1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
|
// SPDX-License-Identifier: GPL-2.0
/* Copyright (c) 2021 Facebook */
#define _GNU_SOURCE /* See feature_test_macros(7) */
#include <unistd.h>
#include <sched.h>
#include <pthread.h>
#include <sys/syscall.h> /* For SYS_xxx definitions */
#include <sys/types.h>
#include <sys/eventfd.h>
#include <sys/mman.h>
#include <test_progs.h>
#include <bpf/btf.h>
#include "task_local_storage_helpers.h"
#include "task_local_storage.skel.h"
#include "task_local_storage_exit_creds.skel.h"
#include "task_ls_recursion.skel.h"
#include "task_storage_nodeadlock.skel.h"
#include "uptr_test_common.h"
#include "task_ls_uptr.skel.h"
#include "uptr_update_failure.skel.h"
#include "uptr_failure.skel.h"
#include "uptr_map_failure.skel.h"
static void test_sys_enter_exit(void)
{
struct task_local_storage *skel;
int err;
skel = task_local_storage__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
return;
skel->bss->target_pid = sys_gettid();
err = task_local_storage__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
sys_gettid();
sys_gettid();
/* 3x syscalls: 1x attach and 2x gettid */
ASSERT_EQ(skel->bss->enter_cnt, 3, "enter_cnt");
ASSERT_EQ(skel->bss->exit_cnt, 3, "exit_cnt");
ASSERT_EQ(skel->bss->mismatch_cnt, 0, "mismatch_cnt");
out:
task_local_storage__destroy(skel);
}
static void test_exit_creds(void)
{
struct task_local_storage_exit_creds *skel;
int err, run_count, sync_rcu_calls = 0;
const int MAX_SYNC_RCU_CALLS = 1000;
skel = task_local_storage_exit_creds__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
return;
err = task_local_storage_exit_creds__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
/* trigger at least one exit_creds() */
if (CHECK_FAIL(system("ls > /dev/null")))
goto out;
/* kern_sync_rcu is not enough on its own as the read section we want
* to wait for may start after we enter synchronize_rcu, so our call
* won't wait for the section to finish. Loop on the run counter
* as well to ensure the program has run.
*/
do {
kern_sync_rcu();
run_count = __atomic_load_n(&skel->bss->run_count, __ATOMIC_SEQ_CST);
} while (run_count == 0 && ++sync_rcu_calls < MAX_SYNC_RCU_CALLS);
ASSERT_NEQ(sync_rcu_calls, MAX_SYNC_RCU_CALLS,
"sync_rcu count too high");
ASSERT_NEQ(run_count, 0, "run_count");
ASSERT_EQ(skel->bss->valid_ptr_count, 0, "valid_ptr_count");
ASSERT_NEQ(skel->bss->null_ptr_count, 0, "null_ptr_count");
out:
task_local_storage_exit_creds__destroy(skel);
}
static void test_recursion(void)
{
int err, map_fd, prog_fd, task_fd;
struct task_ls_recursion *skel;
struct bpf_prog_info info;
__u32 info_len = sizeof(info);
long value;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_NEQ(task_fd, -1, "sys_pidfd_open"))
return;
skel = task_ls_recursion__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
err = task_ls_recursion__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
/* trigger sys_enter, make sure it does not cause deadlock */
skel->bss->test_pid = getpid();
sys_gettid();
skel->bss->test_pid = 0;
task_ls_recursion__detach(skel);
/* Refer to the comment in BPF_PROG(on_update) for
* the explanation on the value 201 and 100.
*/
map_fd = bpf_map__fd(skel->maps.map_a);
err = bpf_map_lookup_elem(map_fd, &task_fd, &value);
ASSERT_OK(err, "lookup map_a");
ASSERT_EQ(value, 201, "map_a value");
ASSERT_EQ(skel->bss->nr_del_errs, 1, "bpf_task_storage_delete busy");
map_fd = bpf_map__fd(skel->maps.map_b);
err = bpf_map_lookup_elem(map_fd, &task_fd, &value);
ASSERT_OK(err, "lookup map_b");
ASSERT_EQ(value, 100, "map_b value");
prog_fd = bpf_program__fd(skel->progs.on_update);
memset(&info, 0, sizeof(info));
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "on_update prog recursion");
prog_fd = bpf_program__fd(skel->progs.on_enter);
memset(&info, 0, sizeof(info));
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "on_enter prog recursion");
out:
close(task_fd);
task_ls_recursion__destroy(skel);
}
static bool stop;
static void waitall(const pthread_t *tids, int nr)
{
int i;
stop = true;
for (i = 0; i < nr; i++)
pthread_join(tids[i], NULL);
}
static void *sock_create_loop(void *arg)
{
struct task_storage_nodeadlock *skel = arg;
int fd;
while (!stop) {
fd = socket(AF_INET, SOCK_STREAM, 0);
close(fd);
if (skel->bss->nr_get_errs || skel->bss->nr_del_errs)
stop = true;
}
return NULL;
}
static void test_nodeadlock(void)
{
struct task_storage_nodeadlock *skel;
struct bpf_prog_info info = {};
__u32 info_len = sizeof(info);
const int nr_threads = 32;
pthread_t tids[nr_threads];
int i, prog_fd, err;
cpu_set_t old, new;
/* Pin all threads to one cpu to increase the chance of preemption
* in a sleepable bpf prog.
*/
CPU_ZERO(&new);
CPU_SET(0, &new);
err = sched_getaffinity(getpid(), sizeof(old), &old);
if (!ASSERT_OK(err, "getaffinity"))
return;
err = sched_setaffinity(getpid(), sizeof(new), &new);
if (!ASSERT_OK(err, "setaffinity"))
return;
skel = task_storage_nodeadlock__open_and_load();
if (!ASSERT_OK_PTR(skel, "open_and_load"))
goto done;
/* Unnecessary recursion and deadlock detection are reproducible
* in the preemptible kernel.
*/
if (!skel->kconfig->CONFIG_PREEMPT) {
test__skip();
goto done;
}
err = task_storage_nodeadlock__attach(skel);
ASSERT_OK(err, "attach prog");
for (i = 0; i < nr_threads; i++) {
err = pthread_create(&tids[i], NULL, sock_create_loop, skel);
if (err) {
/* Only assert once here to avoid excessive
* PASS printing during test failure.
*/
ASSERT_OK(err, "pthread_create");
waitall(tids, i);
goto done;
}
}
/* With 32 threads, 1s is enough to reproduce the issue */
sleep(1);
waitall(tids, nr_threads);
info_len = sizeof(info);
prog_fd = bpf_program__fd(skel->progs.socket_post_create);
err = bpf_prog_get_info_by_fd(prog_fd, &info, &info_len);
ASSERT_OK(err, "get prog info");
ASSERT_EQ(info.recursion_misses, 0, "prog recursion");
ASSERT_EQ(skel->bss->nr_get_errs, 0, "bpf_task_storage_get busy");
ASSERT_EQ(skel->bss->nr_del_errs, 0, "bpf_task_storage_delete busy");
done:
task_storage_nodeadlock__destroy(skel);
sched_setaffinity(getpid(), sizeof(old), &old);
}
static struct user_data udata __attribute__((aligned(16))) = {
.a = 1,
.b = 2,
};
static struct user_data udata2 __attribute__((aligned(16))) = {
.a = 3,
.b = 4,
};
static void check_udata2(int expected)
{
udata2.result = udata2.nested_result = 0;
usleep(1);
ASSERT_EQ(udata2.result, expected, "udata2.result");
ASSERT_EQ(udata2.nested_result, expected, "udata2.nested_result");
}
static void test_uptr_basic(void)
{
int map_fd, parent_task_fd, ev_fd;
struct value_type value = {};
struct task_ls_uptr *skel;
pid_t child_pid, my_tid;
__u64 ev_dummy_data = 1;
int err;
my_tid = sys_gettid();
parent_task_fd = sys_pidfd_open(my_tid, 0);
if (!ASSERT_OK_FD(parent_task_fd, "parent_task_fd"))
return;
ev_fd = eventfd(0, 0);
if (!ASSERT_OK_FD(ev_fd, "ev_fd")) {
close(parent_task_fd);
return;
}
skel = task_ls_uptr__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = &udata;
value.nested.udata = &udata;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_NOEXIST);
if (!ASSERT_OK(err, "update_elem(udata)"))
goto out;
err = task_ls_uptr__attach(skel);
if (!ASSERT_OK(err, "skel_attach"))
goto out;
child_pid = fork();
if (!ASSERT_NEQ(child_pid, -1, "fork"))
goto out;
/* Call syscall in the child process, but access the map value of
* the parent process in the BPF program to check if the user kptr
* is translated/mapped correctly.
*/
if (child_pid == 0) {
/* child */
/* Overwrite the user_data in the child process to check if
* the BPF program accesses the user_data of the parent.
*/
udata.a = 0;
udata.b = 0;
/* Wait for the parent to set child_pid */
read(ev_fd, &ev_dummy_data, sizeof(ev_dummy_data));
exit(0);
}
skel->bss->parent_pid = my_tid;
skel->bss->target_pid = child_pid;
write(ev_fd, &ev_dummy_data, sizeof(ev_dummy_data));
err = waitpid(child_pid, NULL, 0);
ASSERT_EQ(err, child_pid, "waitpid");
ASSERT_EQ(udata.result, MAGIC_VALUE + udata.a + udata.b, "udata.result");
ASSERT_EQ(udata.nested_result, MAGIC_VALUE + udata.a + udata.b, "udata.nested_result");
skel->bss->target_pid = my_tid;
/* update_elem: uptr changes from udata1 to udata2 */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(MAGIC_VALUE + udata2.a + udata2.b);
/* update_elem: uptr changes from udata2 uptr to NULL */
memset(&value, 0, sizeof(value));
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(0);
/* update_elem: uptr changes from NULL to udata2 */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_EXIST);
if (!ASSERT_OK(err, "update_elem(udata2)"))
goto out;
check_udata2(MAGIC_VALUE + udata2.a + udata2.b);
/* Check if user programs can access the value of user kptrs
* through bpf_map_lookup_elem(). Make sure the kernel value is not
* leaked.
*/
err = bpf_map_lookup_elem(map_fd, &parent_task_fd, &value);
if (!ASSERT_OK(err, "bpf_map_lookup_elem"))
goto out;
ASSERT_EQ(value.udata, NULL, "value.udata");
ASSERT_EQ(value.nested.udata, NULL, "value.nested.udata");
/* delete_elem */
err = bpf_map_delete_elem(map_fd, &parent_task_fd);
ASSERT_OK(err, "delete_elem(udata2)");
check_udata2(0);
/* update_elem: add uptr back to test map_free */
value.udata = &udata2;
value.nested.udata = &udata2;
err = bpf_map_update_elem(map_fd, &parent_task_fd, &value, BPF_NOEXIST);
ASSERT_OK(err, "update_elem(udata2)");
out:
task_ls_uptr__destroy(skel);
close(ev_fd);
close(parent_task_fd);
}
static void test_uptr_across_pages(void)
{
int page_size = getpagesize();
struct value_type value = {};
struct task_ls_uptr *skel;
int err, task_fd, map_fd;
void *mem;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_OK_FD(task_fd, "task_fd"))
return;
mem = mmap(NULL, page_size * 2, PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
if (!ASSERT_OK_PTR(mem, "mmap(page_size * 2)")) {
close(task_fd);
return;
}
skel = task_ls_uptr__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = mem + page_size - offsetof(struct user_data, b);
err = bpf_map_update_elem(map_fd, &task_fd, &value, 0);
if (!ASSERT_ERR(err, "update_elem(udata)"))
goto out;
ASSERT_EQ(errno, EOPNOTSUPP, "errno");
value.udata = mem + page_size - sizeof(struct user_data);
err = bpf_map_update_elem(map_fd, &task_fd, &value, 0);
ASSERT_OK(err, "update_elem(udata)");
out:
task_ls_uptr__destroy(skel);
close(task_fd);
munmap(mem, page_size * 2);
}
static void test_uptr_update_failure(void)
{
struct value_lock_type value = {};
struct uptr_update_failure *skel;
int err, task_fd, map_fd;
task_fd = sys_pidfd_open(getpid(), 0);
if (!ASSERT_OK_FD(task_fd, "task_fd"))
return;
skel = uptr_update_failure__open_and_load();
if (!ASSERT_OK_PTR(skel, "skel_open_and_load"))
goto out;
map_fd = bpf_map__fd(skel->maps.datamap);
value.udata = &udata;
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_F_LOCK);
if (!ASSERT_ERR(err, "update_elem(udata, BPF_F_LOCK)"))
goto out;
ASSERT_EQ(errno, EOPNOTSUPP, "errno");
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_EXIST);
if (!ASSERT_ERR(err, "update_elem(udata, BPF_EXIST)"))
goto out;
ASSERT_EQ(errno, ENOENT, "errno");
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_NOEXIST);
if (!ASSERT_OK(err, "update_elem(udata, BPF_NOEXIST)"))
goto out;
value.udata = &udata2;
err = bpf_map_update_elem(map_fd, &task_fd, &value, BPF_NOEXIST);
if (!ASSERT_ERR(err, "update_elem(udata2, BPF_NOEXIST)"))
goto out;
ASSERT_EQ(errno, EEXIST, "errno");
out:
uptr_update_failure__destroy(skel);
close(task_fd);
}
static void test_uptr_map_failure(const char *map_name, int expected_errno)
{
LIBBPF_OPTS(bpf_map_create_opts, create_attr);
struct uptr_map_failure *skel;
struct bpf_map *map;
struct btf *btf;
int map_fd, err;
skel = uptr_map_failure__open();
if (!ASSERT_OK_PTR(skel, "uptr_map_failure__open"))
return;
map = bpf_object__find_map_by_name(skel->obj, map_name);
btf = bpf_object__btf(skel->obj);
err = btf__load_into_kernel(btf);
if (!ASSERT_OK(err, "btf__load_into_kernel"))
goto done;
create_attr.map_flags = bpf_map__map_flags(map);
create_attr.btf_fd = btf__fd(btf);
create_attr.btf_key_type_id = bpf_map__btf_key_type_id(map);
create_attr.btf_value_type_id = bpf_map__btf_value_type_id(map);
map_fd = bpf_map_create(bpf_map__type(map), map_name,
bpf_map__key_size(map), bpf_map__value_size(map),
0, &create_attr);
if (ASSERT_ERR_FD(map_fd, "map_create"))
ASSERT_EQ(errno, expected_errno, "errno");
else
close(map_fd);
done:
uptr_map_failure__destroy(skel);
}
void test_task_local_storage(void)
{
if (test__start_subtest("sys_enter_exit"))
test_sys_enter_exit();
if (test__start_subtest("exit_creds"))
test_exit_creds();
if (test__start_subtest("recursion"))
test_recursion();
if (test__start_subtest("nodeadlock"))
test_nodeadlock();
if (test__start_subtest("uptr_basic"))
test_uptr_basic();
if (test__start_subtest("uptr_across_pages"))
test_uptr_across_pages();
if (test__start_subtest("uptr_update_failure"))
test_uptr_update_failure();
if (test__start_subtest("uptr_map_failure_e2big")) {
if (getpagesize() == PAGE_SIZE)
test_uptr_map_failure("large_uptr_map", E2BIG);
else
test__skip();
}
if (test__start_subtest("uptr_map_failure_size0"))
test_uptr_map_failure("empty_uptr_map", EINVAL);
if (test__start_subtest("uptr_map_failure_kstruct"))
test_uptr_map_failure("kstruct_uptr_map", EINVAL);
RUN_TESTS(uptr_failure);
}
|