summaryrefslogtreecommitdiffstats
path: root/umac.c
blob: 6b5a00585a0a5c4be5603b39c490822d93c9268e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
/* $OpenBSD: umac.c,v 1.3 2008/05/12 20:52:20 pvalchev Exp $ */
/* -----------------------------------------------------------------------
 * 
 * umac.c -- C Implementation UMAC Message Authentication
 *
 * Version 0.93b of rfc4418.txt -- 2006 July 18
 *
 * For a full description of UMAC message authentication see the UMAC
 * world-wide-web page at http://www.cs.ucdavis.edu/~rogaway/umac
 * Please report bugs and suggestions to the UMAC webpage.
 *
 * Copyright (c) 1999-2006 Ted Krovetz
 *                                                                 
 * Permission to use, copy, modify, and distribute this software and
 * its documentation for any purpose and with or without fee, is hereby
 * granted provided that the above copyright notice appears in all copies
 * and in supporting documentation, and that the name of the copyright
 * holder not be used in advertising or publicity pertaining to
 * distribution of the software without specific, written prior permission.
 *
 * Comments should be directed to Ted Krovetz (tdk@acm.org)                                        
 *                                                                   
 * ---------------------------------------------------------------------- */
 
 /* ////////////////////// IMPORTANT NOTES /////////////////////////////////
  *
  * 1) This version does not work properly on messages larger than 16MB
  *
  * 2) If you set the switch to use SSE2, then all data must be 16-byte
  *    aligned
  *
  * 3) When calling the function umac(), it is assumed that msg is in
  * a writable buffer of length divisible by 32 bytes. The message itself
  * does not have to fill the entire buffer, but bytes beyond msg may be
  * zeroed.
  *
  * 4) Three free AES implementations are supported by this implementation of
  * UMAC. Paulo Barreto's version is in the public domain and can be found
  * at http://www.esat.kuleuven.ac.be/~rijmen/rijndael/ (search for
  * "Barreto"). The only two files needed are rijndael-alg-fst.c and
  * rijndael-alg-fst.h. Brian Gladman's version is distributed with the GNU
  * Public lisence at http://fp.gladman.plus.com/AES/index.htm. It
  * includes a fast IA-32 assembly version. The OpenSSL crypo library is
  * the third.
  *
  * 5) With FORCE_C_ONLY flags set to 0, incorrect results are sometimes
  * produced under gcc with optimizations set -O3 or higher. Dunno why.
  *
  /////////////////////////////////////////////////////////////////////// */
 
/* ---------------------------------------------------------------------- */
/* --- User Switches ---------------------------------------------------- */
/* ---------------------------------------------------------------------- */

#define UMAC_OUTPUT_LEN     8  /* Alowable: 4, 8, 12, 16                  */
/* #define FORCE_C_ONLY        1  ANSI C and 64-bit integers req'd        */
/* #define AES_IMPLEMENTAION   1  1 = OpenSSL, 2 = Barreto, 3 = Gladman   */
/* #define SSE2                0  Is SSE2 is available?                   */
/* #define RUN_TESTS           0  Run basic correctness/speed tests       */
/* #define UMAC_AE_SUPPORT     0  Enable auhthenticated encrytion         */

/* ---------------------------------------------------------------------- */
/* -- Global Includes --------------------------------------------------- */
/* ---------------------------------------------------------------------- */

#include "includes.h"
#include <sys/types.h>

#include "xmalloc.h"
#include "umac.h"
#include <string.h>
#include <stdlib.h>
#include <stddef.h>

/* ---------------------------------------------------------------------- */
/* --- Primitive Data Types ---                                           */
/* ---------------------------------------------------------------------- */

/* The following assumptions may need change on your system */
typedef u_int8_t	UINT8;  /* 1 byte   */
typedef u_int16_t	UINT16; /* 2 byte   */
typedef u_int32_t	UINT32; /* 4 byte   */
typedef u_int64_t	UINT64; /* 8 bytes  */
typedef unsigned int	UWORD;  /* Register */

/* ---------------------------------------------------------------------- */
/* --- Constants -------------------------------------------------------- */
/* ---------------------------------------------------------------------- */

#define UMAC_KEY_LEN           16  /* UMAC takes 16 bytes of external key */

/* Message "words" are read from memory in an endian-specific manner.     */
/* For this implementation to behave correctly, __LITTLE_ENDIAN__ must    */
/* be set true if the host computer is little-endian.                     */

#if BYTE_ORDER == LITTLE_ENDIAN
#define __LITTLE_ENDIAN__ 1
#else
#define __LITTLE_ENDIAN__ 0
#endif

/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Architecture Specific ------------------------------------------ */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */


/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Primitive Routines --------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */


/* ---------------------------------------------------------------------- */
/* --- 32-bit by 32-bit to 64-bit Multiplication ------------------------ */
/* ---------------------------------------------------------------------- */

#define MUL64(a,b) ((UINT64)((UINT64)(UINT32)(a) * (UINT64)(UINT32)(b)))

/* ---------------------------------------------------------------------- */
/* --- Endian Conversion --- Forcing assembly on some platforms           */
/* ---------------------------------------------------------------------- */

#if HAVE_SWAP32
#define LOAD_UINT32_REVERSED(p)		(swap32(*(UINT32 *)(p)))
#define STORE_UINT32_REVERSED(p,v) 	(*(UINT32 *)(p) = swap32(v))
#else /* HAVE_SWAP32 */

static UINT32 LOAD_UINT32_REVERSED(void *ptr)
{
    UINT32 temp = *(UINT32 *)ptr;
    temp = (temp >> 24) | ((temp & 0x00FF0000) >> 8 )
         | ((temp & 0x0000FF00) << 8 ) | (temp << 24);
    return (UINT32)temp;
}

static void STORE_UINT32_REVERSED(void *ptr, UINT32 x)
{
    UINT32 i = (UINT32)x;
    *(UINT32 *)ptr = (i >> 24) | ((i & 0x00FF0000) >> 8 )
                   | ((i & 0x0000FF00) << 8 ) | (i << 24);
}
#endif /* HAVE_SWAP32 */

/* The following definitions use the above reversal-primitives to do the right
 * thing on endian specific load and stores.
 */

#if (__LITTLE_ENDIAN__)
#define LOAD_UINT32_LITTLE(ptr)     (*(UINT32 *)(ptr))
#define STORE_UINT32_BIG(ptr,x)     STORE_UINT32_REVERSED(ptr,x)
#else
#define LOAD_UINT32_LITTLE(ptr)     LOAD_UINT32_REVERSED(ptr)
#define STORE_UINT32_BIG(ptr,x)     (*(UINT32 *)(ptr) = (UINT32)(x))
#endif

/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Begin KDF & PDF Section ---------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */

/* UMAC uses AES with 16 byte block and key lengths */
#define AES_BLOCK_LEN  16

/* OpenSSL's AES */
#include "openbsd-compat/openssl-compat.h"
#ifndef USE_BUILTIN_RIJNDAEL
# include <openssl/aes.h>
#endif
typedef AES_KEY aes_int_key[1];
#define aes_encryption(in,out,int_key)                  \
  AES_encrypt((u_char *)(in),(u_char *)(out),(AES_KEY *)int_key)
#define aes_key_setup(key,int_key)                      \
  AES_set_encrypt_key((u_char *)(key),UMAC_KEY_LEN*8,int_key)

/* The user-supplied UMAC key is stretched using AES in a counter
 * mode to supply all random bits needed by UMAC. The kdf function takes
 * an AES internal key representation 'key' and writes a stream of
 * 'nbytes' bytes to the memory pointed at by 'buffer_ptr'. Each distinct
 * 'ndx' causes a distinct byte stream.
 */
static void kdf(void *buffer_ptr, aes_int_key key, UINT8 ndx, int nbytes)
{
    UINT8 in_buf[AES_BLOCK_LEN] = {0};
    UINT8 out_buf[AES_BLOCK_LEN];
    UINT8 *dst_buf = (UINT8 *)buffer_ptr;
    int i;
    
    /* Setup the initial value */
    in_buf[AES_BLOCK_LEN-9] = ndx;
    in_buf[AES_BLOCK_LEN-1] = i = 1;
        
    while (nbytes >= AES_BLOCK_LEN) {
        aes_encryption(in_buf, out_buf, key);
        memcpy(dst_buf,out_buf,AES_BLOCK_LEN);
        in_buf[AES_BLOCK_LEN-1] = ++i;
        nbytes -= AES_BLOCK_LEN;
        dst_buf += AES_BLOCK_LEN;
    }
    if (nbytes) {
        aes_encryption(in_buf, out_buf, key);
        memcpy(dst_buf,out_buf,nbytes);
    }
}

/* The final UHASH result is XOR'd with the output of a pseudorandom
 * function. Here, we use AES to generate random output and 
 * xor the appropriate bytes depending on the last bits of nonce.
 * This scheme is optimized for sequential, increasing big-endian nonces.
 */

typedef struct {
    UINT8 cache[AES_BLOCK_LEN];  /* Previous AES output is saved      */
    UINT8 nonce[AES_BLOCK_LEN];  /* The AES input making above cache  */
    aes_int_key prf_key;         /* Expanded AES key for PDF          */
} pdf_ctx;

static void pdf_init(pdf_ctx *pc, aes_int_key prf_key)
{
    UINT8 buf[UMAC_KEY_LEN];
    
    kdf(buf, prf_key, 0, UMAC_KEY_LEN);
    aes_key_setup(buf, pc->prf_key);
    
    /* Initialize pdf and cache */
    memset(pc->nonce, 0, sizeof(pc->nonce));
    aes_encryption(pc->nonce, pc->cache, pc->prf_key);
}

static void pdf_gen_xor(pdf_ctx *pc, UINT8 nonce[8], UINT8 buf[8])
{
    /* 'ndx' indicates that we'll be using the 0th or 1st eight bytes
     * of the AES output. If last time around we returned the ndx-1st
     * element, then we may have the result in the cache already.
     */
     
#if (UMAC_OUTPUT_LEN == 4)
#define LOW_BIT_MASK 3
#elif (UMAC_OUTPUT_LEN == 8)
#define LOW_BIT_MASK 1
#elif (UMAC_OUTPUT_LEN > 8)
#define LOW_BIT_MASK 0
#endif

    UINT8 tmp_nonce_lo[4];
#if LOW_BIT_MASK != 0
    int ndx = nonce[7] & LOW_BIT_MASK;
#endif
    *(UINT32 *)tmp_nonce_lo = ((UINT32 *)nonce)[1];
    tmp_nonce_lo[3] &= ~LOW_BIT_MASK; /* zero last bit */
    
    if ( (((UINT32 *)tmp_nonce_lo)[0] != ((UINT32 *)pc->nonce)[1]) ||
         (((UINT32 *)nonce)[0] != ((UINT32 *)pc->nonce)[0]) )
    {
        ((UINT32 *)pc->nonce)[0] = ((UINT32 *)nonce)[0];
        ((UINT32 *)pc->nonce)[1] = ((UINT32 *)tmp_nonce_lo)[0];
        aes_encryption(pc->nonce, pc->cache, pc->prf_key);
    }
    
#if (UMAC_OUTPUT_LEN == 4)
    *((UINT32 *)buf) ^= ((UINT32 *)pc->cache)[ndx];
#elif (UMAC_OUTPUT_LEN == 8)
    *((UINT64 *)buf) ^= ((UINT64 *)pc->cache)[ndx];
#elif (UMAC_OUTPUT_LEN == 12)
    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
    ((UINT32 *)buf)[2] ^= ((UINT32 *)pc->cache)[2];
#elif (UMAC_OUTPUT_LEN == 16)
    ((UINT64 *)buf)[0] ^= ((UINT64 *)pc->cache)[0];
    ((UINT64 *)buf)[1] ^= ((UINT64 *)pc->cache)[1];
#endif
}

/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Begin NH Hash Section ------------------------------------------ */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */

/* The NH-based hash functions used in UMAC are described in the UMAC paper
 * and specification, both of which can be found at the UMAC website.     
 * The interface to this implementation has two         
 * versions, one expects the entire message being hashed to be passed
 * in a single buffer and returns the hash result immediately. The second
 * allows the message to be passed in a sequence of buffers. In the          
 * muliple-buffer interface, the client calls the routine nh_update() as     
 * many times as necessary. When there is no more data to be fed to the   
 * hash, the client calls nh_final() which calculates the hash output.    
 * Before beginning another hash calculation the nh_reset() routine       
 * must be called. The single-buffer routine, nh(), is equivalent to  
 * the sequence of calls nh_update() and nh_final(); however it is        
 * optimized and should be prefered whenever the multiple-buffer interface
 * is not necessary. When using either interface, it is the client's         
 * responsability to pass no more than L1_KEY_LEN bytes per hash result.            
 *                                                                        
 * The routine nh_init() initializes the nh_ctx data structure and        
 * must be called once, before any other PDF routine.                     
 */
 
 /* The "nh_aux" routines do the actual NH hashing work. They
  * expect buffers to be multiples of L1_PAD_BOUNDARY. These routines
  * produce output for all STREAMS NH iterations in one call, 
  * allowing the parallel implementation of the streams.
  */

#define STREAMS (UMAC_OUTPUT_LEN / 4) /* Number of times hash is applied  */
#define L1_KEY_LEN         1024     /* Internal key bytes                 */
#define L1_KEY_SHIFT         16     /* Toeplitz key shift between streams */
#define L1_PAD_BOUNDARY      32     /* pad message to boundary multiple   */
#define ALLOC_BOUNDARY       16     /* Keep buffers aligned to this       */
#define HASH_BUF_BYTES       64     /* nh_aux_hb buffer multiple          */

typedef struct {
    UINT8  nh_key [L1_KEY_LEN + L1_KEY_SHIFT * (STREAMS - 1)]; /* NH Key */
    UINT8  data   [HASH_BUF_BYTES];    /* Incomming data buffer           */
    int next_data_empty;    /* Bookeeping variable for data buffer.       */
    int bytes_hashed;        /* Bytes (out of L1_KEY_LEN) incorperated.   */
    UINT64 state[STREAMS];               /* on-line state     */
} nh_ctx;


#if (UMAC_OUTPUT_LEN == 4)

static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* NH hashing primitive. Previous (partial) hash result is loaded and     
* then stored via hp pointer. The length of the data pointed at by "dp",
* "dlen", is guaranteed to be divisible by L1_PAD_BOUNDARY (32).  Key
* is expected to be endian compensated in memory at key setup.    
*/
{
    UINT64 h;
    UWORD c = dlen / 32;
    UINT32 *k = (UINT32 *)kp;
    UINT32 *d = (UINT32 *)dp;
    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
    UINT32 k0,k1,k2,k3,k4,k5,k6,k7;
    
    h = *((UINT64 *)hp);
    do {
        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
        k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
        k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
        h += MUL64((k0 + d0), (k4 + d4));
        h += MUL64((k1 + d1), (k5 + d5));
        h += MUL64((k2 + d2), (k6 + d6));
        h += MUL64((k3 + d3), (k7 + d7));
        
        d += 8;
        k += 8;
    } while (--c);
  *((UINT64 *)hp) = h;
}

#elif (UMAC_OUTPUT_LEN == 8)

static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* Same as previous nh_aux, but two streams are handled in one pass,
 * reading and writing 16 bytes of hash-state per call.
 */
{
  UINT64 h1,h2;
  UWORD c = dlen / 32;
  UINT32 *k = (UINT32 *)kp;
  UINT32 *d = (UINT32 *)dp;
  UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
  UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
        k8,k9,k10,k11;

  h1 = *((UINT64 *)hp);
  h2 = *((UINT64 *)hp + 1);
  k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
  do {
    d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
    d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
    d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
    d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
    k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);

    h1 += MUL64((k0 + d0), (k4 + d4));
    h2 += MUL64((k4 + d0), (k8 + d4));

    h1 += MUL64((k1 + d1), (k5 + d5));
    h2 += MUL64((k5 + d1), (k9 + d5));

    h1 += MUL64((k2 + d2), (k6 + d6));
    h2 += MUL64((k6 + d2), (k10 + d6));

    h1 += MUL64((k3 + d3), (k7 + d7));
    h2 += MUL64((k7 + d3), (k11 + d7));

    k0 = k8; k1 = k9; k2 = k10; k3 = k11;

    d += 8;
    k += 8;
  } while (--c);
  ((UINT64 *)hp)[0] = h1;
  ((UINT64 *)hp)[1] = h2;
}

#elif (UMAC_OUTPUT_LEN == 12)

static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* Same as previous nh_aux, but two streams are handled in one pass,
 * reading and writing 24 bytes of hash-state per call.
*/
{
    UINT64 h1,h2,h3;
    UWORD c = dlen / 32;
    UINT32 *k = (UINT32 *)kp;
    UINT32 *d = (UINT32 *)dp;
    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
        k8,k9,k10,k11,k12,k13,k14,k15;
    
    h1 = *((UINT64 *)hp);
    h2 = *((UINT64 *)hp + 1);
    h3 = *((UINT64 *)hp + 2);
    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
    do {
        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
        
        h1 += MUL64((k0 + d0), (k4 + d4));
        h2 += MUL64((k4 + d0), (k8 + d4));
        h3 += MUL64((k8 + d0), (k12 + d4));
        
        h1 += MUL64((k1 + d1), (k5 + d5));
        h2 += MUL64((k5 + d1), (k9 + d5));
        h3 += MUL64((k9 + d1), (k13 + d5));
        
        h1 += MUL64((k2 + d2), (k6 + d6));
        h2 += MUL64((k6 + d2), (k10 + d6));
        h3 += MUL64((k10 + d2), (k14 + d6));
        
        h1 += MUL64((k3 + d3), (k7 + d7));
        h2 += MUL64((k7 + d3), (k11 + d7));
        h3 += MUL64((k11 + d3), (k15 + d7));
        
        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
        
        d += 8;
        k += 8;
    } while (--c);
    ((UINT64 *)hp)[0] = h1;
    ((UINT64 *)hp)[1] = h2;
    ((UINT64 *)hp)[2] = h3;
}

#elif (UMAC_OUTPUT_LEN == 16)

static void nh_aux(void *kp, void *dp, void *hp, UINT32 dlen)
/* Same as previous nh_aux, but two streams are handled in one pass,
 * reading and writing 24 bytes of hash-state per call.
*/
{
    UINT64 h1,h2,h3,h4;
    UWORD c = dlen / 32;
    UINT32 *k = (UINT32 *)kp;
    UINT32 *d = (UINT32 *)dp;
    UINT32 d0,d1,d2,d3,d4,d5,d6,d7;
    UINT32 k0,k1,k2,k3,k4,k5,k6,k7,
        k8,k9,k10,k11,k12,k13,k14,k15,
        k16,k17,k18,k19;
    
    h1 = *((UINT64 *)hp);
    h2 = *((UINT64 *)hp + 1);
    h3 = *((UINT64 *)hp + 2);
    h4 = *((UINT64 *)hp + 3);
    k0 = *(k+0); k1 = *(k+1); k2 = *(k+2); k3 = *(k+3);
    k4 = *(k+4); k5 = *(k+5); k6 = *(k+6); k7 = *(k+7);
    do {
        d0 = LOAD_UINT32_LITTLE(d+0); d1 = LOAD_UINT32_LITTLE(d+1);
        d2 = LOAD_UINT32_LITTLE(d+2); d3 = LOAD_UINT32_LITTLE(d+3);
        d4 = LOAD_UINT32_LITTLE(d+4); d5 = LOAD_UINT32_LITTLE(d+5);
        d6 = LOAD_UINT32_LITTLE(d+6); d7 = LOAD_UINT32_LITTLE(d+7);
        k8 = *(k+8); k9 = *(k+9); k10 = *(k+10); k11 = *(k+11);
        k12 = *(k+12); k13 = *(k+13); k14 = *(k+14); k15 = *(k+15);
        k16 = *(k+16); k17 = *(k+17); k18 = *(k+18); k19 = *(k+19);
        
        h1 += MUL64((k0 + d0), (k4 + d4));
        h2 += MUL64((k4 + d0), (k8 + d4));
        h3 += MUL64((k8 + d0), (k12 + d4));
        h4 += MUL64((k12 + d0), (k16 + d4));
        
        h1 += MUL64((k1 + d1), (k5 + d5));
        h2 += MUL64((k5 + d1), (k9 + d5));
        h3 += MUL64((k9 + d1), (k13 + d5));
        h4 += MUL64((k13 + d1), (k17 + d5));
        
        h1 += MUL64((k2 + d2), (k6 + d6));
        h2 += MUL64((k6 + d2), (k10 + d6));
        h3 += MUL64((k10 + d2), (k14 + d6));
        h4 += MUL64((k14 + d2), (k18 + d6));
        
        h1 += MUL64((k3 + d3), (k7 + d7));
        h2 += MUL64((k7 + d3), (k11 + d7));
        h3 += MUL64((k11 + d3), (k15 + d7));
        h4 += MUL64((k15 + d3), (k19 + d7));
        
        k0 = k8; k1 = k9; k2 = k10; k3 = k11;
        k4 = k12; k5 = k13; k6 = k14; k7 = k15;
        k8 = k16; k9 = k17; k10 = k18; k11 = k19;
        
        d += 8;
        k += 8;
    } while (--c);
    ((UINT64 *)hp)[0] = h1;
    ((UINT64 *)hp)[1] = h2;
    ((UINT64 *)hp)[2] = h3;
    ((UINT64 *)hp)[3] = h4;
}

/* ---------------------------------------------------------------------- */
#endif  /* UMAC_OUTPUT_LENGTH */
/* ---------------------------------------------------------------------- */


/* ---------------------------------------------------------------------- */

static void nh_transform(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
/* This function is a wrapper for the primitive NH hash functions. It takes
 * as argument "hc" the current hash context and a buffer which must be a
 * multiple of L1_PAD_BOUNDARY. The key passed to nh_aux is offset
 * appropriately according to how much message has been hashed already.
 */
{
    UINT8 *key;
  
    key = hc->nh_key + hc->bytes_hashed;
    nh_aux(key, buf, hc->state, nbytes);
}

/* ---------------------------------------------------------------------- */

static void endian_convert(void *buf, UWORD bpw, UINT32 num_bytes)
/* We endian convert the keys on little-endian computers to               */
/* compensate for the lack of big-endian memory reads during hashing.     */
{
    UWORD iters = num_bytes / bpw;
    if (bpw == 4) {
        UINT32 *p = (UINT32 *)buf;
        do {
            *p = LOAD_UINT32_REVERSED(p);
            p++;
        } while (--iters);
    } else if (bpw == 8) {
        UINT32 *p = (UINT32 *)buf;
        UINT32 t;
        do {
            t = LOAD_UINT32_REVERSED(p+1);
            p[1] = LOAD_UINT32_REVERSED(p);
            p[0] = t;
            p += 2;
        } while (--iters);
    }
}
#if (__LITTLE_ENDIAN__)
#define endian_convert_if_le(x,y,z) endian_convert((x),(y),(z))
#else
#define endian_convert_if_le(x,y,z) do{}while(0)  /* Do nothing */
#endif

/* ---------------------------------------------------------------------- */

static void nh_reset(nh_ctx *hc)
/* Reset nh_ctx to ready for hashing of new data */
{
    hc->bytes_hashed = 0;
    hc->next_data_empty = 0;
    hc->state[0] = 0;
#if (UMAC_OUTPUT_LEN >= 8)
    hc->state[1] = 0;
#endif
#if (UMAC_OUTPUT_LEN >= 12)
    hc->state[2] = 0;
#endif
#if (UMAC_OUTPUT_LEN == 16)
    hc->state[3] = 0;
#endif

}

/* ---------------------------------------------------------------------- */

static void nh_init(nh_ctx *hc, aes_int_key prf_key)
/* Generate nh_key, endian convert and reset to be ready for hashing.   */
{
    kdf(hc->nh_key, prf_key, 1, sizeof(hc->nh_key));
    endian_convert_if_le(hc->nh_key, 4, sizeof(hc->nh_key));
    nh_reset(hc);
}

/* ---------------------------------------------------------------------- */

static void nh_update(nh_ctx *hc, UINT8 *buf, UINT32 nbytes)
/* Incorporate nbytes of data into a nh_ctx, buffer whatever is not an    */
/* even multiple of HASH_BUF_BYTES.                                       */
{
    UINT32 i,j;
    
    j = hc->next_data_empty;
    if ((j + nbytes) >= HASH_BUF_BYTES) {
        if (j) {
            i = HASH_BUF_BYTES - j;
            memcpy(hc->data+j, buf, i);
            nh_transform(hc,hc->data,HASH_BUF_BYTES);
            nbytes -= i;
            buf += i;
            hc->bytes_hashed += HASH_BUF_BYTES;
        }
        if (nbytes >= HASH_BUF_BYTES) {
            i = nbytes & ~(HASH_BUF_BYTES - 1);
            nh_transform(hc, buf, i);
            nbytes -= i;
            buf += i;
            hc->bytes_hashed += i;
        }
        j = 0;
    }
    memcpy(hc->data + j, buf, nbytes);
    hc->next_data_empty = j + nbytes;
}

/* ---------------------------------------------------------------------- */

static void zero_pad(UINT8 *p, int nbytes)
{
/* Write "nbytes" of zeroes, beginning at "p" */
    if (nbytes >= (int)sizeof(UWORD)) {
        while ((ptrdiff_t)p % sizeof(UWORD)) {
            *p = 0;
            nbytes--;
            p++;
        }
        while (nbytes >= (int)sizeof(UWORD)) {
            *(UWORD *)p = 0;
            nbytes -= sizeof(UWORD);
            p += sizeof(UWORD);
        }
    }
    while (nbytes) {
        *p = 0;
        nbytes--;
        p++;
    }
}

/* ---------------------------------------------------------------------- */

static void nh_final(nh_ctx *hc, UINT8 *result)
/* After passing some number of data buffers to nh_update() for integration
 * into an NH context, nh_final is called to produce a hash result. If any
 * bytes are in the buffer hc->data, incorporate them into the
 * NH context. Finally, add into the NH accumulation "state" the total number
 * of bits hashed. The resulting numbers are written to the buffer "result".
 * If nh_update was never called, L1_PAD_BOUNDARY zeroes are incorporated.
 */
{
    int nh_len, nbits;

    if (hc->next_data_empty != 0) {
        nh_len = ((hc->next_data_empty + (L1_PAD_BOUNDARY - 1)) &
                                                ~(L1_PAD_BOUNDARY - 1));
        zero_pad(hc->data + hc->next_data_empty, 
                                          nh_len - hc->next_data_empty);
        nh_transform(hc, hc->data, nh_len);
        hc->bytes_hashed += hc->next_data_empty;
    } else if (hc->bytes_hashed == 0) {
    	nh_len = L1_PAD_BOUNDARY;
        zero_pad(hc->data, L1_PAD_BOUNDARY);
        nh_transform(hc, hc->data, nh_len);
    }

    nbits = (hc->bytes_hashed << 3);
    ((UINT64 *)result)[0] = ((UINT64 *)hc->state)[0] + nbits;
#if (UMAC_OUTPUT_LEN >= 8)
    ((UINT64 *)result)[1] = ((UINT64 *)hc->state)[1] + nbits;
#endif
#if (UMAC_OUTPUT_LEN >= 12)
    ((UINT64 *)result)[2] = ((UINT64 *)hc->state)[2] + nbits;
#endif
#if (UMAC_OUTPUT_LEN == 16)
    ((UINT64 *)result)[3] = ((UINT64 *)hc->state)[3] + nbits;
#endif
    nh_reset(hc);
}

/* ---------------------------------------------------------------------- */

static void nh(nh_ctx *hc, UINT8 *buf, UINT32 padded_len,
               UINT32 unpadded_len, UINT8 *result)
/* All-in-one nh_update() and nh_final() equivalent.
 * Assumes that padded_len is divisible by L1_PAD_BOUNDARY and result is
 * well aligned
 */
{
    UINT32 nbits;
    
    /* Initialize the hash state */
    nbits = (unpadded_len << 3);
    
    ((UINT64 *)result)[0] = nbits;
#if (UMAC_OUTPUT_LEN >= 8)
    ((UINT64 *)result)[1] = nbits;
#endif
#if (UMAC_OUTPUT_LEN >= 12)
    ((UINT64 *)result)[2] = nbits;
#endif
#if (UMAC_OUTPUT_LEN == 16)
    ((UINT64 *)result)[3] = nbits;
#endif
    
    nh_aux(hc->nh_key, buf, result, padded_len);
}

/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Begin UHASH Section -------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */

/* UHASH is a multi-layered algorithm. Data presented to UHASH is first
 * hashed by NH. The NH output is then hashed by a polynomial-hash layer
 * unless the initial data to be hashed is short. After the polynomial-
 * layer, an inner-product hash is used to produce the final UHASH output.
 *
 * UHASH provides two interfaces, one all-at-once and another where data
 * buffers are presented sequentially. In the sequential interface, the
 * UHASH client calls the routine uhash_update() as many times as necessary.
 * When there is no more data to be fed to UHASH, the client calls
 * uhash_final() which          
 * calculates the UHASH output. Before beginning another UHASH calculation    
 * the uhash_reset() routine must be called. The all-at-once UHASH routine,   
 * uhash(), is equivalent to the sequence of calls uhash_update() and         
 * uhash_final(); however it is optimized and should be                     
 * used whenever the sequential interface is not necessary.              
 *                                                                        
 * The routine uhash_init() initializes the uhash_ctx data structure and    
 * must be called once, before any other UHASH routine.
 */                                                        

/* ---------------------------------------------------------------------- */
/* ----- Constants and uhash_ctx ---------------------------------------- */
/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */
/* ----- Poly hash and Inner-Product hash Constants --------------------- */
/* ---------------------------------------------------------------------- */

/* Primes and masks */
#define p36    ((UINT64)0x0000000FFFFFFFFBull)              /* 2^36 -  5 */
#define p64    ((UINT64)0xFFFFFFFFFFFFFFC5ull)              /* 2^64 - 59 */
#define m36    ((UINT64)0x0000000FFFFFFFFFull)  /* The low 36 of 64 bits */


/* ---------------------------------------------------------------------- */

typedef struct uhash_ctx {
    nh_ctx hash;                          /* Hash context for L1 NH hash  */
    UINT64 poly_key_8[STREAMS];           /* p64 poly keys                */
    UINT64 poly_accum[STREAMS];           /* poly hash result             */
    UINT64 ip_keys[STREAMS*4];            /* Inner-product keys           */
    UINT32 ip_trans[STREAMS];             /* Inner-product translation    */
    UINT32 msg_len;                       /* Total length of data passed  */
                                          /* to uhash */
} uhash_ctx;
typedef struct uhash_ctx *uhash_ctx_t;

/* ---------------------------------------------------------------------- */


/* The polynomial hashes use Horner's rule to evaluate a polynomial one
 * word at a time. As described in the specification, poly32 and poly64
 * require keys from special domains. The following implementations exploit
 * the special domains to avoid overflow. The results are not guaranteed to
 * be within Z_p32 and Z_p64, but the Inner-Product hash implementation
 * patches any errant values.
 */

static UINT64 poly64(UINT64 cur, UINT64 key, UINT64 data)
{
    UINT32 key_hi = (UINT32)(key >> 32),
           key_lo = (UINT32)key,
           cur_hi = (UINT32)(cur >> 32),
           cur_lo = (UINT32)cur,
           x_lo,
           x_hi;
    UINT64 X,T,res;
    
    X =  MUL64(key_hi, cur_lo) + MUL64(cur_hi, key_lo);
    x_lo = (UINT32)X;
    x_hi = (UINT32)(X >> 32);
    
    res = (MUL64(key_hi, cur_hi) + x_hi) * 59 + MUL64(key_lo, cur_lo);
     
    T = ((UINT64)x_lo << 32);
    res += T;
    if (res < T)
        res += 59;

    res += data;
    if (res < data)
        res += 59;

    return res;
}


/* Although UMAC is specified to use a ramped polynomial hash scheme, this
 * implementation does not handle all ramp levels. Because we don't handle
 * the ramp up to p128 modulus in this implementation, we are limited to
 * 2^14 poly_hash() invocations per stream (for a total capacity of 2^24
 * bytes input to UMAC per tag, ie. 16MB).
 */
static void poly_hash(uhash_ctx_t hc, UINT32 data_in[])
{
    int i;
    UINT64 *data=(UINT64*)data_in;
    
    for (i = 0; i < STREAMS; i++) {
        if ((UINT32)(data[i] >> 32) == 0xfffffffful) {
            hc->poly_accum[i] = poly64(hc->poly_accum[i], 
                                       hc->poly_key_8[i], p64 - 1);
            hc->poly_accum[i] = poly64(hc->poly_accum[i],
                                       hc->poly_key_8[i], (data[i] - 59));
        } else {
            hc->poly_accum[i] = poly64(hc->poly_accum[i],
                                       hc->poly_key_8[i], data[i]);
        }
    }
}


/* ---------------------------------------------------------------------- */


/* The final step in UHASH is an inner-product hash. The poly hash
 * produces a result not neccesarily WORD_LEN bytes long. The inner-
 * product hash breaks the polyhash output into 16-bit chunks and
 * multiplies each with a 36 bit key.
 */

static UINT64 ip_aux(UINT64 t, UINT64 *ipkp, UINT64 data)
{
    t = t + ipkp[0] * (UINT64)(UINT16)(data >> 48);
    t = t + ipkp[1] * (UINT64)(UINT16)(data >> 32);
    t = t + ipkp[2] * (UINT64)(UINT16)(data >> 16);
    t = t + ipkp[3] * (UINT64)(UINT16)(data);
    
    return t;
}

static UINT32 ip_reduce_p36(UINT64 t)
{
/* Divisionless modular reduction */
    UINT64 ret;
    
    ret = (t & m36) + 5 * (t >> 36);
    if (ret >= p36)
        ret -= p36;

    /* return least significant 32 bits */
    return (UINT32)(ret);
}


/* If the data being hashed by UHASH is no longer than L1_KEY_LEN, then
 * the polyhash stage is skipped and ip_short is applied directly to the
 * NH output.
 */
static void ip_short(uhash_ctx_t ahc, UINT8 *nh_res, u_char *res)
{
    UINT64 t;
    UINT64 *nhp = (UINT64 *)nh_res;
    
    t  = ip_aux(0,ahc->ip_keys, nhp[0]);
    STORE_UINT32_BIG((UINT32 *)res+0, ip_reduce_p36(t) ^ ahc->ip_trans[0]);
#if (UMAC_OUTPUT_LEN >= 8)
    t  = ip_aux(0,ahc->ip_keys+4, nhp[1]);
    STORE_UINT32_BIG((UINT32 *)res+1, ip_reduce_p36(t) ^ ahc->ip_trans[1]);
#endif
#if (UMAC_OUTPUT_LEN >= 12)
    t  = ip_aux(0,ahc->ip_keys+8, nhp[2]);
    STORE_UINT32_BIG((UINT32 *)res+2, ip_reduce_p36(t) ^ ahc->ip_trans[2]);
#endif
#if (UMAC_OUTPUT_LEN == 16)
    t  = ip_aux(0,ahc->ip_keys+12, nhp[3]);
    STORE_UINT32_BIG((UINT32 *)res+3, ip_reduce_p36(t) ^ ahc->ip_trans[3]);
#endif
}

/* If the data being hashed by UHASH is longer than L1_KEY_LEN, then
 * the polyhash stage is not skipped and ip_long is applied to the
 * polyhash output.
 */
static void ip_long(uhash_ctx_t ahc, u_char *res)
{
    int i;
    UINT64 t;

    for (i = 0; i < STREAMS; i++) {
        /* fix polyhash output not in Z_p64 */
        if (ahc->poly_accum[i] >= p64)
            ahc->poly_accum[i] -= p64;
        t  = ip_aux(0,ahc->ip_keys+(i*4), ahc->poly_accum[i]);
        STORE_UINT32_BIG((UINT32 *)res+i, 
                         ip_reduce_p36(t) ^ ahc->ip_trans[i]);
    }
}


/* ---------------------------------------------------------------------- */

/* ---------------------------------------------------------------------- */

/* Reset uhash context for next hash session */
static int uhash_reset(uhash_ctx_t pc)
{
    nh_reset(&pc->hash);
    pc->msg_len = 0;
    pc->poly_accum[0] = 1;
#if (UMAC_OUTPUT_LEN >= 8)
    pc->poly_accum[1] = 1;
#endif
#if (UMAC_OUTPUT_LEN >= 12)
    pc->poly_accum[2] = 1;
#endif
#if (UMAC_OUTPUT_LEN == 16)
    pc->poly_accum[3] = 1;
#endif
    return 1;
}

/* ---------------------------------------------------------------------- */

/* Given a pointer to the internal key needed by kdf() and a uhash context,
 * initialize the NH context and generate keys needed for poly and inner-
 * product hashing. All keys are endian adjusted in memory so that native
 * loads cause correct keys to be in registers during calculation.
 */
static void uhash_init(uhash_ctx_t ahc, aes_int_key prf_key)
{
    int i;
    UINT8 buf[(8*STREAMS+4)*sizeof(UINT64)];
    
    /* Zero the entire uhash context */
    memset(ahc, 0, sizeof(uhash_ctx));

    /* Initialize the L1 hash */
    nh_init(&ahc->hash, prf_key);
    
    /* Setup L2 hash variables */
    kdf(buf, prf_key, 2, sizeof(buf));    /* Fill buffer with index 1 key */
    for (i = 0; i < STREAMS; i++) {
        /* Fill keys from the buffer, skipping bytes in the buffer not
         * used by this implementation. Endian reverse the keys if on a
         * little-endian computer.
         */
        memcpy(ahc->poly_key_8+i, buf+24*i, 8);
        endian_convert_if_le(ahc->poly_key_8+i, 8, 8);
        /* Mask the 64-bit keys to their special domain */
        ahc->poly_key_8[i] &= ((UINT64)0x01ffffffu << 32) + 0x01ffffffu;
        ahc->poly_accum[i] = 1;  /* Our polyhash prepends a non-zero word */
    }
    
    /* Setup L3-1 hash variables */
    kdf(buf, prf_key, 3, sizeof(buf)); /* Fill buffer with index 2 key */
    for (i = 0; i < STREAMS; i++)
          memcpy(ahc->ip_keys+4*i, buf+(8*i+4)*sizeof(UINT64),
                                                 4*sizeof(UINT64));
    endian_convert_if_le(ahc->ip_keys, sizeof(UINT64), 
                                                  sizeof(ahc->ip_keys));
    for (i = 0; i < STREAMS*4; i++)
        ahc->ip_keys[i] %= p36;  /* Bring into Z_p36 */
    
    /* Setup L3-2 hash variables    */
    /* Fill buffer with index 4 key */
    kdf(ahc->ip_trans, prf_key, 4, STREAMS * sizeof(UINT32));
    endian_convert_if_le(ahc->ip_trans, sizeof(UINT32),
                         STREAMS * sizeof(UINT32));
}

/* ---------------------------------------------------------------------- */

#if 0
static uhash_ctx_t uhash_alloc(u_char key[])
{
/* Allocate memory and force to a 16-byte boundary. */
    uhash_ctx_t ctx;
    u_char bytes_to_add;
    aes_int_key prf_key;
    
    ctx = (uhash_ctx_t)malloc(sizeof(uhash_ctx)+ALLOC_BOUNDARY);
    if (ctx) {
        if (ALLOC_BOUNDARY) {
            bytes_to_add = ALLOC_BOUNDARY -
                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY -1));
            ctx = (uhash_ctx_t)((u_char *)ctx + bytes_to_add);
            *((u_char *)ctx - 1) = bytes_to_add;
        }
        aes_key_setup(key,prf_key);
        uhash_init(ctx, prf_key);
    }
    return (ctx);
}
#endif

/* ---------------------------------------------------------------------- */

#if 0
static int uhash_free(uhash_ctx_t ctx)
{
/* Free memory allocated by uhash_alloc */
    u_char bytes_to_sub;
    
    if (ctx) {
        if (ALLOC_BOUNDARY) {
            bytes_to_sub = *((u_char *)ctx - 1);
            ctx = (uhash_ctx_t)((u_char *)ctx - bytes_to_sub);
        }
        free(ctx);
    }
    return (1);
}
#endif
/* ---------------------------------------------------------------------- */

static int uhash_update(uhash_ctx_t ctx, u_char *input, long len)
/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and
 * hash each one with NH, calling the polyhash on each NH output.
 */
{
    UWORD bytes_hashed, bytes_remaining;
    UINT64 result_buf[STREAMS];
    UINT8 *nh_result = (UINT8 *)&result_buf;
    
    if (ctx->msg_len + len <= L1_KEY_LEN) {
        nh_update(&ctx->hash, (UINT8 *)input, len);
        ctx->msg_len += len;
    } else {
    
         bytes_hashed = ctx->msg_len % L1_KEY_LEN;
         if (ctx->msg_len == L1_KEY_LEN)
             bytes_hashed = L1_KEY_LEN;

         if (bytes_hashed + len >= L1_KEY_LEN) {

             /* If some bytes have been passed to the hash function      */
             /* then we want to pass at most (L1_KEY_LEN - bytes_hashed) */
             /* bytes to complete the current nh_block.                  */
             if (bytes_hashed) {
                 bytes_remaining = (L1_KEY_LEN - bytes_hashed);
                 nh_update(&ctx->hash, (UINT8 *)input, bytes_remaining);
                 nh_final(&ctx->hash, nh_result);
                 ctx->msg_len += bytes_remaining;
                 poly_hash(ctx,(UINT32 *)nh_result);
                 len -= bytes_remaining;
                 input += bytes_remaining;
             }

             /* Hash directly from input stream if enough bytes */
             while (len >= L1_KEY_LEN) {
                 nh(&ctx->hash, (UINT8 *)input, L1_KEY_LEN,
                                   L1_KEY_LEN, nh_result);
                 ctx->msg_len += L1_KEY_LEN;
                 len -= L1_KEY_LEN;
                 input += L1_KEY_LEN;
                 poly_hash(ctx,(UINT32 *)nh_result);
             }
         }

         /* pass remaining < L1_KEY_LEN bytes of input data to NH */
         if (len) {
             nh_update(&ctx->hash, (UINT8 *)input, len);
             ctx->msg_len += len;
         }
     }

    return (1);
}

/* ---------------------------------------------------------------------- */

static int uhash_final(uhash_ctx_t ctx, u_char *res)
/* Incorporate any pending data, pad, and generate tag */
{
    UINT64 result_buf[STREAMS];
    UINT8 *nh_result = (UINT8 *)&result_buf;

    if (ctx->msg_len > L1_KEY_LEN) {
        if (ctx->msg_len % L1_KEY_LEN) {
            nh_final(&ctx->hash, nh_result);
            poly_hash(ctx,(UINT32 *)nh_result);
        }
        ip_long(ctx, res);
    } else {
        nh_final(&ctx->hash, nh_result);
        ip_short(ctx,nh_result, res);
    }
    uhash_reset(ctx);
    return (1);
}

/* ---------------------------------------------------------------------- */

#if 0
static int uhash(uhash_ctx_t ahc, u_char *msg, long len, u_char *res)
/* assumes that msg is in a writable buffer of length divisible by */
/* L1_PAD_BOUNDARY. Bytes beyond msg[len] may be zeroed.           */
{
    UINT8 nh_result[STREAMS*sizeof(UINT64)];
    UINT32 nh_len;
    int extra_zeroes_needed;
        
    /* If the message to be hashed is no longer than L1_HASH_LEN, we skip
     * the polyhash.
     */
    if (len <= L1_KEY_LEN) {
    	if (len == 0)                  /* If zero length messages will not */
    		nh_len = L1_PAD_BOUNDARY;  /* be seen, comment out this case   */ 
    	else
        	nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
        extra_zeroes_needed = nh_len - len;
        zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
        nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
        ip_short(ahc,nh_result, res);
    } else {
        /* Otherwise, we hash each L1_KEY_LEN chunk with NH, passing the NH
         * output to poly_hash().
         */
        do {
            nh(&ahc->hash, (UINT8 *)msg, L1_KEY_LEN, L1_KEY_LEN, nh_result);
            poly_hash(ahc,(UINT32 *)nh_result);
            len -= L1_KEY_LEN;
            msg += L1_KEY_LEN;
        } while (len >= L1_KEY_LEN);
        if (len) {
            nh_len = ((len + (L1_PAD_BOUNDARY - 1)) & ~(L1_PAD_BOUNDARY - 1));
            extra_zeroes_needed = nh_len - len;
            zero_pad((UINT8 *)msg + len, extra_zeroes_needed);
            nh(&ahc->hash, (UINT8 *)msg, nh_len, len, nh_result);
            poly_hash(ahc,(UINT32 *)nh_result);
        }

        ip_long(ahc, res);
    }
    
    uhash_reset(ahc);
    return 1;
}
#endif

/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- Begin UMAC Section --------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */

/* The UMAC interface has two interfaces, an all-at-once interface where
 * the entire message to be authenticated is passed to UMAC in one buffer,
 * and a sequential interface where the message is presented a little at a   
 * time. The all-at-once is more optimaized than the sequential version and
 * should be preferred when the sequential interface is not required. 
 */
struct umac_ctx {
    uhash_ctx hash;          /* Hash function for message compression    */
    pdf_ctx pdf;             /* PDF for hashed output                    */
    void *free_ptr;          /* Address to free this struct via          */
} umac_ctx;

/* ---------------------------------------------------------------------- */

#if 0
int umac_reset(struct umac_ctx *ctx)
/* Reset the hash function to begin a new authentication.        */
{
    uhash_reset(&ctx->hash);
    return (1);
}
#endif

/* ---------------------------------------------------------------------- */

int umac_delete(struct umac_ctx *ctx)
/* Deallocate the ctx structure */
{
    if (ctx) {
        if (ALLOC_BOUNDARY)
            ctx = (struct umac_ctx *)ctx->free_ptr;
        xfree(ctx);
    }
    return (1);
}

/* ---------------------------------------------------------------------- */

struct umac_ctx *umac_new(u_char key[])
/* Dynamically allocate a umac_ctx struct, initialize variables, 
 * generate subkeys from key. Align to 16-byte boundary.
 */
{
    struct umac_ctx *ctx, *octx;
    size_t bytes_to_add;
    aes_int_key prf_key;
    
    octx = ctx = xmalloc(sizeof(*ctx) + ALLOC_BOUNDARY);
    if (ctx) {
        if (ALLOC_BOUNDARY) {
            bytes_to_add = ALLOC_BOUNDARY -
                              ((ptrdiff_t)ctx & (ALLOC_BOUNDARY - 1));
            ctx = (struct umac_ctx *)((u_char *)ctx + bytes_to_add);
        }
        ctx->free_ptr = octx;
        aes_key_setup(key,prf_key);
        pdf_init(&ctx->pdf, prf_key);
        uhash_init(&ctx->hash, prf_key);
    }
        
    return (ctx);
}

/* ---------------------------------------------------------------------- */

int umac_final(struct umac_ctx *ctx, u_char tag[], u_char nonce[8])
/* Incorporate any pending data, pad, and generate tag */
{
    uhash_final(&ctx->hash, (u_char *)tag);
    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
    
    return (1);
}

/* ---------------------------------------------------------------------- */

int umac_update(struct umac_ctx *ctx, u_char *input, long len)
/* Given len bytes of data, we parse it into L1_KEY_LEN chunks and   */
/* hash each one, calling the PDF on the hashed output whenever the hash- */
/* output buffer is full.                                                 */
{
    uhash_update(&ctx->hash, input, len);
    return (1);
}

/* ---------------------------------------------------------------------- */

#if 0
int umac(struct umac_ctx *ctx, u_char *input, 
         long len, u_char tag[],
         u_char nonce[8])
/* All-in-one version simply calls umac_update() and umac_final().        */
{
    uhash(&ctx->hash, input, len, (u_char *)tag);
    pdf_gen_xor(&ctx->pdf, (UINT8 *)nonce, (UINT8 *)tag);
    
    return (1);
}
#endif

/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ----- End UMAC Section ----------------------------------------------- */
/* ---------------------------------------------------------------------- */
/* ---------------------------------------------------------------------- */