summaryrefslogtreecommitdiffstats
path: root/rust/kernel/rbtree.rs
blob: 64f1611758bb110f1f93898f69f138327598f089 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
// SPDX-License-Identifier: GPL-2.0

//! Red-black trees.
//!
//! C header: [`include/linux/rbtree.h`](srctree/include/linux/rbtree.h)
//!
//! Reference: <https://docs.kernel.org/core-api/rbtree.html>

use crate::{alloc::Flags, bindings, container_of, error::Result, prelude::*};
use alloc::boxed::Box;
use core::{
    cmp::{Ord, Ordering},
    marker::PhantomData,
    mem::MaybeUninit,
    ptr::{addr_of_mut, from_mut, NonNull},
};

/// A red-black tree with owned nodes.
///
/// It is backed by the kernel C red-black trees.
///
/// # Examples
///
/// In the example below we do several operations on a tree. We note that insertions may fail if
/// the system is out of memory.
///
/// ```
/// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNode, RBTreeNodeReservation}};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// // Check the nodes we just inserted.
/// {
///     assert_eq!(tree.get(&10).unwrap(), &100);
///     assert_eq!(tree.get(&20).unwrap(), &200);
///     assert_eq!(tree.get(&30).unwrap(), &300);
/// }
///
/// // Iterate over the nodes we just inserted.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &100));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &300));
///     assert!(iter.next().is_none());
/// }
///
/// // Print all elements.
/// for (key, value) in &tree {
///     pr_info!("{} = {}\n", key, value);
/// }
///
/// // Replace one of the elements.
/// tree.try_create_and_insert(10, 1000, flags::GFP_KERNEL)?;
///
/// // Check that the tree reflects the replacement.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &1000));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &300));
///     assert!(iter.next().is_none());
/// }
///
/// // Change the value of one of the elements.
/// *tree.get_mut(&30).unwrap() = 3000;
///
/// // Check that the tree reflects the update.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &1000));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &3000));
///     assert!(iter.next().is_none());
/// }
///
/// // Remove an element.
/// tree.remove(&10);
///
/// // Check that the tree reflects the removal.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &3000));
///     assert!(iter.next().is_none());
/// }
///
/// # Ok::<(), Error>(())
/// ```
///
/// In the example below, we first allocate a node, acquire a spinlock, then insert the node into
/// the tree. This is useful when the insertion context does not allow sleeping, for example, when
/// holding a spinlock.
///
/// ```
/// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNode}, sync::SpinLock};
///
/// fn insert_test(tree: &SpinLock<RBTree<u32, u32>>) -> Result {
///     // Pre-allocate node. This may fail (as it allocates memory).
///     let node = RBTreeNode::new(10, 100, flags::GFP_KERNEL)?;
///
///     // Insert node while holding the lock. It is guaranteed to succeed with no allocation
///     // attempts.
///     let mut guard = tree.lock();
///     guard.insert(node);
///     Ok(())
/// }
/// ```
///
/// In the example below, we reuse an existing node allocation from an element we removed.
///
/// ```
/// use kernel::{alloc::flags, rbtree::{RBTree, RBTreeNodeReservation}};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// // Check the nodes we just inserted.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &100));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert_eq!(iter.next().unwrap(), (&30, &300));
///     assert!(iter.next().is_none());
/// }
///
/// // Remove a node, getting back ownership of it.
/// let existing = tree.remove(&30).unwrap();
///
/// // Check that the tree reflects the removal.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &100));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert!(iter.next().is_none());
/// }
///
/// // Create a preallocated reservation that we can re-use later.
/// let reservation = RBTreeNodeReservation::new(flags::GFP_KERNEL)?;
///
/// // Insert a new node into the tree, reusing the previous allocation. This is guaranteed to
/// // succeed (no memory allocations).
/// tree.insert(reservation.into_node(15, 150));
///
/// // Check that the tree reflect the new insertion.
/// {
///     let mut iter = tree.iter();
///     assert_eq!(iter.next().unwrap(), (&10, &100));
///     assert_eq!(iter.next().unwrap(), (&15, &150));
///     assert_eq!(iter.next().unwrap(), (&20, &200));
///     assert!(iter.next().is_none());
/// }
///
/// # Ok::<(), Error>(())
/// ```
///
/// # Invariants
///
/// Non-null parent/children pointers stored in instances of the `rb_node` C struct are always
/// valid, and pointing to a field of our internal representation of a node.
pub struct RBTree<K, V> {
    root: bindings::rb_root,
    _p: PhantomData<Node<K, V>>,
}

// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
// fields, so we use the same Send condition as would be used for a struct with K and V fields.
unsafe impl<K: Send, V: Send> Send for RBTree<K, V> {}

// SAFETY: An [`RBTree`] allows the same kinds of access to its values that a struct allows to its
// fields, so we use the same Sync condition as would be used for a struct with K and V fields.
unsafe impl<K: Sync, V: Sync> Sync for RBTree<K, V> {}

impl<K, V> RBTree<K, V> {
    /// Creates a new and empty tree.
    pub fn new() -> Self {
        Self {
            // INVARIANT: There are no nodes in the tree, so the invariant holds vacuously.
            root: bindings::rb_root::default(),
            _p: PhantomData,
        }
    }

    /// Returns an iterator over the tree nodes, sorted by key.
    pub fn iter(&self) -> Iter<'_, K, V> {
        Iter {
            _tree: PhantomData,
            // INVARIANT:
            //   - `self.root` is a valid pointer to a tree root.
            //   - `bindings::rb_first` produces a valid pointer to a node given `root` is valid.
            iter_raw: IterRaw {
                // SAFETY: by the invariants, all pointers are valid.
                next: unsafe { bindings::rb_first(&self.root) },
                _phantom: PhantomData,
            },
        }
    }

    /// Returns a mutable iterator over the tree nodes, sorted by key.
    pub fn iter_mut(&mut self) -> IterMut<'_, K, V> {
        IterMut {
            _tree: PhantomData,
            // INVARIANT:
            //   - `self.root` is a valid pointer to a tree root.
            //   - `bindings::rb_first` produces a valid pointer to a node given `root` is valid.
            iter_raw: IterRaw {
                // SAFETY: by the invariants, all pointers are valid.
                next: unsafe { bindings::rb_first(from_mut(&mut self.root)) },
                _phantom: PhantomData,
            },
        }
    }

    /// Returns an iterator over the keys of the nodes in the tree, in sorted order.
    pub fn keys(&self) -> impl Iterator<Item = &'_ K> {
        self.iter().map(|(k, _)| k)
    }

    /// Returns an iterator over the values of the nodes in the tree, sorted by key.
    pub fn values(&self) -> impl Iterator<Item = &'_ V> {
        self.iter().map(|(_, v)| v)
    }

    /// Returns a mutable iterator over the values of the nodes in the tree, sorted by key.
    pub fn values_mut(&mut self) -> impl Iterator<Item = &'_ mut V> {
        self.iter_mut().map(|(_, v)| v)
    }

    /// Returns a cursor over the tree nodes, starting with the smallest key.
    pub fn cursor_front(&mut self) -> Option<Cursor<'_, K, V>> {
        let root = addr_of_mut!(self.root);
        // SAFETY: `self.root` is always a valid root node
        let current = unsafe { bindings::rb_first(root) };
        NonNull::new(current).map(|current| {
            // INVARIANT:
            // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
            Cursor {
                current,
                tree: self,
            }
        })
    }

    /// Returns a cursor over the tree nodes, starting with the largest key.
    pub fn cursor_back(&mut self) -> Option<Cursor<'_, K, V>> {
        let root = addr_of_mut!(self.root);
        // SAFETY: `self.root` is always a valid root node
        let current = unsafe { bindings::rb_last(root) };
        NonNull::new(current).map(|current| {
            // INVARIANT:
            // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
            Cursor {
                current,
                tree: self,
            }
        })
    }
}

impl<K, V> RBTree<K, V>
where
    K: Ord,
{
    /// Tries to insert a new value into the tree.
    ///
    /// It overwrites a node if one already exists with the same key and returns it (containing the
    /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
    ///
    /// Returns an error if it cannot allocate memory for the new node.
    pub fn try_create_and_insert(
        &mut self,
        key: K,
        value: V,
        flags: Flags,
    ) -> Result<Option<RBTreeNode<K, V>>> {
        Ok(self.insert(RBTreeNode::new(key, value, flags)?))
    }

    /// Inserts a new node into the tree.
    ///
    /// It overwrites a node if one already exists with the same key and returns it (containing the
    /// key/value pair). Returns [`None`] if a node with the same key didn't already exist.
    ///
    /// This function always succeeds.
    pub fn insert(&mut self, RBTreeNode { node }: RBTreeNode<K, V>) -> Option<RBTreeNode<K, V>> {
        let node = Box::into_raw(node);
        // SAFETY: `node` is valid at least until we call `Box::from_raw`, which only happens when
        // the node is removed or replaced.
        let node_links = unsafe { addr_of_mut!((*node).links) };

        // The parameters of `bindings::rb_link_node` are as follows:
        // - `node`: A pointer to an uninitialized node being inserted.
        // - `parent`: A pointer to an existing node in the tree. One of its child pointers must be
        //          null, and `node` will become a child of `parent` by replacing that child pointer
        //          with a pointer to `node`.
        // - `rb_link`: A pointer to either the left-child or right-child field of `parent`. This
        //          specifies which child of `parent` should hold `node` after this call. The
        //          value of `*rb_link` must be null before the call to `rb_link_node`. If the
        //          red/black tree is empty, then it’s also possible for `parent` to be null. In
        //          this case, `rb_link` is a pointer to the `root` field of the red/black tree.
        //
        // We will traverse the tree looking for a node that has a null pointer as its child,
        // representing an empty subtree where we can insert our new node. We need to make sure
        // that we preserve the ordering of the nodes in the tree. In each iteration of the loop
        // we store `parent` and `child_field_of_parent`, and the new `node` will go somewhere
        // in the subtree of `parent` that `child_field_of_parent` points at. Once
        // we find an empty subtree, we can insert the new node using `rb_link_node`.
        let mut parent = core::ptr::null_mut();
        let mut child_field_of_parent: &mut *mut bindings::rb_node = &mut self.root.rb_node;
        while !child_field_of_parent.is_null() {
            parent = *child_field_of_parent;

            // We need to determine whether `node` should be the left or right child of `parent`,
            // so we will compare with the `key` field of `parent` a.k.a. `this` below.
            //
            // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
            // point to the links field of `Node<K, V>` objects.
            let this = unsafe { container_of!(parent, Node<K, V>, links) };

            // SAFETY: `this` is a non-null node so it is valid by the type invariants. `node` is
            // valid until the node is removed.
            match unsafe { (*node).key.cmp(&(*this).key) } {
                // We would like `node` to be the left child of `parent`.  Move to this child to check
                // whether we can use it, or continue searching, at the next iteration.
                //
                // SAFETY: `parent` is a non-null node so it is valid by the type invariants.
                Ordering::Less => child_field_of_parent = unsafe { &mut (*parent).rb_left },
                // We would like `node` to be the right child of `parent`.  Move to this child to check
                // whether we can use it, or continue searching, at the next iteration.
                //
                // SAFETY: `parent` is a non-null node so it is valid by the type invariants.
                Ordering::Greater => child_field_of_parent = unsafe { &mut (*parent).rb_right },
                Ordering::Equal => {
                    // There is an existing node in the tree with this key, and that node is
                    // `parent`. Thus, we are replacing parent with a new node.
                    //
                    // INVARIANT: We are replacing an existing node with a new one, which is valid.
                    // It remains valid because we "forgot" it with `Box::into_raw`.
                    // SAFETY: All pointers are non-null and valid.
                    unsafe { bindings::rb_replace_node(parent, node_links, &mut self.root) };

                    // INVARIANT: The node is being returned and the caller may free it, however,
                    // it was removed from the tree. So the invariants still hold.
                    return Some(RBTreeNode {
                        // SAFETY: `this` was a node in the tree, so it is valid.
                        node: unsafe { Box::from_raw(this.cast_mut()) },
                    });
                }
            }
        }

        // INVARIANT: We are linking in a new node, which is valid. It remains valid because we
        // "forgot" it with `Box::into_raw`.
        // SAFETY: All pointers are non-null and valid (`*child_field_of_parent` is null, but `child_field_of_parent` is a
        // mutable reference).
        unsafe { bindings::rb_link_node(node_links, parent, child_field_of_parent) };

        // SAFETY: All pointers are valid. `node` has just been inserted into the tree.
        unsafe { bindings::rb_insert_color(node_links, &mut self.root) };
        None
    }

    /// Returns a node with the given key, if one exists.
    fn find(&self, key: &K) -> Option<NonNull<Node<K, V>>> {
        let mut node = self.root.rb_node;
        while !node.is_null() {
            // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
            // point to the links field of `Node<K, V>` objects.
            let this = unsafe { container_of!(node, Node<K, V>, links) };
            // SAFETY: `this` is a non-null node so it is valid by the type invariants.
            node = match key.cmp(unsafe { &(*this).key }) {
                // SAFETY: `node` is a non-null node so it is valid by the type invariants.
                Ordering::Less => unsafe { (*node).rb_left },
                // SAFETY: `node` is a non-null node so it is valid by the type invariants.
                Ordering::Greater => unsafe { (*node).rb_right },
                Ordering::Equal => return NonNull::new(this.cast_mut()),
            }
        }
        None
    }

    /// Returns a reference to the value corresponding to the key.
    pub fn get(&self, key: &K) -> Option<&V> {
        // SAFETY: The `find` return value is a node in the tree, so it is valid.
        self.find(key).map(|node| unsafe { &node.as_ref().value })
    }

    /// Returns a mutable reference to the value corresponding to the key.
    pub fn get_mut(&mut self, key: &K) -> Option<&mut V> {
        // SAFETY: The `find` return value is a node in the tree, so it is valid.
        self.find(key)
            .map(|mut node| unsafe { &mut node.as_mut().value })
    }

    /// Removes the node with the given key from the tree.
    ///
    /// It returns the node that was removed if one exists, or [`None`] otherwise.
    fn remove_node(&mut self, key: &K) -> Option<RBTreeNode<K, V>> {
        let mut node = self.find(key)?;

        // SAFETY: The `find` return value is a node in the tree, so it is valid.
        unsafe { bindings::rb_erase(&mut node.as_mut().links, &mut self.root) };

        // INVARIANT: The node is being returned and the caller may free it, however, it was
        // removed from the tree. So the invariants still hold.
        Some(RBTreeNode {
            // SAFETY: The `find` return value was a node in the tree, so it is valid.
            node: unsafe { Box::from_raw(node.as_ptr()) },
        })
    }

    /// Removes the node with the given key from the tree.
    ///
    /// It returns the value that was removed if one exists, or [`None`] otherwise.
    pub fn remove(&mut self, key: &K) -> Option<V> {
        self.remove_node(key).map(|node| node.node.value)
    }

    /// Returns a cursor over the tree nodes based on the given key.
    ///
    /// If the given key exists, the cursor starts there.
    /// Otherwise it starts with the first larger key in sort order.
    /// If there is no larger key, it returns [`None`].
    pub fn cursor_lower_bound(&mut self, key: &K) -> Option<Cursor<'_, K, V>>
    where
        K: Ord,
    {
        let mut node = self.root.rb_node;
        let mut best_match: Option<NonNull<Node<K, V>>> = None;
        while !node.is_null() {
            // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
            // point to the links field of `Node<K, V>` objects.
            let this = unsafe { container_of!(node, Node<K, V>, links) }.cast_mut();
            // SAFETY: `this` is a non-null node so it is valid by the type invariants.
            let this_key = unsafe { &(*this).key };
            // SAFETY: `node` is a non-null node so it is valid by the type invariants.
            let left_child = unsafe { (*node).rb_left };
            // SAFETY: `node` is a non-null node so it is valid by the type invariants.
            let right_child = unsafe { (*node).rb_right };
            match key.cmp(this_key) {
                Ordering::Equal => {
                    best_match = NonNull::new(this);
                    break;
                }
                Ordering::Greater => {
                    node = right_child;
                }
                Ordering::Less => {
                    let is_better_match = match best_match {
                        None => true,
                        Some(best) => {
                            // SAFETY: `best` is a non-null node so it is valid by the type invariants.
                            let best_key = unsafe { &(*best.as_ptr()).key };
                            best_key > this_key
                        }
                    };
                    if is_better_match {
                        best_match = NonNull::new(this);
                    }
                    node = left_child;
                }
            };
        }

        let best = best_match?;

        // SAFETY: `best` is a non-null node so it is valid by the type invariants.
        let links = unsafe { addr_of_mut!((*best.as_ptr()).links) };

        NonNull::new(links).map(|current| {
            // INVARIANT:
            // - `current` is a valid node in the [`RBTree`] pointed to by `self`.
            Cursor {
                current,
                tree: self,
            }
        })
    }
}

impl<K, V> Default for RBTree<K, V> {
    fn default() -> Self {
        Self::new()
    }
}

impl<K, V> Drop for RBTree<K, V> {
    fn drop(&mut self) {
        // SAFETY: `root` is valid as it's embedded in `self` and we have a valid `self`.
        let mut next = unsafe { bindings::rb_first_postorder(&self.root) };

        // INVARIANT: The loop invariant is that all tree nodes from `next` in postorder are valid.
        while !next.is_null() {
            // SAFETY: All links fields we create are in a `Node<K, V>`.
            let this = unsafe { container_of!(next, Node<K, V>, links) };

            // Find out what the next node is before disposing of the current one.
            // SAFETY: `next` and all nodes in postorder are still valid.
            next = unsafe { bindings::rb_next_postorder(next) };

            // INVARIANT: This is the destructor, so we break the type invariant during clean-up,
            // but it is not observable. The loop invariant is still maintained.

            // SAFETY: `this` is valid per the loop invariant.
            unsafe { drop(Box::from_raw(this.cast_mut())) };
        }
    }
}

/// A bidirectional cursor over the tree nodes, sorted by key.
///
/// # Examples
///
/// In the following example, we obtain a cursor to the first element in the tree.
/// The cursor allows us to iterate bidirectionally over key/value pairs in the tree.
///
/// ```
/// use kernel::{alloc::flags, rbtree::RBTree};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// // Get a cursor to the first element.
/// let mut cursor = tree.cursor_front().unwrap();
/// let mut current = cursor.current();
/// assert_eq!(current, (&10, &100));
///
/// // Move the cursor, updating it to the 2nd element.
/// cursor = cursor.move_next().unwrap();
/// current = cursor.current();
/// assert_eq!(current, (&20, &200));
///
/// // Peek at the next element without impacting the cursor.
/// let next = cursor.peek_next().unwrap();
/// assert_eq!(next, (&30, &300));
/// current = cursor.current();
/// assert_eq!(current, (&20, &200));
///
/// // Moving past the last element causes the cursor to return [`None`].
/// cursor = cursor.move_next().unwrap();
/// current = cursor.current();
/// assert_eq!(current, (&30, &300));
/// let cursor = cursor.move_next();
/// assert!(cursor.is_none());
///
/// # Ok::<(), Error>(())
/// ```
///
/// A cursor can also be obtained at the last element in the tree.
///
/// ```
/// use kernel::{alloc::flags, rbtree::RBTree};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// let mut cursor = tree.cursor_back().unwrap();
/// let current = cursor.current();
/// assert_eq!(current, (&30, &300));
///
/// # Ok::<(), Error>(())
/// ```
///
/// Obtaining a cursor returns [`None`] if the tree is empty.
///
/// ```
/// use kernel::rbtree::RBTree;
///
/// let mut tree: RBTree<u16, u16> = RBTree::new();
/// assert!(tree.cursor_front().is_none());
///
/// # Ok::<(), Error>(())
/// ```
///
/// [`RBTree::cursor_lower_bound`] can be used to start at an arbitrary node in the tree.
///
/// ```
/// use kernel::{alloc::flags, rbtree::RBTree};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert five elements.
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(40, 400, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(50, 500, flags::GFP_KERNEL)?;
///
/// // If the provided key exists, a cursor to that key is returned.
/// let cursor = tree.cursor_lower_bound(&20).unwrap();
/// let current = cursor.current();
/// assert_eq!(current, (&20, &200));
///
/// // If the provided key doesn't exist, a cursor to the first larger element in sort order is returned.
/// let cursor = tree.cursor_lower_bound(&25).unwrap();
/// let current = cursor.current();
/// assert_eq!(current, (&30, &300));
///
/// // If there is no larger key, [`None`] is returned.
/// let cursor = tree.cursor_lower_bound(&55);
/// assert!(cursor.is_none());
///
/// # Ok::<(), Error>(())
/// ```
///
/// The cursor allows mutation of values in the tree.
///
/// ```
/// use kernel::{alloc::flags, rbtree::RBTree};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// // Retrieve a cursor.
/// let mut cursor = tree.cursor_front().unwrap();
///
/// // Get a mutable reference to the current value.
/// let (k, v) = cursor.current_mut();
/// *v = 1000;
///
/// // The updated value is reflected in the tree.
/// let updated = tree.get(&10).unwrap();
/// assert_eq!(updated, &1000);
///
/// # Ok::<(), Error>(())
/// ```
///
/// It also allows node removal. The following examples demonstrate the behavior of removing the current node.
///
/// ```
/// use kernel::{alloc::flags, rbtree::RBTree};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// // Remove the first element.
/// let mut cursor = tree.cursor_front().unwrap();
/// let mut current = cursor.current();
/// assert_eq!(current, (&10, &100));
/// cursor = cursor.remove_current().0.unwrap();
///
/// // If a node exists after the current element, it is returned.
/// current = cursor.current();
/// assert_eq!(current, (&20, &200));
///
/// // Get a cursor to the last element, and remove it.
/// cursor = tree.cursor_back().unwrap();
/// current = cursor.current();
/// assert_eq!(current, (&30, &300));
///
/// // Since there is no next node, the previous node is returned.
/// cursor = cursor.remove_current().0.unwrap();
/// current = cursor.current();
/// assert_eq!(current, (&20, &200));
///
/// // Removing the last element in the tree returns [`None`].
/// assert!(cursor.remove_current().0.is_none());
///
/// # Ok::<(), Error>(())
/// ```
///
/// Nodes adjacent to the current node can also be removed.
///
/// ```
/// use kernel::{alloc::flags, rbtree::RBTree};
///
/// // Create a new tree.
/// let mut tree = RBTree::new();
///
/// // Insert three elements.
/// tree.try_create_and_insert(10, 100, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(20, 200, flags::GFP_KERNEL)?;
/// tree.try_create_and_insert(30, 300, flags::GFP_KERNEL)?;
///
/// // Get a cursor to the first element.
/// let mut cursor = tree.cursor_front().unwrap();
/// let mut current = cursor.current();
/// assert_eq!(current, (&10, &100));
///
/// // Calling `remove_prev` from the first element returns [`None`].
/// assert!(cursor.remove_prev().is_none());
///
/// // Get a cursor to the last element.
/// cursor = tree.cursor_back().unwrap();
/// current = cursor.current();
/// assert_eq!(current, (&30, &300));
///
/// // Calling `remove_prev` removes and returns the middle element.
/// assert_eq!(cursor.remove_prev().unwrap().to_key_value(), (20, 200));
///
/// // Calling `remove_next` from the last element returns [`None`].
/// assert!(cursor.remove_next().is_none());
///
/// // Move to the first element
/// cursor = cursor.move_prev().unwrap();
/// current = cursor.current();
/// assert_eq!(current, (&10, &100));
///
/// // Calling `remove_next` removes and returns the last element.
/// assert_eq!(cursor.remove_next().unwrap().to_key_value(), (30, 300));
///
/// # Ok::<(), Error>(())
///
/// ```
///
/// # Invariants
/// - `current` points to a node that is in the same [`RBTree`] as `tree`.
pub struct Cursor<'a, K, V> {
    tree: &'a mut RBTree<K, V>,
    current: NonNull<bindings::rb_node>,
}

// SAFETY: The [`Cursor`] has exclusive access to both `K` and `V`, so it is sufficient to require them to be `Send`.
// The cursor only gives out immutable references to the keys, but since it has excusive access to those same
// keys, `Send` is sufficient. `Sync` would be okay, but it is more restrictive to the user.
unsafe impl<'a, K: Send, V: Send> Send for Cursor<'a, K, V> {}

// SAFETY: The [`Cursor`] gives out immutable references to K and mutable references to V,
// so it has the same thread safety requirements as mutable references.
unsafe impl<'a, K: Sync, V: Sync> Sync for Cursor<'a, K, V> {}

impl<'a, K, V> Cursor<'a, K, V> {
    /// The current node
    pub fn current(&self) -> (&K, &V) {
        // SAFETY:
        // - `self.current` is a valid node by the type invariants.
        // - We have an immutable reference by the function signature.
        unsafe { Self::to_key_value(self.current) }
    }

    /// The current node, with a mutable value
    pub fn current_mut(&mut self) -> (&K, &mut V) {
        // SAFETY:
        // - `self.current` is a valid node by the type invariants.
        // - We have an mutable reference by the function signature.
        unsafe { Self::to_key_value_mut(self.current) }
    }

    /// Remove the current node from the tree.
    ///
    /// Returns a tuple where the first element is a cursor to the next node, if it exists,
    /// else the previous node, else [`None`] (if the tree becomes empty). The second element
    /// is the removed node.
    pub fn remove_current(self) -> (Option<Self>, RBTreeNode<K, V>) {
        let prev = self.get_neighbor_raw(Direction::Prev);
        let next = self.get_neighbor_raw(Direction::Next);
        // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
        // point to the links field of `Node<K, V>` objects.
        let this = unsafe { container_of!(self.current.as_ptr(), Node<K, V>, links) }.cast_mut();
        // SAFETY: `this` is valid by the type invariants as described above.
        let node = unsafe { Box::from_raw(this) };
        let node = RBTreeNode { node };
        // SAFETY: The reference to the tree used to create the cursor outlives the cursor, so
        // the tree cannot change. By the tree invariant, all nodes are valid.
        unsafe { bindings::rb_erase(&mut (*this).links, addr_of_mut!(self.tree.root)) };

        let current = match (prev, next) {
            (_, Some(next)) => next,
            (Some(prev), None) => prev,
            (None, None) => {
                return (None, node);
            }
        };

        (
            // INVARIANT:
            // - `current` is a valid node in the [`RBTree`] pointed to by `self.tree`.
            Some(Self {
                current,
                tree: self.tree,
            }),
            node,
        )
    }

    /// Remove the previous node, returning it if it exists.
    pub fn remove_prev(&mut self) -> Option<RBTreeNode<K, V>> {
        self.remove_neighbor(Direction::Prev)
    }

    /// Remove the next node, returning it if it exists.
    pub fn remove_next(&mut self) -> Option<RBTreeNode<K, V>> {
        self.remove_neighbor(Direction::Next)
    }

    fn remove_neighbor(&mut self, direction: Direction) -> Option<RBTreeNode<K, V>> {
        if let Some(neighbor) = self.get_neighbor_raw(direction) {
            let neighbor = neighbor.as_ptr();
            // SAFETY: The reference to the tree used to create the cursor outlives the cursor, so
            // the tree cannot change. By the tree invariant, all nodes are valid.
            unsafe { bindings::rb_erase(neighbor, addr_of_mut!(self.tree.root)) };
            // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
            // point to the links field of `Node<K, V>` objects.
            let this = unsafe { container_of!(neighbor, Node<K, V>, links) }.cast_mut();
            // SAFETY: `this` is valid by the type invariants as described above.
            let node = unsafe { Box::from_raw(this) };
            return Some(RBTreeNode { node });
        }
        None
    }

    /// Move the cursor to the previous node, returning [`None`] if it doesn't exist.
    pub fn move_prev(self) -> Option<Self> {
        self.mv(Direction::Prev)
    }

    /// Move the cursor to the next node, returning [`None`] if it doesn't exist.
    pub fn move_next(self) -> Option<Self> {
        self.mv(Direction::Next)
    }

    fn mv(self, direction: Direction) -> Option<Self> {
        // INVARIANT:
        // - `neighbor` is a valid node in the [`RBTree`] pointed to by `self.tree`.
        self.get_neighbor_raw(direction).map(|neighbor| Self {
            tree: self.tree,
            current: neighbor,
        })
    }

    /// Access the previous node without moving the cursor.
    pub fn peek_prev(&self) -> Option<(&K, &V)> {
        self.peek(Direction::Prev)
    }

    /// Access the previous node without moving the cursor.
    pub fn peek_next(&self) -> Option<(&K, &V)> {
        self.peek(Direction::Next)
    }

    fn peek(&self, direction: Direction) -> Option<(&K, &V)> {
        self.get_neighbor_raw(direction).map(|neighbor| {
            // SAFETY:
            // - `neighbor` is a valid tree node.
            // - By the function signature, we have an immutable reference to `self`.
            unsafe { Self::to_key_value(neighbor) }
        })
    }

    /// Access the previous node mutably without moving the cursor.
    pub fn peek_prev_mut(&mut self) -> Option<(&K, &mut V)> {
        self.peek_mut(Direction::Prev)
    }

    /// Access the next node mutably without moving the cursor.
    pub fn peek_next_mut(&mut self) -> Option<(&K, &mut V)> {
        self.peek_mut(Direction::Next)
    }

    fn peek_mut(&mut self, direction: Direction) -> Option<(&K, &mut V)> {
        self.get_neighbor_raw(direction).map(|neighbor| {
            // SAFETY:
            // - `neighbor` is a valid tree node.
            // - By the function signature, we have a mutable reference to `self`.
            unsafe { Self::to_key_value_mut(neighbor) }
        })
    }

    fn get_neighbor_raw(&self, direction: Direction) -> Option<NonNull<bindings::rb_node>> {
        // SAFETY: `self.current` is valid by the type invariants.
        let neighbor = unsafe {
            match direction {
                Direction::Prev => bindings::rb_prev(self.current.as_ptr()),
                Direction::Next => bindings::rb_next(self.current.as_ptr()),
            }
        };

        NonNull::new(neighbor)
    }

    /// SAFETY:
    /// - `node` must be a valid pointer to a node in an [`RBTree`].
    /// - The caller has immutable access to `node` for the duration of 'b.
    unsafe fn to_key_value<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, &'b V) {
        // SAFETY: the caller guarantees that `node` is a valid pointer in an `RBTree`.
        let (k, v) = unsafe { Self::to_key_value_raw(node) };
        // SAFETY: the caller guarantees immutable access to `node`.
        (k, unsafe { &*v })
    }

    /// SAFETY:
    /// - `node` must be a valid pointer to a node in an [`RBTree`].
    /// - The caller has mutable access to `node` for the duration of 'b.
    unsafe fn to_key_value_mut<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, &'b mut V) {
        // SAFETY: the caller guarantees that `node` is a valid pointer in an `RBTree`.
        let (k, v) = unsafe { Self::to_key_value_raw(node) };
        // SAFETY: the caller guarantees mutable access to `node`.
        (k, unsafe { &mut *v })
    }

    /// SAFETY:
    /// - `node` must be a valid pointer to a node in an [`RBTree`].
    /// - The caller has immutable access to the key for the duration of 'b.
    unsafe fn to_key_value_raw<'b>(node: NonNull<bindings::rb_node>) -> (&'b K, *mut V) {
        // SAFETY: By the type invariant of `Self`, all non-null `rb_node` pointers stored in `self`
        // point to the links field of `Node<K, V>` objects.
        let this = unsafe { container_of!(node.as_ptr(), Node<K, V>, links) }.cast_mut();
        // SAFETY: The passed `node` is the current node or a non-null neighbor,
        // thus `this` is valid by the type invariants.
        let k = unsafe { &(*this).key };
        // SAFETY: The passed `node` is the current node or a non-null neighbor,
        // thus `this` is valid by the type invariants.
        let v = unsafe { addr_of_mut!((*this).value) };
        (k, v)
    }
}

/// Direction for [`Cursor`] operations.
enum Direction {
    /// the node immediately before, in sort order
    Prev,
    /// the node immediately after, in sort order
    Next,
}

impl<'a, K, V> IntoIterator for &'a RBTree<K, V> {
    type Item = (&'a K, &'a V);
    type IntoIter = Iter<'a, K, V>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter()
    }
}

/// An iterator over the nodes of a [`RBTree`].
///
/// Instances are created by calling [`RBTree::iter`].
pub struct Iter<'a, K, V> {
    _tree: PhantomData<&'a RBTree<K, V>>,
    iter_raw: IterRaw<K, V>,
}

// SAFETY: The [`Iter`] gives out immutable references to K and V, so it has the same
// thread safety requirements as immutable references.
unsafe impl<'a, K: Sync, V: Sync> Send for Iter<'a, K, V> {}

// SAFETY: The [`Iter`] gives out immutable references to K and V, so it has the same
// thread safety requirements as immutable references.
unsafe impl<'a, K: Sync, V: Sync> Sync for Iter<'a, K, V> {}

impl<'a, K, V> Iterator for Iter<'a, K, V> {
    type Item = (&'a K, &'a V);

    fn next(&mut self) -> Option<Self::Item> {
        // SAFETY: Due to `self._tree`, `k` and `v` are valid for the lifetime of `'a`.
        self.iter_raw.next().map(|(k, v)| unsafe { (&*k, &*v) })
    }
}

impl<'a, K, V> IntoIterator for &'a mut RBTree<K, V> {
    type Item = (&'a K, &'a mut V);
    type IntoIter = IterMut<'a, K, V>;

    fn into_iter(self) -> Self::IntoIter {
        self.iter_mut()
    }
}

/// A mutable iterator over the nodes of a [`RBTree`].
///
/// Instances are created by calling [`RBTree::iter_mut`].
pub struct IterMut<'a, K, V> {
    _tree: PhantomData<&'a mut RBTree<K, V>>,
    iter_raw: IterRaw<K, V>,
}

// SAFETY: The [`IterMut`] has exclusive access to both `K` and `V`, so it is sufficient to require them to be `Send`.
// The iterator only gives out immutable references to the keys, but since the iterator has excusive access to those same
// keys, `Send` is sufficient. `Sync` would be okay, but it is more restrictive to the user.
unsafe impl<'a, K: Send, V: Send> Send for IterMut<'a, K, V> {}

// SAFETY: The [`IterMut`] gives out immutable references to K and mutable references to V, so it has the same
// thread safety requirements as mutable references.
unsafe impl<'a, K: Sync, V: Sync> Sync for IterMut<'a, K, V> {}

impl<'a, K, V> Iterator for IterMut<'a, K, V> {
    type Item = (&'a K, &'a mut V);

    fn next(&mut self) -> Option<Self::Item> {
        self.iter_raw.next().map(|(k, v)|
            // SAFETY: Due to `&mut self`, we have exclusive access to `k` and `v`, for the lifetime of `'a`.
            unsafe { (&*k, &mut *v) })
    }
}

/// A raw iterator over the nodes of a [`RBTree`].
///
/// # Invariants
/// - `self.next` is a valid pointer.
/// - `self.next` points to a node stored inside of a valid `RBTree`.
struct IterRaw<K, V> {
    next: *mut bindings::rb_node,
    _phantom: PhantomData<fn() -> (K, V)>,
}

impl<K, V> Iterator for IterRaw<K, V> {
    type Item = (*mut K, *mut V);

    fn next(&mut self) -> Option<Self::Item> {
        if self.next.is_null() {
            return None;
        }

        // SAFETY: By the type invariant of `IterRaw`, `self.next` is a valid node in an `RBTree`,
        // and by the type invariant of `RBTree`, all nodes point to the links field of `Node<K, V>` objects.
        let cur = unsafe { container_of!(self.next, Node<K, V>, links) }.cast_mut();

        // SAFETY: `self.next` is a valid tree node by the type invariants.
        self.next = unsafe { bindings::rb_next(self.next) };

        // SAFETY: By the same reasoning above, it is safe to dereference the node.
        Some(unsafe { (addr_of_mut!((*cur).key), addr_of_mut!((*cur).value)) })
    }
}

/// A memory reservation for a red-black tree node.
///
///
/// It contains the memory needed to hold a node that can be inserted into a red-black tree. One
/// can be obtained by directly allocating it ([`RBTreeNodeReservation::new`]).
pub struct RBTreeNodeReservation<K, V> {
    node: Box<MaybeUninit<Node<K, V>>>,
}

impl<K, V> RBTreeNodeReservation<K, V> {
    /// Allocates memory for a node to be eventually initialised and inserted into the tree via a
    /// call to [`RBTree::insert`].
    pub fn new(flags: Flags) -> Result<RBTreeNodeReservation<K, V>> {
        Ok(RBTreeNodeReservation {
            node: <Box<_> as BoxExt<_>>::new_uninit(flags)?,
        })
    }
}

// SAFETY: This doesn't actually contain K or V, and is just a memory allocation. Those can always
// be moved across threads.
unsafe impl<K, V> Send for RBTreeNodeReservation<K, V> {}

// SAFETY: This doesn't actually contain K or V, and is just a memory allocation.
unsafe impl<K, V> Sync for RBTreeNodeReservation<K, V> {}

impl<K, V> RBTreeNodeReservation<K, V> {
    /// Initialises a node reservation.
    ///
    /// It then becomes an [`RBTreeNode`] that can be inserted into a tree.
    pub fn into_node(self, key: K, value: V) -> RBTreeNode<K, V> {
        let node = Box::write(
            self.node,
            Node {
                key,
                value,
                links: bindings::rb_node::default(),
            },
        );
        RBTreeNode { node }
    }
}

/// A red-black tree node.
///
/// The node is fully initialised (with key and value) and can be inserted into a tree without any
/// extra allocations or failure paths.
pub struct RBTreeNode<K, V> {
    node: Box<Node<K, V>>,
}

impl<K, V> RBTreeNode<K, V> {
    /// Allocates and initialises a node that can be inserted into the tree via
    /// [`RBTree::insert`].
    pub fn new(key: K, value: V, flags: Flags) -> Result<RBTreeNode<K, V>> {
        Ok(RBTreeNodeReservation::new(flags)?.into_node(key, value))
    }

    /// Get the key and value from inside the node.
    pub fn to_key_value(self) -> (K, V) {
        (self.node.key, self.node.value)
    }
}

// SAFETY: If K and V can be sent across threads, then it's also okay to send [`RBTreeNode`] across
// threads.
unsafe impl<K: Send, V: Send> Send for RBTreeNode<K, V> {}

// SAFETY: If K and V can be accessed without synchronization, then it's also okay to access
// [`RBTreeNode`] without synchronization.
unsafe impl<K: Sync, V: Sync> Sync for RBTreeNode<K, V> {}

struct Node<K, V> {
    links: bindings::rb_node,
    key: K,
    value: V,
}