1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
|
// SPDX-License-Identifier: GPL-2.0
/*
* KVM page table test
*
* Copyright (C) 2021, Huawei, Inc.
*
* Make sure that THP has been enabled or enough HUGETLB pages with specific
* page size have been pre-allocated on your system, if you are planning to
* use hugepages to back the guest memory for testing.
*/
#define _GNU_SOURCE /* for program_invocation_name */
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <pthread.h>
#include <semaphore.h>
#include "test_util.h"
#include "kvm_util.h"
#include "processor.h"
#include "guest_modes.h"
#define TEST_MEM_SLOT_INDEX 1
/* Default size(1GB) of the memory for testing */
#define DEFAULT_TEST_MEM_SIZE (1 << 30)
/* Default guest test virtual memory offset */
#define DEFAULT_GUEST_TEST_MEM 0xc0000000
/* Different guest memory accessing stages */
enum test_stage {
KVM_BEFORE_MAPPINGS,
KVM_CREATE_MAPPINGS,
KVM_UPDATE_MAPPINGS,
KVM_ADJUST_MAPPINGS,
NUM_TEST_STAGES,
};
static const char * const test_stage_string[] = {
"KVM_BEFORE_MAPPINGS",
"KVM_CREATE_MAPPINGS",
"KVM_UPDATE_MAPPINGS",
"KVM_ADJUST_MAPPINGS",
};
struct vcpu_args {
int vcpu_id;
bool vcpu_write;
};
struct test_args {
struct kvm_vm *vm;
uint64_t guest_test_virt_mem;
uint64_t host_page_size;
uint64_t host_num_pages;
uint64_t large_page_size;
uint64_t large_num_pages;
uint64_t host_pages_per_lpage;
enum vm_mem_backing_src_type src_type;
struct vcpu_args vcpu_args[KVM_MAX_VCPUS];
};
/*
* Guest variables. Use addr_gva2hva() if these variables need
* to be changed in host.
*/
static enum test_stage guest_test_stage;
/* Host variables */
static uint32_t nr_vcpus = 1;
static struct test_args test_args;
static enum test_stage *current_stage;
static bool host_quit;
/* Whether the test stage is updated, or completed */
static sem_t test_stage_updated;
static sem_t test_stage_completed;
/*
* Guest physical memory offset of the testing memory slot.
* This will be set to the topmost valid physical address minus
* the test memory size.
*/
static uint64_t guest_test_phys_mem;
/*
* Guest virtual memory offset of the testing memory slot.
* Must not conflict with identity mapped test code.
*/
static uint64_t guest_test_virt_mem = DEFAULT_GUEST_TEST_MEM;
static void guest_code(int vcpu_id)
{
struct test_args *p = &test_args;
struct vcpu_args *vcpu_args = &p->vcpu_args[vcpu_id];
enum test_stage *current_stage = &guest_test_stage;
uint64_t addr;
int i, j;
/* Make sure vCPU args data structure is not corrupt */
GUEST_ASSERT(vcpu_args->vcpu_id == vcpu_id);
while (true) {
addr = p->guest_test_virt_mem;
switch (READ_ONCE(*current_stage)) {
/*
* All vCPU threads will be started in this stage,
* where guest code of each vCPU will do nothing.
*/
case KVM_BEFORE_MAPPINGS:
break;
/*
* Before dirty logging, vCPUs concurrently access the first
* 8 bytes of each page (host page/large page) within the same
* memory region with different accessing types (read/write).
* Then KVM will create normal page mappings or huge block
* mappings for them.
*/
case KVM_CREATE_MAPPINGS:
for (i = 0; i < p->large_num_pages; i++) {
if (vcpu_args->vcpu_write)
*(uint64_t *)addr = 0x0123456789ABCDEF;
else
READ_ONCE(*(uint64_t *)addr);
addr += p->large_page_size;
}
break;
/*
* During dirty logging, KVM will only update attributes of the
* normal page mappings from RO to RW if memory backing src type
* is anonymous. In other cases, KVM will split the huge block
* mappings into normal page mappings if memory backing src type
* is THP or HUGETLB.
*/
case KVM_UPDATE_MAPPINGS:
if (p->src_type == VM_MEM_SRC_ANONYMOUS) {
for (i = 0; i < p->host_num_pages; i++) {
*(uint64_t *)addr = 0x0123456789ABCDEF;
addr += p->host_page_size;
}
break;
}
for (i = 0; i < p->large_num_pages; i++) {
/*
* Write to the first host page in each large
* page region, and triger break of large pages.
*/
*(uint64_t *)addr = 0x0123456789ABCDEF;
/*
* Access the middle host pages in each large
* page region. Since dirty logging is enabled,
* this will create new mappings at the smallest
* granularity.
*/
addr += p->large_page_size / 2;
for (j = 0; j < p->host_pages_per_lpage / 2; j++) {
READ_ONCE(*(uint64_t *)addr);
addr += p->host_page_size;
}
}
break;
/*
* After dirty logging is stopped, vCPUs concurrently read
* from every single host page. Then KVM will coalesce the
* split page mappings back to block mappings. And a TLB
* conflict abort could occur here if TLB entries of the
* page mappings are not fully invalidated.
*/
case KVM_ADJUST_MAPPINGS:
for (i = 0; i < p->host_num_pages; i++) {
READ_ONCE(*(uint64_t *)addr);
addr += p->host_page_size;
}
break;
default:
GUEST_ASSERT(0);
}
GUEST_SYNC(1);
}
}
static void *vcpu_worker(void *data)
{
int ret;
struct vcpu_args *vcpu_args = data;
struct kvm_vm *vm = test_args.vm;
int vcpu_id = vcpu_args->vcpu_id;
struct kvm_run *run;
struct timespec start;
struct timespec ts_diff;
enum test_stage stage;
vcpu_args_set(vm, vcpu_id, 1, vcpu_id);
run = vcpu_state(vm, vcpu_id);
while (!READ_ONCE(host_quit)) {
ret = sem_wait(&test_stage_updated);
TEST_ASSERT(ret == 0, "Error in sem_wait");
if (READ_ONCE(host_quit))
return NULL;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
ret = _vcpu_run(vm, vcpu_id);
ts_diff = timespec_elapsed(start);
TEST_ASSERT(ret == 0, "vcpu_run failed: %d\n", ret);
TEST_ASSERT(get_ucall(vm, vcpu_id, NULL) == UCALL_SYNC,
"Invalid guest sync status: exit_reason=%s\n",
exit_reason_str(run->exit_reason));
pr_debug("Got sync event from vCPU %d\n", vcpu_id);
stage = READ_ONCE(*current_stage);
/*
* Here we can know the execution time of every
* single vcpu running in different test stages.
*/
pr_debug("vCPU %d has completed stage %s\n"
"execution time is: %ld.%.9lds\n\n",
vcpu_id, test_stage_string[stage],
ts_diff.tv_sec, ts_diff.tv_nsec);
ret = sem_post(&test_stage_completed);
TEST_ASSERT(ret == 0, "Error in sem_post");
}
return NULL;
}
struct test_params {
uint64_t phys_offset;
uint64_t test_mem_size;
enum vm_mem_backing_src_type src_type;
};
static struct kvm_vm *pre_init_before_test(enum vm_guest_mode mode, void *arg)
{
int ret;
struct test_params *p = arg;
struct vcpu_args *vcpu_args;
enum vm_mem_backing_src_type src_type = p->src_type;
uint64_t large_page_size = get_backing_src_pagesz(src_type);
uint64_t guest_page_size = vm_guest_mode_params[mode].page_size;
uint64_t host_page_size = getpagesize();
uint64_t test_mem_size = p->test_mem_size;
uint64_t guest_num_pages;
uint64_t alignment;
void *host_test_mem;
struct kvm_vm *vm;
int vcpu_id;
/* Align up the test memory size */
alignment = max(large_page_size, guest_page_size);
test_mem_size = (test_mem_size + alignment - 1) & ~(alignment - 1);
/* Create a VM with enough guest pages */
guest_num_pages = test_mem_size / guest_page_size;
vm = vm_create_with_vcpus(mode, nr_vcpus, DEFAULT_GUEST_PHY_PAGES,
guest_num_pages, 0, guest_code, NULL);
/* Align down GPA of the testing memslot */
if (!p->phys_offset)
guest_test_phys_mem = (vm_get_max_gfn(vm) - guest_num_pages) *
guest_page_size;
else
guest_test_phys_mem = p->phys_offset;
#ifdef __s390x__
alignment = max(0x100000, alignment);
#endif
guest_test_phys_mem &= ~(alignment - 1);
/* Set up the shared data structure test_args */
test_args.vm = vm;
test_args.guest_test_virt_mem = guest_test_virt_mem;
test_args.host_page_size = host_page_size;
test_args.host_num_pages = test_mem_size / host_page_size;
test_args.large_page_size = large_page_size;
test_args.large_num_pages = test_mem_size / large_page_size;
test_args.host_pages_per_lpage = large_page_size / host_page_size;
test_args.src_type = src_type;
for (vcpu_id = 0; vcpu_id < KVM_MAX_VCPUS; vcpu_id++) {
vcpu_args = &test_args.vcpu_args[vcpu_id];
vcpu_args->vcpu_id = vcpu_id;
vcpu_args->vcpu_write = !(vcpu_id % 2);
}
/* Add an extra memory slot with specified backing src type */
vm_userspace_mem_region_add(vm, src_type, guest_test_phys_mem,
TEST_MEM_SLOT_INDEX, guest_num_pages, 0);
/* Do mapping(GVA->GPA) for the testing memory slot */
virt_map(vm, guest_test_virt_mem, guest_test_phys_mem, guest_num_pages, 0);
/* Cache the HVA pointer of the region */
host_test_mem = addr_gpa2hva(vm, (vm_paddr_t)guest_test_phys_mem);
/* Export shared structure test_args to guest */
ucall_init(vm, NULL);
sync_global_to_guest(vm, test_args);
ret = sem_init(&test_stage_updated, 0, 0);
TEST_ASSERT(ret == 0, "Error in sem_init");
ret = sem_init(&test_stage_completed, 0, 0);
TEST_ASSERT(ret == 0, "Error in sem_init");
current_stage = addr_gva2hva(vm, (vm_vaddr_t)(&guest_test_stage));
*current_stage = NUM_TEST_STAGES;
pr_info("Testing guest mode: %s\n", vm_guest_mode_string(mode));
pr_info("Testing memory backing src type: %s\n",
vm_mem_backing_src_alias(src_type)->name);
pr_info("Testing memory backing src granularity: 0x%lx\n",
large_page_size);
pr_info("Testing memory size(aligned): 0x%lx\n", test_mem_size);
pr_info("Guest physical test memory offset: 0x%lx\n",
guest_test_phys_mem);
pr_info("Host virtual test memory offset: 0x%lx\n",
(uint64_t)host_test_mem);
pr_info("Number of testing vCPUs: %d\n", nr_vcpus);
return vm;
}
static void vcpus_complete_new_stage(enum test_stage stage)
{
int ret;
int vcpus;
/* Wake up all the vcpus to run new test stage */
for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
ret = sem_post(&test_stage_updated);
TEST_ASSERT(ret == 0, "Error in sem_post");
}
pr_debug("All vcpus have been notified to continue\n");
/* Wait for all the vcpus to complete new test stage */
for (vcpus = 0; vcpus < nr_vcpus; vcpus++) {
ret = sem_wait(&test_stage_completed);
TEST_ASSERT(ret == 0, "Error in sem_wait");
pr_debug("%d vcpus have completed stage %s\n",
vcpus + 1, test_stage_string[stage]);
}
pr_debug("All vcpus have completed stage %s\n",
test_stage_string[stage]);
}
static void run_test(enum vm_guest_mode mode, void *arg)
{
int ret;
pthread_t *vcpu_threads;
struct kvm_vm *vm;
int vcpu_id;
struct timespec start;
struct timespec ts_diff;
/* Create VM with vCPUs and make some pre-initialization */
vm = pre_init_before_test(mode, arg);
vcpu_threads = malloc(nr_vcpus * sizeof(*vcpu_threads));
TEST_ASSERT(vcpu_threads, "Memory allocation failed");
host_quit = false;
*current_stage = KVM_BEFORE_MAPPINGS;
for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
pthread_create(&vcpu_threads[vcpu_id], NULL, vcpu_worker,
&test_args.vcpu_args[vcpu_id]);
}
vcpus_complete_new_stage(*current_stage);
pr_info("Started all vCPUs successfully\n");
/* Test the stage of KVM creating mappings */
*current_stage = KVM_CREATE_MAPPINGS;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
vcpus_complete_new_stage(*current_stage);
ts_diff = timespec_elapsed(start);
pr_info("KVM_CREATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
/* Test the stage of KVM updating mappings */
vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX,
KVM_MEM_LOG_DIRTY_PAGES);
*current_stage = KVM_UPDATE_MAPPINGS;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
vcpus_complete_new_stage(*current_stage);
ts_diff = timespec_elapsed(start);
pr_info("KVM_UPDATE_MAPPINGS: total execution time: %ld.%.9lds\n\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
/* Test the stage of KVM adjusting mappings */
vm_mem_region_set_flags(vm, TEST_MEM_SLOT_INDEX, 0);
*current_stage = KVM_ADJUST_MAPPINGS;
clock_gettime(CLOCK_MONOTONIC_RAW, &start);
vcpus_complete_new_stage(*current_stage);
ts_diff = timespec_elapsed(start);
pr_info("KVM_ADJUST_MAPPINGS: total execution time: %ld.%.9lds\n\n",
ts_diff.tv_sec, ts_diff.tv_nsec);
/* Tell the vcpu thread to quit */
host_quit = true;
for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++) {
ret = sem_post(&test_stage_updated);
TEST_ASSERT(ret == 0, "Error in sem_post");
}
for (vcpu_id = 0; vcpu_id < nr_vcpus; vcpu_id++)
pthread_join(vcpu_threads[vcpu_id], NULL);
ret = sem_destroy(&test_stage_updated);
TEST_ASSERT(ret == 0, "Error in sem_destroy");
ret = sem_destroy(&test_stage_completed);
TEST_ASSERT(ret == 0, "Error in sem_destroy");
free(vcpu_threads);
ucall_uninit(vm);
kvm_vm_free(vm);
}
static void help(char *name)
{
puts("");
printf("usage: %s [-h] [-p offset] [-m mode] "
"[-b mem-size] [-v vcpus] [-s mem-type]\n", name);
puts("");
printf(" -p: specify guest physical test memory offset\n"
" Warning: a low offset can conflict with the loaded test code.\n");
guest_modes_help();
printf(" -b: specify size of the memory region for testing. e.g. 10M or 3G.\n"
" (default: 1G)\n");
printf(" -v: specify the number of vCPUs to run\n"
" (default: 1)\n");
printf(" -s: specify the type of memory that should be used to\n"
" back the guest data region.\n"
" (default: anonymous)\n\n");
backing_src_help();
puts("");
}
int main(int argc, char *argv[])
{
int max_vcpus = kvm_check_cap(KVM_CAP_MAX_VCPUS);
struct test_params p = {
.test_mem_size = DEFAULT_TEST_MEM_SIZE,
.src_type = VM_MEM_SRC_ANONYMOUS,
};
int opt;
guest_modes_append_default();
while ((opt = getopt(argc, argv, "hp:m:b:v:s:")) != -1) {
switch (opt) {
case 'p':
p.phys_offset = strtoull(optarg, NULL, 0);
break;
case 'm':
guest_modes_cmdline(optarg);
break;
case 'b':
p.test_mem_size = parse_size(optarg);
break;
case 'v':
nr_vcpus = atoi(optarg);
TEST_ASSERT(nr_vcpus > 0 && nr_vcpus <= max_vcpus,
"Invalid number of vcpus, must be between 1 and %d", max_vcpus);
break;
case 's':
p.src_type = parse_backing_src_type(optarg);
break;
case 'h':
default:
help(argv[0]);
exit(0);
}
}
for_each_guest_mode(run_test, &p);
return 0;
}
|