summaryrefslogtreecommitdiffstats
path: root/tools/testing/selftests/sgx/main.c
blob: 370c4995f7c4abccb8c2741b872a3871a0c874a6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
// SPDX-License-Identifier: GPL-2.0
/*  Copyright(c) 2016-20 Intel Corporation. */

#include <cpuid.h>
#include <elf.h>
#include <errno.h>
#include <fcntl.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <string.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <sys/types.h>
#include <sys/auxv.h>
#include "defines.h"
#include "../kselftest_harness.h"
#include "main.h"

static const uint64_t MAGIC = 0x1122334455667788ULL;
static const uint64_t MAGIC2 = 0x8877665544332211ULL;
vdso_sgx_enter_enclave_t vdso_sgx_enter_enclave;

struct vdso_symtab {
	Elf64_Sym *elf_symtab;
	const char *elf_symstrtab;
	Elf64_Word *elf_hashtab;
};

static Elf64_Dyn *vdso_get_dyntab(void *addr)
{
	Elf64_Ehdr *ehdr = addr;
	Elf64_Phdr *phdrtab = addr + ehdr->e_phoff;
	int i;

	for (i = 0; i < ehdr->e_phnum; i++)
		if (phdrtab[i].p_type == PT_DYNAMIC)
			return addr + phdrtab[i].p_offset;

	return NULL;
}

static void *vdso_get_dyn(void *addr, Elf64_Dyn *dyntab, Elf64_Sxword tag)
{
	int i;

	for (i = 0; dyntab[i].d_tag != DT_NULL; i++)
		if (dyntab[i].d_tag == tag)
			return addr + dyntab[i].d_un.d_ptr;

	return NULL;
}

static bool vdso_get_symtab(void *addr, struct vdso_symtab *symtab)
{
	Elf64_Dyn *dyntab = vdso_get_dyntab(addr);

	symtab->elf_symtab = vdso_get_dyn(addr, dyntab, DT_SYMTAB);
	if (!symtab->elf_symtab)
		return false;

	symtab->elf_symstrtab = vdso_get_dyn(addr, dyntab, DT_STRTAB);
	if (!symtab->elf_symstrtab)
		return false;

	symtab->elf_hashtab = vdso_get_dyn(addr, dyntab, DT_HASH);
	if (!symtab->elf_hashtab)
		return false;

	return true;
}

static unsigned long elf_sym_hash(const char *name)
{
	unsigned long h = 0, high;

	while (*name) {
		h = (h << 4) + *name++;
		high = h & 0xf0000000;

		if (high)
			h ^= high >> 24;

		h &= ~high;
	}

	return h;
}

static Elf64_Sym *vdso_symtab_get(struct vdso_symtab *symtab, const char *name)
{
	Elf64_Word bucketnum = symtab->elf_hashtab[0];
	Elf64_Word *buckettab = &symtab->elf_hashtab[2];
	Elf64_Word *chaintab = &symtab->elf_hashtab[2 + bucketnum];
	Elf64_Sym *sym;
	Elf64_Word i;

	for (i = buckettab[elf_sym_hash(name) % bucketnum]; i != STN_UNDEF;
	     i = chaintab[i]) {
		sym = &symtab->elf_symtab[i];
		if (!strcmp(name, &symtab->elf_symstrtab[sym->st_name]))
			return sym;
	}

	return NULL;
}

/*
 * Return the offset in the enclave where the data segment can be found.
 * The first RW segment loaded is the TCS, skip that to get info on the
 * data segment.
 */
static off_t encl_get_data_offset(struct encl *encl)
{
	int i;

	for (i = 1; i < encl->nr_segments; i++) {
		struct encl_segment *seg = &encl->segment_tbl[i];

		if (seg->prot == (PROT_READ | PROT_WRITE))
			return seg->offset;
	}

	return -1;
}

FIXTURE(enclave) {
	struct encl encl;
	struct sgx_enclave_run run;
};

static bool setup_test_encl(unsigned long heap_size, struct encl *encl,
			    struct __test_metadata *_metadata)
{
	Elf64_Sym *sgx_enter_enclave_sym = NULL;
	struct vdso_symtab symtab;
	struct encl_segment *seg;
	char maps_line[256];
	FILE *maps_file;
	unsigned int i;
	void *addr;

	if (!encl_load("test_encl.elf", encl, heap_size)) {
		encl_delete(encl);
		TH_LOG("Failed to load the test enclave.\n");
	}

	if (!encl_measure(encl))
		goto err;

	if (!encl_build(encl))
		goto err;

	/*
	 * An enclave consumer only must do this.
	 */
	for (i = 0; i < encl->nr_segments; i++) {
		struct encl_segment *seg = &encl->segment_tbl[i];

		addr = mmap((void *)encl->encl_base + seg->offset, seg->size,
			    seg->prot, MAP_SHARED | MAP_FIXED, encl->fd, 0);
		EXPECT_NE(addr, MAP_FAILED);
		if (addr == MAP_FAILED)
			goto err;
	}

	/* Get vDSO base address */
	addr = (void *)getauxval(AT_SYSINFO_EHDR);
	if (!addr)
		goto err;

	if (!vdso_get_symtab(addr, &symtab))
		goto err;

	sgx_enter_enclave_sym = vdso_symtab_get(&symtab, "__vdso_sgx_enter_enclave");
	if (!sgx_enter_enclave_sym)
		goto err;

	vdso_sgx_enter_enclave = addr + sgx_enter_enclave_sym->st_value;

	return true;

err:
	encl_delete(encl);

	for (i = 0; i < encl->nr_segments; i++) {
		seg = &encl->segment_tbl[i];

		TH_LOG("0x%016lx 0x%016lx 0x%02x", seg->offset, seg->size, seg->prot);
	}

	maps_file = fopen("/proc/self/maps", "r");
	if (maps_file != NULL)  {
		while (fgets(maps_line, sizeof(maps_line), maps_file) != NULL) {
			maps_line[strlen(maps_line) - 1] = '\0';

			if (strstr(maps_line, "/dev/sgx_enclave"))
				TH_LOG("%s", maps_line);
		}

		fclose(maps_file);
	}

	TH_LOG("Failed to initialize the test enclave.\n");

	return false;
}

FIXTURE_SETUP(enclave)
{
}

FIXTURE_TEARDOWN(enclave)
{
	encl_delete(&self->encl);
}

#define ENCL_CALL(op, run, clobbered) \
	({ \
		int ret; \
		if ((clobbered)) \
			ret = vdso_sgx_enter_enclave((unsigned long)(op), 0, 0, \
						     EENTER, 0, 0, (run)); \
		else \
			ret = sgx_enter_enclave((void *)(op), NULL, 0, EENTER, NULL, NULL, \
						(run)); \
		ret; \
	})

#define EXPECT_EEXIT(run) \
	do { \
		EXPECT_EQ((run)->function, EEXIT); \
		if ((run)->function != EEXIT) \
			TH_LOG("0x%02x 0x%02x 0x%016llx", (run)->exception_vector, \
			       (run)->exception_error_code, (run)->exception_addr); \
	} while (0)

TEST_F(enclave, unclobbered_vdso)
{
	struct encl_op_get_from_buf get_op;
	struct encl_op_put_to_buf put_op;

	ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));

	memset(&self->run, 0, sizeof(self->run));
	self->run.tcs = self->encl.encl_base;

	put_op.header.type = ENCL_OP_PUT_TO_BUFFER;
	put_op.value = MAGIC;

	EXPECT_EQ(ENCL_CALL(&put_op, &self->run, false), 0);

	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.user_data, 0);

	get_op.header.type = ENCL_OP_GET_FROM_BUFFER;
	get_op.value = 0;

	EXPECT_EQ(ENCL_CALL(&get_op, &self->run, false), 0);

	EXPECT_EQ(get_op.value, MAGIC);
	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.user_data, 0);
}

/*
 * A section metric is concatenated in a way that @low bits 12-31 define the
 * bits 12-31 of the metric and @high bits 0-19 define the bits 32-51 of the
 * metric.
 */
static unsigned long sgx_calc_section_metric(unsigned int low,
					     unsigned int high)
{
	return (low & GENMASK_ULL(31, 12)) +
	       ((high & GENMASK_ULL(19, 0)) << 32);
}

/*
 * Sum total available physical SGX memory across all EPC sections
 *
 * Return: total available physical SGX memory available on system
 */
static unsigned long get_total_epc_mem(void)
{
	unsigned int eax, ebx, ecx, edx;
	unsigned long total_size = 0;
	unsigned int type;
	int section = 0;

	while (true) {
		__cpuid_count(SGX_CPUID, section + SGX_CPUID_EPC, eax, ebx, ecx, edx);

		type = eax & SGX_CPUID_EPC_MASK;
		if (type == SGX_CPUID_EPC_INVALID)
			break;

		if (type != SGX_CPUID_EPC_SECTION)
			break;

		total_size += sgx_calc_section_metric(ecx, edx);

		section++;
	}

	return total_size;
}

TEST_F(enclave, unclobbered_vdso_oversubscribed)
{
	struct encl_op_get_from_buf get_op;
	struct encl_op_put_to_buf put_op;
	unsigned long total_mem;

	total_mem = get_total_epc_mem();
	ASSERT_NE(total_mem, 0);
	ASSERT_TRUE(setup_test_encl(total_mem, &self->encl, _metadata));

	memset(&self->run, 0, sizeof(self->run));
	self->run.tcs = self->encl.encl_base;

	put_op.header.type = ENCL_OP_PUT_TO_BUFFER;
	put_op.value = MAGIC;

	EXPECT_EQ(ENCL_CALL(&put_op, &self->run, false), 0);

	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.user_data, 0);

	get_op.header.type = ENCL_OP_GET_FROM_BUFFER;
	get_op.value = 0;

	EXPECT_EQ(ENCL_CALL(&get_op, &self->run, false), 0);

	EXPECT_EQ(get_op.value, MAGIC);
	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.user_data, 0);

}

TEST_F(enclave, clobbered_vdso)
{
	struct encl_op_get_from_buf get_op;
	struct encl_op_put_to_buf put_op;

	ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));

	memset(&self->run, 0, sizeof(self->run));
	self->run.tcs = self->encl.encl_base;

	put_op.header.type = ENCL_OP_PUT_TO_BUFFER;
	put_op.value = MAGIC;

	EXPECT_EQ(ENCL_CALL(&put_op, &self->run, true), 0);

	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.user_data, 0);

	get_op.header.type = ENCL_OP_GET_FROM_BUFFER;
	get_op.value = 0;

	EXPECT_EQ(ENCL_CALL(&get_op, &self->run, true), 0);

	EXPECT_EQ(get_op.value, MAGIC);
	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.user_data, 0);
}

static int test_handler(long rdi, long rsi, long rdx, long ursp, long r8, long r9,
			struct sgx_enclave_run *run)
{
	run->user_data = 0;

	return 0;
}

TEST_F(enclave, clobbered_vdso_and_user_function)
{
	struct encl_op_get_from_buf get_op;
	struct encl_op_put_to_buf put_op;

	ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));

	memset(&self->run, 0, sizeof(self->run));
	self->run.tcs = self->encl.encl_base;

	self->run.user_handler = (__u64)test_handler;
	self->run.user_data = 0xdeadbeef;

	put_op.header.type = ENCL_OP_PUT_TO_BUFFER;
	put_op.value = MAGIC;

	EXPECT_EQ(ENCL_CALL(&put_op, &self->run, true), 0);

	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.user_data, 0);

	get_op.header.type = ENCL_OP_GET_FROM_BUFFER;
	get_op.value = 0;

	EXPECT_EQ(ENCL_CALL(&get_op, &self->run, true), 0);

	EXPECT_EQ(get_op.value, MAGIC);
	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.user_data, 0);
}

/*
 * Sanity check that it is possible to enter either of the two hardcoded TCS
 */
TEST_F(enclave, tcs_entry)
{
	struct encl_op_header op;

	ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));

	memset(&self->run, 0, sizeof(self->run));
	self->run.tcs = self->encl.encl_base;

	op.type = ENCL_OP_NOP;

	EXPECT_EQ(ENCL_CALL(&op, &self->run, true), 0);

	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.exception_vector, 0);
	EXPECT_EQ(self->run.exception_error_code, 0);
	EXPECT_EQ(self->run.exception_addr, 0);

	/* Move to the next TCS. */
	self->run.tcs = self->encl.encl_base + PAGE_SIZE;

	EXPECT_EQ(ENCL_CALL(&op, &self->run, true), 0);

	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.exception_vector, 0);
	EXPECT_EQ(self->run.exception_error_code, 0);
	EXPECT_EQ(self->run.exception_addr, 0);
}

/*
 * Second page of .data segment is used to test changing PTE permissions.
 * This spans the local encl_buffer within the test enclave.
 *
 * 1) Start with a sanity check: a value is written to the target page within
 *    the enclave and read back to ensure target page can be written to.
 * 2) Change PTE permissions (RW -> RO) of target page within enclave.
 * 3) Repeat (1) - this time expecting a regular #PF communicated via the
 *    vDSO.
 * 4) Change PTE permissions of target page within enclave back to be RW.
 * 5) Repeat (1) by resuming enclave, now expected to be possible to write to
 *    and read from target page within enclave.
 */
TEST_F(enclave, pte_permissions)
{
	struct encl_op_get_from_addr get_addr_op;
	struct encl_op_put_to_addr put_addr_op;
	unsigned long data_start;
	int ret;

	ASSERT_TRUE(setup_test_encl(ENCL_HEAP_SIZE_DEFAULT, &self->encl, _metadata));

	memset(&self->run, 0, sizeof(self->run));
	self->run.tcs = self->encl.encl_base;

	data_start = self->encl.encl_base +
		     encl_get_data_offset(&self->encl) +
		     PAGE_SIZE;

	/*
	 * Sanity check to ensure it is possible to write to page that will
	 * have its permissions manipulated.
	 */

	/* Write MAGIC to page */
	put_addr_op.value = MAGIC;
	put_addr_op.addr = data_start;
	put_addr_op.header.type = ENCL_OP_PUT_TO_ADDRESS;

	EXPECT_EQ(ENCL_CALL(&put_addr_op, &self->run, true), 0);

	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.exception_vector, 0);
	EXPECT_EQ(self->run.exception_error_code, 0);
	EXPECT_EQ(self->run.exception_addr, 0);

	/*
	 * Read memory that was just written to, confirming that it is the
	 * value previously written (MAGIC).
	 */
	get_addr_op.value = 0;
	get_addr_op.addr = data_start;
	get_addr_op.header.type = ENCL_OP_GET_FROM_ADDRESS;

	EXPECT_EQ(ENCL_CALL(&get_addr_op, &self->run, true), 0);

	EXPECT_EQ(get_addr_op.value, MAGIC);
	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.exception_vector, 0);
	EXPECT_EQ(self->run.exception_error_code, 0);
	EXPECT_EQ(self->run.exception_addr, 0);

	/* Change PTE permissions of target page within the enclave */
	ret = mprotect((void *)data_start, PAGE_SIZE, PROT_READ);
	if (ret)
		perror("mprotect");

	/*
	 * PTE permissions of target page changed to read-only, EPCM
	 * permissions unchanged (EPCM permissions are RW), attempt to
	 * write to the page, expecting a regular #PF.
	 */

	put_addr_op.value = MAGIC2;

	EXPECT_EQ(ENCL_CALL(&put_addr_op, &self->run, true), 0);

	EXPECT_EQ(self->run.exception_vector, 14);
	EXPECT_EQ(self->run.exception_error_code, 0x7);
	EXPECT_EQ(self->run.exception_addr, data_start);

	self->run.exception_vector = 0;
	self->run.exception_error_code = 0;
	self->run.exception_addr = 0;

	/*
	 * Change PTE permissions back to enable enclave to write to the
	 * target page and resume enclave - do not expect any exceptions this
	 * time.
	 */
	ret = mprotect((void *)data_start, PAGE_SIZE, PROT_READ | PROT_WRITE);
	if (ret)
		perror("mprotect");

	EXPECT_EQ(vdso_sgx_enter_enclave((unsigned long)&put_addr_op, 0,
					 0, ERESUME, 0, 0, &self->run),
		 0);

	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.exception_vector, 0);
	EXPECT_EQ(self->run.exception_error_code, 0);
	EXPECT_EQ(self->run.exception_addr, 0);

	get_addr_op.value = 0;

	EXPECT_EQ(ENCL_CALL(&get_addr_op, &self->run, true), 0);

	EXPECT_EQ(get_addr_op.value, MAGIC2);
	EXPECT_EEXIT(&self->run);
	EXPECT_EQ(self->run.exception_vector, 0);
	EXPECT_EQ(self->run.exception_error_code, 0);
	EXPECT_EQ(self->run.exception_addr, 0);
}

TEST_HARNESS_MAIN