1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
|
// SPDX-License-Identifier: GPL-2.0+
/*
* 2002-10-15 Posix Clocks & timers
* by George Anzinger george@mvista.com
* Copyright (C) 2002 2003 by MontaVista Software.
*
* 2004-06-01 Fix CLOCK_REALTIME clock/timer TIMER_ABSTIME bug.
* Copyright (C) 2004 Boris Hu
*
* These are all the functions necessary to implement POSIX clocks & timers
*/
#include <linux/mm.h>
#include <linux/interrupt.h>
#include <linux/slab.h>
#include <linux/time.h>
#include <linux/mutex.h>
#include <linux/sched/task.h>
#include <linux/uaccess.h>
#include <linux/list.h>
#include <linux/init.h>
#include <linux/compiler.h>
#include <linux/hash.h>
#include <linux/posix-clock.h>
#include <linux/posix-timers.h>
#include <linux/syscalls.h>
#include <linux/wait.h>
#include <linux/workqueue.h>
#include <linux/export.h>
#include <linux/hashtable.h>
#include <linux/compat.h>
#include <linux/nospec.h>
#include <linux/time_namespace.h>
#include "timekeeping.h"
#include "posix-timers.h"
static struct kmem_cache *posix_timers_cache;
/*
* Timers are managed in a hash table for lockless lookup. The hash key is
* constructed from current::signal and the timer ID and the timer is
* matched against current::signal and the timer ID when walking the hash
* bucket list.
*
* This allows checkpoint/restore to reconstruct the exact timer IDs for
* a process.
*/
static DEFINE_HASHTABLE(posix_timers_hashtable, 9);
static DEFINE_SPINLOCK(hash_lock);
static const struct k_clock * const posix_clocks[];
static const struct k_clock *clockid_to_kclock(const clockid_t id);
static const struct k_clock clock_realtime, clock_monotonic;
/* SIGEV_THREAD_ID cannot share a bit with the other SIGEV values. */
#if SIGEV_THREAD_ID != (SIGEV_THREAD_ID & \
~(SIGEV_SIGNAL | SIGEV_NONE | SIGEV_THREAD))
#error "SIGEV_THREAD_ID must not share bit with other SIGEV values!"
#endif
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags);
#define lock_timer(tid, flags) \
({ struct k_itimer *__timr; \
__cond_lock(&__timr->it_lock, __timr = __lock_timer(tid, flags)); \
__timr; \
})
static int hash(struct signal_struct *sig, unsigned int nr)
{
return hash_32(hash32_ptr(sig) ^ nr, HASH_BITS(posix_timers_hashtable));
}
static struct k_itimer *__posix_timers_find(struct hlist_head *head,
struct signal_struct *sig,
timer_t id)
{
struct k_itimer *timer;
hlist_for_each_entry_rcu(timer, head, t_hash, lockdep_is_held(&hash_lock)) {
/* timer->it_signal can be set concurrently */
if ((READ_ONCE(timer->it_signal) == sig) && (timer->it_id == id))
return timer;
}
return NULL;
}
static struct k_itimer *posix_timer_by_id(timer_t id)
{
struct signal_struct *sig = current->signal;
struct hlist_head *head = &posix_timers_hashtable[hash(sig, id)];
return __posix_timers_find(head, sig, id);
}
static int posix_timer_add(struct k_itimer *timer)
{
struct signal_struct *sig = current->signal;
struct hlist_head *head;
unsigned int cnt, id;
/*
* FIXME: Replace this by a per signal struct xarray once there is
* a plan to handle the resulting CRIU regression gracefully.
*/
for (cnt = 0; cnt <= INT_MAX; cnt++) {
spin_lock(&hash_lock);
id = sig->next_posix_timer_id;
/* Write the next ID back. Clamp it to the positive space */
sig->next_posix_timer_id = (id + 1) & INT_MAX;
head = &posix_timers_hashtable[hash(sig, id)];
if (!__posix_timers_find(head, sig, id)) {
hlist_add_head_rcu(&timer->t_hash, head);
spin_unlock(&hash_lock);
return id;
}
spin_unlock(&hash_lock);
}
/* POSIX return code when no timer ID could be allocated */
return -EAGAIN;
}
static inline void unlock_timer(struct k_itimer *timr, unsigned long flags)
{
spin_unlock_irqrestore(&timr->it_lock, flags);
}
static int posix_get_realtime_timespec(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_real_ts64(tp);
return 0;
}
static ktime_t posix_get_realtime_ktime(clockid_t which_clock)
{
return ktime_get_real();
}
static int posix_clock_realtime_set(const clockid_t which_clock,
const struct timespec64 *tp)
{
return do_sys_settimeofday64(tp, NULL);
}
static int posix_clock_realtime_adj(const clockid_t which_clock,
struct __kernel_timex *t)
{
return do_adjtimex(t);
}
static int posix_get_monotonic_timespec(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_ts64(tp);
timens_add_monotonic(tp);
return 0;
}
static ktime_t posix_get_monotonic_ktime(clockid_t which_clock)
{
return ktime_get();
}
static int posix_get_monotonic_raw(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_raw_ts64(tp);
timens_add_monotonic(tp);
return 0;
}
static int posix_get_realtime_coarse(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_coarse_real_ts64(tp);
return 0;
}
static int posix_get_monotonic_coarse(clockid_t which_clock,
struct timespec64 *tp)
{
ktime_get_coarse_ts64(tp);
timens_add_monotonic(tp);
return 0;
}
static int posix_get_coarse_res(const clockid_t which_clock, struct timespec64 *tp)
{
*tp = ktime_to_timespec64(KTIME_LOW_RES);
return 0;
}
static int posix_get_boottime_timespec(const clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_boottime_ts64(tp);
timens_add_boottime(tp);
return 0;
}
static ktime_t posix_get_boottime_ktime(const clockid_t which_clock)
{
return ktime_get_boottime();
}
static int posix_get_tai_timespec(clockid_t which_clock, struct timespec64 *tp)
{
ktime_get_clocktai_ts64(tp);
return 0;
}
static ktime_t posix_get_tai_ktime(clockid_t which_clock)
{
return ktime_get_clocktai();
}
static int posix_get_hrtimer_res(clockid_t which_clock, struct timespec64 *tp)
{
tp->tv_sec = 0;
tp->tv_nsec = hrtimer_resolution;
return 0;
}
static __init int init_posix_timers(void)
{
posix_timers_cache = kmem_cache_create("posix_timers_cache",
sizeof(struct k_itimer), 0,
SLAB_PANIC | SLAB_ACCOUNT, NULL);
return 0;
}
__initcall(init_posix_timers);
/*
* The siginfo si_overrun field and the return value of timer_getoverrun(2)
* are of type int. Clamp the overrun value to INT_MAX
*/
static inline int timer_overrun_to_int(struct k_itimer *timr, int baseval)
{
s64 sum = timr->it_overrun_last + (s64)baseval;
return sum > (s64)INT_MAX ? INT_MAX : (int)sum;
}
static void common_hrtimer_rearm(struct k_itimer *timr)
{
struct hrtimer *timer = &timr->it.real.timer;
timr->it_overrun += hrtimer_forward(timer, timer->base->get_time(),
timr->it_interval);
hrtimer_restart(timer);
}
/*
* This function is called from the signal delivery code if
* info->si_sys_private is not zero, which indicates that the timer has to
* be rearmed. Restart the timer and update info::si_overrun.
*/
void posixtimer_rearm(struct kernel_siginfo *info)
{
struct k_itimer *timr;
unsigned long flags;
timr = lock_timer(info->si_tid, &flags);
if (!timr)
return;
if (timr->it_interval && timr->it_requeue_pending == info->si_sys_private) {
timr->kclock->timer_rearm(timr);
timr->it_active = 1;
timr->it_overrun_last = timr->it_overrun;
timr->it_overrun = -1LL;
++timr->it_requeue_pending;
info->si_overrun = timer_overrun_to_int(timr, info->si_overrun);
}
unlock_timer(timr, flags);
}
int posix_timer_queue_signal(struct k_itimer *timr)
{
int ret, si_private = 0;
enum pid_type type;
lockdep_assert_held(&timr->it_lock);
timr->it_active = 0;
if (timr->it_interval)
si_private = ++timr->it_requeue_pending;
/*
* FIXME: if ->sigq is queued we can race with
* dequeue_signal()->posixtimer_rearm().
*
* If dequeue_signal() sees the "right" value of
* si_sys_private it calls posixtimer_rearm().
* We re-queue ->sigq and drop ->it_lock().
* posixtimer_rearm() locks the timer
* and re-schedules it while ->sigq is pending.
* Not really bad, but not that we want.
*/
timr->sigq->info.si_sys_private = si_private;
type = !(timr->it_sigev_notify & SIGEV_THREAD_ID) ? PIDTYPE_TGID : PIDTYPE_PID;
ret = send_sigqueue(timr->sigq, timr->it_pid, type);
/* If we failed to send the signal the timer stops. */
return ret > 0;
}
/*
* This function gets called when a POSIX.1b interval timer expires from
* the HRTIMER interrupt (soft interrupt on RT kernels).
*
* Handles CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME and CLOCK_TAI
* based timers.
*/
static enum hrtimer_restart posix_timer_fn(struct hrtimer *timer)
{
struct k_itimer *timr = container_of(timer, struct k_itimer, it.real.timer);
enum hrtimer_restart ret = HRTIMER_NORESTART;
unsigned long flags;
spin_lock_irqsave(&timr->it_lock, flags);
if (posix_timer_queue_signal(timr)) {
/*
* The signal was not queued due to SIG_IGN. As a
* consequence the timer is not going to be rearmed from
* the signal delivery path. But as a real signal handler
* can be installed later the timer must be rearmed here.
*/
if (timr->it_interval != 0) {
ktime_t now = hrtimer_cb_get_time(timer);
/*
* FIXME: What we really want, is to stop this
* timer completely and restart it in case the
* SIG_IGN is removed. This is a non trivial
* change to the signal handling code.
*
* For now let timers with an interval less than a
* jiffy expire every jiffy and recheck for a
* valid signal handler.
*
* This avoids interrupt starvation in case of a
* very small interval, which would expire the
* timer immediately again.
*
* Moving now ahead of time by one jiffy tricks
* hrtimer_forward() to expire the timer later,
* while it still maintains the overrun accuracy
* for the price of a slight inconsistency in the
* timer_gettime() case. This is at least better
* than a timer storm.
*
* Only required when high resolution timers are
* enabled as the periodic tick based timers are
* automatically aligned to the next tick.
*/
if (IS_ENABLED(CONFIG_HIGH_RES_TIMERS)) {
ktime_t kj = TICK_NSEC;
if (timr->it_interval < kj)
now = ktime_add(now, kj);
}
timr->it_overrun += hrtimer_forward(timer, now, timr->it_interval);
ret = HRTIMER_RESTART;
++timr->it_requeue_pending;
timr->it_active = 1;
}
}
unlock_timer(timr, flags);
return ret;
}
static struct pid *good_sigevent(sigevent_t * event)
{
struct pid *pid = task_tgid(current);
struct task_struct *rtn;
switch (event->sigev_notify) {
case SIGEV_SIGNAL | SIGEV_THREAD_ID:
pid = find_vpid(event->sigev_notify_thread_id);
rtn = pid_task(pid, PIDTYPE_PID);
if (!rtn || !same_thread_group(rtn, current))
return NULL;
fallthrough;
case SIGEV_SIGNAL:
case SIGEV_THREAD:
if (event->sigev_signo <= 0 || event->sigev_signo > SIGRTMAX)
return NULL;
fallthrough;
case SIGEV_NONE:
return pid;
default:
return NULL;
}
}
static struct k_itimer * alloc_posix_timer(void)
{
struct k_itimer *tmr = kmem_cache_zalloc(posix_timers_cache, GFP_KERNEL);
if (!tmr)
return tmr;
if (unlikely(!(tmr->sigq = sigqueue_alloc()))) {
kmem_cache_free(posix_timers_cache, tmr);
return NULL;
}
clear_siginfo(&tmr->sigq->info);
return tmr;
}
static void k_itimer_rcu_free(struct rcu_head *head)
{
struct k_itimer *tmr = container_of(head, struct k_itimer, rcu);
kmem_cache_free(posix_timers_cache, tmr);
}
static void posix_timer_free(struct k_itimer *tmr)
{
put_pid(tmr->it_pid);
sigqueue_free(tmr->sigq);
call_rcu(&tmr->rcu, k_itimer_rcu_free);
}
static void posix_timer_unhash_and_free(struct k_itimer *tmr)
{
spin_lock(&hash_lock);
hlist_del_rcu(&tmr->t_hash);
spin_unlock(&hash_lock);
posix_timer_free(tmr);
}
static int common_timer_create(struct k_itimer *new_timer)
{
hrtimer_init(&new_timer->it.real.timer, new_timer->it_clock, 0);
return 0;
}
/* Create a POSIX.1b interval timer. */
static int do_timer_create(clockid_t which_clock, struct sigevent *event,
timer_t __user *created_timer_id)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct k_itimer *new_timer;
int error, new_timer_id;
if (!kc)
return -EINVAL;
if (!kc->timer_create)
return -EOPNOTSUPP;
new_timer = alloc_posix_timer();
if (unlikely(!new_timer))
return -EAGAIN;
spin_lock_init(&new_timer->it_lock);
/*
* Add the timer to the hash table. The timer is not yet valid
* because new_timer::it_signal is still NULL. The timer id is also
* not yet visible to user space.
*/
new_timer_id = posix_timer_add(new_timer);
if (new_timer_id < 0) {
posix_timer_free(new_timer);
return new_timer_id;
}
new_timer->it_id = (timer_t) new_timer_id;
new_timer->it_clock = which_clock;
new_timer->kclock = kc;
new_timer->it_overrun = -1LL;
if (event) {
rcu_read_lock();
new_timer->it_pid = get_pid(good_sigevent(event));
rcu_read_unlock();
if (!new_timer->it_pid) {
error = -EINVAL;
goto out;
}
new_timer->it_sigev_notify = event->sigev_notify;
new_timer->sigq->info.si_signo = event->sigev_signo;
new_timer->sigq->info.si_value = event->sigev_value;
} else {
new_timer->it_sigev_notify = SIGEV_SIGNAL;
new_timer->sigq->info.si_signo = SIGALRM;
memset(&new_timer->sigq->info.si_value, 0, sizeof(sigval_t));
new_timer->sigq->info.si_value.sival_int = new_timer->it_id;
new_timer->it_pid = get_pid(task_tgid(current));
}
new_timer->sigq->info.si_tid = new_timer->it_id;
new_timer->sigq->info.si_code = SI_TIMER;
if (copy_to_user(created_timer_id, &new_timer_id, sizeof (new_timer_id))) {
error = -EFAULT;
goto out;
}
/*
* After succesful copy out, the timer ID is visible to user space
* now but not yet valid because new_timer::signal is still NULL.
*
* Complete the initialization with the clock specific create
* callback.
*/
error = kc->timer_create(new_timer);
if (error)
goto out;
spin_lock_irq(¤t->sighand->siglock);
/* This makes the timer valid in the hash table */
WRITE_ONCE(new_timer->it_signal, current->signal);
hlist_add_head(&new_timer->list, ¤t->signal->posix_timers);
spin_unlock_irq(¤t->sighand->siglock);
/*
* After unlocking sighand::siglock @new_timer is subject to
* concurrent removal and cannot be touched anymore
*/
return 0;
out:
posix_timer_unhash_and_free(new_timer);
return error;
}
SYSCALL_DEFINE3(timer_create, const clockid_t, which_clock,
struct sigevent __user *, timer_event_spec,
timer_t __user *, created_timer_id)
{
if (timer_event_spec) {
sigevent_t event;
if (copy_from_user(&event, timer_event_spec, sizeof (event)))
return -EFAULT;
return do_timer_create(which_clock, &event, created_timer_id);
}
return do_timer_create(which_clock, NULL, created_timer_id);
}
#ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(timer_create, clockid_t, which_clock,
struct compat_sigevent __user *, timer_event_spec,
timer_t __user *, created_timer_id)
{
if (timer_event_spec) {
sigevent_t event;
if (get_compat_sigevent(&event, timer_event_spec))
return -EFAULT;
return do_timer_create(which_clock, &event, created_timer_id);
}
return do_timer_create(which_clock, NULL, created_timer_id);
}
#endif
static struct k_itimer *__lock_timer(timer_t timer_id, unsigned long *flags)
{
struct k_itimer *timr;
/*
* timer_t could be any type >= int and we want to make sure any
* @timer_id outside positive int range fails lookup.
*/
if ((unsigned long long)timer_id > INT_MAX)
return NULL;
/*
* The hash lookup and the timers are RCU protected.
*
* Timers are added to the hash in invalid state where
* timr::it_signal == NULL. timer::it_signal is only set after the
* rest of the initialization succeeded.
*
* Timer destruction happens in steps:
* 1) Set timr::it_signal to NULL with timr::it_lock held
* 2) Release timr::it_lock
* 3) Remove from the hash under hash_lock
* 4) Call RCU for removal after the grace period
*
* Holding rcu_read_lock() accross the lookup ensures that
* the timer cannot be freed.
*
* The lookup validates locklessly that timr::it_signal ==
* current::it_signal and timr::it_id == @timer_id. timr::it_id
* can't change, but timr::it_signal becomes NULL during
* destruction.
*/
rcu_read_lock();
timr = posix_timer_by_id(timer_id);
if (timr) {
spin_lock_irqsave(&timr->it_lock, *flags);
/*
* Validate under timr::it_lock that timr::it_signal is
* still valid. Pairs with #1 above.
*/
if (timr->it_signal == current->signal) {
rcu_read_unlock();
return timr;
}
spin_unlock_irqrestore(&timr->it_lock, *flags);
}
rcu_read_unlock();
return NULL;
}
static ktime_t common_hrtimer_remaining(struct k_itimer *timr, ktime_t now)
{
struct hrtimer *timer = &timr->it.real.timer;
return __hrtimer_expires_remaining_adjusted(timer, now);
}
static s64 common_hrtimer_forward(struct k_itimer *timr, ktime_t now)
{
struct hrtimer *timer = &timr->it.real.timer;
return hrtimer_forward(timer, now, timr->it_interval);
}
/*
* Get the time remaining on a POSIX.1b interval timer.
*
* Two issues to handle here:
*
* 1) The timer has a requeue pending. The return value must appear as
* if the timer has been requeued right now.
*
* 2) The timer is a SIGEV_NONE timer. These timers are never enqueued
* into the hrtimer queue and therefore never expired. Emulate expiry
* here taking #1 into account.
*/
void common_timer_get(struct k_itimer *timr, struct itimerspec64 *cur_setting)
{
const struct k_clock *kc = timr->kclock;
ktime_t now, remaining, iv;
bool sig_none;
sig_none = timr->it_sigev_notify == SIGEV_NONE;
iv = timr->it_interval;
/* interval timer ? */
if (iv) {
cur_setting->it_interval = ktime_to_timespec64(iv);
} else if (!timr->it_active) {
/*
* SIGEV_NONE oneshot timers are never queued and therefore
* timr->it_active is always false. The check below
* vs. remaining time will handle this case.
*
* For all other timers there is nothing to update here, so
* return.
*/
if (!sig_none)
return;
}
now = kc->clock_get_ktime(timr->it_clock);
/*
* If this is an interval timer and either has requeue pending or
* is a SIGEV_NONE timer move the expiry time forward by intervals,
* so expiry is > now.
*/
if (iv && (timr->it_requeue_pending & REQUEUE_PENDING || sig_none))
timr->it_overrun += kc->timer_forward(timr, now);
remaining = kc->timer_remaining(timr, now);
/*
* As @now is retrieved before a possible timer_forward() and
* cannot be reevaluated by the compiler @remaining is based on the
* same @now value. Therefore @remaining is consistent vs. @now.
*
* Consequently all interval timers, i.e. @iv > 0, cannot have a
* remaining time <= 0 because timer_forward() guarantees to move
* them forward so that the next timer expiry is > @now.
*/
if (remaining <= 0) {
/*
* A single shot SIGEV_NONE timer must return 0, when it is
* expired! Timers which have a real signal delivery mode
* must return a remaining time greater than 0 because the
* signal has not yet been delivered.
*/
if (!sig_none)
cur_setting->it_value.tv_nsec = 1;
} else {
cur_setting->it_value = ktime_to_timespec64(remaining);
}
}
static int do_timer_gettime(timer_t timer_id, struct itimerspec64 *setting)
{
const struct k_clock *kc;
struct k_itimer *timr;
unsigned long flags;
int ret = 0;
timr = lock_timer(timer_id, &flags);
if (!timr)
return -EINVAL;
memset(setting, 0, sizeof(*setting));
kc = timr->kclock;
if (WARN_ON_ONCE(!kc || !kc->timer_get))
ret = -EINVAL;
else
kc->timer_get(timr, setting);
unlock_timer(timr, flags);
return ret;
}
/* Get the time remaining on a POSIX.1b interval timer. */
SYSCALL_DEFINE2(timer_gettime, timer_t, timer_id,
struct __kernel_itimerspec __user *, setting)
{
struct itimerspec64 cur_setting;
int ret = do_timer_gettime(timer_id, &cur_setting);
if (!ret) {
if (put_itimerspec64(&cur_setting, setting))
ret = -EFAULT;
}
return ret;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(timer_gettime32, timer_t, timer_id,
struct old_itimerspec32 __user *, setting)
{
struct itimerspec64 cur_setting;
int ret = do_timer_gettime(timer_id, &cur_setting);
if (!ret) {
if (put_old_itimerspec32(&cur_setting, setting))
ret = -EFAULT;
}
return ret;
}
#endif
/**
* sys_timer_getoverrun - Get the number of overruns of a POSIX.1b interval timer
* @timer_id: The timer ID which identifies the timer
*
* The "overrun count" of a timer is one plus the number of expiration
* intervals which have elapsed between the first expiry, which queues the
* signal and the actual signal delivery. On signal delivery the "overrun
* count" is calculated and cached, so it can be returned directly here.
*
* As this is relative to the last queued signal the returned overrun count
* is meaningless outside of the signal delivery path and even there it
* does not accurately reflect the current state when user space evaluates
* it.
*
* Returns:
* -EINVAL @timer_id is invalid
* 1..INT_MAX The number of overruns related to the last delivered signal
*/
SYSCALL_DEFINE1(timer_getoverrun, timer_t, timer_id)
{
struct k_itimer *timr;
unsigned long flags;
int overrun;
timr = lock_timer(timer_id, &flags);
if (!timr)
return -EINVAL;
overrun = timer_overrun_to_int(timr, 0);
unlock_timer(timr, flags);
return overrun;
}
static void common_hrtimer_arm(struct k_itimer *timr, ktime_t expires,
bool absolute, bool sigev_none)
{
struct hrtimer *timer = &timr->it.real.timer;
enum hrtimer_mode mode;
mode = absolute ? HRTIMER_MODE_ABS : HRTIMER_MODE_REL;
/*
* Posix magic: Relative CLOCK_REALTIME timers are not affected by
* clock modifications, so they become CLOCK_MONOTONIC based under the
* hood. See hrtimer_init(). Update timr->kclock, so the generic
* functions which use timr->kclock->clock_get_*() work.
*
* Note: it_clock stays unmodified, because the next timer_set() might
* use ABSTIME, so it needs to switch back.
*/
if (timr->it_clock == CLOCK_REALTIME)
timr->kclock = absolute ? &clock_realtime : &clock_monotonic;
hrtimer_init(&timr->it.real.timer, timr->it_clock, mode);
timr->it.real.timer.function = posix_timer_fn;
if (!absolute)
expires = ktime_add_safe(expires, timer->base->get_time());
hrtimer_set_expires(timer, expires);
if (!sigev_none)
hrtimer_start_expires(timer, HRTIMER_MODE_ABS);
}
static int common_hrtimer_try_to_cancel(struct k_itimer *timr)
{
return hrtimer_try_to_cancel(&timr->it.real.timer);
}
static void common_timer_wait_running(struct k_itimer *timer)
{
hrtimer_cancel_wait_running(&timer->it.real.timer);
}
/*
* On PREEMPT_RT this prevents priority inversion and a potential livelock
* against the ksoftirqd thread in case that ksoftirqd gets preempted while
* executing a hrtimer callback.
*
* See the comments in hrtimer_cancel_wait_running(). For PREEMPT_RT=n this
* just results in a cpu_relax().
*
* For POSIX CPU timers with CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n this is
* just a cpu_relax(). With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y this
* prevents spinning on an eventually scheduled out task and a livelock
* when the task which tries to delete or disarm the timer has preempted
* the task which runs the expiry in task work context.
*/
static struct k_itimer *timer_wait_running(struct k_itimer *timer,
unsigned long *flags)
{
const struct k_clock *kc = READ_ONCE(timer->kclock);
timer_t timer_id = READ_ONCE(timer->it_id);
/* Prevent kfree(timer) after dropping the lock */
rcu_read_lock();
unlock_timer(timer, *flags);
/*
* kc->timer_wait_running() might drop RCU lock. So @timer
* cannot be touched anymore after the function returns!
*/
if (!WARN_ON_ONCE(!kc->timer_wait_running))
kc->timer_wait_running(timer);
rcu_read_unlock();
/* Relock the timer. It might be not longer hashed. */
return lock_timer(timer_id, flags);
}
/*
* Set up the new interval and reset the signal delivery data
*/
void posix_timer_set_common(struct k_itimer *timer, struct itimerspec64 *new_setting)
{
if (new_setting->it_value.tv_sec || new_setting->it_value.tv_nsec)
timer->it_interval = timespec64_to_ktime(new_setting->it_interval);
else
timer->it_interval = 0;
/* Prevent reloading in case there is a signal pending */
timer->it_requeue_pending = (timer->it_requeue_pending + 2) & ~REQUEUE_PENDING;
/* Reset overrun accounting */
timer->it_overrun_last = 0;
timer->it_overrun = -1LL;
}
/* Set a POSIX.1b interval timer. */
int common_timer_set(struct k_itimer *timr, int flags,
struct itimerspec64 *new_setting,
struct itimerspec64 *old_setting)
{
const struct k_clock *kc = timr->kclock;
bool sigev_none;
ktime_t expires;
if (old_setting)
common_timer_get(timr, old_setting);
/* Prevent rearming by clearing the interval */
timr->it_interval = 0;
/*
* Careful here. On SMP systems the timer expiry function could be
* active and spinning on timr->it_lock.
*/
if (kc->timer_try_to_cancel(timr) < 0)
return TIMER_RETRY;
timr->it_active = 0;
posix_timer_set_common(timr, new_setting);
/* Keep timer disarmed when it_value is zero */
if (!new_setting->it_value.tv_sec && !new_setting->it_value.tv_nsec)
return 0;
expires = timespec64_to_ktime(new_setting->it_value);
if (flags & TIMER_ABSTIME)
expires = timens_ktime_to_host(timr->it_clock, expires);
sigev_none = timr->it_sigev_notify == SIGEV_NONE;
kc->timer_arm(timr, expires, flags & TIMER_ABSTIME, sigev_none);
timr->it_active = !sigev_none;
return 0;
}
static int do_timer_settime(timer_t timer_id, int tmr_flags,
struct itimerspec64 *new_spec64,
struct itimerspec64 *old_spec64)
{
const struct k_clock *kc;
struct k_itimer *timr;
unsigned long flags;
int error;
if (!timespec64_valid(&new_spec64->it_interval) ||
!timespec64_valid(&new_spec64->it_value))
return -EINVAL;
if (old_spec64)
memset(old_spec64, 0, sizeof(*old_spec64));
timr = lock_timer(timer_id, &flags);
retry:
if (!timr)
return -EINVAL;
if (old_spec64)
old_spec64->it_interval = ktime_to_timespec64(timr->it_interval);
kc = timr->kclock;
if (WARN_ON_ONCE(!kc || !kc->timer_set))
error = -EINVAL;
else
error = kc->timer_set(timr, tmr_flags, new_spec64, old_spec64);
if (error == TIMER_RETRY) {
// We already got the old time...
old_spec64 = NULL;
/* Unlocks and relocks the timer if it still exists */
timr = timer_wait_running(timr, &flags);
goto retry;
}
unlock_timer(timr, flags);
return error;
}
/* Set a POSIX.1b interval timer */
SYSCALL_DEFINE4(timer_settime, timer_t, timer_id, int, flags,
const struct __kernel_itimerspec __user *, new_setting,
struct __kernel_itimerspec __user *, old_setting)
{
struct itimerspec64 new_spec, old_spec, *rtn;
int error = 0;
if (!new_setting)
return -EINVAL;
if (get_itimerspec64(&new_spec, new_setting))
return -EFAULT;
rtn = old_setting ? &old_spec : NULL;
error = do_timer_settime(timer_id, flags, &new_spec, rtn);
if (!error && old_setting) {
if (put_itimerspec64(&old_spec, old_setting))
error = -EFAULT;
}
return error;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(timer_settime32, timer_t, timer_id, int, flags,
struct old_itimerspec32 __user *, new,
struct old_itimerspec32 __user *, old)
{
struct itimerspec64 new_spec, old_spec;
struct itimerspec64 *rtn = old ? &old_spec : NULL;
int error = 0;
if (!new)
return -EINVAL;
if (get_old_itimerspec32(&new_spec, new))
return -EFAULT;
error = do_timer_settime(timer_id, flags, &new_spec, rtn);
if (!error && old) {
if (put_old_itimerspec32(&old_spec, old))
error = -EFAULT;
}
return error;
}
#endif
int common_timer_del(struct k_itimer *timer)
{
const struct k_clock *kc = timer->kclock;
timer->it_interval = 0;
if (kc->timer_try_to_cancel(timer) < 0)
return TIMER_RETRY;
timer->it_active = 0;
return 0;
}
static inline int timer_delete_hook(struct k_itimer *timer)
{
const struct k_clock *kc = timer->kclock;
if (WARN_ON_ONCE(!kc || !kc->timer_del))
return -EINVAL;
return kc->timer_del(timer);
}
/* Delete a POSIX.1b interval timer. */
SYSCALL_DEFINE1(timer_delete, timer_t, timer_id)
{
struct k_itimer *timer;
unsigned long flags;
timer = lock_timer(timer_id, &flags);
retry_delete:
if (!timer)
return -EINVAL;
if (unlikely(timer_delete_hook(timer) == TIMER_RETRY)) {
/* Unlocks and relocks the timer if it still exists */
timer = timer_wait_running(timer, &flags);
goto retry_delete;
}
spin_lock(¤t->sighand->siglock);
hlist_del(&timer->list);
spin_unlock(¤t->sighand->siglock);
/*
* A concurrent lookup could check timer::it_signal lockless. It
* will reevaluate with timer::it_lock held and observe the NULL.
*/
WRITE_ONCE(timer->it_signal, NULL);
unlock_timer(timer, flags);
posix_timer_unhash_and_free(timer);
return 0;
}
/*
* Delete a timer if it is armed, remove it from the hash and schedule it
* for RCU freeing.
*/
static void itimer_delete(struct k_itimer *timer)
{
unsigned long flags;
/*
* irqsave is required to make timer_wait_running() work.
*/
spin_lock_irqsave(&timer->it_lock, flags);
retry_delete:
/*
* Even if the timer is not longer accessible from other tasks
* it still might be armed and queued in the underlying timer
* mechanism. Worse, that timer mechanism might run the expiry
* function concurrently.
*/
if (timer_delete_hook(timer) == TIMER_RETRY) {
/*
* Timer is expired concurrently, prevent livelocks
* and pointless spinning on RT.
*
* timer_wait_running() drops timer::it_lock, which opens
* the possibility for another task to delete the timer.
*
* That's not possible here because this is invoked from
* do_exit() only for the last thread of the thread group.
* So no other task can access and delete that timer.
*/
if (WARN_ON_ONCE(timer_wait_running(timer, &flags) != timer))
return;
goto retry_delete;
}
hlist_del(&timer->list);
/*
* Setting timer::it_signal to NULL is technically not required
* here as nothing can access the timer anymore legitimately via
* the hash table. Set it to NULL nevertheless so that all deletion
* paths are consistent.
*/
WRITE_ONCE(timer->it_signal, NULL);
spin_unlock_irqrestore(&timer->it_lock, flags);
posix_timer_unhash_and_free(timer);
}
/*
* Invoked from do_exit() when the last thread of a thread group exits.
* At that point no other task can access the timers of the dying
* task anymore.
*/
void exit_itimers(struct task_struct *tsk)
{
struct hlist_head timers;
if (hlist_empty(&tsk->signal->posix_timers))
return;
/* Protect against concurrent read via /proc/$PID/timers */
spin_lock_irq(&tsk->sighand->siglock);
hlist_move_list(&tsk->signal->posix_timers, &timers);
spin_unlock_irq(&tsk->sighand->siglock);
/* The timers are not longer accessible via tsk::signal */
while (!hlist_empty(&timers))
itimer_delete(hlist_entry(timers.first, struct k_itimer, list));
}
SYSCALL_DEFINE2(clock_settime, const clockid_t, which_clock,
const struct __kernel_timespec __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 new_tp;
if (!kc || !kc->clock_set)
return -EINVAL;
if (get_timespec64(&new_tp, tp))
return -EFAULT;
/*
* Permission checks have to be done inside the clock specific
* setter callback.
*/
return kc->clock_set(which_clock, &new_tp);
}
SYSCALL_DEFINE2(clock_gettime, const clockid_t, which_clock,
struct __kernel_timespec __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 kernel_tp;
int error;
if (!kc)
return -EINVAL;
error = kc->clock_get_timespec(which_clock, &kernel_tp);
if (!error && put_timespec64(&kernel_tp, tp))
error = -EFAULT;
return error;
}
int do_clock_adjtime(const clockid_t which_clock, struct __kernel_timex * ktx)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
if (!kc)
return -EINVAL;
if (!kc->clock_adj)
return -EOPNOTSUPP;
return kc->clock_adj(which_clock, ktx);
}
SYSCALL_DEFINE2(clock_adjtime, const clockid_t, which_clock,
struct __kernel_timex __user *, utx)
{
struct __kernel_timex ktx;
int err;
if (copy_from_user(&ktx, utx, sizeof(ktx)))
return -EFAULT;
err = do_clock_adjtime(which_clock, &ktx);
if (err >= 0 && copy_to_user(utx, &ktx, sizeof(ktx)))
return -EFAULT;
return err;
}
/**
* sys_clock_getres - Get the resolution of a clock
* @which_clock: The clock to get the resolution for
* @tp: Pointer to a a user space timespec64 for storage
*
* POSIX defines:
*
* "The clock_getres() function shall return the resolution of any
* clock. Clock resolutions are implementation-defined and cannot be set by
* a process. If the argument res is not NULL, the resolution of the
* specified clock shall be stored in the location pointed to by res. If
* res is NULL, the clock resolution is not returned. If the time argument
* of clock_settime() is not a multiple of res, then the value is truncated
* to a multiple of res."
*
* Due to the various hardware constraints the real resolution can vary
* wildly and even change during runtime when the underlying devices are
* replaced. The kernel also can use hardware devices with different
* resolutions for reading the time and for arming timers.
*
* The kernel therefore deviates from the POSIX spec in various aspects:
*
* 1) The resolution returned to user space
*
* For CLOCK_REALTIME, CLOCK_MONOTONIC, CLOCK_BOOTTIME, CLOCK_TAI,
* CLOCK_REALTIME_ALARM, CLOCK_BOOTTIME_ALAREM and CLOCK_MONOTONIC_RAW
* the kernel differentiates only two cases:
*
* I) Low resolution mode:
*
* When high resolution timers are disabled at compile or runtime
* the resolution returned is nanoseconds per tick, which represents
* the precision at which timers expire.
*
* II) High resolution mode:
*
* When high resolution timers are enabled the resolution returned
* is always one nanosecond independent of the actual resolution of
* the underlying hardware devices.
*
* For CLOCK_*_ALARM the actual resolution depends on system
* state. When system is running the resolution is the same as the
* resolution of the other clocks. During suspend the actual
* resolution is the resolution of the underlying RTC device which
* might be way less precise than the clockevent device used during
* running state.
*
* For CLOCK_REALTIME_COARSE and CLOCK_MONOTONIC_COARSE the resolution
* returned is always nanoseconds per tick.
*
* For CLOCK_PROCESS_CPUTIME and CLOCK_THREAD_CPUTIME the resolution
* returned is always one nanosecond under the assumption that the
* underlying scheduler clock has a better resolution than nanoseconds
* per tick.
*
* For dynamic POSIX clocks (PTP devices) the resolution returned is
* always one nanosecond.
*
* 2) Affect on sys_clock_settime()
*
* The kernel does not truncate the time which is handed in to
* sys_clock_settime(). The kernel internal timekeeping is always using
* nanoseconds precision independent of the clocksource device which is
* used to read the time from. The resolution of that device only
* affects the presicion of the time returned by sys_clock_gettime().
*
* Returns:
* 0 Success. @tp contains the resolution
* -EINVAL @which_clock is not a valid clock ID
* -EFAULT Copying the resolution to @tp faulted
* -ENODEV Dynamic POSIX clock is not backed by a device
* -EOPNOTSUPP Dynamic POSIX clock does not support getres()
*/
SYSCALL_DEFINE2(clock_getres, const clockid_t, which_clock,
struct __kernel_timespec __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 rtn_tp;
int error;
if (!kc)
return -EINVAL;
error = kc->clock_getres(which_clock, &rtn_tp);
if (!error && tp && put_timespec64(&rtn_tp, tp))
error = -EFAULT;
return error;
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE2(clock_settime32, clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 ts;
if (!kc || !kc->clock_set)
return -EINVAL;
if (get_old_timespec32(&ts, tp))
return -EFAULT;
return kc->clock_set(which_clock, &ts);
}
SYSCALL_DEFINE2(clock_gettime32, clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 ts;
int err;
if (!kc)
return -EINVAL;
err = kc->clock_get_timespec(which_clock, &ts);
if (!err && put_old_timespec32(&ts, tp))
err = -EFAULT;
return err;
}
SYSCALL_DEFINE2(clock_adjtime32, clockid_t, which_clock,
struct old_timex32 __user *, utp)
{
struct __kernel_timex ktx;
int err;
err = get_old_timex32(&ktx, utp);
if (err)
return err;
err = do_clock_adjtime(which_clock, &ktx);
if (err >= 0 && put_old_timex32(utp, &ktx))
return -EFAULT;
return err;
}
SYSCALL_DEFINE2(clock_getres_time32, clockid_t, which_clock,
struct old_timespec32 __user *, tp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 ts;
int err;
if (!kc)
return -EINVAL;
err = kc->clock_getres(which_clock, &ts);
if (!err && tp && put_old_timespec32(&ts, tp))
return -EFAULT;
return err;
}
#endif
/*
* sys_clock_nanosleep() for CLOCK_REALTIME and CLOCK_TAI
*/
static int common_nsleep(const clockid_t which_clock, int flags,
const struct timespec64 *rqtp)
{
ktime_t texp = timespec64_to_ktime(*rqtp);
return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
which_clock);
}
/*
* sys_clock_nanosleep() for CLOCK_MONOTONIC and CLOCK_BOOTTIME
*
* Absolute nanosleeps for these clocks are time-namespace adjusted.
*/
static int common_nsleep_timens(const clockid_t which_clock, int flags,
const struct timespec64 *rqtp)
{
ktime_t texp = timespec64_to_ktime(*rqtp);
if (flags & TIMER_ABSTIME)
texp = timens_ktime_to_host(which_clock, texp);
return hrtimer_nanosleep(texp, flags & TIMER_ABSTIME ?
HRTIMER_MODE_ABS : HRTIMER_MODE_REL,
which_clock);
}
SYSCALL_DEFINE4(clock_nanosleep, const clockid_t, which_clock, int, flags,
const struct __kernel_timespec __user *, rqtp,
struct __kernel_timespec __user *, rmtp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 t;
if (!kc)
return -EINVAL;
if (!kc->nsleep)
return -EOPNOTSUPP;
if (get_timespec64(&t, rqtp))
return -EFAULT;
if (!timespec64_valid(&t))
return -EINVAL;
if (flags & TIMER_ABSTIME)
rmtp = NULL;
current->restart_block.fn = do_no_restart_syscall;
current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE;
current->restart_block.nanosleep.rmtp = rmtp;
return kc->nsleep(which_clock, flags, &t);
}
#ifdef CONFIG_COMPAT_32BIT_TIME
SYSCALL_DEFINE4(clock_nanosleep_time32, clockid_t, which_clock, int, flags,
struct old_timespec32 __user *, rqtp,
struct old_timespec32 __user *, rmtp)
{
const struct k_clock *kc = clockid_to_kclock(which_clock);
struct timespec64 t;
if (!kc)
return -EINVAL;
if (!kc->nsleep)
return -EOPNOTSUPP;
if (get_old_timespec32(&t, rqtp))
return -EFAULT;
if (!timespec64_valid(&t))
return -EINVAL;
if (flags & TIMER_ABSTIME)
rmtp = NULL;
current->restart_block.fn = do_no_restart_syscall;
current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE;
current->restart_block.nanosleep.compat_rmtp = rmtp;
return kc->nsleep(which_clock, flags, &t);
}
#endif
static const struct k_clock clock_realtime = {
.clock_getres = posix_get_hrtimer_res,
.clock_get_timespec = posix_get_realtime_timespec,
.clock_get_ktime = posix_get_realtime_ktime,
.clock_set = posix_clock_realtime_set,
.clock_adj = posix_clock_realtime_adj,
.nsleep = common_nsleep,
.timer_create = common_timer_create,
.timer_set = common_timer_set,
.timer_get = common_timer_get,
.timer_del = common_timer_del,
.timer_rearm = common_hrtimer_rearm,
.timer_forward = common_hrtimer_forward,
.timer_remaining = common_hrtimer_remaining,
.timer_try_to_cancel = common_hrtimer_try_to_cancel,
.timer_wait_running = common_timer_wait_running,
.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_monotonic = {
.clock_getres = posix_get_hrtimer_res,
.clock_get_timespec = posix_get_monotonic_timespec,
.clock_get_ktime = posix_get_monotonic_ktime,
.nsleep = common_nsleep_timens,
.timer_create = common_timer_create,
.timer_set = common_timer_set,
.timer_get = common_timer_get,
.timer_del = common_timer_del,
.timer_rearm = common_hrtimer_rearm,
.timer_forward = common_hrtimer_forward,
.timer_remaining = common_hrtimer_remaining,
.timer_try_to_cancel = common_hrtimer_try_to_cancel,
.timer_wait_running = common_timer_wait_running,
.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_monotonic_raw = {
.clock_getres = posix_get_hrtimer_res,
.clock_get_timespec = posix_get_monotonic_raw,
};
static const struct k_clock clock_realtime_coarse = {
.clock_getres = posix_get_coarse_res,
.clock_get_timespec = posix_get_realtime_coarse,
};
static const struct k_clock clock_monotonic_coarse = {
.clock_getres = posix_get_coarse_res,
.clock_get_timespec = posix_get_monotonic_coarse,
};
static const struct k_clock clock_tai = {
.clock_getres = posix_get_hrtimer_res,
.clock_get_ktime = posix_get_tai_ktime,
.clock_get_timespec = posix_get_tai_timespec,
.nsleep = common_nsleep,
.timer_create = common_timer_create,
.timer_set = common_timer_set,
.timer_get = common_timer_get,
.timer_del = common_timer_del,
.timer_rearm = common_hrtimer_rearm,
.timer_forward = common_hrtimer_forward,
.timer_remaining = common_hrtimer_remaining,
.timer_try_to_cancel = common_hrtimer_try_to_cancel,
.timer_wait_running = common_timer_wait_running,
.timer_arm = common_hrtimer_arm,
};
static const struct k_clock clock_boottime = {
.clock_getres = posix_get_hrtimer_res,
.clock_get_ktime = posix_get_boottime_ktime,
.clock_get_timespec = posix_get_boottime_timespec,
.nsleep = common_nsleep_timens,
.timer_create = common_timer_create,
.timer_set = common_timer_set,
.timer_get = common_timer_get,
.timer_del = common_timer_del,
.timer_rearm = common_hrtimer_rearm,
.timer_forward = common_hrtimer_forward,
.timer_remaining = common_hrtimer_remaining,
.timer_try_to_cancel = common_hrtimer_try_to_cancel,
.timer_wait_running = common_timer_wait_running,
.timer_arm = common_hrtimer_arm,
};
static const struct k_clock * const posix_clocks[] = {
[CLOCK_REALTIME] = &clock_realtime,
[CLOCK_MONOTONIC] = &clock_monotonic,
[CLOCK_PROCESS_CPUTIME_ID] = &clock_process,
[CLOCK_THREAD_CPUTIME_ID] = &clock_thread,
[CLOCK_MONOTONIC_RAW] = &clock_monotonic_raw,
[CLOCK_REALTIME_COARSE] = &clock_realtime_coarse,
[CLOCK_MONOTONIC_COARSE] = &clock_monotonic_coarse,
[CLOCK_BOOTTIME] = &clock_boottime,
[CLOCK_REALTIME_ALARM] = &alarm_clock,
[CLOCK_BOOTTIME_ALARM] = &alarm_clock,
[CLOCK_TAI] = &clock_tai,
};
static const struct k_clock *clockid_to_kclock(const clockid_t id)
{
clockid_t idx = id;
if (id < 0) {
return (id & CLOCKFD_MASK) == CLOCKFD ?
&clock_posix_dynamic : &clock_posix_cpu;
}
if (id >= ARRAY_SIZE(posix_clocks))
return NULL;
return posix_clocks[array_index_nospec(idx, ARRAY_SIZE(posix_clocks))];
}
|