summaryrefslogtreecommitdiffstats
path: root/moduli.c
blob: d454c30dc4ed7e7caea22481399215f42a6c0564 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
/* $OpenBSD: moduli.c,v 1.6 2004/04/22 11:56:57 djm Exp $ */
/*
 * Copyright 1994 Phil Karn <karn@qualcomm.com>
 * Copyright 1996-1998, 2003 William Allen Simpson <wsimpson@greendragon.com>
 * Copyright 2000 Niels Provos <provos@citi.umich.edu>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * Two-step process to generate safe primes for DHGEX
 *
 *  Sieve candidates for "safe" primes,
 *  suitable for use as Diffie-Hellman moduli;
 *  that is, where q = (p-1)/2 is also prime.
 *
 * First step: generate candidate primes (memory intensive)
 * Second step: test primes' safety (processor intensive)
 */

#include "includes.h"
#include "moduli.h"
#include "xmalloc.h"
#include "log.h"

#include <openssl/bn.h>

/*
 * File output defines
 */

/* need line long enough for largest moduli plus headers */
#define QLINESIZE               (100+8192)

/* Type: decimal.
 * Specifies the internal structure of the prime modulus.
 */
#define QTYPE_UNKNOWN           (0)
#define QTYPE_UNSTRUCTURED      (1)
#define QTYPE_SAFE              (2)
#define QTYPE_SCHNOOR           (3)
#define QTYPE_SOPHIE_GERMAIN    (4)
#define QTYPE_STRONG            (5)

/* Tests: decimal (bit field).
 * Specifies the methods used in checking for primality.
 * Usually, more than one test is used.
 */
#define QTEST_UNTESTED          (0x00)
#define QTEST_COMPOSITE         (0x01)
#define QTEST_SIEVE             (0x02)
#define QTEST_MILLER_RABIN      (0x04)
#define QTEST_JACOBI            (0x08)
#define QTEST_ELLIPTIC          (0x10)

/*
 * Size: decimal.
 * Specifies the number of the most significant bit (0 to M).
 * WARNING: internally, usually 1 to N.
 */
#define QSIZE_MINIMUM           (511)

/*
 * Prime sieving defines
 */

/* Constant: assuming 8 bit bytes and 32 bit words */
#define SHIFT_BIT       (3)
#define SHIFT_BYTE      (2)
#define SHIFT_WORD      (SHIFT_BIT+SHIFT_BYTE)
#define SHIFT_MEGABYTE  (20)
#define SHIFT_MEGAWORD  (SHIFT_MEGABYTE-SHIFT_BYTE)

/*
 * Constant: when used with 32-bit integers, the largest sieve prime
 * has to be less than 2**32.
 */
#define SMALL_MAXIMUM   (0xffffffffUL)

/* Constant: can sieve all primes less than 2**32, as 65537**2 > 2**32-1. */
#define TINY_NUMBER     (1UL<<16)

/* Ensure enough bit space for testing 2*q. */
#define TEST_MAXIMUM    (1UL<<16)
#define TEST_MINIMUM    (QSIZE_MINIMUM + 1)
/* real TEST_MINIMUM    (1UL << (SHIFT_WORD - TEST_POWER)) */
#define TEST_POWER      (3)	/* 2**n, n < SHIFT_WORD */

/* bit operations on 32-bit words */
#define BIT_CLEAR(a,n)  ((a)[(n)>>SHIFT_WORD] &= ~(1L << ((n) & 31)))
#define BIT_SET(a,n)    ((a)[(n)>>SHIFT_WORD] |= (1L << ((n) & 31)))
#define BIT_TEST(a,n)   ((a)[(n)>>SHIFT_WORD] & (1L << ((n) & 31)))

/*
 * Prime testing defines
 */

/*
 * Sieving data (XXX - move to struct)
 */

/* sieve 2**16 */
static u_int32_t *TinySieve, tinybits;

/* sieve 2**30 in 2**16 parts */
static u_int32_t *SmallSieve, smallbits, smallbase;

/* sieve relative to the initial value */
static u_int32_t *LargeSieve, largewords, largetries, largenumbers;
static u_int32_t largebits, largememory;	/* megabytes */
static BIGNUM *largebase;


/*
 * print moduli out in consistent form,
 */
static int
qfileout(FILE * ofile, u_int32_t otype, u_int32_t otests, u_int32_t otries,
    u_int32_t osize, u_int32_t ogenerator, BIGNUM * omodulus)
{
	struct tm *gtm;
	time_t time_now;
	int res;

	time(&time_now);
	gtm = gmtime(&time_now);

	res = fprintf(ofile, "%04d%02d%02d%02d%02d%02d %u %u %u %u %x ",
	    gtm->tm_year + 1900, gtm->tm_mon + 1, gtm->tm_mday,
	    gtm->tm_hour, gtm->tm_min, gtm->tm_sec,
	    otype, otests, otries, osize, ogenerator);

	if (res < 0)
		return (-1);

	if (BN_print_fp(ofile, omodulus) < 1)
		return (-1);

	res = fprintf(ofile, "\n");
	fflush(ofile);

	return (res > 0 ? 0 : -1);
}


/*
 ** Sieve p's and q's with small factors
 */
static void
sieve_large(u_int32_t s)
{
	u_int32_t r, u;

	debug3("sieve_large %u", s);
	largetries++;
	/* r = largebase mod s */
	r = BN_mod_word(largebase, s);
	if (r == 0)
		u = 0; /* s divides into largebase exactly */
	else
		u = s - r; /* largebase+u is first entry divisible by s */

	if (u < largebits * 2) {
		/*
		 * The sieve omits p's and q's divisible by 2, so ensure that
		 * largebase+u is odd. Then, step through the sieve in
		 * increments of 2*s
		 */
		if (u & 0x1)
			u += s; /* Make largebase+u odd, and u even */

		/* Mark all multiples of 2*s */
		for (u /= 2; u < largebits; u += s)
			BIT_SET(LargeSieve, u);
	}

	/* r = p mod s */
	r = (2 * r + 1) % s;
	if (r == 0)
		u = 0; /* s divides p exactly */
	else
		u = s - r; /* p+u is first entry divisible by s */

	if (u < largebits * 4) {
		/*
		 * The sieve omits p's divisible by 4, so ensure that
		 * largebase+u is not. Then, step through the sieve in
		 * increments of 4*s
		 */
		while (u & 0x3) {
			if (SMALL_MAXIMUM - u < s)
				return;
			u += s;
		}

		/* Mark all multiples of 4*s */
		for (u /= 4; u < largebits; u += s)
			BIT_SET(LargeSieve, u);
	}
}

/*
 * list candidates for Sophie-Germain primes (where q = (p-1)/2)
 * to standard output.
 * The list is checked against small known primes (less than 2**30).
 */
int
gen_candidates(FILE *out, int memory, int power, BIGNUM *start)
{
	BIGNUM *q;
	u_int32_t j, r, s, t;
	u_int32_t smallwords = TINY_NUMBER >> 6;
	u_int32_t tinywords = TINY_NUMBER >> 6;
	time_t time_start, time_stop;
	int i, ret = 0;

	largememory = memory;

	/*
	 * Set power to the length in bits of the prime to be generated.
	 * This is changed to 1 less than the desired safe prime moduli p.
	 */
	if (power > TEST_MAXIMUM) {
		error("Too many bits: %u > %lu", power, TEST_MAXIMUM);
		return (-1);
	} else if (power < TEST_MINIMUM) {
		error("Too few bits: %u < %u", power, TEST_MINIMUM);
		return (-1);
	}
	power--; /* decrement before squaring */

	/*
	 * The density of ordinary primes is on the order of 1/bits, so the
	 * density of safe primes should be about (1/bits)**2. Set test range
	 * to something well above bits**2 to be reasonably sure (but not
	 * guaranteed) of catching at least one safe prime.
	 */
	largewords = ((power * power) >> (SHIFT_WORD - TEST_POWER));

	/*
	 * Need idea of how much memory is available. We don't have to use all
	 * of it.
	 */
	if (largememory > LARGE_MAXIMUM) {
		logit("Limited memory: %u MB; limit %lu MB",
		    largememory, LARGE_MAXIMUM);
		largememory = LARGE_MAXIMUM;
	}

	if (largewords <= (largememory << SHIFT_MEGAWORD)) {
		logit("Increased memory: %u MB; need %u bytes",
		    largememory, (largewords << SHIFT_BYTE));
		largewords = (largememory << SHIFT_MEGAWORD);
	} else if (largememory > 0) {
		logit("Decreased memory: %u MB; want %u bytes",
		    largememory, (largewords << SHIFT_BYTE));
		largewords = (largememory << SHIFT_MEGAWORD);
	}

	TinySieve = calloc(tinywords, sizeof(u_int32_t));
	if (TinySieve == NULL) {
		error("Insufficient memory for tiny sieve: need %u bytes",
		    tinywords << SHIFT_BYTE);
		exit(1);
	}
	tinybits = tinywords << SHIFT_WORD;

	SmallSieve = calloc(smallwords, sizeof(u_int32_t));
	if (SmallSieve == NULL) {
		error("Insufficient memory for small sieve: need %u bytes",
		    smallwords << SHIFT_BYTE);
		xfree(TinySieve);
		exit(1);
	}
	smallbits = smallwords << SHIFT_WORD;

	/*
	 * dynamically determine available memory
	 */
	while ((LargeSieve = calloc(largewords, sizeof(u_int32_t))) == NULL)
		largewords -= (1L << (SHIFT_MEGAWORD - 2)); /* 1/4 MB chunks */

	largebits = largewords << SHIFT_WORD;
	largenumbers = largebits * 2;	/* even numbers excluded */

	/* validation check: count the number of primes tried */
	largetries = 0;
	q = BN_new();

	/*
	 * Generate random starting point for subprime search, or use
	 * specified parameter.
	 */
	largebase = BN_new();
	if (start == NULL)
		BN_rand(largebase, power, 1, 1);
	else
		BN_copy(largebase, start);

	/* ensure odd */
	BN_set_bit(largebase, 0);

	time(&time_start);

	logit("%.24s Sieve next %u plus %u-bit", ctime(&time_start),
	    largenumbers, power);
	debug2("start point: 0x%s", BN_bn2hex(largebase));

	/*
	 * TinySieve
	 */
	for (i = 0; i < tinybits; i++) {
		if (BIT_TEST(TinySieve, i))
			continue; /* 2*i+3 is composite */

		/* The next tiny prime */
		t = 2 * i + 3;

		/* Mark all multiples of t */
		for (j = i + t; j < tinybits; j += t)
			BIT_SET(TinySieve, j);

		sieve_large(t);
	}

	/*
	 * Start the small block search at the next possible prime. To avoid
	 * fencepost errors, the last pass is skipped.
	 */
	for (smallbase = TINY_NUMBER + 3;
	     smallbase < (SMALL_MAXIMUM - TINY_NUMBER);
	     smallbase += TINY_NUMBER) {
		for (i = 0; i < tinybits; i++) {
			if (BIT_TEST(TinySieve, i))
				continue; /* 2*i+3 is composite */

			/* The next tiny prime */
			t = 2 * i + 3;
			r = smallbase % t;

			if (r == 0) {
				s = 0; /* t divides into smallbase exactly */
			} else {
				/* smallbase+s is first entry divisible by t */
				s = t - r;
			}

			/*
			 * The sieve omits even numbers, so ensure that
			 * smallbase+s is odd. Then, step through the sieve
			 * in increments of 2*t
			 */
			if (s & 1)
				s += t; /* Make smallbase+s odd, and s even */

			/* Mark all multiples of 2*t */
			for (s /= 2; s < smallbits; s += t)
				BIT_SET(SmallSieve, s);
		}

		/*
		 * SmallSieve
		 */
		for (i = 0; i < smallbits; i++) {
			if (BIT_TEST(SmallSieve, i))
				continue; /* 2*i+smallbase is composite */

			/* The next small prime */
			sieve_large((2 * i) + smallbase);
		}

		memset(SmallSieve, 0, smallwords << SHIFT_BYTE);
	}

	time(&time_stop);

	logit("%.24s Sieved with %u small primes in %ld seconds",
	    ctime(&time_stop), largetries, (long) (time_stop - time_start));

	for (j = r = 0; j < largebits; j++) {
		if (BIT_TEST(LargeSieve, j))
			continue; /* Definitely composite, skip */

		debug2("test q = largebase+%u", 2 * j);
		BN_set_word(q, 2 * j);
		BN_add(q, q, largebase);
		if (qfileout(out, QTYPE_SOPHIE_GERMAIN, QTEST_SIEVE,
		    largetries, (power - 1) /* MSB */, (0), q) == -1) {
			ret = -1;
			break;
		}

		r++; /* count q */
	}

	time(&time_stop);

	xfree(LargeSieve);
	xfree(SmallSieve);
	xfree(TinySieve);

	logit("%.24s Found %u candidates", ctime(&time_stop), r);

	return (ret);
}

/*
 * perform a Miller-Rabin primality test
 * on the list of candidates
 * (checking both q and p)
 * The result is a list of so-call "safe" primes
 */
int
prime_test(FILE *in, FILE *out, u_int32_t trials,
    u_int32_t generator_wanted)
{
	BIGNUM *q, *p, *a;
	BN_CTX *ctx;
	char *cp, *lp;
	u_int32_t count_in = 0, count_out = 0, count_possible = 0;
	u_int32_t generator_known, in_tests, in_tries, in_type, in_size;
	time_t time_start, time_stop;
	int res;

	time(&time_start);

	p = BN_new();
	q = BN_new();
	ctx = BN_CTX_new();

	debug2("%.24s Final %u Miller-Rabin trials (%x generator)",
	    ctime(&time_start), trials, generator_wanted);

	res = 0;
	lp = xmalloc(QLINESIZE + 1);
	while (fgets(lp, QLINESIZE, in) != NULL) {
		int ll = strlen(lp);

		count_in++;
		if (ll < 14 || *lp == '!' || *lp == '#') {
			debug2("%10u: comment or short line", count_in);
			continue;
		}

		/* XXX - fragile parser */
		/* time */
		cp = &lp[14];	/* (skip) */

		/* type */
		in_type = strtoul(cp, &cp, 10);

		/* tests */
		in_tests = strtoul(cp, &cp, 10);

		if (in_tests & QTEST_COMPOSITE) {
			debug2("%10u: known composite", count_in);
			continue;
		}

		/* tries */
		in_tries = strtoul(cp, &cp, 10);

		/* size (most significant bit) */
		in_size = strtoul(cp, &cp, 10);

		/* generator (hex) */
		generator_known = strtoul(cp, &cp, 16);

		/* Skip white space */
		cp += strspn(cp, " ");

		/* modulus (hex) */
		switch (in_type) {
		case QTYPE_SOPHIE_GERMAIN:
			debug2("%10u: (%u) Sophie-Germain", count_in, in_type);
			a = q;
			BN_hex2bn(&a, cp);
			/* p = 2*q + 1 */
			BN_lshift(p, q, 1);
			BN_add_word(p, 1);
			in_size += 1;
			generator_known = 0;
			break;
		case QTYPE_UNSTRUCTURED:
		case QTYPE_SAFE:
		case QTYPE_SCHNOOR:
		case QTYPE_STRONG:
		case QTYPE_UNKNOWN:
			debug2("%10u: (%u)", count_in, in_type);
			a = p;
			BN_hex2bn(&a, cp);
			/* q = (p-1) / 2 */
			BN_rshift(q, p, 1);
			break;
		default:
			debug2("Unknown prime type");
			break;
		}

		/*
		 * due to earlier inconsistencies in interpretation, check
		 * the proposed bit size.
		 */
		if (BN_num_bits(p) != (in_size + 1)) {
			debug2("%10u: bit size %u mismatch", count_in, in_size);
			continue;
		}
		if (in_size < QSIZE_MINIMUM) {
			debug2("%10u: bit size %u too short", count_in, in_size);
			continue;
		}

		if (in_tests & QTEST_MILLER_RABIN)
			in_tries += trials;
		else
			in_tries = trials;

		/*
		 * guess unknown generator
		 */
		if (generator_known == 0) {
			if (BN_mod_word(p, 24) == 11)
				generator_known = 2;
			else if (BN_mod_word(p, 12) == 5)
				generator_known = 3;
			else {
				u_int32_t r = BN_mod_word(p, 10);

				if (r == 3 || r == 7)
					generator_known = 5;
			}
		}
		/*
		 * skip tests when desired generator doesn't match
		 */
		if (generator_wanted > 0 &&
		    generator_wanted != generator_known) {
			debug2("%10u: generator %d != %d",
			    count_in, generator_known, generator_wanted);
			continue;
		}

		/*
		 * Primes with no known generator are useless for DH, so
		 * skip those.
		 */
		if (generator_known == 0) {
			debug2("%10u: no known generator", count_in);
			continue;
		}

		count_possible++;

		/*
		 * The (1/4)^N performance bound on Miller-Rabin is
		 * extremely pessimistic, so don't spend a lot of time
		 * really verifying that q is prime until after we know
		 * that p is also prime. A single pass will weed out the
		 * vast majority of composite q's.
		 */
		if (BN_is_prime(q, 1, NULL, ctx, NULL) <= 0) {
			debug("%10u: q failed first possible prime test",
			    count_in);
			continue;
		}

		/*
		 * q is possibly prime, so go ahead and really make sure
		 * that p is prime. If it is, then we can go back and do
		 * the same for q. If p is composite, chances are that
		 * will show up on the first Rabin-Miller iteration so it
		 * doesn't hurt to specify a high iteration count.
		 */
		if (!BN_is_prime(p, trials, NULL, ctx, NULL)) {
			debug("%10u: p is not prime", count_in);
			continue;
		}
		debug("%10u: p is almost certainly prime", count_in);

		/* recheck q more rigorously */
		if (!BN_is_prime(q, trials - 1, NULL, ctx, NULL)) {
			debug("%10u: q is not prime", count_in);
			continue;
		}
		debug("%10u: q is almost certainly prime", count_in);

		if (qfileout(out, QTYPE_SAFE, (in_tests | QTEST_MILLER_RABIN),
		    in_tries, in_size, generator_known, p)) {
			res = -1;
			break;
		}

		count_out++;
	}

	time(&time_stop);
	xfree(lp);
	BN_free(p);
	BN_free(q);
	BN_CTX_free(ctx);

	logit("%.24s Found %u safe primes of %u candidates in %ld seconds",
	    ctime(&time_stop), count_out, count_possible,
	    (long) (time_stop - time_start));

	return (res);
}