summaryrefslogtreecommitdiffstats
path: root/drivers/ufs/core/ufs-mcq.c
blob: 937933d3f77c24727bda90cd8375578212184a5f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
// SPDX-License-Identifier: GPL-2.0-only
/*
 * Copyright (c) 2022 Qualcomm Innovation Center. All rights reserved.
 *
 * Authors:
 *	Asutosh Das <quic_asutoshd@quicinc.com>
 *	Can Guo <quic_cang@quicinc.com>
 */

#include <asm/unaligned.h>
#include <linux/dma-mapping.h>
#include <linux/module.h>
#include <linux/platform_device.h>
#include "ufshcd-priv.h"

#define MAX_QUEUE_SUP GENMASK(7, 0)
#define UFS_MCQ_MIN_RW_QUEUES 2
#define UFS_MCQ_MIN_READ_QUEUES 0
#define UFS_MCQ_NUM_DEV_CMD_QUEUES 1
#define UFS_MCQ_MIN_POLL_QUEUES 0
#define QUEUE_EN_OFFSET 31
#define QUEUE_ID_OFFSET 16

#define MAX_DEV_CMD_ENTRIES	2
#define MCQ_CFG_MAC_MASK	GENMASK(16, 8)
#define MCQ_QCFG_SIZE		0x40
#define MCQ_ENTRY_SIZE_IN_DWORD	8
#define CQE_UCD_BA GENMASK_ULL(63, 7)

static int rw_queue_count_set(const char *val, const struct kernel_param *kp)
{
	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_RW_QUEUES,
				     num_possible_cpus());
}

static const struct kernel_param_ops rw_queue_count_ops = {
	.set = rw_queue_count_set,
	.get = param_get_uint,
};

static unsigned int rw_queues;
module_param_cb(rw_queues, &rw_queue_count_ops, &rw_queues, 0644);
MODULE_PARM_DESC(rw_queues,
		 "Number of interrupt driven I/O queues used for rw. Default value is nr_cpus");

static int read_queue_count_set(const char *val, const struct kernel_param *kp)
{
	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_READ_QUEUES,
				     num_possible_cpus());
}

static const struct kernel_param_ops read_queue_count_ops = {
	.set = read_queue_count_set,
	.get = param_get_uint,
};

static unsigned int read_queues;
module_param_cb(read_queues, &read_queue_count_ops, &read_queues, 0644);
MODULE_PARM_DESC(read_queues,
		 "Number of interrupt driven read queues used for read. Default value is 0");

static int poll_queue_count_set(const char *val, const struct kernel_param *kp)
{
	return param_set_uint_minmax(val, kp, UFS_MCQ_MIN_POLL_QUEUES,
				     num_possible_cpus());
}

static const struct kernel_param_ops poll_queue_count_ops = {
	.set = poll_queue_count_set,
	.get = param_get_uint,
};

static unsigned int poll_queues = 1;
module_param_cb(poll_queues, &poll_queue_count_ops, &poll_queues, 0644);
MODULE_PARM_DESC(poll_queues,
		 "Number of poll queues used for r/w. Default value is 1");

/**
 * ufshcd_mcq_config_mac - Set the #Max Activ Cmds.
 * @hba: per adapter instance
 * @max_active_cmds: maximum # of active commands to the device at any time.
 *
 * The controller won't send more than the max_active_cmds to the device at
 * any time.
 */
void ufshcd_mcq_config_mac(struct ufs_hba *hba, u32 max_active_cmds)
{
	u32 val;

	val = ufshcd_readl(hba, REG_UFS_MCQ_CFG);
	val &= ~MCQ_CFG_MAC_MASK;
	val |= FIELD_PREP(MCQ_CFG_MAC_MASK, max_active_cmds);
	ufshcd_writel(hba, val, REG_UFS_MCQ_CFG);
}

/**
 * ufshcd_mcq_req_to_hwq - find the hardware queue on which the
 * request would be issued.
 * @hba: per adapter instance
 * @req: pointer to the request to be issued
 *
 * Returns the hardware queue instance on which the request would
 * be queued.
 */
struct ufs_hw_queue *ufshcd_mcq_req_to_hwq(struct ufs_hba *hba,
					 struct request *req)
{
	u32 utag = blk_mq_unique_tag(req);
	u32 hwq = blk_mq_unique_tag_to_hwq(utag);

	/* uhq[0] is used to serve device commands */
	return &hba->uhq[hwq + UFSHCD_MCQ_IO_QUEUE_OFFSET];
}

/**
 * ufshcd_mcq_decide_queue_depth - decide the queue depth
 * @hba: per adapter instance
 *
 * Returns queue-depth on success, non-zero on error
 *
 * MAC - Max. Active Command of the Host Controller (HC)
 * HC wouldn't send more than this commands to the device.
 * It is mandatory to implement get_hba_mac() to enable MCQ mode.
 * Calculates and adjusts the queue depth based on the depth
 * supported by the HC and ufs device.
 */
int ufshcd_mcq_decide_queue_depth(struct ufs_hba *hba)
{
	int mac;

	/* Mandatory to implement get_hba_mac() */
	mac = ufshcd_mcq_vops_get_hba_mac(hba);
	if (mac < 0) {
		dev_err(hba->dev, "Failed to get mac, err=%d\n", mac);
		return mac;
	}

	WARN_ON_ONCE(!hba->dev_info.bqueuedepth);
	/*
	 * max. value of bqueuedepth = 256, mac is host dependent.
	 * It is mandatory for UFS device to define bQueueDepth if
	 * shared queuing architecture is enabled.
	 */
	return min_t(int, mac, hba->dev_info.bqueuedepth);
}

static int ufshcd_mcq_config_nr_queues(struct ufs_hba *hba)
{
	int i;
	u32 hba_maxq, rem, tot_queues;
	struct Scsi_Host *host = hba->host;

	hba_maxq = FIELD_GET(MAX_QUEUE_SUP, hba->mcq_capabilities);

	tot_queues = UFS_MCQ_NUM_DEV_CMD_QUEUES + read_queues + poll_queues +
			rw_queues;

	if (hba_maxq < tot_queues) {
		dev_err(hba->dev, "Total queues (%d) exceeds HC capacity (%d)\n",
			tot_queues, hba_maxq);
		return -EOPNOTSUPP;
	}

	rem = hba_maxq - UFS_MCQ_NUM_DEV_CMD_QUEUES;

	if (rw_queues) {
		hba->nr_queues[HCTX_TYPE_DEFAULT] = rw_queues;
		rem -= hba->nr_queues[HCTX_TYPE_DEFAULT];
	} else {
		rw_queues = num_possible_cpus();
	}

	if (poll_queues) {
		hba->nr_queues[HCTX_TYPE_POLL] = poll_queues;
		rem -= hba->nr_queues[HCTX_TYPE_POLL];
	}

	if (read_queues) {
		hba->nr_queues[HCTX_TYPE_READ] = read_queues;
		rem -= hba->nr_queues[HCTX_TYPE_READ];
	}

	if (!hba->nr_queues[HCTX_TYPE_DEFAULT])
		hba->nr_queues[HCTX_TYPE_DEFAULT] = min3(rem, rw_queues,
							 num_possible_cpus());

	for (i = 0; i < HCTX_MAX_TYPES; i++)
		host->nr_hw_queues += hba->nr_queues[i];

	hba->nr_hw_queues = host->nr_hw_queues + UFS_MCQ_NUM_DEV_CMD_QUEUES;
	return 0;
}

int ufshcd_mcq_memory_alloc(struct ufs_hba *hba)
{
	struct ufs_hw_queue *hwq;
	size_t utrdl_size, cqe_size;
	int i;

	for (i = 0; i < hba->nr_hw_queues; i++) {
		hwq = &hba->uhq[i];

		utrdl_size = sizeof(struct utp_transfer_req_desc) *
			     hwq->max_entries;
		hwq->sqe_base_addr = dmam_alloc_coherent(hba->dev, utrdl_size,
							 &hwq->sqe_dma_addr,
							 GFP_KERNEL);
		if (!hwq->sqe_dma_addr) {
			dev_err(hba->dev, "SQE allocation failed\n");
			return -ENOMEM;
		}

		cqe_size = sizeof(struct cq_entry) * hwq->max_entries;
		hwq->cqe_base_addr = dmam_alloc_coherent(hba->dev, cqe_size,
							 &hwq->cqe_dma_addr,
							 GFP_KERNEL);
		if (!hwq->cqe_dma_addr) {
			dev_err(hba->dev, "CQE allocation failed\n");
			return -ENOMEM;
		}
	}

	return 0;
}


/* Operation and runtime registers configuration */
#define MCQ_CFG_n(r, i)	((r) + MCQ_QCFG_SIZE * (i))
#define MCQ_OPR_OFFSET_n(p, i) \
	(hba->mcq_opr[(p)].offset + hba->mcq_opr[(p)].stride * (i))

static void __iomem *mcq_opr_base(struct ufs_hba *hba,
					 enum ufshcd_mcq_opr n, int i)
{
	struct ufshcd_mcq_opr_info_t *opr = &hba->mcq_opr[n];

	return opr->base + opr->stride * i;
}

u32 ufshcd_mcq_read_cqis(struct ufs_hba *hba, int i)
{
	return readl(mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS);
}

void ufshcd_mcq_write_cqis(struct ufs_hba *hba, u32 val, int i)
{
	writel(val, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIS);
}
EXPORT_SYMBOL_GPL(ufshcd_mcq_write_cqis);

/*
 * Current MCQ specification doesn't provide a Task Tag or its equivalent in
 * the Completion Queue Entry. Find the Task Tag using an indirect method.
 */
static int ufshcd_mcq_get_tag(struct ufs_hba *hba,
				     struct ufs_hw_queue *hwq,
				     struct cq_entry *cqe)
{
	u64 addr;

	/* sizeof(struct utp_transfer_cmd_desc) must be a multiple of 128 */
	BUILD_BUG_ON(sizeof(struct utp_transfer_cmd_desc) & GENMASK(6, 0));

	/* Bits 63:7 UCD base address, 6:5 are reserved, 4:0 is SQ ID */
	addr = (le64_to_cpu(cqe->command_desc_base_addr) & CQE_UCD_BA) -
		hba->ucdl_dma_addr;

	return div_u64(addr, ufshcd_get_ucd_size(hba));
}

static void ufshcd_mcq_process_cqe(struct ufs_hba *hba,
					    struct ufs_hw_queue *hwq)
{
	struct cq_entry *cqe = ufshcd_mcq_cur_cqe(hwq);
	int tag = ufshcd_mcq_get_tag(hba, hwq, cqe);

	ufshcd_compl_one_cqe(hba, tag, cqe);
}

unsigned long ufshcd_mcq_poll_cqe_nolock(struct ufs_hba *hba,
					 struct ufs_hw_queue *hwq)
{
	unsigned long completed_reqs = 0;

	ufshcd_mcq_update_cq_tail_slot(hwq);
	while (!ufshcd_mcq_is_cq_empty(hwq)) {
		ufshcd_mcq_process_cqe(hba, hwq);
		ufshcd_mcq_inc_cq_head_slot(hwq);
		completed_reqs++;
	}

	if (completed_reqs)
		ufshcd_mcq_update_cq_head(hwq);

	return completed_reqs;
}
EXPORT_SYMBOL_GPL(ufshcd_mcq_poll_cqe_nolock);

unsigned long ufshcd_mcq_poll_cqe_lock(struct ufs_hba *hba,
				       struct ufs_hw_queue *hwq)
{
	unsigned long completed_reqs, flags;

	spin_lock_irqsave(&hwq->cq_lock, flags);
	completed_reqs = ufshcd_mcq_poll_cqe_nolock(hba, hwq);
	spin_unlock_irqrestore(&hwq->cq_lock, flags);

	return completed_reqs;
}

void ufshcd_mcq_make_queues_operational(struct ufs_hba *hba)
{
	struct ufs_hw_queue *hwq;
	u16 qsize;
	int i;

	for (i = 0; i < hba->nr_hw_queues; i++) {
		hwq = &hba->uhq[i];
		hwq->id = i;
		qsize = hwq->max_entries * MCQ_ENTRY_SIZE_IN_DWORD - 1;

		/* Submission Queue Lower Base Address */
		ufsmcq_writelx(hba, lower_32_bits(hwq->sqe_dma_addr),
			      MCQ_CFG_n(REG_SQLBA, i));
		/* Submission Queue Upper Base Address */
		ufsmcq_writelx(hba, upper_32_bits(hwq->sqe_dma_addr),
			      MCQ_CFG_n(REG_SQUBA, i));
		/* Submission Queue Doorbell Address Offset */
		ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQD, i),
			      MCQ_CFG_n(REG_SQDAO, i));
		/* Submission Queue Interrupt Status Address Offset */
		ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_SQIS, i),
			      MCQ_CFG_n(REG_SQISAO, i));

		/* Completion Queue Lower Base Address */
		ufsmcq_writelx(hba, lower_32_bits(hwq->cqe_dma_addr),
			      MCQ_CFG_n(REG_CQLBA, i));
		/* Completion Queue Upper Base Address */
		ufsmcq_writelx(hba, upper_32_bits(hwq->cqe_dma_addr),
			      MCQ_CFG_n(REG_CQUBA, i));
		/* Completion Queue Doorbell Address Offset */
		ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQD, i),
			      MCQ_CFG_n(REG_CQDAO, i));
		/* Completion Queue Interrupt Status Address Offset */
		ufsmcq_writelx(hba, MCQ_OPR_OFFSET_n(OPR_CQIS, i),
			      MCQ_CFG_n(REG_CQISAO, i));

		/* Save the base addresses for quicker access */
		hwq->mcq_sq_head = mcq_opr_base(hba, OPR_SQD, i) + REG_SQHP;
		hwq->mcq_sq_tail = mcq_opr_base(hba, OPR_SQD, i) + REG_SQTP;
		hwq->mcq_cq_head = mcq_opr_base(hba, OPR_CQD, i) + REG_CQHP;
		hwq->mcq_cq_tail = mcq_opr_base(hba, OPR_CQD, i) + REG_CQTP;

		/* Reinitializing is needed upon HC reset */
		hwq->sq_tail_slot = hwq->cq_tail_slot = hwq->cq_head_slot = 0;

		/* Enable Tail Entry Push Status interrupt only for non-poll queues */
		if (i < hba->nr_hw_queues - hba->nr_queues[HCTX_TYPE_POLL])
			writel(1, mcq_opr_base(hba, OPR_CQIS, i) + REG_CQIE);

		/* Completion Queue Enable|Size to Completion Queue Attribute */
		ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize,
			      MCQ_CFG_n(REG_CQATTR, i));

		/*
		 * Submission Qeueue Enable|Size|Completion Queue ID to
		 * Submission Queue Attribute
		 */
		ufsmcq_writel(hba, (1 << QUEUE_EN_OFFSET) | qsize |
			      (i << QUEUE_ID_OFFSET),
			      MCQ_CFG_n(REG_SQATTR, i));
	}
}

void ufshcd_mcq_enable_esi(struct ufs_hba *hba)
{
	ufshcd_writel(hba, ufshcd_readl(hba, REG_UFS_MEM_CFG) | 0x2,
		      REG_UFS_MEM_CFG);
}
EXPORT_SYMBOL_GPL(ufshcd_mcq_enable_esi);

void ufshcd_mcq_config_esi(struct ufs_hba *hba, struct msi_msg *msg)
{
	ufshcd_writel(hba, msg->address_lo, REG_UFS_ESILBA);
	ufshcd_writel(hba, msg->address_hi, REG_UFS_ESIUBA);
}
EXPORT_SYMBOL_GPL(ufshcd_mcq_config_esi);

int ufshcd_mcq_init(struct ufs_hba *hba)
{
	struct Scsi_Host *host = hba->host;
	struct ufs_hw_queue *hwq;
	int ret, i;

	ret = ufshcd_mcq_config_nr_queues(hba);
	if (ret)
		return ret;

	ret = ufshcd_vops_mcq_config_resource(hba);
	if (ret)
		return ret;

	ret = ufshcd_mcq_vops_op_runtime_config(hba);
	if (ret) {
		dev_err(hba->dev, "Operation runtime config failed, ret=%d\n",
			ret);
		return ret;
	}
	hba->uhq = devm_kzalloc(hba->dev,
				hba->nr_hw_queues * sizeof(struct ufs_hw_queue),
				GFP_KERNEL);
	if (!hba->uhq) {
		dev_err(hba->dev, "ufs hw queue memory allocation failed\n");
		return -ENOMEM;
	}

	for (i = 0; i < hba->nr_hw_queues; i++) {
		hwq = &hba->uhq[i];
		hwq->max_entries = hba->nutrs;
		spin_lock_init(&hwq->sq_lock);
		spin_lock_init(&hwq->cq_lock);
	}

	/* The very first HW queue serves device commands */
	hba->dev_cmd_queue = &hba->uhq[0];
	/* Give dev_cmd_queue the minimal number of entries */
	hba->dev_cmd_queue->max_entries = MAX_DEV_CMD_ENTRIES;

	host->host_tagset = 1;
	return 0;
}