summaryrefslogtreecommitdiffstats
path: root/kernel/sched/membarrier.c
blob: 3d2825408e3a2544fd19ace94839d8ed34e20929 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
// SPDX-License-Identifier: GPL-2.0-or-later
/*
 * Copyright (C) 2010-2017 Mathieu Desnoyers <mathieu.desnoyers@efficios.com>
 *
 * membarrier system call
 */
#include "sched.h"

/*
 * For documentation purposes, here are some membarrier ordering
 * scenarios to keep in mind:
 *
 * A) Userspace thread execution after IPI vs membarrier's memory
 *    barrier before sending the IPI
 *
 * Userspace variables:
 *
 * int x = 0, y = 0;
 *
 * The memory barrier at the start of membarrier() on CPU0 is necessary in
 * order to enforce the guarantee that any writes occurring on CPU0 before
 * the membarrier() is executed will be visible to any code executing on
 * CPU1 after the IPI-induced memory barrier:
 *
 *         CPU0                              CPU1
 *
 *         x = 1
 *         membarrier():
 *           a: smp_mb()
 *           b: send IPI                       IPI-induced mb
 *           c: smp_mb()
 *         r2 = y
 *                                           y = 1
 *                                           barrier()
 *                                           r1 = x
 *
 *                     BUG_ON(r1 == 0 && r2 == 0)
 *
 * The write to y and load from x by CPU1 are unordered by the hardware,
 * so it's possible to have "r1 = x" reordered before "y = 1" at any
 * point after (b).  If the memory barrier at (a) is omitted, then "x = 1"
 * can be reordered after (a) (although not after (c)), so we get r1 == 0
 * and r2 == 0.  This violates the guarantee that membarrier() is
 * supposed by provide.
 *
 * The timing of the memory barrier at (a) has to ensure that it executes
 * before the IPI-induced memory barrier on CPU1.
 *
 * B) Userspace thread execution before IPI vs membarrier's memory
 *    barrier after completing the IPI
 *
 * Userspace variables:
 *
 * int x = 0, y = 0;
 *
 * The memory barrier at the end of membarrier() on CPU0 is necessary in
 * order to enforce the guarantee that any writes occurring on CPU1 before
 * the membarrier() is executed will be visible to any code executing on
 * CPU0 after the membarrier():
 *
 *         CPU0                              CPU1
 *
 *                                           x = 1
 *                                           barrier()
 *                                           y = 1
 *         r2 = y
 *         membarrier():
 *           a: smp_mb()
 *           b: send IPI                       IPI-induced mb
 *           c: smp_mb()
 *         r1 = x
 *         BUG_ON(r1 == 0 && r2 == 1)
 *
 * The writes to x and y are unordered by the hardware, so it's possible to
 * have "r2 = 1" even though the write to x doesn't execute until (b).  If
 * the memory barrier at (c) is omitted then "r1 = x" can be reordered
 * before (b) (although not before (a)), so we get "r1 = 0".  This violates
 * the guarantee that membarrier() is supposed to provide.
 *
 * The timing of the memory barrier at (c) has to ensure that it executes
 * after the IPI-induced memory barrier on CPU1.
 *
 * C) Scheduling userspace thread -> kthread -> userspace thread vs membarrier
 *
 *           CPU0                            CPU1
 *
 *           membarrier():
 *           a: smp_mb()
 *                                           d: switch to kthread (includes mb)
 *           b: read rq->curr->mm == NULL
 *                                           e: switch to user (includes mb)
 *           c: smp_mb()
 *
 * Using the scenario from (A), we can show that (a) needs to be paired
 * with (e). Using the scenario from (B), we can show that (c) needs to
 * be paired with (d).
 *
 * D) exit_mm vs membarrier
 *
 * Two thread groups are created, A and B.  Thread group B is created by
 * issuing clone from group A with flag CLONE_VM set, but not CLONE_THREAD.
 * Let's assume we have a single thread within each thread group (Thread A
 * and Thread B).  Thread A runs on CPU0, Thread B runs on CPU1.
 *
 *           CPU0                            CPU1
 *
 *           membarrier():
 *             a: smp_mb()
 *                                           exit_mm():
 *                                             d: smp_mb()
 *                                             e: current->mm = NULL
 *             b: read rq->curr->mm == NULL
 *             c: smp_mb()
 *
 * Using scenario (B), we can show that (c) needs to be paired with (d).
 *
 * E) kthread_{use,unuse}_mm vs membarrier
 *
 *           CPU0                            CPU1
 *
 *           membarrier():
 *           a: smp_mb()
 *                                           kthread_unuse_mm()
 *                                             d: smp_mb()
 *                                             e: current->mm = NULL
 *           b: read rq->curr->mm == NULL
 *                                           kthread_use_mm()
 *                                             f: current->mm = mm
 *                                             g: smp_mb()
 *           c: smp_mb()
 *
 * Using the scenario from (A), we can show that (a) needs to be paired
 * with (g). Using the scenario from (B), we can show that (c) needs to
 * be paired with (d).
 */

/*
 * Bitmask made from a "or" of all commands within enum membarrier_cmd,
 * except MEMBARRIER_CMD_QUERY.
 */
#ifdef CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE
#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK			\
	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE			\
	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE)
#else
#define MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK	0
#endif

#ifdef CONFIG_RSEQ
#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK		\
	(MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ			\
	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ)
#else
#define MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK	0
#endif

#define MEMBARRIER_CMD_BITMASK						\
	(MEMBARRIER_CMD_GLOBAL | MEMBARRIER_CMD_GLOBAL_EXPEDITED	\
	| MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED			\
	| MEMBARRIER_CMD_PRIVATE_EXPEDITED				\
	| MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED			\
	| MEMBARRIER_PRIVATE_EXPEDITED_SYNC_CORE_BITMASK		\
	| MEMBARRIER_PRIVATE_EXPEDITED_RSEQ_BITMASK)

static void ipi_mb(void *info)
{
	smp_mb();	/* IPIs should be serializing but paranoid. */
}

static void ipi_sync_core(void *info)
{
	/*
	 * The smp_mb() in membarrier after all the IPIs is supposed to
	 * ensure that memory on remote CPUs that occur before the IPI
	 * become visible to membarrier()'s caller -- see scenario B in
	 * the big comment at the top of this file.
	 *
	 * A sync_core() would provide this guarantee, but
	 * sync_core_before_usermode() might end up being deferred until
	 * after membarrier()'s smp_mb().
	 */
	smp_mb();	/* IPIs should be serializing but paranoid. */

	sync_core_before_usermode();
}

static void ipi_rseq(void *info)
{
	/*
	 * Ensure that all stores done by the calling thread are visible
	 * to the current task before the current task resumes.  We could
	 * probably optimize this away on most architectures, but by the
	 * time we've already sent an IPI, the cost of the extra smp_mb()
	 * is negligible.
	 */
	smp_mb();
	rseq_preempt(current);
}

static void ipi_sync_rq_state(void *info)
{
	struct mm_struct *mm = (struct mm_struct *) info;

	if (current->mm != mm)
		return;
	this_cpu_write(runqueues.membarrier_state,
		       atomic_read(&mm->membarrier_state));
	/*
	 * Issue a memory barrier after setting
	 * MEMBARRIER_STATE_GLOBAL_EXPEDITED in the current runqueue to
	 * guarantee that no memory access following registration is reordered
	 * before registration.
	 */
	smp_mb();
}

void membarrier_exec_mmap(struct mm_struct *mm)
{
	/*
	 * Issue a memory barrier before clearing membarrier_state to
	 * guarantee that no memory access prior to exec is reordered after
	 * clearing this state.
	 */
	smp_mb();
	atomic_set(&mm->membarrier_state, 0);
	/*
	 * Keep the runqueue membarrier_state in sync with this mm
	 * membarrier_state.
	 */
	this_cpu_write(runqueues.membarrier_state, 0);
}

void membarrier_update_current_mm(struct mm_struct *next_mm)
{
	struct rq *rq = this_rq();
	int membarrier_state = 0;

	if (next_mm)
		membarrier_state = atomic_read(&next_mm->membarrier_state);
	if (READ_ONCE(rq->membarrier_state) == membarrier_state)
		return;
	WRITE_ONCE(rq->membarrier_state, membarrier_state);
}

static int membarrier_global_expedited(void)
{
	int cpu;
	cpumask_var_t tmpmask;

	if (num_online_cpus() == 1)
		return 0;

	/*
	 * Matches memory barriers around rq->curr modification in
	 * scheduler.
	 */
	smp_mb();	/* system call entry is not a mb. */

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;

	cpus_read_lock();
	rcu_read_lock();
	for_each_online_cpu(cpu) {
		struct task_struct *p;

		/*
		 * Skipping the current CPU is OK even through we can be
		 * migrated at any point. The current CPU, at the point
		 * where we read raw_smp_processor_id(), is ensured to
		 * be in program order with respect to the caller
		 * thread. Therefore, we can skip this CPU from the
		 * iteration.
		 */
		if (cpu == raw_smp_processor_id())
			continue;

		if (!(READ_ONCE(cpu_rq(cpu)->membarrier_state) &
		    MEMBARRIER_STATE_GLOBAL_EXPEDITED))
			continue;

		/*
		 * Skip the CPU if it runs a kernel thread which is not using
		 * a task mm.
		 */
		p = rcu_dereference(cpu_rq(cpu)->curr);
		if (!p->mm)
			continue;

		__cpumask_set_cpu(cpu, tmpmask);
	}
	rcu_read_unlock();

	preempt_disable();
	smp_call_function_many(tmpmask, ipi_mb, NULL, 1);
	preempt_enable();

	free_cpumask_var(tmpmask);
	cpus_read_unlock();

	/*
	 * Memory barrier on the caller thread _after_ we finished
	 * waiting for the last IPI. Matches memory barriers around
	 * rq->curr modification in scheduler.
	 */
	smp_mb();	/* exit from system call is not a mb */
	return 0;
}

static int membarrier_private_expedited(int flags, int cpu_id)
{
	cpumask_var_t tmpmask;
	struct mm_struct *mm = current->mm;
	smp_call_func_t ipi_func = ipi_mb;

	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
			return -EINVAL;
		if (!(atomic_read(&mm->membarrier_state) &
		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY))
			return -EPERM;
		ipi_func = ipi_sync_core;
	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
		if (!IS_ENABLED(CONFIG_RSEQ))
			return -EINVAL;
		if (!(atomic_read(&mm->membarrier_state) &
		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY))
			return -EPERM;
		ipi_func = ipi_rseq;
	} else {
		WARN_ON_ONCE(flags);
		if (!(atomic_read(&mm->membarrier_state) &
		      MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY))
			return -EPERM;
	}

	if (flags != MEMBARRIER_FLAG_SYNC_CORE &&
	    (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1))
		return 0;

	/*
	 * Matches memory barriers around rq->curr modification in
	 * scheduler.
	 */
	smp_mb();	/* system call entry is not a mb. */

	if (cpu_id < 0 && !zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;

	cpus_read_lock();

	if (cpu_id >= 0) {
		struct task_struct *p;

		if (cpu_id >= nr_cpu_ids || !cpu_online(cpu_id))
			goto out;
		rcu_read_lock();
		p = rcu_dereference(cpu_rq(cpu_id)->curr);
		if (!p || p->mm != mm) {
			rcu_read_unlock();
			goto out;
		}
		rcu_read_unlock();
	} else {
		int cpu;

		rcu_read_lock();
		for_each_online_cpu(cpu) {
			struct task_struct *p;

			p = rcu_dereference(cpu_rq(cpu)->curr);
			if (p && p->mm == mm)
				__cpumask_set_cpu(cpu, tmpmask);
		}
		rcu_read_unlock();
	}

	if (cpu_id >= 0) {
		/*
		 * smp_call_function_single() will call ipi_func() if cpu_id
		 * is the calling CPU.
		 */
		smp_call_function_single(cpu_id, ipi_func, NULL, 1);
	} else {
		/*
		 * For regular membarrier, we can save a few cycles by
		 * skipping the current cpu -- we're about to do smp_mb()
		 * below, and if we migrate to a different cpu, this cpu
		 * and the new cpu will execute a full barrier in the
		 * scheduler.
		 *
		 * For SYNC_CORE, we do need a barrier on the current cpu --
		 * otherwise, if we are migrated and replaced by a different
		 * task in the same mm just before, during, or after
		 * membarrier, we will end up with some thread in the mm
		 * running without a core sync.
		 *
		 * For RSEQ, don't rseq_preempt() the caller.  User code
		 * is not supposed to issue syscalls at all from inside an
		 * rseq critical section.
		 */
		if (flags != MEMBARRIER_FLAG_SYNC_CORE) {
			preempt_disable();
			smp_call_function_many(tmpmask, ipi_func, NULL, true);
			preempt_enable();
		} else {
			on_each_cpu_mask(tmpmask, ipi_func, NULL, true);
		}
	}

out:
	if (cpu_id < 0)
		free_cpumask_var(tmpmask);
	cpus_read_unlock();

	/*
	 * Memory barrier on the caller thread _after_ we finished
	 * waiting for the last IPI. Matches memory barriers around
	 * rq->curr modification in scheduler.
	 */
	smp_mb();	/* exit from system call is not a mb */

	return 0;
}

static int sync_runqueues_membarrier_state(struct mm_struct *mm)
{
	int membarrier_state = atomic_read(&mm->membarrier_state);
	cpumask_var_t tmpmask;
	int cpu;

	if (atomic_read(&mm->mm_users) == 1 || num_online_cpus() == 1) {
		this_cpu_write(runqueues.membarrier_state, membarrier_state);

		/*
		 * For single mm user, we can simply issue a memory barrier
		 * after setting MEMBARRIER_STATE_GLOBAL_EXPEDITED in the
		 * mm and in the current runqueue to guarantee that no memory
		 * access following registration is reordered before
		 * registration.
		 */
		smp_mb();
		return 0;
	}

	if (!zalloc_cpumask_var(&tmpmask, GFP_KERNEL))
		return -ENOMEM;

	/*
	 * For mm with multiple users, we need to ensure all future
	 * scheduler executions will observe @mm's new membarrier
	 * state.
	 */
	synchronize_rcu();

	/*
	 * For each cpu runqueue, if the task's mm match @mm, ensure that all
	 * @mm's membarrier state set bits are also set in the runqueue's
	 * membarrier state. This ensures that a runqueue scheduling
	 * between threads which are users of @mm has its membarrier state
	 * updated.
	 */
	cpus_read_lock();
	rcu_read_lock();
	for_each_online_cpu(cpu) {
		struct rq *rq = cpu_rq(cpu);
		struct task_struct *p;

		p = rcu_dereference(rq->curr);
		if (p && p->mm == mm)
			__cpumask_set_cpu(cpu, tmpmask);
	}
	rcu_read_unlock();

	on_each_cpu_mask(tmpmask, ipi_sync_rq_state, mm, true);

	free_cpumask_var(tmpmask);
	cpus_read_unlock();

	return 0;
}

static int membarrier_register_global_expedited(void)
{
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
	int ret;

	if (atomic_read(&mm->membarrier_state) &
	    MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY)
		return 0;
	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED, &mm->membarrier_state);
	ret = sync_runqueues_membarrier_state(mm);
	if (ret)
		return ret;
	atomic_or(MEMBARRIER_STATE_GLOBAL_EXPEDITED_READY,
		  &mm->membarrier_state);

	return 0;
}

static int membarrier_register_private_expedited(int flags)
{
	struct task_struct *p = current;
	struct mm_struct *mm = p->mm;
	int ready_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED_READY,
	    set_state = MEMBARRIER_STATE_PRIVATE_EXPEDITED,
	    ret;

	if (flags == MEMBARRIER_FLAG_SYNC_CORE) {
		if (!IS_ENABLED(CONFIG_ARCH_HAS_MEMBARRIER_SYNC_CORE))
			return -EINVAL;
		ready_state =
			MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE_READY;
	} else if (flags == MEMBARRIER_FLAG_RSEQ) {
		if (!IS_ENABLED(CONFIG_RSEQ))
			return -EINVAL;
		ready_state =
			MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ_READY;
	} else {
		WARN_ON_ONCE(flags);
	}

	/*
	 * We need to consider threads belonging to different thread
	 * groups, which use the same mm. (CLONE_VM but not
	 * CLONE_THREAD).
	 */
	if ((atomic_read(&mm->membarrier_state) & ready_state) == ready_state)
		return 0;
	if (flags & MEMBARRIER_FLAG_SYNC_CORE)
		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_SYNC_CORE;
	if (flags & MEMBARRIER_FLAG_RSEQ)
		set_state |= MEMBARRIER_STATE_PRIVATE_EXPEDITED_RSEQ;
	atomic_or(set_state, &mm->membarrier_state);
	ret = sync_runqueues_membarrier_state(mm);
	if (ret)
		return ret;
	atomic_or(ready_state, &mm->membarrier_state);

	return 0;
}

/**
 * sys_membarrier - issue memory barriers on a set of threads
 * @cmd:    Takes command values defined in enum membarrier_cmd.
 * @flags:  Currently needs to be 0 for all commands other than
 *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ: in the latter
 *          case it can be MEMBARRIER_CMD_FLAG_CPU, indicating that @cpu_id
 *          contains the CPU on which to interrupt (= restart)
 *          the RSEQ critical section.
 * @cpu_id: if @flags == MEMBARRIER_CMD_FLAG_CPU, indicates the cpu on which
 *          RSEQ CS should be interrupted (@cmd must be
 *          MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ).
 *
 * If this system call is not implemented, -ENOSYS is returned. If the
 * command specified does not exist, not available on the running
 * kernel, or if the command argument is invalid, this system call
 * returns -EINVAL. For a given command, with flags argument set to 0,
 * if this system call returns -ENOSYS or -EINVAL, it is guaranteed to
 * always return the same value until reboot. In addition, it can return
 * -ENOMEM if there is not enough memory available to perform the system
 * call.
 *
 * All memory accesses performed in program order from each targeted thread
 * is guaranteed to be ordered with respect to sys_membarrier(). If we use
 * the semantic "barrier()" to represent a compiler barrier forcing memory
 * accesses to be performed in program order across the barrier, and
 * smp_mb() to represent explicit memory barriers forcing full memory
 * ordering across the barrier, we have the following ordering table for
 * each pair of barrier(), sys_membarrier() and smp_mb():
 *
 * The pair ordering is detailed as (O: ordered, X: not ordered):
 *
 *                        barrier()   smp_mb() sys_membarrier()
 *        barrier()          X           X            O
 *        smp_mb()           X           O            O
 *        sys_membarrier()   O           O            O
 */
SYSCALL_DEFINE3(membarrier, int, cmd, unsigned int, flags, int, cpu_id)
{
	switch (cmd) {
	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
		if (unlikely(flags && flags != MEMBARRIER_CMD_FLAG_CPU))
			return -EINVAL;
		break;
	default:
		if (unlikely(flags))
			return -EINVAL;
	}

	if (!(flags & MEMBARRIER_CMD_FLAG_CPU))
		cpu_id = -1;

	switch (cmd) {
	case MEMBARRIER_CMD_QUERY:
	{
		int cmd_mask = MEMBARRIER_CMD_BITMASK;

		if (tick_nohz_full_enabled())
			cmd_mask &= ~MEMBARRIER_CMD_GLOBAL;
		return cmd_mask;
	}
	case MEMBARRIER_CMD_GLOBAL:
		/* MEMBARRIER_CMD_GLOBAL is not compatible with nohz_full. */
		if (tick_nohz_full_enabled())
			return -EINVAL;
		if (num_online_cpus() > 1)
			synchronize_rcu();
		return 0;
	case MEMBARRIER_CMD_GLOBAL_EXPEDITED:
		return membarrier_global_expedited();
	case MEMBARRIER_CMD_REGISTER_GLOBAL_EXPEDITED:
		return membarrier_register_global_expedited();
	case MEMBARRIER_CMD_PRIVATE_EXPEDITED:
		return membarrier_private_expedited(0, cpu_id);
	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED:
		return membarrier_register_private_expedited(0);
	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE:
		return membarrier_private_expedited(MEMBARRIER_FLAG_SYNC_CORE, cpu_id);
	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_SYNC_CORE:
		return membarrier_register_private_expedited(MEMBARRIER_FLAG_SYNC_CORE);
	case MEMBARRIER_CMD_PRIVATE_EXPEDITED_RSEQ:
		return membarrier_private_expedited(MEMBARRIER_FLAG_RSEQ, cpu_id);
	case MEMBARRIER_CMD_REGISTER_PRIVATE_EXPEDITED_RSEQ:
		return membarrier_register_private_expedited(MEMBARRIER_FLAG_RSEQ);
	default:
		return -EINVAL;
	}
}