summaryrefslogtreecommitdiffstats
path: root/fs/bcachefs/btree_key_cache.c
blob: 2e49ca71194f2fc5fdff0c2a8b42e60928a8a3eb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
// SPDX-License-Identifier: GPL-2.0

#include "bcachefs.h"
#include "btree_cache.h"
#include "btree_iter.h"
#include "btree_key_cache.h"
#include "btree_locking.h"
#include "btree_update.h"
#include "errcode.h"
#include "error.h"
#include "journal.h"
#include "journal_reclaim.h"
#include "trace.h"

#include <linux/sched/mm.h>

static inline bool btree_uses_pcpu_readers(enum btree_id id)
{
	return id == BTREE_ID_subvolumes;
}

static struct kmem_cache *bch2_key_cache;

static int bch2_btree_key_cache_cmp_fn(struct rhashtable_compare_arg *arg,
				       const void *obj)
{
	const struct bkey_cached *ck = obj;
	const struct bkey_cached_key *key = arg->key;

	return ck->key.btree_id != key->btree_id ||
		!bpos_eq(ck->key.pos, key->pos);
}

static const struct rhashtable_params bch2_btree_key_cache_params = {
	.head_offset		= offsetof(struct bkey_cached, hash),
	.key_offset		= offsetof(struct bkey_cached, key),
	.key_len		= sizeof(struct bkey_cached_key),
	.obj_cmpfn		= bch2_btree_key_cache_cmp_fn,
	.automatic_shrinking	= true,
};

static inline void btree_path_cached_set(struct btree_trans *trans, struct btree_path *path,
					 struct bkey_cached *ck,
					 enum btree_node_locked_type lock_held)
{
	path->l[0].lock_seq	= six_lock_seq(&ck->c.lock);
	path->l[0].b		= (void *) ck;
	mark_btree_node_locked(trans, path, 0, lock_held);
}

__flatten
inline struct bkey_cached *
bch2_btree_key_cache_find(struct bch_fs *c, enum btree_id btree_id, struct bpos pos)
{
	struct bkey_cached_key key = {
		.btree_id	= btree_id,
		.pos		= pos,
	};

	return rhashtable_lookup_fast(&c->btree_key_cache.table, &key,
				      bch2_btree_key_cache_params);
}

static bool bkey_cached_lock_for_evict(struct bkey_cached *ck)
{
	if (!six_trylock_intent(&ck->c.lock))
		return false;

	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
		six_unlock_intent(&ck->c.lock);
		return false;
	}

	if (!six_trylock_write(&ck->c.lock)) {
		six_unlock_intent(&ck->c.lock);
		return false;
	}

	return true;
}

static bool bkey_cached_evict(struct btree_key_cache *c,
			      struct bkey_cached *ck)
{
	bool ret = !rhashtable_remove_fast(&c->table, &ck->hash,
				      bch2_btree_key_cache_params);
	if (ret) {
		memset(&ck->key, ~0, sizeof(ck->key));
		atomic_long_dec(&c->nr_keys);
	}

	return ret;
}

static void __bkey_cached_free(struct rcu_pending *pending, struct rcu_head *rcu)
{
	struct bch_fs *c = container_of(pending->srcu, struct bch_fs, btree_trans_barrier);
	struct bkey_cached *ck = container_of(rcu, struct bkey_cached, rcu);

	this_cpu_dec(*c->btree_key_cache.nr_pending);
	kmem_cache_free(bch2_key_cache, ck);
}

static void bkey_cached_free(struct btree_key_cache *bc,
			     struct bkey_cached *ck)
{
	kfree(ck->k);
	ck->k		= NULL;
	ck->u64s	= 0;

	six_unlock_write(&ck->c.lock);
	six_unlock_intent(&ck->c.lock);

	bool pcpu_readers = ck->c.lock.readers != NULL;
	rcu_pending_enqueue(&bc->pending[pcpu_readers], &ck->rcu);
	this_cpu_inc(*bc->nr_pending);
}

static struct bkey_cached *__bkey_cached_alloc(unsigned key_u64s, gfp_t gfp)
{
	struct bkey_cached *ck = kmem_cache_zalloc(bch2_key_cache, gfp);
	if (unlikely(!ck))
		return NULL;
	ck->k = kmalloc(key_u64s * sizeof(u64), gfp);
	if (unlikely(!ck->k)) {
		kmem_cache_free(bch2_key_cache, ck);
		return NULL;
	}
	ck->u64s = key_u64s;
	return ck;
}

static struct bkey_cached *
bkey_cached_alloc(struct btree_trans *trans, struct btree_path *path, unsigned key_u64s)
{
	struct bch_fs *c = trans->c;
	struct btree_key_cache *bc = &c->btree_key_cache;
	bool pcpu_readers = btree_uses_pcpu_readers(path->btree_id);
	int ret;

	struct bkey_cached *ck = container_of_or_null(
				rcu_pending_dequeue(&bc->pending[pcpu_readers]),
				struct bkey_cached, rcu);
	if (ck)
		goto lock;

	ck = allocate_dropping_locks(trans, ret,
				     __bkey_cached_alloc(key_u64s, _gfp));
	if (ret) {
		if (ck)
			kfree(ck->k);
		kmem_cache_free(bch2_key_cache, ck);
		return ERR_PTR(ret);
	}

	if (ck) {
		bch2_btree_lock_init(&ck->c, pcpu_readers ? SIX_LOCK_INIT_PCPU : 0);
		ck->c.cached = true;
		goto lock;
	}

	ck = container_of_or_null(rcu_pending_dequeue_from_all(&bc->pending[pcpu_readers]),
				  struct bkey_cached, rcu);
	if (ck)
		goto lock;
lock:
	six_lock_intent(&ck->c.lock, NULL, NULL);
	six_lock_write(&ck->c.lock, NULL, NULL);
	return ck;
}

static struct bkey_cached *
bkey_cached_reuse(struct btree_key_cache *c)
{
	struct bucket_table *tbl;
	struct rhash_head *pos;
	struct bkey_cached *ck;
	unsigned i;

	rcu_read_lock();
	tbl = rht_dereference_rcu(c->table.tbl, &c->table);
	for (i = 0; i < tbl->size; i++)
		rht_for_each_entry_rcu(ck, pos, tbl, i, hash) {
			if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags) &&
			    bkey_cached_lock_for_evict(ck)) {
				if (bkey_cached_evict(c, ck))
					goto out;
				six_unlock_write(&ck->c.lock);
				six_unlock_intent(&ck->c.lock);
			}
		}
	ck = NULL;
out:
	rcu_read_unlock();
	return ck;
}

static int btree_key_cache_create(struct btree_trans *trans, struct btree_path *path,
				  struct bkey_s_c k)
{
	struct bch_fs *c = trans->c;
	struct btree_key_cache *bc = &c->btree_key_cache;

	/*
	 * bch2_varint_decode can read past the end of the buffer by at
	 * most 7 bytes (it won't be used):
	 */
	unsigned key_u64s = k.k->u64s + 1;

	/*
	 * Allocate some extra space so that the transaction commit path is less
	 * likely to have to reallocate, since that requires a transaction
	 * restart:
	 */
	key_u64s = min(256U, (key_u64s * 3) / 2);
	key_u64s = roundup_pow_of_two(key_u64s);

	struct bkey_cached *ck = bkey_cached_alloc(trans, path, key_u64s);
	int ret = PTR_ERR_OR_ZERO(ck);
	if (ret)
		return ret;

	if (unlikely(!ck)) {
		ck = bkey_cached_reuse(bc);
		if (unlikely(!ck)) {
			bch_err(c, "error allocating memory for key cache item, btree %s",
				bch2_btree_id_str(path->btree_id));
			return -BCH_ERR_ENOMEM_btree_key_cache_create;
		}
	}

	ck->c.level		= 0;
	ck->c.btree_id		= path->btree_id;
	ck->key.btree_id	= path->btree_id;
	ck->key.pos		= path->pos;
	ck->flags		= 1U << BKEY_CACHED_ACCESSED;

	if (unlikely(key_u64s > ck->u64s)) {
		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);

		struct bkey_i *new_k = allocate_dropping_locks(trans, ret,
				kmalloc(key_u64s * sizeof(u64), _gfp));
		if (unlikely(!new_k)) {
			bch_err(trans->c, "error allocating memory for key cache key, btree %s u64s %u",
				bch2_btree_id_str(ck->key.btree_id), key_u64s);
			ret = -BCH_ERR_ENOMEM_btree_key_cache_fill;
		} else if (ret) {
			kfree(new_k);
			goto err;
		}

		kfree(ck->k);
		ck->k = new_k;
		ck->u64s = key_u64s;
	}

	bkey_reassemble(ck->k, k);

	ret = rhashtable_lookup_insert_fast(&bc->table, &ck->hash, bch2_btree_key_cache_params);
	if (unlikely(ret)) /* raced with another fill? */
		goto err;

	atomic_long_inc(&bc->nr_keys);
	six_unlock_write(&ck->c.lock);

	enum six_lock_type lock_want = __btree_lock_want(path, 0);
	if (lock_want == SIX_LOCK_read)
		six_lock_downgrade(&ck->c.lock);
	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
	path->uptodate = BTREE_ITER_UPTODATE;
	return 0;
err:
	bkey_cached_free(bc, ck);
	mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);

	return ret;
}

static noinline int btree_key_cache_fill(struct btree_trans *trans,
					 struct btree_path *ck_path,
					 unsigned flags)
{
	if (flags & BTREE_ITER_cached_nofill) {
		ck_path->uptodate = BTREE_ITER_UPTODATE;
		return 0;
	}

	struct bch_fs *c = trans->c;
	struct btree_iter iter;
	struct bkey_s_c k;
	int ret;

	bch2_trans_iter_init(trans, &iter, ck_path->btree_id, ck_path->pos,
			     BTREE_ITER_key_cache_fill|
			     BTREE_ITER_cached_nofill);
	iter.flags &= ~BTREE_ITER_with_journal;
	k = bch2_btree_iter_peek_slot(&iter);
	ret = bkey_err(k);
	if (ret)
		goto err;

	/* Recheck after btree lookup, before allocating: */
	ret = bch2_btree_key_cache_find(c, ck_path->btree_id, ck_path->pos) ? -EEXIST : 0;
	if (unlikely(ret))
		goto out;

	ret = btree_key_cache_create(trans, ck_path, k);
	if (ret)
		goto err;
out:
	/* We're not likely to need this iterator again: */
	bch2_set_btree_iter_dontneed(&iter);
err:
	bch2_trans_iter_exit(trans, &iter);
	return ret;
}

static inline int btree_path_traverse_cached_fast(struct btree_trans *trans,
						  struct btree_path *path)
{
	struct bch_fs *c = trans->c;
	struct bkey_cached *ck;
retry:
	ck = bch2_btree_key_cache_find(c, path->btree_id, path->pos);
	if (!ck)
		return -ENOENT;

	enum six_lock_type lock_want = __btree_lock_want(path, 0);

	int ret = btree_node_lock(trans, path, (void *) ck, 0, lock_want, _THIS_IP_);
	if (ret)
		return ret;

	if (ck->key.btree_id != path->btree_id ||
	    !bpos_eq(ck->key.pos, path->pos)) {
		six_unlock_type(&ck->c.lock, lock_want);
		goto retry;
	}

	if (!test_bit(BKEY_CACHED_ACCESSED, &ck->flags))
		set_bit(BKEY_CACHED_ACCESSED, &ck->flags);

	btree_path_cached_set(trans, path, ck, (enum btree_node_locked_type) lock_want);
	path->uptodate = BTREE_ITER_UPTODATE;
	return 0;
}

int bch2_btree_path_traverse_cached(struct btree_trans *trans, struct btree_path *path,
				    unsigned flags)
{
	EBUG_ON(path->level);

	path->l[1].b = NULL;

	int ret;
	do {
		ret = btree_path_traverse_cached_fast(trans, path);
		if (unlikely(ret == -ENOENT))
			ret = btree_key_cache_fill(trans, path, flags);
	} while (ret == -EEXIST);

	if (unlikely(ret)) {
		path->uptodate = BTREE_ITER_NEED_TRAVERSE;
		if (!bch2_err_matches(ret, BCH_ERR_transaction_restart)) {
			btree_node_unlock(trans, path, 0);
			path->l[0].b = ERR_PTR(ret);
		}
	}
	return ret;
}

static int btree_key_cache_flush_pos(struct btree_trans *trans,
				     struct bkey_cached_key key,
				     u64 journal_seq,
				     unsigned commit_flags,
				     bool evict)
{
	struct bch_fs *c = trans->c;
	struct journal *j = &c->journal;
	struct btree_iter c_iter, b_iter;
	struct bkey_cached *ck = NULL;
	int ret;

	bch2_trans_iter_init(trans, &b_iter, key.btree_id, key.pos,
			     BTREE_ITER_slots|
			     BTREE_ITER_intent|
			     BTREE_ITER_all_snapshots);
	bch2_trans_iter_init(trans, &c_iter, key.btree_id, key.pos,
			     BTREE_ITER_cached|
			     BTREE_ITER_intent);
	b_iter.flags &= ~BTREE_ITER_with_key_cache;

	ret = bch2_btree_iter_traverse(&c_iter);
	if (ret)
		goto out;

	ck = (void *) btree_iter_path(trans, &c_iter)->l[0].b;
	if (!ck)
		goto out;

	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
		if (evict)
			goto evict;
		goto out;
	}

	if (journal_seq && ck->journal.seq != journal_seq)
		goto out;

	trans->journal_res.seq = ck->journal.seq;

	/*
	 * If we're at the end of the journal, we really want to free up space
	 * in the journal right away - we don't want to pin that old journal
	 * sequence number with a new btree node write, we want to re-journal
	 * the update
	 */
	if (ck->journal.seq == journal_last_seq(j))
		commit_flags |= BCH_WATERMARK_reclaim;

	if (ck->journal.seq != journal_last_seq(j) ||
	    !test_bit(JOURNAL_space_low, &c->journal.flags))
		commit_flags |= BCH_TRANS_COMMIT_no_journal_res;

	ret   = bch2_btree_iter_traverse(&b_iter) ?:
		bch2_trans_update(trans, &b_iter, ck->k,
				  BTREE_UPDATE_key_cache_reclaim|
				  BTREE_UPDATE_internal_snapshot_node|
				  BTREE_TRIGGER_norun) ?:
		bch2_trans_commit(trans, NULL, NULL,
				  BCH_TRANS_COMMIT_no_check_rw|
				  BCH_TRANS_COMMIT_no_enospc|
				  commit_flags);

	bch2_fs_fatal_err_on(ret &&
			     !bch2_err_matches(ret, BCH_ERR_transaction_restart) &&
			     !bch2_err_matches(ret, BCH_ERR_journal_reclaim_would_deadlock) &&
			     !bch2_journal_error(j), c,
			     "flushing key cache: %s", bch2_err_str(ret));
	if (ret)
		goto out;

	bch2_journal_pin_drop(j, &ck->journal);

	struct btree_path *path = btree_iter_path(trans, &c_iter);
	BUG_ON(!btree_node_locked(path, 0));

	if (!evict) {
		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
			atomic_long_dec(&c->btree_key_cache.nr_dirty);
		}
	} else {
		struct btree_path *path2;
		unsigned i;
evict:
		trans_for_each_path(trans, path2, i)
			if (path2 != path)
				__bch2_btree_path_unlock(trans, path2);

		bch2_btree_node_lock_write_nofail(trans, path, &ck->c);

		if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
			clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
			atomic_long_dec(&c->btree_key_cache.nr_dirty);
		}

		mark_btree_node_locked_noreset(path, 0, BTREE_NODE_UNLOCKED);
		if (bkey_cached_evict(&c->btree_key_cache, ck)) {
			bkey_cached_free(&c->btree_key_cache, ck);
		} else {
			six_unlock_write(&ck->c.lock);
			six_unlock_intent(&ck->c.lock);
		}
	}
out:
	bch2_trans_iter_exit(trans, &b_iter);
	bch2_trans_iter_exit(trans, &c_iter);
	return ret;
}

int bch2_btree_key_cache_journal_flush(struct journal *j,
				struct journal_entry_pin *pin, u64 seq)
{
	struct bch_fs *c = container_of(j, struct bch_fs, journal);
	struct bkey_cached *ck =
		container_of(pin, struct bkey_cached, journal);
	struct bkey_cached_key key;
	struct btree_trans *trans = bch2_trans_get(c);
	int srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
	int ret = 0;

	btree_node_lock_nopath_nofail(trans, &ck->c, SIX_LOCK_read);
	key = ck->key;

	if (ck->journal.seq != seq ||
	    !test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
		six_unlock_read(&ck->c.lock);
		goto unlock;
	}

	if (ck->seq != seq) {
		bch2_journal_pin_update(&c->journal, ck->seq, &ck->journal,
					bch2_btree_key_cache_journal_flush);
		six_unlock_read(&ck->c.lock);
		goto unlock;
	}
	six_unlock_read(&ck->c.lock);

	ret = lockrestart_do(trans,
		btree_key_cache_flush_pos(trans, key, seq,
				BCH_TRANS_COMMIT_journal_reclaim, false));
unlock:
	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);

	bch2_trans_put(trans);
	return ret;
}

bool bch2_btree_insert_key_cached(struct btree_trans *trans,
				  unsigned flags,
				  struct btree_insert_entry *insert_entry)
{
	struct bch_fs *c = trans->c;
	struct bkey_cached *ck = (void *) (trans->paths + insert_entry->path)->l[0].b;
	struct bkey_i *insert = insert_entry->k;
	bool kick_reclaim = false;

	BUG_ON(insert->k.u64s > ck->u64s);

	bkey_copy(ck->k, insert);

	if (!test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
		EBUG_ON(test_bit(BCH_FS_clean_shutdown, &c->flags));
		set_bit(BKEY_CACHED_DIRTY, &ck->flags);
		atomic_long_inc(&c->btree_key_cache.nr_dirty);

		if (bch2_nr_btree_keys_need_flush(c))
			kick_reclaim = true;
	}

	/*
	 * To minimize lock contention, we only add the journal pin here and
	 * defer pin updates to the flush callback via ->seq. Be careful not to
	 * update ->seq on nojournal commits because we don't want to update the
	 * pin to a seq that doesn't include journal updates on disk. Otherwise
	 * we risk losing the update after a crash.
	 *
	 * The only exception is if the pin is not active in the first place. We
	 * have to add the pin because journal reclaim drives key cache
	 * flushing. The flush callback will not proceed unless ->seq matches
	 * the latest pin, so make sure it starts with a consistent value.
	 */
	if (!(insert_entry->flags & BTREE_UPDATE_nojournal) ||
	    !journal_pin_active(&ck->journal)) {
		ck->seq = trans->journal_res.seq;
	}
	bch2_journal_pin_add(&c->journal, trans->journal_res.seq,
			     &ck->journal, bch2_btree_key_cache_journal_flush);

	if (kick_reclaim)
		journal_reclaim_kick(&c->journal);
	return true;
}

void bch2_btree_key_cache_drop(struct btree_trans *trans,
			       struct btree_path *path)
{
	struct bch_fs *c = trans->c;
	struct btree_key_cache *bc = &c->btree_key_cache;
	struct bkey_cached *ck = (void *) path->l[0].b;

	/*
	 * We just did an update to the btree, bypassing the key cache: the key
	 * cache key is now stale and must be dropped, even if dirty:
	 */
	if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
		clear_bit(BKEY_CACHED_DIRTY, &ck->flags);
		atomic_long_dec(&c->btree_key_cache.nr_dirty);
		bch2_journal_pin_drop(&c->journal, &ck->journal);
	}

	bkey_cached_evict(bc, ck);
	bkey_cached_free(bc, ck);

	mark_btree_node_locked(trans, path, 0, BTREE_NODE_UNLOCKED);
	btree_path_set_dirty(path, BTREE_ITER_NEED_TRAVERSE);
	path->should_be_locked = false;
}

static unsigned long bch2_btree_key_cache_scan(struct shrinker *shrink,
					   struct shrink_control *sc)
{
	struct bch_fs *c = shrink->private_data;
	struct btree_key_cache *bc = &c->btree_key_cache;
	struct bucket_table *tbl;
	struct bkey_cached *ck;
	size_t scanned = 0, freed = 0, nr = sc->nr_to_scan;
	unsigned iter, start;
	int srcu_idx;

	srcu_idx = srcu_read_lock(&c->btree_trans_barrier);
	rcu_read_lock();

	tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);

	/*
	 * Scanning is expensive while a rehash is in progress - most elements
	 * will be on the new hashtable, if it's in progress
	 *
	 * A rehash could still start while we're scanning - that's ok, we'll
	 * still see most elements.
	 */
	if (unlikely(tbl->nest)) {
		rcu_read_unlock();
		srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);
		return SHRINK_STOP;
	}

	iter = bc->shrink_iter;
	if (iter >= tbl->size)
		iter = 0;
	start = iter;

	do {
		struct rhash_head *pos, *next;

		pos = rht_ptr_rcu(&tbl->buckets[iter]);

		while (!rht_is_a_nulls(pos)) {
			next = rht_dereference_bucket_rcu(pos->next, tbl, iter);
			ck = container_of(pos, struct bkey_cached, hash);

			if (test_bit(BKEY_CACHED_DIRTY, &ck->flags)) {
				bc->skipped_dirty++;
			} else if (test_bit(BKEY_CACHED_ACCESSED, &ck->flags)) {
				clear_bit(BKEY_CACHED_ACCESSED, &ck->flags);
				bc->skipped_accessed++;
			} else if (!bkey_cached_lock_for_evict(ck)) {
				bc->skipped_lock_fail++;
			} else if (bkey_cached_evict(bc, ck)) {
				bkey_cached_free(bc, ck);
				bc->freed++;
				freed++;
			} else {
				six_unlock_write(&ck->c.lock);
				six_unlock_intent(&ck->c.lock);
			}

			scanned++;
			if (scanned >= nr)
				goto out;

			pos = next;
		}

		iter++;
		if (iter >= tbl->size)
			iter = 0;
	} while (scanned < nr && iter != start);
out:
	bc->shrink_iter = iter;

	rcu_read_unlock();
	srcu_read_unlock(&c->btree_trans_barrier, srcu_idx);

	return freed;
}

static unsigned long bch2_btree_key_cache_count(struct shrinker *shrink,
					    struct shrink_control *sc)
{
	struct bch_fs *c = shrink->private_data;
	struct btree_key_cache *bc = &c->btree_key_cache;
	long nr = atomic_long_read(&bc->nr_keys) -
		atomic_long_read(&bc->nr_dirty);

	/*
	 * Avoid hammering our shrinker too much if it's nearly empty - the
	 * shrinker code doesn't take into account how big our cache is, if it's
	 * mostly empty but the system is under memory pressure it causes nasty
	 * lock contention:
	 */
	nr -= 128;

	return max(0L, nr);
}

void bch2_fs_btree_key_cache_exit(struct btree_key_cache *bc)
{
	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
	struct bucket_table *tbl;
	struct bkey_cached *ck;
	struct rhash_head *pos;
	LIST_HEAD(items);
	unsigned i;

	shrinker_free(bc->shrink);

	/*
	 * The loop is needed to guard against racing with rehash:
	 */
	while (atomic_long_read(&bc->nr_keys)) {
		rcu_read_lock();
		tbl = rht_dereference_rcu(bc->table.tbl, &bc->table);
		if (tbl) {
			if (tbl->nest) {
				/* wait for in progress rehash */
				rcu_read_unlock();
				mutex_lock(&bc->table.mutex);
				mutex_unlock(&bc->table.mutex);
				rcu_read_lock();
				continue;
			}
			for (i = 0; i < tbl->size; i++)
				while (pos = rht_ptr_rcu(&tbl->buckets[i]), !rht_is_a_nulls(pos)) {
					ck = container_of(pos, struct bkey_cached, hash);
					BUG_ON(!bkey_cached_evict(bc, ck));
					kfree(ck->k);
					kmem_cache_free(bch2_key_cache, ck);
				}
		}
		rcu_read_unlock();
	}

	if (atomic_long_read(&bc->nr_dirty) &&
	    !bch2_journal_error(&c->journal) &&
	    test_bit(BCH_FS_was_rw, &c->flags))
		panic("btree key cache shutdown error: nr_dirty nonzero (%li)\n",
		      atomic_long_read(&bc->nr_dirty));

	if (atomic_long_read(&bc->nr_keys))
		panic("btree key cache shutdown error: nr_keys nonzero (%li)\n",
		      atomic_long_read(&bc->nr_keys));

	if (bc->table_init_done)
		rhashtable_destroy(&bc->table);

	rcu_pending_exit(&bc->pending[0]);
	rcu_pending_exit(&bc->pending[1]);

	free_percpu(bc->nr_pending);
}

void bch2_fs_btree_key_cache_init_early(struct btree_key_cache *c)
{
}

int bch2_fs_btree_key_cache_init(struct btree_key_cache *bc)
{
	struct bch_fs *c = container_of(bc, struct bch_fs, btree_key_cache);
	struct shrinker *shrink;

	bc->nr_pending = alloc_percpu(size_t);
	if (!bc->nr_pending)
		return -BCH_ERR_ENOMEM_fs_btree_cache_init;

	if (rcu_pending_init(&bc->pending[0], &c->btree_trans_barrier, __bkey_cached_free) ||
	    rcu_pending_init(&bc->pending[1], &c->btree_trans_barrier, __bkey_cached_free))
		return -BCH_ERR_ENOMEM_fs_btree_cache_init;

	if (rhashtable_init(&bc->table, &bch2_btree_key_cache_params))
		return -BCH_ERR_ENOMEM_fs_btree_cache_init;

	bc->table_init_done = true;

	shrink = shrinker_alloc(0, "%s-btree_key_cache", c->name);
	if (!shrink)
		return -BCH_ERR_ENOMEM_fs_btree_cache_init;
	bc->shrink = shrink;
	shrink->count_objects	= bch2_btree_key_cache_count;
	shrink->scan_objects	= bch2_btree_key_cache_scan;
	shrink->batch		= 1 << 14;
	shrink->seeks		= 0;
	shrink->private_data	= c;
	shrinker_register(shrink);
	return 0;
}

void bch2_btree_key_cache_to_text(struct printbuf *out, struct btree_key_cache *bc)
{
	printbuf_tabstop_push(out, 24);
	printbuf_tabstop_push(out, 12);

	prt_printf(out, "keys:\t%lu\r\n",		atomic_long_read(&bc->nr_keys));
	prt_printf(out, "dirty:\t%lu\r\n",		atomic_long_read(&bc->nr_dirty));
	prt_printf(out, "table size:\t%u\r\n",		bc->table.tbl->size);
	prt_newline(out);
	prt_printf(out, "shrinker:\n");
	prt_printf(out, "requested_to_free:\t%lu\r\n",	bc->requested_to_free);
	prt_printf(out, "freed:\t%lu\r\n",		bc->freed);
	prt_printf(out, "skipped_dirty:\t%lu\r\n",	bc->skipped_dirty);
	prt_printf(out, "skipped_accessed:\t%lu\r\n",	bc->skipped_accessed);
	prt_printf(out, "skipped_lock_fail:\t%lu\r\n",	bc->skipped_lock_fail);
	prt_newline(out);
	prt_printf(out, "pending:\t%zu\r\n",		per_cpu_sum(bc->nr_pending));
}

void bch2_btree_key_cache_exit(void)
{
	kmem_cache_destroy(bch2_key_cache);
}

int __init bch2_btree_key_cache_init(void)
{
	bch2_key_cache = KMEM_CACHE(bkey_cached, SLAB_RECLAIM_ACCOUNT);
	if (!bch2_key_cache)
		return -ENOMEM;

	return 0;
}