summaryrefslogtreecommitdiffstats
path: root/drivers/spi/spi-dw-dma.c
blob: 5986c520b19655e3c0f40c3ccf843a15ecff8b51 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Special handling for DW DMA core
 *
 * Copyright (c) 2009, 2014 Intel Corporation.
 */

#include <linux/completion.h>
#include <linux/dma-mapping.h>
#include <linux/dmaengine.h>
#include <linux/irqreturn.h>
#include <linux/jiffies.h>
#include <linux/pci.h>
#include <linux/platform_data/dma-dw.h>
#include <linux/spi/spi.h>
#include <linux/types.h>

#include "spi-dw.h"

#define WAIT_RETRIES	5
#define RX_BUSY		0
#define RX_BURST_LEVEL	16
#define TX_BUSY		1
#define TX_BURST_LEVEL	16

static bool dw_spi_dma_chan_filter(struct dma_chan *chan, void *param)
{
	struct dw_dma_slave *s = param;

	if (s->dma_dev != chan->device->dev)
		return false;

	chan->private = s;
	return true;
}

static void dw_spi_dma_maxburst_init(struct dw_spi *dws)
{
	struct dma_slave_caps caps;
	u32 max_burst, def_burst;
	int ret;

	def_burst = dws->fifo_len / 2;

	ret = dma_get_slave_caps(dws->rxchan, &caps);
	if (!ret && caps.max_burst)
		max_burst = caps.max_burst;
	else
		max_burst = RX_BURST_LEVEL;

	dws->rxburst = min(max_burst, def_burst);

	ret = dma_get_slave_caps(dws->txchan, &caps);
	if (!ret && caps.max_burst)
		max_burst = caps.max_burst;
	else
		max_burst = TX_BURST_LEVEL;

	dws->txburst = min(max_burst, def_burst);
}

static int dw_spi_dma_init_mfld(struct device *dev, struct dw_spi *dws)
{
	struct dw_dma_slave dma_tx = { .dst_id = 1 }, *tx = &dma_tx;
	struct dw_dma_slave dma_rx = { .src_id = 0 }, *rx = &dma_rx;
	struct pci_dev *dma_dev;
	dma_cap_mask_t mask;

	/*
	 * Get pci device for DMA controller, currently it could only
	 * be the DMA controller of Medfield
	 */
	dma_dev = pci_get_device(PCI_VENDOR_ID_INTEL, 0x0827, NULL);
	if (!dma_dev)
		return -ENODEV;

	dma_cap_zero(mask);
	dma_cap_set(DMA_SLAVE, mask);

	/* 1. Init rx channel */
	rx->dma_dev = &dma_dev->dev;
	dws->rxchan = dma_request_channel(mask, dw_spi_dma_chan_filter, rx);
	if (!dws->rxchan)
		goto err_exit;

	/* 2. Init tx channel */
	tx->dma_dev = &dma_dev->dev;
	dws->txchan = dma_request_channel(mask, dw_spi_dma_chan_filter, tx);
	if (!dws->txchan)
		goto free_rxchan;

	dws->master->dma_rx = dws->rxchan;
	dws->master->dma_tx = dws->txchan;

	init_completion(&dws->dma_completion);

	dw_spi_dma_maxburst_init(dws);

	return 0;

free_rxchan:
	dma_release_channel(dws->rxchan);
	dws->rxchan = NULL;
err_exit:
	return -EBUSY;
}

static int dw_spi_dma_init_generic(struct device *dev, struct dw_spi *dws)
{
	dws->rxchan = dma_request_slave_channel(dev, "rx");
	if (!dws->rxchan)
		return -ENODEV;

	dws->txchan = dma_request_slave_channel(dev, "tx");
	if (!dws->txchan) {
		dma_release_channel(dws->rxchan);
		dws->rxchan = NULL;
		return -ENODEV;
	}

	dws->master->dma_rx = dws->rxchan;
	dws->master->dma_tx = dws->txchan;

	init_completion(&dws->dma_completion);

	dw_spi_dma_maxburst_init(dws);

	return 0;
}

static void dw_spi_dma_exit(struct dw_spi *dws)
{
	if (dws->txchan) {
		dmaengine_terminate_sync(dws->txchan);
		dma_release_channel(dws->txchan);
	}

	if (dws->rxchan) {
		dmaengine_terminate_sync(dws->rxchan);
		dma_release_channel(dws->rxchan);
	}

	dw_writel(dws, DW_SPI_DMACR, 0);
}

static irqreturn_t dw_spi_dma_transfer_handler(struct dw_spi *dws)
{
	u16 irq_status = dw_readl(dws, DW_SPI_ISR);

	if (!irq_status)
		return IRQ_NONE;

	dw_readl(dws, DW_SPI_ICR);
	spi_reset_chip(dws);

	dev_err(&dws->master->dev, "%s: FIFO overrun/underrun\n", __func__);
	dws->master->cur_msg->status = -EIO;
	complete(&dws->dma_completion);
	return IRQ_HANDLED;
}

static bool dw_spi_can_dma(struct spi_controller *master,
			   struct spi_device *spi, struct spi_transfer *xfer)
{
	struct dw_spi *dws = spi_controller_get_devdata(master);

	return xfer->len > dws->fifo_len;
}

static enum dma_slave_buswidth dw_spi_dma_convert_width(u8 n_bytes)
{
	if (n_bytes == 1)
		return DMA_SLAVE_BUSWIDTH_1_BYTE;
	else if (n_bytes == 2)
		return DMA_SLAVE_BUSWIDTH_2_BYTES;

	return DMA_SLAVE_BUSWIDTH_UNDEFINED;
}

static int dw_spi_dma_wait(struct dw_spi *dws, struct spi_transfer *xfer)
{
	unsigned long long ms;

	ms = xfer->len * MSEC_PER_SEC * BITS_PER_BYTE;
	do_div(ms, xfer->effective_speed_hz);
	ms += ms + 200;

	if (ms > UINT_MAX)
		ms = UINT_MAX;

	ms = wait_for_completion_timeout(&dws->dma_completion,
					 msecs_to_jiffies(ms));

	if (ms == 0) {
		dev_err(&dws->master->cur_msg->spi->dev,
			"DMA transaction timed out\n");
		return -ETIMEDOUT;
	}

	return 0;
}

static inline bool dw_spi_dma_tx_busy(struct dw_spi *dws)
{
	return !(dw_readl(dws, DW_SPI_SR) & SR_TF_EMPT);
}

static int dw_spi_dma_wait_tx_done(struct dw_spi *dws,
				   struct spi_transfer *xfer)
{
	int retry = WAIT_RETRIES;
	struct spi_delay delay;
	u32 nents;

	nents = dw_readl(dws, DW_SPI_TXFLR);
	delay.unit = SPI_DELAY_UNIT_SCK;
	delay.value = nents * dws->n_bytes * BITS_PER_BYTE;

	while (dw_spi_dma_tx_busy(dws) && retry--)
		spi_delay_exec(&delay, xfer);

	if (retry < 0) {
		dev_err(&dws->master->dev, "Tx hanged up\n");
		return -EIO;
	}

	return 0;
}

/*
 * dws->dma_chan_busy is set before the dma transfer starts, callback for tx
 * channel will clear a corresponding bit.
 */
static void dw_spi_dma_tx_done(void *arg)
{
	struct dw_spi *dws = arg;

	clear_bit(TX_BUSY, &dws->dma_chan_busy);
	if (test_bit(RX_BUSY, &dws->dma_chan_busy))
		return;

	dw_writel(dws, DW_SPI_DMACR, 0);
	complete(&dws->dma_completion);
}

static struct dma_async_tx_descriptor *
dw_spi_dma_prepare_tx(struct dw_spi *dws, struct spi_transfer *xfer)
{
	struct dma_slave_config txconf;
	struct dma_async_tx_descriptor *txdesc;

	if (!xfer->tx_buf)
		return NULL;

	memset(&txconf, 0, sizeof(txconf));
	txconf.direction = DMA_MEM_TO_DEV;
	txconf.dst_addr = dws->dma_addr;
	txconf.dst_maxburst = dws->txburst;
	txconf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	txconf.dst_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
	txconf.device_fc = false;

	dmaengine_slave_config(dws->txchan, &txconf);

	txdesc = dmaengine_prep_slave_sg(dws->txchan,
				xfer->tx_sg.sgl,
				xfer->tx_sg.nents,
				DMA_MEM_TO_DEV,
				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!txdesc)
		return NULL;

	txdesc->callback = dw_spi_dma_tx_done;
	txdesc->callback_param = dws;

	return txdesc;
}

static inline bool dw_spi_dma_rx_busy(struct dw_spi *dws)
{
	return !!(dw_readl(dws, DW_SPI_SR) & SR_RF_NOT_EMPT);
}

static int dw_spi_dma_wait_rx_done(struct dw_spi *dws)
{
	int retry = WAIT_RETRIES;
	struct spi_delay delay;
	unsigned long ns, us;
	u32 nents;

	/*
	 * It's unlikely that DMA engine is still doing the data fetching, but
	 * if it's let's give it some reasonable time. The timeout calculation
	 * is based on the synchronous APB/SSI reference clock rate, on a
	 * number of data entries left in the Rx FIFO, times a number of clock
	 * periods normally needed for a single APB read/write transaction
	 * without PREADY signal utilized (which is true for the DW APB SSI
	 * controller).
	 */
	nents = dw_readl(dws, DW_SPI_RXFLR);
	ns = 4U * NSEC_PER_SEC / dws->max_freq * nents;
	if (ns <= NSEC_PER_USEC) {
		delay.unit = SPI_DELAY_UNIT_NSECS;
		delay.value = ns;
	} else {
		us = DIV_ROUND_UP(ns, NSEC_PER_USEC);
		delay.unit = SPI_DELAY_UNIT_USECS;
		delay.value = clamp_val(us, 0, USHRT_MAX);
	}

	while (dw_spi_dma_rx_busy(dws) && retry--)
		spi_delay_exec(&delay, NULL);

	if (retry < 0) {
		dev_err(&dws->master->dev, "Rx hanged up\n");
		return -EIO;
	}

	return 0;
}

/*
 * dws->dma_chan_busy is set before the dma transfer starts, callback for rx
 * channel will clear a corresponding bit.
 */
static void dw_spi_dma_rx_done(void *arg)
{
	struct dw_spi *dws = arg;

	clear_bit(RX_BUSY, &dws->dma_chan_busy);
	if (test_bit(TX_BUSY, &dws->dma_chan_busy))
		return;

	dw_writel(dws, DW_SPI_DMACR, 0);
	complete(&dws->dma_completion);
}

static struct dma_async_tx_descriptor *dw_spi_dma_prepare_rx(struct dw_spi *dws,
		struct spi_transfer *xfer)
{
	struct dma_slave_config rxconf;
	struct dma_async_tx_descriptor *rxdesc;

	if (!xfer->rx_buf)
		return NULL;

	memset(&rxconf, 0, sizeof(rxconf));
	rxconf.direction = DMA_DEV_TO_MEM;
	rxconf.src_addr = dws->dma_addr;
	rxconf.src_maxburst = dws->rxburst;
	rxconf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
	rxconf.src_addr_width = dw_spi_dma_convert_width(dws->n_bytes);
	rxconf.device_fc = false;

	dmaengine_slave_config(dws->rxchan, &rxconf);

	rxdesc = dmaengine_prep_slave_sg(dws->rxchan,
				xfer->rx_sg.sgl,
				xfer->rx_sg.nents,
				DMA_DEV_TO_MEM,
				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
	if (!rxdesc)
		return NULL;

	rxdesc->callback = dw_spi_dma_rx_done;
	rxdesc->callback_param = dws;

	return rxdesc;
}

static int dw_spi_dma_setup(struct dw_spi *dws, struct spi_transfer *xfer)
{
	u16 imr = 0, dma_ctrl = 0;

	dw_writel(dws, DW_SPI_DMARDLR, dws->rxburst - 1);
	dw_writel(dws, DW_SPI_DMATDLR, dws->fifo_len - dws->txburst);

	if (xfer->tx_buf)
		dma_ctrl |= SPI_DMA_TDMAE;
	if (xfer->rx_buf)
		dma_ctrl |= SPI_DMA_RDMAE;
	dw_writel(dws, DW_SPI_DMACR, dma_ctrl);

	/* Set the interrupt mask */
	if (xfer->tx_buf)
		imr |= SPI_INT_TXOI;
	if (xfer->rx_buf)
		imr |= SPI_INT_RXUI | SPI_INT_RXOI;
	spi_umask_intr(dws, imr);

	reinit_completion(&dws->dma_completion);

	dws->transfer_handler = dw_spi_dma_transfer_handler;

	return 0;
}

static int dw_spi_dma_transfer(struct dw_spi *dws, struct spi_transfer *xfer)
{
	struct dma_async_tx_descriptor *txdesc, *rxdesc;
	int ret;

	/* Prepare the TX dma transfer */
	txdesc = dw_spi_dma_prepare_tx(dws, xfer);

	/* Prepare the RX dma transfer */
	rxdesc = dw_spi_dma_prepare_rx(dws, xfer);

	/* rx must be started before tx due to spi instinct */
	if (rxdesc) {
		set_bit(RX_BUSY, &dws->dma_chan_busy);
		dmaengine_submit(rxdesc);
		dma_async_issue_pending(dws->rxchan);
	}

	if (txdesc) {
		set_bit(TX_BUSY, &dws->dma_chan_busy);
		dmaengine_submit(txdesc);
		dma_async_issue_pending(dws->txchan);
	}

	ret = dw_spi_dma_wait(dws, xfer);
	if (ret)
		return ret;

	if (txdesc && dws->master->cur_msg->status == -EINPROGRESS) {
		ret = dw_spi_dma_wait_tx_done(dws, xfer);
		if (ret)
			return ret;
	}

	if (rxdesc && dws->master->cur_msg->status == -EINPROGRESS)
		ret = dw_spi_dma_wait_rx_done(dws);

	return ret;
}

static void dw_spi_dma_stop(struct dw_spi *dws)
{
	if (test_bit(TX_BUSY, &dws->dma_chan_busy)) {
		dmaengine_terminate_sync(dws->txchan);
		clear_bit(TX_BUSY, &dws->dma_chan_busy);
	}
	if (test_bit(RX_BUSY, &dws->dma_chan_busy)) {
		dmaengine_terminate_sync(dws->rxchan);
		clear_bit(RX_BUSY, &dws->dma_chan_busy);
	}

	dw_writel(dws, DW_SPI_DMACR, 0);
}

static const struct dw_spi_dma_ops dw_spi_dma_mfld_ops = {
	.dma_init	= dw_spi_dma_init_mfld,
	.dma_exit	= dw_spi_dma_exit,
	.dma_setup	= dw_spi_dma_setup,
	.can_dma	= dw_spi_can_dma,
	.dma_transfer	= dw_spi_dma_transfer,
	.dma_stop	= dw_spi_dma_stop,
};

void dw_spi_dma_setup_mfld(struct dw_spi *dws)
{
	dws->dma_ops = &dw_spi_dma_mfld_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_mfld);

static const struct dw_spi_dma_ops dw_spi_dma_generic_ops = {
	.dma_init	= dw_spi_dma_init_generic,
	.dma_exit	= dw_spi_dma_exit,
	.dma_setup	= dw_spi_dma_setup,
	.can_dma	= dw_spi_can_dma,
	.dma_transfer	= dw_spi_dma_transfer,
	.dma_stop	= dw_spi_dma_stop,
};

void dw_spi_dma_setup_generic(struct dw_spi *dws)
{
	dws->dma_ops = &dw_spi_dma_generic_ops;
}
EXPORT_SYMBOL_GPL(dw_spi_dma_setup_generic);