRQ_HANDLED;
}
EXPORT_SYMBOL(z8530_interrupt);

static const u8 reg_init[16] = {
	0, 0, 0, 0,
	0, 0, 0, 0,
	0, 0, 0, 0,
	0x55, 0, 0, 0
};

/**
 *	z8530_sync_open - Open a Z8530 channel for PIO
 *	@dev:	The network interface we are using
 *	@c:	The Z8530 channel to open in synchronous PIO mode
 *
 *	Switch a Z8530 into synchronous mode without DMA assist. We
 *	raise the RTS/DTR and commence network operation.
 */
int z8530_sync_open(struct net_device *dev, struct z8530_channel *c)
{
	unsigned long flags;

	spin_lock_irqsave(c->lock, flags);

	c->sync = 1;
	c->mtu = dev->mtu + 64;
	c->count = 0;
	c->skb = NULL;
	c->skb2 = NULL;
	c->irqs = &z8530_sync;

	/* This loads the double buffer up */
	z8530_rx_done(c);	/* Load the frame ring */
	z8530_rx_done(c);	/* Load the backup frame */
	z8530_rtsdtr(c, 1);
	c->dma_tx = 0;
	c->regs[R1] |= TxINT_ENAB;
	write_zsreg(c, R1, c->regs[R1]);
	write_zsreg(c, R3, c->regs[R3] | RxENABLE);

	spin_unlock_irqrestore(c->lock, flags);
	return 0;
}
EXPORT_SYMBOL(z8530_sync_open);

/**
 *	z8530_sync_close - Close a PIO Z8530 channel
 *	@dev: Network device to close
 *	@c: Z8530 channel to disassociate and move to idle
 *
 *	Close down a Z8530 interface and switch its interrupt handlers
 *	to discard future events.
 */
int z8530_sync_close(struct net_device *dev, struct z8530_channel *c)
{
	u8 chk;
	unsigned long flags;

	spin_lock_irqsave(c->lock, flags);
	c->irqs = &z8530_nop;
	c->max = 0;
	c->sync = 0;

	chk = read_zsreg(c, R0);
	write_zsreg(c, R3, c->regs[R3]);
	z8530_rtsdtr(c, 0);

	spin_unlock_irqrestore(c->lock, flags);
	return 0;
}
EXPORT_SYMBOL(z8530_sync_close);

/**
 *	z8530_sync_dma_open - Open a Z8530 for DMA I/O
 *	@dev: The network device to attach
 *	@c: The Z8530 channel to configure in sync DMA mode.
 *
 *	Set up a Z85x30 device for synchronous DMA in both directions. Two
 *	ISA DMA channels must be available for this to work. We assume ISA
 *	DMA driven I/O and PC limits on access.
 */
int z8530_sync_dma_open(struct net_device *dev, struct z8530_channel *c)
{
	unsigned long cflags, dflags;

	c->sync = 1;
	c->mtu = dev->mtu + 64;
	c->count = 0;
	c->skb = NULL;
	c->skb2 = NULL;

	/*	Load the DMA interfaces up
	 */
	c->rxdma_on = 0;
	c->txdma_on = 0;

	/*	Allocate the DMA flip buffers. Limit by page size.
	 *	Everyone runs 1500 mtu or less on wan links so this
	 *	should be fine.
	 */

	if (c->mtu  > PAGE_SIZE / 2)
		return -EMSGSIZE;

	c->rx_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!c->rx_buf[0])
		return -ENOBUFS;
	c->rx_buf[1] = c->rx_buf[0] + PAGE_SIZE / 2;

	c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!c->tx_dma_buf[0]) {
		free_page((unsigned long)c->rx_buf[0]);
		c->rx_buf[0] = NULL;
		return -ENOBUFS;
	}
	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;

	c->tx_dma_used = 0;
	c->dma_tx = 1;
	c->dma_num = 0;
	c->dma_ready = 1;

	/*	Enable DMA control mode
	 */

	spin_lock_irqsave(c->lock, cflags);

	/*	TX DMA via DIR/REQ
	 */

	c->regs[R14] |= DTRREQ;
	write_zsreg(c, R14, c->regs[R14]);

	c->regs[R1] &= ~TxINT_ENAB;
	write_zsreg(c, R1, c->regs[R1]);

	/*	RX DMA via W/Req
	 */

	c->regs[R1] |= WT_FN_RDYFN;
	c->regs[R1] |= WT_RDY_RT;
	c->regs[R1] |= INT_ERR_Rx;
	c->regs[R1] &= ~TxINT_ENAB;
	write_zsreg(c, R1, c->regs[R1]);
	c->regs[R1] |= WT_RDY_ENAB;
	write_zsreg(c, R1, c->regs[R1]);

	/*	DMA interrupts
	 */

	/*	Set up the DMA configuration
	 */

	dflags = claim_dma_lock();

	disable_dma(c->rxdma);
	clear_dma_ff(c->rxdma);
	set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
	set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[0]));
	set_dma_count(c->rxdma, c->mtu);
	enable_dma(c->rxdma);

	disable_dma(c->txdma);
	clear_dma_ff(c->txdma);
	set_dma_mode(c->txdma, DMA_MODE_WRITE);
	disable_dma(c->txdma);

	release_dma_lock(dflags);

	/*	Select the DMA interrupt handlers
	 */

	c->rxdma_on = 1;
	c->txdma_on = 1;
	c->tx_dma_used = 1;

	c->irqs = &z8530_dma_sync;
	z8530_rtsdtr(c, 1);
	write_zsreg(c, R3, c->regs[R3] | RxENABLE);

	spin_unlock_irqrestore(c->lock, cflags);

	return 0;
}
EXPORT_SYMBOL(z8530_sync_dma_open);

/**
 *	z8530_sync_dma_close - Close down DMA I/O
 *	@dev: Network device to detach
 *	@c: Z8530 channel to move into discard mode
 *
 *	Shut down a DMA mode synchronous interface. Halt the DMA, and
 *	free the buffers.
 */
int z8530_sync_dma_close(struct net_device *dev, struct z8530_channel *c)
{
	u8 chk;
	unsigned long flags;

	c->irqs = &z8530_nop;
	c->max = 0;
	c->sync = 0;

	/*	Disable the PC DMA channels
	 */

	flags = claim_dma_lock();
	disable_dma(c->rxdma);
	clear_dma_ff(c->rxdma);

	c->rxdma_on = 0;

	disable_dma(c->txdma);
	clear_dma_ff(c->txdma);
	release_dma_lock(flags);

	c->txdma_on = 0;
	c->tx_dma_used = 0;

	spin_lock_irqsave(c->lock, flags);

	/*	Disable DMA control mode
	 */

	c->regs[R1] &= ~WT_RDY_ENAB;
	write_zsreg(c, R1, c->regs[R1]);
	c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
	c->regs[R1] |= INT_ALL_Rx;
	write_zsreg(c, R1, c->regs[R1]);
	c->regs[R14] &= ~DTRREQ;
	write_zsreg(c, R14, c->regs[R14]);

	if (c->rx_buf[0]) {
		free_page((unsigned long)c->rx_buf[0]);
		c->rx_buf[0] = NULL;
	}
	if (c->tx_dma_buf[0]) {
		free_page((unsigned  long)c->tx_dma_buf[0]);
		c->tx_dma_buf[0] = NULL;
	}
	chk = read_zsreg(c, R0);
	write_zsreg(c, R3, c->regs[R3]);
	z8530_rtsdtr(c, 0);

	spin_unlock_irqrestore(c->lock, flags);

	return 0;
}
EXPORT_SYMBOL(z8530_sync_dma_close);

/**
 *	z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
 *	@dev: The network device to attach
 *	@c: The Z8530 channel to configure in sync DMA mode.
 *
 *	Set up a Z85x30 device for synchronous DMA transmission. One
 *	ISA DMA channel must be available for this to work. The receive
 *	side is run in PIO mode, but then it has the bigger FIFO.
 */

int z8530_sync_txdma_open(struct net_device *dev, struct z8530_channel *c)
{
	unsigned long cflags, dflags;

	printk("Opening sync interface for TX-DMA\n");
	c->sync = 1;
	c->mtu = dev->mtu + 64;
	c->count = 0;
	c->skb = NULL;
	c->skb2 = NULL;

	/*	Allocate the DMA flip buffers. Limit by page size.
	 *	Everyone runs 1500 mtu or less on wan links so this
	 *	should be fine.
	 */

	if (c->mtu > PAGE_SIZE / 2)
		return -EMSGSIZE;

	c->tx_dma_buf[0] = (void *)get_zeroed_page(GFP_KERNEL | GFP_DMA);
	if (!c->tx_dma_buf[0])
		return -ENOBUFS;

	c->tx_dma_buf[1] = c->tx_dma_buf[0] + PAGE_SIZE / 2;

	spin_lock_irqsave(c->lock, cflags);

	/*	Load the PIO receive ring
	 */

	z8530_rx_done(c);
	z8530_rx_done(c);

	/*	Load the DMA interfaces up
	 */

	c->rxdma_on = 0;
	c->txdma_on = 0;

	c->tx_dma_used = 0;
	c->dma_num = 0;
	c->dma_ready = 1;
	c->dma_tx = 1;

	/*	Enable DMA control mode
	 */

	/*	TX DMA via DIR/REQ
	 */
	c->regs[R14] |= DTRREQ;
	write_zsreg(c, R14, c->regs[R14]);

	c->regs[R1] &= ~TxINT_ENAB;
	write_zsreg(c, R1, c->regs[R1]);

	/*	Set up the DMA configuration
	 */

	dflags = claim_dma_lock();

	disable_dma(c->txdma);
	clear_dma_ff(c->txdma);
	set_dma_mode(c->txdma, DMA_MODE_WRITE);
	disable_dma(c->txdma);

	release_dma_lock(dflags);

	/*	Select the DMA interrupt handlers
	 */

	c->rxdma_on = 0;
	c->txdma_on = 1;
	c->tx_dma_used = 1;

	c->irqs = &z8530_txdma_sync;
	z8530_rtsdtr(c, 1);
	write_zsreg(c, R3, c->regs[R3] | RxENABLE);
	spin_unlock_irqrestore(c->lock, cflags);

	return 0;
}
EXPORT_SYMBOL(z8530_sync_txdma_open);

/**
 *	z8530_sync_txdma_close - Close down a TX driven DMA channel
 *	@dev: Network device to detach
 *	@c: Z8530 channel to move into discard mode
 *
 *	Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
 *	and  free the buffers.
 */

int z8530_sync_txdma_close(struct net_device *dev, struct z8530_channel *c)
{
	unsigned long dflags, cflags;
	u8 chk;

	spin_lock_irqsave(c->lock, cflags);

	c->irqs = &z8530_nop;
	c->max = 0;
	c->sync = 0;

	/*	Disable the PC DMA channels
	 */

	dflags = claim_dma_lock();

	disable_dma(c->txdma);
	clear_dma_ff(c->txdma);
	c->txdma_on = 0;
	c->tx_dma_used = 0;

	release_dma_lock(dflags);

	/*	Disable DMA control mode
	 */

	c->regs[R1] &= ~WT_RDY_ENAB;
	write_zsreg(c, R1, c->regs[R1]);
	c->regs[R1] &= ~(WT_RDY_RT | WT_FN_RDYFN | INT_ERR_Rx);
	c->regs[R1] |= INT_ALL_Rx;
	write_zsreg(c, R1, c->regs[R1]);
	c->regs[R14] &= ~DTRREQ;
	write_zsreg(c, R14, c->regs[R14]);

	if (c->tx_dma_buf[0]) {
		free_page((unsigned long)c->tx_dma_buf[0]);
		c->tx_dma_buf[0] = NULL;
	}
	chk = read_zsreg(c, R0);
	write_zsreg(c, R3, c->regs[R3]);
	z8530_rtsdtr(c, 0);

	spin_unlock_irqrestore(c->lock, cflags);
	return 0;
}
EXPORT_SYMBOL(z8530_sync_txdma_close);

/*	Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
 *	it exists...
 */
static const char * const z8530_type_name[] = {
	"Z8530",
	"Z85C30",
	"Z85230"
};

/**
 *	z8530_describe - Uniformly describe a Z8530 port
 *	@dev: Z8530 device to describe
 *	@mapping: string holding mapping type (eg "I/O" or "Mem")
 *	@io: the port value in question
 *
 *	Describe a Z8530 in a standard format. We must pass the I/O as
 *	the port offset isn't predictable. The main reason for this function
 *	is to try and get a common format of report.
 */

void z8530_describe(struct z8530_dev *dev, char *mapping, unsigned long io)
{
	pr_info("%s: %s found at %s 0x%lX, IRQ %d\n",
		dev->name,
		z8530_type_name[dev->type],
		mapping,
		Z8530_PORT_OF(io),
		dev->irq);
}
EXPORT_SYMBOL(z8530_describe);

/*	Locked operation part of the z8530 init code
 */
static inline int do_z8530_init(struct z8530_dev *dev)
{
	/* NOP the interrupt handlers first - we might get a
	 * floating IRQ transition when we reset the chip
	 */
	dev->chanA.irqs = &z8530_nop;
	dev->chanB.irqs = &z8530_nop;
	dev->chanA.dcdcheck = DCD;
	dev->chanB.dcdcheck = DCD;

	/* Reset the chip */
	write_zsreg(&dev->chanA, R9, 0xC0);
	udelay(200);
	/* Now check its valid */
	write_zsreg(&dev->chanA, R12, 0xAA);
	if (read_zsreg(&dev->chanA, R12) != 0xAA)
		return -ENODEV;
	write_zsreg(&dev->chanA, R12, 0x55);
	if (read_zsreg(&dev->chanA, R12) != 0x55)
		return -ENODEV;

	dev->type = Z8530;

	/*	See the application note.
	 */

	write_zsreg(&dev->chanA, R15, 0x01);

	/*	If we can set the low bit of R15 then
	 *	the chip is enhanced.
	 */

	if (read_zsreg(&dev->chanA, R15) == 0x01) {
		/* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
		/* Put a char in the fifo */
		write_zsreg(&dev->chanA, R8, 0);
		if (read_zsreg(&dev->chanA, R0) & Tx_BUF_EMP)
			dev->type = Z85230;	/* Has a FIFO */
		else
			dev->type = Z85C30;	/* Z85C30, 1 byte FIFO */
	}

	/*	The code assumes R7' and friends are
	 *	off. Use write_zsext() for these and keep
	 *	this bit clear.
	 */

	write_zsreg(&dev->chanA, R15, 0);

	/*	At this point it looks like the chip is behaving
	 */

	memcpy(dev->chanA.regs, reg_init, 16);
	memcpy(dev->chanB.regs, reg_init, 16);

	return 0;
}

/**
 *	z8530_init - Initialise a Z8530 device
 *	@dev: Z8530 device to initialise.
 *
 *	Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
 *	is present, identify the type and then program it to hopefully
 *	keep quite and behave. This matters a lot, a Z8530 in the wrong
 *	state will sometimes get into stupid modes generating 10Khz
 *	interrupt streams and the like.
 *
 *	We set the interrupt handler up to discard any events, in case
 *	we get them during reset or setp.
 *
 *	Return 0 for success, or a negative value indicating the problem
 *	in errno form.
 */

int z8530_init(struct z8530_dev *dev)
{
	unsigned long flags;
	int ret;

	/* Set up the chip level lock */
	spin_lock_init(&dev->lock);
	dev->chanA.lock = &dev->lock;
	dev->chanB.lock = &dev->lock;

	spin_lock_irqsave(&dev->lock, flags);
	ret = do_z8530_init(dev);
	spin_unlock_irqrestore(&dev->lock, flags);

	return ret;
}
EXPORT_SYMBOL(z8530_init);

/**
 *	z8530_shutdown - Shutdown a Z8530 device
 *	@dev: The Z8530 chip to shutdown
 *
 *	We set the interrupt handlers to silence any interrupts. We then
 *	reset the chip and wait 100uS to be sure the reset completed. Just
 *	in case the caller then tries to do stuff.
 *
 *	This is called without the lock held
 */
int z8530_shutdown(struct z8530_dev *dev)
{
	unsigned long flags;
	/* Reset the chip */

	spin_lock_irqsave(&dev->lock, flags);
	dev->chanA.irqs = &z8530_nop;
	dev->chanB.irqs = &z8530_nop;
	write_zsreg(&dev->chanA, R9, 0xC0);
	/* We must lock the udelay, the chip is offlimits here */
	udelay(100);
	spin_unlock_irqrestore(&dev->lock, flags);
	return 0;
}
EXPORT_SYMBOL(z8530_shutdown);

/**
 *	z8530_channel_load - Load channel data
 *	@c: Z8530 channel to configure
 *	@rtable: table of register, value pairs
 *	FIXME: ioctl to allow user uploaded tables
 *
 *	Load a Z8530 channel up from the system data. We use +16 to
 *	indicate the "prime" registers. The value 255 terminates the
 *	table.
 */

int z8530_channel_load(struct z8530_channel *c, u8 *rtable)
{
	unsigned long flags;

	spin_lock_irqsave(c->lock, flags);

	while (*rtable != 255) {
		int reg = *rtable++;

		if (reg > 0x0F)
			write_zsreg(c, R15, c->regs[15] | 1);
		write_zsreg(c, reg & 0x0F, *rtable);
		if (reg > 0x0F)
			write_zsreg(c, R15, c->regs[15] & ~1);
		c->regs[reg] = *rtable++;
	}
	c->rx_function = z8530_null_rx;
	c->skb = NULL;
	c->tx_skb = NULL;
	c->tx_next_skb = NULL;
	c->mtu = 1500;
	c->max = 0;
	c->count = 0;
	c->status = read_zsreg(c, R0);
	c->sync = 1;
	write_zsreg(c, R3, c->regs[R3] | RxENABLE);

	spin_unlock_irqrestore(c->lock, flags);
	return 0;
}
EXPORT_SYMBOL(z8530_channel_load);

/**
 *	z8530_tx_begin - Begin packet transmission
 *	@c: The Z8530 channel to kick
 *
 *	This is the speed sensitive side of transmission. If we are called
 *	and no buffer is being transmitted we commence the next buffer. If
 *	nothing is queued we idle the sync.
 *
 *	Note: We are handling this code path in the interrupt path, keep it
 *	fast or bad things will happen.
 *
 *	Called with the lock held.
 */

static void z8530_tx_begin(struct z8530_channel *c)
{
	unsigned long flags;

	if (c->tx_skb)
		return;

	c->tx_skb = c->tx_next_skb;
	c->tx_next_skb = NULL;
	c->tx_ptr = c->tx_next_ptr;

	if (!c->tx_skb) {
		/* Idle on */
		if (c->dma_tx) {
			flags = claim_dma_lock();
			disable_dma(c->txdma);
			/*	Check if we crapped out.
			 */
			if (get_dma_residue(c->txdma)) {
				c->netdevice->stats.tx_dropped++;
				c->netdevice->stats.tx_fifo_errors++;
			}
			release_dma_lock(flags);
		}
		c->txcount = 0;
	} else {
		c->txcount = c->tx_skb->len;

		if (c->dma_tx) {
			/*	FIXME. DMA is broken for the original 8530,
			 *	on the older parts we need to set a flag and
			 *	wait for a further TX interrupt to fire this
			 *	stage off
			 */

			flags = claim_dma_lock();
			disable_dma(c->txdma);

			/*	These two are needed by the 8530/85C30
			 *	and must be issued when idling.
			 */
			if (c->dev->type != Z85230) {
				write_zsctrl(c, RES_Tx_CRC);
				write_zsctrl(c, RES_EOM_L);
			}
			write_zsreg(c, R10, c->regs[10] & ~ABUNDER);
			clear_dma_ff(c->txdma);
			set_dma_addr(c->txdma, virt_to_bus(c->tx_ptr));
			set_dma_count(c->txdma, c->txcount);
			enable_dma(c->txdma);
			release_dma_lock(flags);
			write_zsctrl(c, RES_EOM_L);
			write_zsreg(c, R5, c->regs[R5] | TxENAB);
		} else {
			/* ABUNDER off */
			write_zsreg(c, R10, c->regs[10]);
			write_zsctrl(c, RES_Tx_CRC);

			while (c->txcount && (read_zsreg(c, R0) & Tx_BUF_EMP)) {
				write_zsreg(c, R8, *c->tx_ptr++);
				c->txcount--;
			}
		}
	}
	/*	Since we emptied tx_skb we can ask for more
	 */
	netif_wake_queue(c->netdevice);
}

/**
 *	z8530_tx_done - TX complete callback
 *	@c: The channel that completed a transmit.
 *
 *	This is called when we complete a packet send. We wake the queue,
 *	start the next packet going and then free the buffer of the existing
 *	packet. This code is fairly timing sensitive.
 *
 *	Called with the register lock held.
 */

static void z8530_tx_done(struct z8530_channel *c)
{
	struct sk_buff *skb;

	/* Actually this can happen.*/
	if (!c->tx_skb)
		return;

	skb = c->tx_skb;
	c->tx_skb = NULL;
	z8530_tx_begin(c);
	c->netdevice->stats.tx_packets++;
	c->netdevice->stats.tx_bytes += skb->len;
	dev_consume_skb_irq(skb);
}

/**
 *	z8530_null_rx - Discard a packet
 *	@c: The channel the packet arrived on
 *	@skb: The buffer
 *
 *	We point the receive handler at this function when idle. Instead
 *	of processing the frames we get to throw them away.
 */
void z8530_null_rx(struct z8530_channel *c, struct sk_buff *skb)
{
	dev_kfree_skb_any(skb);
}
EXPORT_SYMBOL(z8530_null_rx);

/**
 *	z8530_rx_done - Receive completion callback
 *	@c: The channel that completed a receive
 *
 *	A new packet is complete. Our goal here is to get back into receive
 *	mode as fast as possible. On the Z85230 we could change to using
 *	ESCC mode, but on the older chips we have no choice. We flip to the
 *	new buffer immediately in DMA mode so that the DMA of the next
 *	frame can occur while we are copying the previous buffer to an sk_buff
 *
 *	Called with the lock held
 */
static void z8530_rx_done(struct z8530_channel *c)
{
	struct sk_buff *skb;
	int ct;

	/*	Is our receive engine in DMA mode
	 */
	if (c->rxdma_on) {
		/*	Save the ready state and the buffer currently
		 *	being used as the DMA target
		 */
		int ready = c->dma_ready;
		unsigned char *rxb = c->rx_buf[c->dma_num];
		unsigned long flags;

		/*	Complete this DMA. Necessary to find the length
		 */
		flags = claim_dma_lock();

		disable_dma(c->rxdma);
		clear_dma_ff(c->rxdma);
		c->rxdma_on = 0;
		ct = c->mtu - get_dma_residue(c->rxdma);
		if (ct < 0)
			ct = 2;	/* Shit happens.. */
		c->dma_ready = 0;

		/*	Normal case: the other slot is free, start the next DMA
		 *	into it immediately.
		 */

		if (ready) {
			c->dma_num ^= 1;
			set_dma_mode(c->rxdma, DMA_MODE_READ | 0x10);
			set_dma_addr(c->rxdma, virt_to_bus(c->rx_buf[c->dma_num]));
			set_dma_count(c->rxdma, c->mtu);
			c->rxdma_on = 1;
			enable_dma(c->rxdma);
			/* Stop any frames that we missed the head of
			 * from passing
			 */
			write_zsreg(c, R0, RES_Rx_CRC);
		} else {
			/* Can't occur as we dont reenable the DMA irq until
			 * after the flip is done
			 */
			netdev_warn(c->netdevice, "DMA flip overrun!\n");
		}

		release_dma_lock(flags);

		/*	Shove the old buffer into an sk_buff. We can't DMA
		 *	directly into one on a PC - it might be above the 16Mb
		 *	boundary. Optimisation - we could check to see if we
		 *	can avoid the copy. Optimisation 2 - make the memcpy
		 *	a copychecksum.
		 */

		skb = dev_alloc_skb(ct);
		if (!skb) {
			c->netdevice->stats.rx_dropped++;
			netdev_warn(c->netdevice, "Memory squeeze\n");
		} else {
			skb_put(skb, ct);
			skb_copy_to_linear_data(skb, rxb, ct);
			c->netdevice->stats.rx_packets++;
			c->netdevice->stats.rx_bytes += ct;
		}
		c->dma_ready = 1;
	} else {
		RT_LOCK;
		skb = c->skb;

		/*	The game we play for non DMA is similar. We want to
		 *	get the controller set up for the next packet as fast
		 *	as possible. We potentially only have one byte + the
		 *	fifo length for this. Thus we want to flip to the new
		 *	buffer and then mess around copying and allocating
		 *	things. For the current case it doesn't matter but
		 *	if you build a system where the sync irq isn't blocked
		 *	by the kernel IRQ disable then you need only block the
		 *	sync IRQ for the RT_LOCK area.
		 *
		 */
		ct = c->count;

		c->skb = c->skb2;
		c->count = 0;
		c->max = c->mtu;
		if (c->skb) {
			c->dptr = c->skb->data;
			c->max = c->mtu;
		} else {
			c->count = 0;
			c->max = 0;
		}
		RT_UNLOCK;

		c->skb2 = dev_alloc_skb(c->mtu);
		if (c->skb2)
			skb_put(c->skb2, c->mtu);

		c->netdevice->stats.rx_packets++;
		c->netdevice->stats.rx_bytes += ct;
	}
	/*	If we received a frame we must now process it.
	 */
	if (skb) {
		skb_trim(skb, ct);
		c->rx_function(c, skb);
	} else {
		c->netdevice->stats.rx_dropped++;
		netdev_err(c->netdevice, "Lost a frame\n");
	}
}

/**
 *	spans_boundary - Check a packet can be ISA DMA'd
 *	@skb: The buffer to check
 *
 *	Returns true if the buffer cross a DMA boundary on a PC. The poor
 *	thing can only DMA within a 64K block not across the edges of it.
 */

static inline int spans_boundary(struct sk_buff *skb)
{
	unsigned long a = (unsigned long)skb->data;

	a ^= (a + skb->len);
	if (a & 0x00010000)	/* If the 64K bit is different.. */
		return 1;
	return 0;
}

/**
 *	z8530_queue_xmit - Queue a packet
 *	@c: The channel to use
 *	@skb: The packet to kick down the channel
 *
 *	Queue a packet for transmission. Because we have rather
 *	hard to hit interrupt latencies for the Z85230 per packet
 *	even in DMA mode we do the flip to DMA buffer if needed here
 *	not in the IRQ.
 *
 *	Called from the network code. The lock is not held at this
 *	point.
 */
netdev_tx_t z8530_queue_xmit(struct z8530_channel *c, struct sk_buff *skb)
{
	unsigned long flags;

	netif_stop_queue(c->netdevice);
	if (c->tx_next_skb)
		return NETDEV_TX_BUSY;

	/* PC SPECIFIC - DMA limits */
	/*	If we will DMA the transmit and its gone over the ISA bus
	 *	limit, then copy to the flip buffer
	 */

	if (c->dma_tx &&
	    ((unsigned long)(virt_to_bus(skb->data + skb->len)) >=
	    16 * 1024 * 1024 || spans_boundary(skb))) {
		/*	Send the flip buffer, and flip the flippy bit.
		 *	We don't care which is used when just so long as
		 *	we never use the same buffer twice in a row. Since
		 *	only one buffer can be going out at a time the other
		 *	has to be safe.
		 */
		c->tx_next_ptr = c->tx_dma_buf[c->tx_dma_used];
		c->tx_dma_used ^= 1;	/* Flip temp buffer */
		skb_copy_from_linear_data(skb, c->tx_next_ptr, skb->len);
	} else {
		c->tx_next_ptr = skb->data;
	}
	RT_LOCK;
	c->tx_next_skb = skb;
	RT_UNLOCK;

	spin_lock_irqsave(c->lock, flags);
	z8530_tx_begin(c);
	spin_unlock_irqrestore(c->lock, flags);

	return NETDEV_TX_OK;
}
EXPORT_SYMBOL(z8530_queue_xmit);

/*	Module support
 */
static const char banner[] __initconst =
	KERN_INFO "Generic Z85C30/Z85230 interface driver v0.02\n";

static int __init z85230_init_driver(void)
{
	printk(banner);
	return 0;
}
module_init(z85230_init_driver);

static void __exit z85230_cleanup_driver(void)
{
}
module_exit(z85230_cleanup_driver);

MODULE_AUTHOR("Red Hat Inc.");
MODULE_DESCRIPTION("Z85x30 synchronous driver core");
MODULE_LICENSE("GPL");