summaryrefslogtreecommitdiffstats
path: root/tools/sched_ext/scx_qmap.bpf.c
blob: 83c8f54c1e31d896f5c0e793da559db9114ef0e2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
/* SPDX-License-Identifier: GPL-2.0 */
/*
 * A simple five-level FIFO queue scheduler.
 *
 * There are five FIFOs implemented using BPF_MAP_TYPE_QUEUE. A task gets
 * assigned to one depending on its compound weight. Each CPU round robins
 * through the FIFOs and dispatches more from FIFOs with higher indices - 1 from
 * queue0, 2 from queue1, 4 from queue2 and so on.
 *
 * This scheduler demonstrates:
 *
 * - BPF-side queueing using PIDs.
 * - Sleepable per-task storage allocation using ops.prep_enable().
 * - Using ops.cpu_release() to handle a higher priority scheduling class taking
 *   the CPU away.
 * - Core-sched support.
 *
 * This scheduler is primarily for demonstration and testing of sched_ext
 * features and unlikely to be useful for actual workloads.
 *
 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates.
 * Copyright (c) 2022 Tejun Heo <tj@kernel.org>
 * Copyright (c) 2022 David Vernet <dvernet@meta.com>
 */
#include <scx/common.bpf.h>

enum consts {
	ONE_SEC_IN_NS		= 1000000000,
	SHARED_DSQ		= 0,
	HIGHPRI_DSQ		= 1,
	HIGHPRI_WEIGHT		= 8668,		/* this is what -20 maps to */
};

char _license[] SEC("license") = "GPL";

const volatile u64 slice_ns = SCX_SLICE_DFL;
const volatile u32 stall_user_nth;
const volatile u32 stall_kernel_nth;
const volatile u32 dsp_inf_loop_after;
const volatile u32 dsp_batch;
const volatile bool highpri_boosting;
const volatile bool print_shared_dsq;
const volatile s32 disallow_tgid;
const volatile bool suppress_dump;

u64 nr_highpri_queued;
u32 test_error_cnt;

UEI_DEFINE(uei);

struct qmap {
	__uint(type, BPF_MAP_TYPE_QUEUE);
	__uint(max_entries, 4096);
	__type(value, u32);
} queue0 SEC(".maps"),
  queue1 SEC(".maps"),
  queue2 SEC(".maps"),
  queue3 SEC(".maps"),
  queue4 SEC(".maps");

struct {
	__uint(type, BPF_MAP_TYPE_ARRAY_OF_MAPS);
	__uint(max_entries, 5);
	__type(key, int);
	__array(values, struct qmap);
} queue_arr SEC(".maps") = {
	.values = {
		[0] = &queue0,
		[1] = &queue1,
		[2] = &queue2,
		[3] = &queue3,
		[4] = &queue4,
	},
};

/*
 * If enabled, CPU performance target is set according to the queue index
 * according to the following table.
 */
static const u32 qidx_to_cpuperf_target[] = {
	[0] = SCX_CPUPERF_ONE * 0 / 4,
	[1] = SCX_CPUPERF_ONE * 1 / 4,
	[2] = SCX_CPUPERF_ONE * 2 / 4,
	[3] = SCX_CPUPERF_ONE * 3 / 4,
	[4] = SCX_CPUPERF_ONE * 4 / 4,
};

/*
 * Per-queue sequence numbers to implement core-sched ordering.
 *
 * Tail seq is assigned to each queued task and incremented. Head seq tracks the
 * sequence number of the latest dispatched task. The distance between the a
 * task's seq and the associated queue's head seq is called the queue distance
 * and used when comparing two tasks for ordering. See qmap_core_sched_before().
 */
static u64 core_sched_head_seqs[5];
static u64 core_sched_tail_seqs[5];

/* Per-task scheduling context */
struct task_ctx {
	bool	force_local;	/* Dispatch directly to local_dsq */
	bool	highpri;
	u64	core_sched_seq;
};

struct {
	__uint(type, BPF_MAP_TYPE_TASK_STORAGE);
	__uint(map_flags, BPF_F_NO_PREALLOC);
	__type(key, int);
	__type(value, struct task_ctx);
} task_ctx_stor SEC(".maps");

struct cpu_ctx {
	u64	dsp_idx;	/* dispatch index */
	u64	dsp_cnt;	/* remaining count */
	u32	avg_weight;
	u32	cpuperf_target;
};

struct {
	__uint(type, BPF_MAP_TYPE_PERCPU_ARRAY);
	__uint(max_entries, 1);
	__type(key, u32);
	__type(value, struct cpu_ctx);
} cpu_ctx_stor SEC(".maps");

/* Statistics */
u64 nr_enqueued, nr_dispatched, nr_reenqueued, nr_dequeued, nr_ddsp_from_enq;
u64 nr_core_sched_execed;
u64 nr_expedited_local, nr_expedited_remote, nr_expedited_lost, nr_expedited_from_timer;
u32 cpuperf_min, cpuperf_avg, cpuperf_max;
u32 cpuperf_target_min, cpuperf_target_avg, cpuperf_target_max;

static s32 pick_direct_dispatch_cpu(struct task_struct *p, s32 prev_cpu)
{
	s32 cpu;

	if (p->nr_cpus_allowed == 1 ||
	    scx_bpf_test_and_clear_cpu_idle(prev_cpu))
		return prev_cpu;

	cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
	if (cpu >= 0)
		return cpu;

	return -1;
}

static struct task_ctx *lookup_task_ctx(struct task_struct *p)
{
	struct task_ctx *tctx;

	if (!(tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0))) {
		scx_bpf_error("task_ctx lookup failed");
		return NULL;
	}
	return tctx;
}

s32 BPF_STRUCT_OPS(qmap_select_cpu, struct task_struct *p,
		   s32 prev_cpu, u64 wake_flags)
{
	struct task_ctx *tctx;
	s32 cpu;

	if (!(tctx = lookup_task_ctx(p)))
		return -ESRCH;

	cpu = pick_direct_dispatch_cpu(p, prev_cpu);

	if (cpu >= 0) {
		tctx->force_local = true;
		return cpu;
	} else {
		return prev_cpu;
	}
}

static int weight_to_idx(u32 weight)
{
	/* Coarsely map the compound weight to a FIFO. */
	if (weight <= 25)
		return 0;
	else if (weight <= 50)
		return 1;
	else if (weight < 200)
		return 2;
	else if (weight < 400)
		return 3;
	else
		return 4;
}

void BPF_STRUCT_OPS(qmap_enqueue, struct task_struct *p, u64 enq_flags)
{
	static u32 user_cnt, kernel_cnt;
	struct task_ctx *tctx;
	u32 pid = p->pid;
	int idx = weight_to_idx(p->scx.weight);
	void *ring;
	s32 cpu;

	if (p->flags & PF_KTHREAD) {
		if (stall_kernel_nth && !(++kernel_cnt % stall_kernel_nth))
			return;
	} else {
		if (stall_user_nth && !(++user_cnt % stall_user_nth))
			return;
	}

	if (test_error_cnt && !--test_error_cnt)
		scx_bpf_error("test triggering error");

	if (!(tctx = lookup_task_ctx(p)))
		return;

	/*
	 * All enqueued tasks must have their core_sched_seq updated for correct
	 * core-sched ordering. Also, take a look at the end of qmap_dispatch().
	 */
	tctx->core_sched_seq = core_sched_tail_seqs[idx]++;

	/*
	 * If qmap_select_cpu() is telling us to or this is the last runnable
	 * task on the CPU, enqueue locally.
	 */
	if (tctx->force_local) {
		tctx->force_local = false;
		scx_bpf_dispatch(p, SCX_DSQ_LOCAL, slice_ns, enq_flags);
		return;
	}

	/* if !WAKEUP, select_cpu() wasn't called, try direct dispatch */
	if (!(enq_flags & SCX_ENQ_WAKEUP) &&
	    (cpu = pick_direct_dispatch_cpu(p, scx_bpf_task_cpu(p))) >= 0) {
		__sync_fetch_and_add(&nr_ddsp_from_enq, 1);
		scx_bpf_dispatch(p, SCX_DSQ_LOCAL_ON | cpu, slice_ns, enq_flags);
		return;
	}

	/*
	 * If the task was re-enqueued due to the CPU being preempted by a
	 * higher priority scheduling class, just re-enqueue the task directly
	 * on the global DSQ. As we want another CPU to pick it up, find and
	 * kick an idle CPU.
	 */
	if (enq_flags & SCX_ENQ_REENQ) {
		s32 cpu;

		scx_bpf_dispatch(p, SHARED_DSQ, 0, enq_flags);
		cpu = scx_bpf_pick_idle_cpu(p->cpus_ptr, 0);
		if (cpu >= 0)
			scx_bpf_kick_cpu(cpu, SCX_KICK_IDLE);
		return;
	}

	ring = bpf_map_lookup_elem(&queue_arr, &idx);
	if (!ring) {
		scx_bpf_error("failed to find ring %d", idx);
		return;
	}

	/* Queue on the selected FIFO. If the FIFO overflows, punt to global. */
	if (bpf_map_push_elem(ring, &pid, 0)) {
		scx_bpf_dispatch(p, SHARED_DSQ, slice_ns, enq_flags);
		return;
	}

	if (highpri_boosting && p->scx.weight >= HIGHPRI_WEIGHT) {
		tctx->highpri = true;
		__sync_fetch_and_add(&nr_highpri_queued, 1);
	}
	__sync_fetch_and_add(&nr_enqueued, 1);
}

/*
 * The BPF queue map doesn't support removal and sched_ext can handle spurious
 * dispatches. qmap_dequeue() is only used to collect statistics.
 */
void BPF_STRUCT_OPS(qmap_dequeue, struct task_struct *p, u64 deq_flags)
{
	__sync_fetch_and_add(&nr_dequeued, 1);
	if (deq_flags & SCX_DEQ_CORE_SCHED_EXEC)
		__sync_fetch_and_add(&nr_core_sched_execed, 1);
}

static void update_core_sched_head_seq(struct task_struct *p)
{
	int idx = weight_to_idx(p->scx.weight);
	struct task_ctx *tctx;

	if ((tctx = lookup_task_ctx(p)))
		core_sched_head_seqs[idx] = tctx->core_sched_seq;
}

/*
 * To demonstrate the use of scx_bpf_dispatch_from_dsq(), implement silly
 * selective priority boosting mechanism by scanning SHARED_DSQ looking for
 * highpri tasks, moving them to HIGHPRI_DSQ and then consuming them first. This
 * makes minor difference only when dsp_batch is larger than 1.
 *
 * scx_bpf_dispatch[_vtime]_from_dsq() are allowed both from ops.dispatch() and
 * non-rq-lock holding BPF programs. As demonstration, this function is called
 * from qmap_dispatch() and monitor_timerfn().
 */
static bool dispatch_highpri(bool from_timer)
{
	struct task_struct *p;
	s32 this_cpu = bpf_get_smp_processor_id();

	/* scan SHARED_DSQ and move highpri tasks to HIGHPRI_DSQ */
	bpf_for_each(scx_dsq, p, SHARED_DSQ, 0) {
		static u64 highpri_seq;
		struct task_ctx *tctx;

		if (!(tctx = lookup_task_ctx(p)))
			return false;

		if (tctx->highpri) {
			/* exercise the set_*() and vtime interface too */
			scx_bpf_dispatch_from_dsq_set_slice(
				BPF_FOR_EACH_ITER, slice_ns * 2);
			scx_bpf_dispatch_from_dsq_set_vtime(
				BPF_FOR_EACH_ITER, highpri_seq++);
			scx_bpf_dispatch_vtime_from_dsq(
				BPF_FOR_EACH_ITER, p, HIGHPRI_DSQ, 0);
		}
	}

	/*
	 * Scan HIGHPRI_DSQ and dispatch until a task that can run on this CPU
	 * is found.
	 */
	bpf_for_each(scx_dsq, p, HIGHPRI_DSQ, 0) {
		bool dispatched = false;
		s32 cpu;

		if (bpf_cpumask_test_cpu(this_cpu, p->cpus_ptr))
			cpu = this_cpu;
		else
			cpu = scx_bpf_pick_any_cpu(p->cpus_ptr, 0);

		if (scx_bpf_dispatch_from_dsq(BPF_FOR_EACH_ITER, p,
					      SCX_DSQ_LOCAL_ON | cpu,
					      SCX_ENQ_PREEMPT)) {
			if (cpu == this_cpu) {
				dispatched = true;
				__sync_fetch_and_add(&nr_expedited_local, 1);
			} else {
				__sync_fetch_and_add(&nr_expedited_remote, 1);
			}
			if (from_timer)
				__sync_fetch_and_add(&nr_expedited_from_timer, 1);
		} else {
			__sync_fetch_and_add(&nr_expedited_lost, 1);
		}

		if (dispatched)
			return true;
	}

	return false;
}

void BPF_STRUCT_OPS(qmap_dispatch, s32 cpu, struct task_struct *prev)
{
	struct task_struct *p;
	struct cpu_ctx *cpuc;
	struct task_ctx *tctx;
	u32 zero = 0, batch = dsp_batch ?: 1;
	void *fifo;
	s32 i, pid;

	if (dispatch_highpri(false))
		return;

	if (!nr_highpri_queued && scx_bpf_consume(SHARED_DSQ))
		return;

	if (dsp_inf_loop_after && nr_dispatched > dsp_inf_loop_after) {
		/*
		 * PID 2 should be kthreadd which should mostly be idle and off
		 * the scheduler. Let's keep dispatching it to force the kernel
		 * to call this function over and over again.
		 */
		p = bpf_task_from_pid(2);
		if (p) {
			scx_bpf_dispatch(p, SCX_DSQ_LOCAL, slice_ns, 0);
			bpf_task_release(p);
			return;
		}
	}

	if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) {
		scx_bpf_error("failed to look up cpu_ctx");
		return;
	}

	for (i = 0; i < 5; i++) {
		/* Advance the dispatch cursor and pick the fifo. */
		if (!cpuc->dsp_cnt) {
			cpuc->dsp_idx = (cpuc->dsp_idx + 1) % 5;
			cpuc->dsp_cnt = 1 << cpuc->dsp_idx;
		}

		fifo = bpf_map_lookup_elem(&queue_arr, &cpuc->dsp_idx);
		if (!fifo) {
			scx_bpf_error("failed to find ring %llu", cpuc->dsp_idx);
			return;
		}

		/* Dispatch or advance. */
		bpf_repeat(BPF_MAX_LOOPS) {
			struct task_ctx *tctx;

			if (bpf_map_pop_elem(fifo, &pid))
				break;

			p = bpf_task_from_pid(pid);
			if (!p)
				continue;

			if (!(tctx = lookup_task_ctx(p))) {
				bpf_task_release(p);
				return;
			}

			if (tctx->highpri)
				__sync_fetch_and_sub(&nr_highpri_queued, 1);

			update_core_sched_head_seq(p);
			__sync_fetch_and_add(&nr_dispatched, 1);

			scx_bpf_dispatch(p, SHARED_DSQ, slice_ns, 0);
			bpf_task_release(p);

			batch--;
			cpuc->dsp_cnt--;
			if (!batch || !scx_bpf_dispatch_nr_slots()) {
				if (dispatch_highpri(false))
					return;
				scx_bpf_consume(SHARED_DSQ);
				return;
			}
			if (!cpuc->dsp_cnt)
				break;
		}

		cpuc->dsp_cnt = 0;
	}

	/*
	 * No other tasks. @prev will keep running. Update its core_sched_seq as
	 * if the task were enqueued and dispatched immediately.
	 */
	if (prev) {
		tctx = bpf_task_storage_get(&task_ctx_stor, prev, 0, 0);
		if (!tctx) {
			scx_bpf_error("task_ctx lookup failed");
			return;
		}

		tctx->core_sched_seq =
			core_sched_tail_seqs[weight_to_idx(prev->scx.weight)]++;
	}
}

void BPF_STRUCT_OPS(qmap_tick, struct task_struct *p)
{
	struct cpu_ctx *cpuc;
	u32 zero = 0;
	int idx;

	if (!(cpuc = bpf_map_lookup_elem(&cpu_ctx_stor, &zero))) {
		scx_bpf_error("failed to look up cpu_ctx");
		return;
	}

	/*
	 * Use the running avg of weights to select the target cpuperf level.
	 * This is a demonstration of the cpuperf feature rather than a
	 * practical strategy to regulate CPU frequency.
	 */
	cpuc->avg_weight = cpuc->avg_weight * 3 / 4 + p->scx.weight / 4;
	idx = weight_to_idx(cpuc->avg_weight);
	cpuc->cpuperf_target = qidx_to_cpuperf_target[idx];

	scx_bpf_cpuperf_set(scx_bpf_task_cpu(p), cpuc->cpuperf_target);
}

/*
 * The distance from the head of the queue scaled by the weight of the queue.
 * The lower the number, the older the task and the higher the priority.
 */
static s64 task_qdist(struct task_struct *p)
{
	int idx = weight_to_idx(p->scx.weight);
	struct task_ctx *tctx;
	s64 qdist;

	tctx = bpf_task_storage_get(&task_ctx_stor, p, 0, 0);
	if (!tctx) {
		scx_bpf_error("task_ctx lookup failed");
		return 0;
	}

	qdist = tctx->core_sched_seq - core_sched_head_seqs[idx];

	/*
	 * As queue index increments, the priority doubles. The queue w/ index 3
	 * is dispatched twice more frequently than 2. Reflect the difference by
	 * scaling qdists accordingly. Note that the shift amount needs to be
	 * flipped depending on the sign to avoid flipping priority direction.
	 */
	if (qdist >= 0)
		return qdist << (4 - idx);
	else
		return qdist << idx;
}

/*
 * This is called to determine the task ordering when core-sched is picking
 * tasks to execute on SMT siblings and should encode about the same ordering as
 * the regular scheduling path. Use the priority-scaled distances from the head
 * of the queues to compare the two tasks which should be consistent with the
 * dispatch path behavior.
 */
bool BPF_STRUCT_OPS(qmap_core_sched_before,
		    struct task_struct *a, struct task_struct *b)
{
	return task_qdist(a) > task_qdist(b);
}

void BPF_STRUCT_OPS(qmap_cpu_release, s32 cpu, struct scx_cpu_release_args *args)
{
	u32 cnt;

	/*
	 * Called when @cpu is taken by a higher priority scheduling class. This
	 * makes @cpu no longer available for executing sched_ext tasks. As we
	 * don't want the tasks in @cpu's local dsq to sit there until @cpu
	 * becomes available again, re-enqueue them into the global dsq. See
	 * %SCX_ENQ_REENQ handling in qmap_enqueue().
	 */
	cnt = scx_bpf_reenqueue_local();
	if (cnt)
		__sync_fetch_and_add(&nr_reenqueued, cnt);
}

s32 BPF_STRUCT_OPS(qmap_init_task, struct task_struct *p,
		   struct scx_init_task_args *args)
{
	if (p->tgid == disallow_tgid)
		p->scx.disallow = true;

	/*
	 * @p is new. Let's ensure that its task_ctx is available. We can sleep
	 * in this function and the following will automatically use GFP_KERNEL.
	 */
	if (bpf_task_storage_get(&task_ctx_stor, p, 0,
				 BPF_LOCAL_STORAGE_GET_F_CREATE))
		return 0;
	else
		return -ENOMEM;
}

void BPF_STRUCT_OPS(qmap_dump, struct scx_dump_ctx *dctx)
{
	s32 i, pid;

	if (suppress_dump)
		return;

	bpf_for(i, 0, 5) {
		void *fifo;

		if (!(fifo = bpf_map_lookup_elem(&queue_arr, &i)))
			return;

		scx_bpf_dump("QMAP FIFO[%d]:", i);
		bpf_repeat(4096) {
			if (bpf_map_pop_elem(fifo, &pid))
				break;
			scx_bpf_dump(" %d", pid);
		}
		scx_bpf_dump("\n");
	}
}

void BPF_STRUCT_OPS(qmap_dump_cpu, struct scx_dump_ctx *dctx, s32 cpu, bool idle)
{
	u32 zero = 0;
	struct cpu_ctx *cpuc;

	if (suppress_dump || idle)
		return;
	if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, cpu)))
		return;

	scx_bpf_dump("QMAP: dsp_idx=%llu dsp_cnt=%llu avg_weight=%u cpuperf_target=%u",
		     cpuc->dsp_idx, cpuc->dsp_cnt, cpuc->avg_weight,
		     cpuc->cpuperf_target);
}

void BPF_STRUCT_OPS(qmap_dump_task, struct scx_dump_ctx *dctx, struct task_struct *p)
{
	struct task_ctx *taskc;

	if (suppress_dump)
		return;
	if (!(taskc = bpf_task_storage_get(&task_ctx_stor, p, 0, 0)))
		return;

	scx_bpf_dump("QMAP: force_local=%d core_sched_seq=%llu",
		     taskc->force_local, taskc->core_sched_seq);
}

/*
 * Print out the online and possible CPU map using bpf_printk() as a
 * demonstration of using the cpumask kfuncs and ops.cpu_on/offline().
 */
static void print_cpus(void)
{
	const struct cpumask *possible, *online;
	s32 cpu;
	char buf[128] = "", *p;
	int idx;

	possible = scx_bpf_get_possible_cpumask();
	online = scx_bpf_get_online_cpumask();

	idx = 0;
	bpf_for(cpu, 0, scx_bpf_nr_cpu_ids()) {
		if (!(p = MEMBER_VPTR(buf, [idx++])))
			break;
		if (bpf_cpumask_test_cpu(cpu, online))
			*p++ = 'O';
		else if (bpf_cpumask_test_cpu(cpu, possible))
			*p++ = 'X';
		else
			*p++ = ' ';

		if ((cpu & 7) == 7) {
			if (!(p = MEMBER_VPTR(buf, [idx++])))
				break;
			*p++ = '|';
		}
	}
	buf[sizeof(buf) - 1] = '\0';

	scx_bpf_put_cpumask(online);
	scx_bpf_put_cpumask(possible);

	bpf_printk("CPUS: |%s", buf);
}

void BPF_STRUCT_OPS(qmap_cpu_online, s32 cpu)
{
	bpf_printk("CPU %d coming online", cpu);
	/* @cpu is already online at this point */
	print_cpus();
}

void BPF_STRUCT_OPS(qmap_cpu_offline, s32 cpu)
{
	bpf_printk("CPU %d going offline", cpu);
	/* @cpu is still online at this point */
	print_cpus();
}

struct monitor_timer {
	struct bpf_timer timer;
};

struct {
	__uint(type, BPF_MAP_TYPE_ARRAY);
	__uint(max_entries, 1);
	__type(key, u32);
	__type(value, struct monitor_timer);
} monitor_timer SEC(".maps");

/*
 * Print out the min, avg and max performance levels of CPUs every second to
 * demonstrate the cpuperf interface.
 */
static void monitor_cpuperf(void)
{
	u32 zero = 0, nr_cpu_ids;
	u64 cap_sum = 0, cur_sum = 0, cur_min = SCX_CPUPERF_ONE, cur_max = 0;
	u64 target_sum = 0, target_min = SCX_CPUPERF_ONE, target_max = 0;
	const struct cpumask *online;
	int i, nr_online_cpus = 0;

	nr_cpu_ids = scx_bpf_nr_cpu_ids();
	online = scx_bpf_get_online_cpumask();

	bpf_for(i, 0, nr_cpu_ids) {
		struct cpu_ctx *cpuc;
		u32 cap, cur;

		if (!bpf_cpumask_test_cpu(i, online))
			continue;
		nr_online_cpus++;

		/* collect the capacity and current cpuperf */
		cap = scx_bpf_cpuperf_cap(i);
		cur = scx_bpf_cpuperf_cur(i);

		cur_min = cur < cur_min ? cur : cur_min;
		cur_max = cur > cur_max ? cur : cur_max;

		/*
		 * $cur is relative to $cap. Scale it down accordingly so that
		 * it's in the same scale as other CPUs and $cur_sum/$cap_sum
		 * makes sense.
		 */
		cur_sum += cur * cap / SCX_CPUPERF_ONE;
		cap_sum += cap;

		if (!(cpuc = bpf_map_lookup_percpu_elem(&cpu_ctx_stor, &zero, i))) {
			scx_bpf_error("failed to look up cpu_ctx");
			goto out;
		}

		/* collect target */
		cur = cpuc->cpuperf_target;
		target_sum += cur;
		target_min = cur < target_min ? cur : target_min;
		target_max = cur > target_max ? cur : target_max;
	}

	cpuperf_min = cur_min;
	cpuperf_avg = cur_sum * SCX_CPUPERF_ONE / cap_sum;
	cpuperf_max = cur_max;

	cpuperf_target_min = target_min;
	cpuperf_target_avg = target_sum / nr_online_cpus;
	cpuperf_target_max = target_max;
out:
	scx_bpf_put_cpumask(online);
}

/*
 * Dump the currently queued tasks in the shared DSQ to demonstrate the usage of
 * scx_bpf_dsq_nr_queued() and DSQ iterator. Raise the dispatch batch count to
 * see meaningful dumps in the trace pipe.
 */
static void dump_shared_dsq(void)
{
	struct task_struct *p;
	s32 nr;

	if (!(nr = scx_bpf_dsq_nr_queued(SHARED_DSQ)))
		return;

	bpf_printk("Dumping %d tasks in SHARED_DSQ in reverse order", nr);

	bpf_rcu_read_lock();
	bpf_for_each(scx_dsq, p, SHARED_DSQ, SCX_DSQ_ITER_REV)
		bpf_printk("%s[%d]", p->comm, p->pid);
	bpf_rcu_read_unlock();
}

static int monitor_timerfn(void *map, int *key, struct bpf_timer *timer)
{
	bpf_rcu_read_lock();
	dispatch_highpri(true);
	bpf_rcu_read_unlock();

	monitor_cpuperf();

	if (print_shared_dsq)
		dump_shared_dsq();

	bpf_timer_start(timer, ONE_SEC_IN_NS, 0);
	return 0;
}

s32 BPF_STRUCT_OPS_SLEEPABLE(qmap_init)
{
	u32 key = 0;
	struct bpf_timer *timer;
	s32 ret;

	print_cpus();

	ret = scx_bpf_create_dsq(SHARED_DSQ, -1);
	if (ret)
		return ret;

	ret = scx_bpf_create_dsq(HIGHPRI_DSQ, -1);
	if (ret)
		return ret;

	timer = bpf_map_lookup_elem(&monitor_timer, &key);
	if (!timer)
		return -ESRCH;

	bpf_timer_init(timer, &monitor_timer, CLOCK_MONOTONIC);
	bpf_timer_set_callback(timer, monitor_timerfn);

	return bpf_timer_start(timer, ONE_SEC_IN_NS, 0);
}

void BPF_STRUCT_OPS(qmap_exit, struct scx_exit_info *ei)
{
	UEI_RECORD(uei, ei);
}

SCX_OPS_DEFINE(qmap_ops,
	       .select_cpu		= (void *)qmap_select_cpu,
	       .enqueue			= (void *)qmap_enqueue,
	       .dequeue			= (void *)qmap_dequeue,
	       .dispatch		= (void *)qmap_dispatch,
	       .tick			= (void *)qmap_tick,
	       .core_sched_before	= (void *)qmap_core_sched_before,
	       .cpu_release		= (void *)qmap_cpu_release,
	       .init_task		= (void *)qmap_init_task,
	       .dump			= (void *)qmap_dump,
	       .dump_cpu		= (void *)qmap_dump_cpu,
	       .dump_task		= (void *)qmap_dump_task,
	       .cpu_online		= (void *)qmap_cpu_online,
	       .cpu_offline		= (void *)qmap_cpu_offline,
	       .init			= (void *)qmap_init,
	       .exit			= (void *)qmap_exit,
	       .timeout_ms		= 5000U,
	       .name			= "qmap");