1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
|
// SPDX-License-Identifier: (GPL-2.0-only OR MIT)
/*
* Copyright (C) 2024 Amlogic, Inc. All rights reserved
* Author: Yiting Deng <yiting.deng@amlogic.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/clk-provider.h>
#include <linux/delay.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include <linux/regmap.h>
#include <linux/rtc.h>
#include <linux/time64.h>
/* rtc oscillator rate */
#define OSC_32K 32768
#define OSC_24M 24000000
#define RTC_CTRL (0x0 << 2) /* Control RTC */
#define RTC_ALRM0_EN BIT(0)
#define RTC_OSC_SEL BIT(8)
#define RTC_ENABLE BIT(12)
#define RTC_COUNTER_REG (0x1 << 2) /* Program RTC counter initial value */
#define RTC_ALARM0_REG (0x2 << 2) /* Program RTC alarm0 value */
#define RTC_SEC_ADJUST_REG (0x6 << 2) /* Control second-based timing adjustment */
#define RTC_MATCH_COUNTER GENMASK(18, 0)
#define RTC_SEC_ADJUST_CTRL GENMASK(20, 19)
#define RTC_ADJ_VALID BIT(23)
#define RTC_INT_MASK (0x8 << 2) /* RTC interrupt mask */
#define RTC_ALRM0_IRQ_MSK BIT(0)
#define RTC_INT_CLR (0x9 << 2) /* Clear RTC interrupt */
#define RTC_ALRM0_IRQ_CLR BIT(0)
#define RTC_OSCIN_CTRL0 (0xa << 2) /* Control RTC clk from 24M */
#define RTC_OSCIN_CTRL1 (0xb << 2) /* Control RTC clk from 24M */
#define RTC_OSCIN_IN_EN BIT(31)
#define RTC_OSCIN_OUT_CFG GENMASK(29, 28)
#define RTC_OSCIN_OUT_N0M0 GENMASK(11, 0)
#define RTC_OSCIN_OUT_N1M1 GENMASK(23, 12)
#define RTC_INT_STATUS (0xc << 2) /* RTC interrupt status */
#define RTC_ALRM0_IRQ_STATUS BIT(0)
#define RTC_REAL_TIME (0xd << 2) /* RTC time value */
#define RTC_OSCIN_OUT_32K_N0 0x2dc
#define RTC_OSCIN_OUT_32K_N1 0x2db
#define RTC_OSCIN_OUT_32K_M0 0x1
#define RTC_OSCIN_OUT_32K_M1 0x2
#define RTC_SWALLOW_SECOND 0x2
#define RTC_INSERT_SECOND 0x3
struct aml_rtc_config {
bool gray_stored;
};
struct aml_rtc_data {
struct regmap *map;
struct rtc_device *rtc_dev;
int irq;
struct clk *rtc_clk;
struct clk *sys_clk;
int rtc_enabled;
const struct aml_rtc_config *config;
};
static const struct regmap_config aml_rtc_regmap_config = {
.reg_bits = 32,
.val_bits = 32,
.reg_stride = 4,
.max_register = RTC_REAL_TIME,
};
static inline u32 gray_to_binary(u32 gray)
{
u32 bcd = gray;
int size = sizeof(bcd) * 8;
int i;
for (i = 0; (1 << i) < size; i++)
bcd ^= bcd >> (1 << i);
return bcd;
}
static inline u32 binary_to_gray(u32 bcd)
{
return bcd ^ (bcd >> 1);
}
static int aml_rtc_read_time(struct device *dev, struct rtc_time *tm)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
u32 time_sec;
/* if RTC disabled, read time failed */
if (!rtc->rtc_enabled)
return -EINVAL;
regmap_read(rtc->map, RTC_REAL_TIME, &time_sec);
if (rtc->config->gray_stored)
time_sec = gray_to_binary(time_sec);
rtc_time64_to_tm(time_sec, tm);
dev_dbg(dev, "%s: read time = %us\n", __func__, time_sec);
return 0;
}
static int aml_rtc_set_time(struct device *dev, struct rtc_time *tm)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
u32 time_sec;
/* if RTC disabled, first enable it */
if (!rtc->rtc_enabled) {
regmap_write_bits(rtc->map, RTC_CTRL, RTC_ENABLE, RTC_ENABLE);
usleep_range(100, 200);
rtc->rtc_enabled = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ENABLE);
if (!rtc->rtc_enabled)
return -EINVAL;
}
time_sec = rtc_tm_to_time64(tm);
if (rtc->config->gray_stored)
time_sec = binary_to_gray(time_sec);
regmap_write(rtc->map, RTC_COUNTER_REG, time_sec);
dev_dbg(dev, "%s: set time = %us\n", __func__, time_sec);
return 0;
}
static int aml_rtc_set_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
time64_t alarm_sec;
/* if RTC disabled, set alarm failed */
if (!rtc->rtc_enabled)
return -EINVAL;
regmap_update_bits(rtc->map, RTC_CTRL,
RTC_ALRM0_EN, RTC_ALRM0_EN);
regmap_update_bits(rtc->map, RTC_INT_MASK,
RTC_ALRM0_IRQ_MSK, 0);
alarm_sec = rtc_tm_to_time64(&alarm->time);
if (rtc->config->gray_stored)
alarm_sec = binary_to_gray(alarm_sec);
regmap_write(rtc->map, RTC_ALARM0_REG, alarm_sec);
dev_dbg(dev, "%s: alarm->enabled=%d alarm_set=%llds\n", __func__,
alarm->enabled, alarm_sec);
return 0;
}
static int aml_rtc_read_alarm(struct device *dev, struct rtc_wkalrm *alarm)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
u32 alarm_sec;
int alarm_enable;
int alarm_mask;
/* if RTC disabled, read alarm failed */
if (!rtc->rtc_enabled)
return -EINVAL;
regmap_read(rtc->map, RTC_ALARM0_REG, &alarm_sec);
if (rtc->config->gray_stored)
alarm_sec = gray_to_binary(alarm_sec);
rtc_time64_to_tm(alarm_sec, &alarm->time);
alarm_enable = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ALRM0_EN);
alarm_mask = regmap_test_bits(rtc->map, RTC_INT_MASK, RTC_ALRM0_IRQ_MSK);
alarm->enabled = (alarm_enable && !alarm_mask) ? 1 : 0;
dev_dbg(dev, "%s: alarm->enabled=%d alarm=%us\n", __func__,
alarm->enabled, alarm_sec);
return 0;
}
static int aml_rtc_read_offset(struct device *dev, long *offset)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
u32 reg_val;
long val;
int sign, match_counter, enable;
/* if RTC disabled, read offset failed */
if (!rtc->rtc_enabled)
return -EINVAL;
regmap_read(rtc->map, RTC_SEC_ADJUST_REG, ®_val);
enable = FIELD_GET(RTC_ADJ_VALID, reg_val);
if (!enable) {
val = 0;
} else {
sign = FIELD_GET(RTC_SEC_ADJUST_CTRL, reg_val);
match_counter = FIELD_GET(RTC_MATCH_COUNTER, reg_val);
val = 1000000000 / (match_counter + 1);
if (sign == RTC_SWALLOW_SECOND)
val = -val;
}
*offset = val;
return 0;
}
static int aml_rtc_set_offset(struct device *dev, long offset)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
int sign = 0;
int match_counter = 0;
int enable = 0;
u32 reg_val;
/* if RTC disabled, set offset failed */
if (!rtc->rtc_enabled)
return -EINVAL;
if (offset) {
enable = 1;
sign = offset < 0 ? RTC_SWALLOW_SECOND : RTC_INSERT_SECOND;
match_counter = 1000000000 / abs(offset) - 1;
if (match_counter < 0 || match_counter > RTC_MATCH_COUNTER)
return -EINVAL;
}
reg_val = FIELD_PREP(RTC_ADJ_VALID, enable) |
FIELD_PREP(RTC_SEC_ADJUST_CTRL, sign) |
FIELD_PREP(RTC_MATCH_COUNTER, match_counter);
regmap_write(rtc->map, RTC_SEC_ADJUST_REG, reg_val);
return 0;
}
static int aml_rtc_alarm_enable(struct device *dev, unsigned int enabled)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
if (enabled) {
regmap_update_bits(rtc->map, RTC_CTRL,
RTC_ALRM0_EN, RTC_ALRM0_EN);
regmap_update_bits(rtc->map, RTC_INT_MASK,
RTC_ALRM0_IRQ_MSK, 0);
} else {
regmap_update_bits(rtc->map, RTC_INT_MASK,
RTC_ALRM0_IRQ_MSK, RTC_ALRM0_IRQ_MSK);
regmap_update_bits(rtc->map, RTC_CTRL,
RTC_ALRM0_EN, 0);
}
return 0;
}
static const struct rtc_class_ops aml_rtc_ops = {
.read_time = aml_rtc_read_time,
.set_time = aml_rtc_set_time,
.read_alarm = aml_rtc_read_alarm,
.set_alarm = aml_rtc_set_alarm,
.alarm_irq_enable = aml_rtc_alarm_enable,
.read_offset = aml_rtc_read_offset,
.set_offset = aml_rtc_set_offset,
};
static irqreturn_t aml_rtc_handler(int irq, void *data)
{
struct aml_rtc_data *rtc = (struct aml_rtc_data *)data;
regmap_write(rtc->map, RTC_ALARM0_REG, 0);
regmap_write(rtc->map, RTC_INT_CLR, RTC_ALRM0_IRQ_STATUS);
rtc_update_irq(rtc->rtc_dev, 1, RTC_AF | RTC_IRQF);
return IRQ_HANDLED;
}
static void aml_rtc_init(struct aml_rtc_data *rtc)
{
u32 reg_val = 0;
rtc->rtc_enabled = regmap_test_bits(rtc->map, RTC_CTRL, RTC_ENABLE);
if (!rtc->rtc_enabled) {
if (clk_get_rate(rtc->rtc_clk) == OSC_24M) {
/* select 24M oscillator */
regmap_write_bits(rtc->map, RTC_CTRL, RTC_OSC_SEL, RTC_OSC_SEL);
/*
* Set RTC oscillator to freq_out to freq_in/((N0*M0+N1*M1)/(M0+M1))
* Enable clock_in gate of oscillator 24MHz
* Set N0 to 733, N1 to 732
*/
reg_val = FIELD_PREP(RTC_OSCIN_IN_EN, 1)
| FIELD_PREP(RTC_OSCIN_OUT_CFG, 1)
| FIELD_PREP(RTC_OSCIN_OUT_N0M0, RTC_OSCIN_OUT_32K_N0)
| FIELD_PREP(RTC_OSCIN_OUT_N1M1, RTC_OSCIN_OUT_32K_N1);
regmap_write_bits(rtc->map, RTC_OSCIN_CTRL0, RTC_OSCIN_IN_EN
| RTC_OSCIN_OUT_CFG | RTC_OSCIN_OUT_N0M0
| RTC_OSCIN_OUT_N1M1, reg_val);
/* Set M0 to 2, M1 to 3, so freq_out = 32768 Hz*/
reg_val = FIELD_PREP(RTC_OSCIN_OUT_N0M0, RTC_OSCIN_OUT_32K_M0)
| FIELD_PREP(RTC_OSCIN_OUT_N1M1, RTC_OSCIN_OUT_32K_M1);
regmap_write_bits(rtc->map, RTC_OSCIN_CTRL1, RTC_OSCIN_OUT_N0M0
| RTC_OSCIN_OUT_N1M1, reg_val);
} else {
/* select 32K oscillator */
regmap_write_bits(rtc->map, RTC_CTRL, RTC_OSC_SEL, 0);
}
}
regmap_write_bits(rtc->map, RTC_INT_MASK,
RTC_ALRM0_IRQ_MSK, RTC_ALRM0_IRQ_MSK);
regmap_write_bits(rtc->map, RTC_CTRL, RTC_ALRM0_EN, 0);
}
static int aml_rtc_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct aml_rtc_data *rtc;
void __iomem *base;
int ret = 0;
rtc = devm_kzalloc(dev, sizeof(*rtc), GFP_KERNEL);
if (!rtc)
return -ENOMEM;
rtc->config = of_device_get_match_data(dev);
if (!rtc->config)
return -ENODEV;
base = devm_platform_ioremap_resource(pdev, 0);
if (IS_ERR(base))
return dev_err_probe(dev, PTR_ERR(base), "resource ioremap failed\n");
rtc->map = devm_regmap_init_mmio(dev, base, &aml_rtc_regmap_config);
if (IS_ERR(rtc->map))
return dev_err_probe(dev, PTR_ERR(rtc->map), "regmap init failed\n");
rtc->irq = platform_get_irq(pdev, 0);
if (rtc->irq < 0)
return rtc->irq;
rtc->rtc_clk = devm_clk_get(dev, "osc");
if (IS_ERR(rtc->rtc_clk))
return dev_err_probe(dev, PTR_ERR(rtc->rtc_clk),
"failed to find rtc clock\n");
if (clk_get_rate(rtc->rtc_clk) != OSC_32K && clk_get_rate(rtc->rtc_clk) != OSC_24M)
return dev_err_probe(dev, -EINVAL, "Invalid clock configuration\n");
rtc->sys_clk = devm_clk_get_enabled(dev, "sys");
if (IS_ERR(rtc->sys_clk))
return dev_err_probe(dev, PTR_ERR(rtc->sys_clk),
"failed to get_enable rtc sys clk\n");
aml_rtc_init(rtc);
device_init_wakeup(dev, 1);
platform_set_drvdata(pdev, rtc);
rtc->rtc_dev = devm_rtc_allocate_device(dev);
if (IS_ERR(rtc->rtc_dev)) {
ret = PTR_ERR(rtc->rtc_dev);
goto err_clk;
}
ret = devm_request_irq(dev, rtc->irq, aml_rtc_handler,
IRQF_ONESHOT, "aml-rtc alarm", rtc);
if (ret) {
dev_err_probe(dev, ret, "IRQ%d request failed, ret = %d\n",
rtc->irq, ret);
goto err_clk;
}
rtc->rtc_dev->ops = &aml_rtc_ops;
rtc->rtc_dev->range_min = 0;
rtc->rtc_dev->range_max = U32_MAX;
ret = devm_rtc_register_device(rtc->rtc_dev);
if (ret) {
dev_err_probe(&pdev->dev, ret, "Failed to register RTC device: %d\n", ret);
goto err_clk;
}
return 0;
err_clk:
clk_disable_unprepare(rtc->sys_clk);
device_init_wakeup(dev, 0);
return ret;
}
#ifdef CONFIG_PM_SLEEP
static int aml_rtc_suspend(struct device *dev)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
enable_irq_wake(rtc->irq);
return 0;
}
static int aml_rtc_resume(struct device *dev)
{
struct aml_rtc_data *rtc = dev_get_drvdata(dev);
if (device_may_wakeup(dev))
disable_irq_wake(rtc->irq);
return 0;
}
#endif
static SIMPLE_DEV_PM_OPS(aml_rtc_pm_ops,
aml_rtc_suspend, aml_rtc_resume);
static void aml_rtc_remove(struct platform_device *pdev)
{
struct aml_rtc_data *rtc = dev_get_drvdata(&pdev->dev);
clk_disable_unprepare(rtc->sys_clk);
device_init_wakeup(&pdev->dev, 0);
}
static const struct aml_rtc_config a5_rtc_config = {
};
static const struct aml_rtc_config a4_rtc_config = {
.gray_stored = true,
};
static const struct of_device_id aml_rtc_device_id[] = {
{
.compatible = "amlogic,a4-rtc",
.data = &a4_rtc_config,
},
{
.compatible = "amlogic,a5-rtc",
.data = &a5_rtc_config,
},
{ }
};
MODULE_DEVICE_TABLE(of, aml_rtc_device_id);
static struct platform_driver aml_rtc_driver = {
.probe = aml_rtc_probe,
.remove = aml_rtc_remove,
.driver = {
.name = "aml-rtc",
.pm = &aml_rtc_pm_ops,
.of_match_table = aml_rtc_device_id,
},
};
module_platform_driver(aml_rtc_driver);
MODULE_DESCRIPTION("Amlogic RTC driver");
MODULE_AUTHOR("Yiting Deng <yiting.deng@amlogic.com>");
MODULE_LICENSE("GPL");
|