diff options
author | Shane Lontis <shane.lontis@oracle.com> | 2018-07-05 01:28:51 +0200 |
---|---|---|
committer | Matt Caswell <matt@openssl.org> | 2019-03-12 13:00:52 +0100 |
commit | 8240d5fa6535fb20e24fbe7eadbb3d6452a8d305 (patch) | |
tree | 3e785e20a83324c8dab559a5e3da6d533bb82f33 /crypto/bn | |
parent | s390x assembly pack: import chacha from cryptogams repo (diff) | |
download | openssl-8240d5fa6535fb20e24fbe7eadbb3d6452a8d305.tar.xz openssl-8240d5fa6535fb20e24fbe7eadbb3d6452a8d305.zip |
FIPS 186-4 RSA Generation & Validation
Reviewed-by: Paul Dale <paul.dale@oracle.com>
Reviewed-by: Matt Caswell <matt@openssl.org>
(Merged from https://github.com/openssl/openssl/pull/6652)
Diffstat (limited to 'crypto/bn')
-rw-r--r-- | crypto/bn/bn_prime.c | 271 | ||||
-rw-r--r-- | crypto/bn/bn_rsa_fips186_4.c | 346 | ||||
-rw-r--r-- | crypto/bn/build.info | 3 |
3 files changed, 537 insertions, 83 deletions
diff --git a/crypto/bn/bn_prime.c b/crypto/bn/bn_prime.c index c4ab8693fc..7a87b97db3 100644 --- a/crypto/bn/bn_prime.c +++ b/crypto/bn/bn_prime.c @@ -1,5 +1,5 @@ /* - * Copyright 1995-2018 The OpenSSL Project Authors. All Rights Reserved. + * Copyright 1995-2019 The OpenSSL Project Authors. All Rights Reserved. * * Licensed under the Apache License 2.0 (the "License"). You may not use * this file except in compliance with the License. You can obtain a copy @@ -19,14 +19,49 @@ */ #include "bn_prime.h" -static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, - const BIGNUM *a1_odd, int k, BN_CTX *ctx, - BN_MONT_CTX *mont); static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods); static int probable_prime_dh_safe(BIGNUM *rnd, int bits, const BIGNUM *add, const BIGNUM *rem, BN_CTX *ctx); +#if BN_BITS2 == 64 +# define BN_DEF(lo, hi) (BN_ULONG)hi<<32|lo +#else +# define BN_DEF(lo, hi) lo, hi +#endif + +/* + * See SP800 89 5.3.3 (Step f) + * The product of the set of primes ranging from 3 to 751 + * Generated using process in test/bn_internal_test.c test_bn_small_factors(). + * This includes 751 (which is not currently included in SP 800-89). + */ +static const BN_ULONG small_prime_factors[] = { + BN_DEF(0x3ef4e3e1, 0xc4309333), BN_DEF(0xcd2d655f, 0x71161eb6), + BN_DEF(0x0bf94862, 0x95e2238c), BN_DEF(0x24f7912b, 0x3eb233d3), + BN_DEF(0xbf26c483, 0x6b55514b), BN_DEF(0x5a144871, 0x0a84d817), + BN_DEF(0x9b82210a, 0x77d12fee), BN_DEF(0x97f050b3, 0xdb5b93c2), + BN_DEF(0x4d6c026b, 0x4acad6b9), BN_DEF(0x54aec893, 0xeb7751f3), + BN_DEF(0x36bc85c4, 0xdba53368), BN_DEF(0x7f5ec78e, 0xd85a1b28), + BN_DEF(0x6b322244, 0x2eb072d8), BN_DEF(0x5e2b3aea, 0xbba51112), + BN_DEF(0x0e2486bf, 0x36ed1a6c), BN_DEF(0xec0c5727, 0x5f270460), + (BN_ULONG)0x000017b1 +}; + +#define BN_SMALL_PRIME_FACTORS_TOP OSSL_NELEM(small_prime_factors) +static const BIGNUM _bignum_small_prime_factors = { + (BN_ULONG *)small_prime_factors, + BN_SMALL_PRIME_FACTORS_TOP, + BN_SMALL_PRIME_FACTORS_TOP, + 0, + BN_FLG_STATIC_DATA +}; + +const BIGNUM *bn_get0_small_factors(void) +{ + return &_bignum_small_prime_factors; +} + int BN_GENCB_call(BN_GENCB *cb, int a, int b) { /* No callback means continue */ @@ -148,127 +183,199 @@ int BN_is_prime_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, return BN_is_prime_fasttest_ex(a, checks, ctx_passed, 0, cb); } -int BN_is_prime_fasttest_ex(const BIGNUM *a, int checks, BN_CTX *ctx_passed, +/* See FIPS 186-4 C.3.1 Miller Rabin Probabilistic Primality Test. */ +int BN_is_prime_fasttest_ex(const BIGNUM *w, int checks, BN_CTX *ctx_passed, int do_trial_division, BN_GENCB *cb) { - int i, j, ret = -1; - int k; + int i, status, ret = -1; BN_CTX *ctx = NULL; - BIGNUM *A1, *A1_odd, *A3, *check; /* taken from ctx */ - BN_MONT_CTX *mont = NULL; - /* Take care of the really small primes 2 & 3 */ - if (BN_is_word(a, 2) || BN_is_word(a, 3)) - return 1; - - /* Check odd and bigger than 1 */ - if (!BN_is_odd(a) || BN_cmp(a, BN_value_one()) <= 0) + /* w must be bigger than 1 */ + if (BN_cmp(w, BN_value_one()) <= 0) return 0; - if (checks == BN_prime_checks) - checks = BN_prime_checks_for_size(BN_num_bits(a)); + /* w must be odd */ + if (BN_is_odd(w)) { + /* Take care of the really small prime 3 */ + if (BN_is_word(w, 3)) + return 1; + } else { + /* 2 is the only even prime */ + return BN_is_word(w, 2); + } /* first look for small factors */ if (do_trial_division) { for (i = 1; i < NUMPRIMES; i++) { - BN_ULONG mod = BN_mod_word(a, primes[i]); + BN_ULONG mod = BN_mod_word(w, primes[i]); if (mod == (BN_ULONG)-1) - goto err; + return -1; if (mod == 0) - return BN_is_word(a, primes[i]); + return BN_is_word(w, primes[i]); } if (!BN_GENCB_call(cb, 1, -1)) - goto err; + return -1; } - if (ctx_passed != NULL) ctx = ctx_passed; else if ((ctx = BN_CTX_new()) == NULL) goto err; - BN_CTX_start(ctx); - A1 = BN_CTX_get(ctx); - A3 = BN_CTX_get(ctx); - A1_odd = BN_CTX_get(ctx); - check = BN_CTX_get(ctx); - if (check == NULL) + ret = bn_miller_rabin_is_prime(w, checks, ctx, cb, 0, &status); + if (!ret) goto err; + ret = (status == BN_PRIMETEST_PROBABLY_PRIME); +err: + if (ctx_passed == NULL) + BN_CTX_free(ctx); + return ret; +} + +/* + * Refer to FIPS 186-4 C.3.2 Enhanced Miller-Rabin Probabilistic Primality Test. + * OR C.3.1 Miller-Rabin Probabilistic Primality Test (if enhanced is zero). + * The Step numbers listed in the code refer to the enhanced case. + * + * if enhanced is set, then status returns one of the following: + * BN_PRIMETEST_PROBABLY_PRIME + * BN_PRIMETEST_COMPOSITE_WITH_FACTOR + * BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME + * if enhanced is zero, then status returns either + * BN_PRIMETEST_PROBABLY_PRIME or + * BN_PRIMETEST_COMPOSITE + * + * returns 0 if there was an error, otherwise it returns 1. + */ +int bn_miller_rabin_is_prime(const BIGNUM *w, int iterations, BN_CTX *ctx, + BN_GENCB *cb, int enhanced, int *status) +{ + int i, j, a, ret = 0; + BIGNUM *g, *w1, *w3, *x, *m, *z, *b; + BN_MONT_CTX *mont = NULL; - /* compute A1 := a - 1 */ - if (!BN_copy(A1, a) || !BN_sub_word(A1, 1)) + /* w must be odd */ + if (!BN_is_odd(w)) + return 0; + + BN_CTX_start(ctx); + g = BN_CTX_get(ctx); + w1 = BN_CTX_get(ctx); + w3 = BN_CTX_get(ctx); + x = BN_CTX_get(ctx); + m = BN_CTX_get(ctx); + z = BN_CTX_get(ctx); + b = BN_CTX_get(ctx); + + if (!(b != NULL + /* w1 := w - 1 */ + && BN_copy(w1, w) + && BN_sub_word(w1, 1) + /* w3 := w - 3 */ + && BN_copy(w3, w) + && BN_sub_word(w3, 3))) goto err; - /* compute A3 := a - 3 */ - if (!BN_copy(A3, a) || !BN_sub_word(A3, 3)) + + /* check w is larger than 3, otherwise the random b will be too small */ + if (BN_is_zero(w3) || BN_is_negative(w3)) goto err; - /* write A1 as A1_odd * 2^k */ - k = 1; - while (!BN_is_bit_set(A1, k)) - k++; - if (!BN_rshift(A1_odd, A1, k)) + /* (Step 1) Calculate largest integer 'a' such that 2^a divides w-1 */ + a = 1; + while (!BN_is_bit_set(w1, a)) + a++; + /* (Step 2) m = (w-1) / 2^a */ + if (!BN_rshift(m, w1, a)) goto err; /* Montgomery setup for computations mod a */ mont = BN_MONT_CTX_new(); - if (mont == NULL) - goto err; - if (!BN_MONT_CTX_set(mont, a, ctx)) + if (mont == NULL || !BN_MONT_CTX_set(mont, w, ctx)) goto err; - for (i = 0; i < checks; i++) { - /* 1 < check < a-1 */ - if (!BN_priv_rand_range(check, A3) || !BN_add_word(check, 2)) - goto err; + if (iterations == BN_prime_checks) + iterations = BN_prime_checks_for_size(BN_num_bits(w)); - j = witness(check, a, A1, A1_odd, k, ctx, mont); - if (j == -1) + /* (Step 4) */ + for (i = 0; i < iterations; ++i) { + /* (Step 4.1) obtain a Random string of bits b where 1 < b < w-1 */ + if (!BN_priv_rand_range(b, w3) || !BN_add_word(b, 2)) /* 1 < b < w-1 */ goto err; - if (j) { - ret = 0; + + if (enhanced) { + /* (Step 4.3) */ + if (!BN_gcd(g, b, w, ctx)) + goto err; + /* (Step 4.4) */ + if (!BN_is_one(g)) { + *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; + ret = 1; + goto err; + } + } + /* (Step 4.5) z = b^m mod w */ + if (!BN_mod_exp_mont(z, b, m, w, ctx, mont)) goto err; + /* (Step 4.6) if (z = 1 or z = w-1) */ + if (BN_is_one(z) || BN_cmp(z, w1) == 0) + goto outer_loop; + /* (Step 4.7) for j = 1 to a-1 */ + for (j = 1; j < a ; ++j) { + /* (Step 4.7.1 - 4.7.2) x = z. z = x^2 mod w */ + if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) + goto err; + /* (Step 4.7.3) */ + if (BN_cmp(z, w1) == 0) + goto outer_loop; + /* (Step 4.7.4) */ + if (BN_is_one(z)) + goto composite; } if (!BN_GENCB_call(cb, 1, i)) goto err; + /* At this point z = b^((w-1)/2) mod w */ + /* (Steps 4.8 - 4.9) x = z, z = x^2 mod w */ + if (!BN_copy(x, z) || !BN_mod_mul(z, x, x, w, ctx)) + goto err; + /* (Step 4.10) */ + if (BN_is_one(z)) + goto composite; + /* (Step 4.11) x = b^(w-1) mod w */ + if (!BN_copy(x, z)) + goto err; +composite: + if (enhanced) { + /* (Step 4.1.2) g = GCD(x-1, w) */ + if (!BN_sub_word(x, 1) || !BN_gcd(g, x, w, ctx)) + goto err; + /* (Steps 4.1.3 - 4.1.4) */ + if (BN_is_one(g)) + *status = BN_PRIMETEST_COMPOSITE_NOT_POWER_OF_PRIME; + else + *status = BN_PRIMETEST_COMPOSITE_WITH_FACTOR; + } else { + *status = BN_PRIMETEST_COMPOSITE; + } + ret = 1; + goto err; +outer_loop: ; + /* (Step 4.1.5) */ } + /* (Step 5) */ + *status = BN_PRIMETEST_PROBABLY_PRIME; ret = 1; - err: - if (ctx != NULL) { - BN_CTX_end(ctx); - if (ctx_passed == NULL) - BN_CTX_free(ctx); - } +err: + BN_clear(g); + BN_clear(w1); + BN_clear(w3); + BN_clear(x); + BN_clear(m); + BN_clear(z); + BN_clear(b); + BN_CTX_end(ctx); BN_MONT_CTX_free(mont); - return ret; } -static int witness(BIGNUM *w, const BIGNUM *a, const BIGNUM *a1, - const BIGNUM *a1_odd, int k, BN_CTX *ctx, - BN_MONT_CTX *mont) -{ - if (!BN_mod_exp_mont(w, w, a1_odd, a, ctx, mont)) /* w := w^a1_odd mod a */ - return -1; - if (BN_is_one(w)) - return 0; /* probably prime */ - if (BN_cmp(w, a1) == 0) - return 0; /* w == -1 (mod a), 'a' is probably prime */ - while (--k) { - if (!BN_mod_mul(w, w, w, a, ctx)) /* w := w^2 mod a */ - return -1; - if (BN_is_one(w)) - return 1; /* 'a' is composite, otherwise a previous 'w' - * would have been == -1 (mod 'a') */ - if (BN_cmp(w, a1) == 0) - return 0; /* w == -1 (mod a), 'a' is probably prime */ - } - /* - * If we get here, 'w' is the (a-1)/2-th power of the original 'w', and - * it is neither -1 nor +1 -- so 'a' cannot be prime - */ - bn_check_top(w); - return 1; -} - static int probable_prime(BIGNUM *rnd, int bits, prime_t *mods) { int i; diff --git a/crypto/bn/bn_rsa_fips186_4.c b/crypto/bn/bn_rsa_fips186_4.c new file mode 100644 index 0000000000..261669d0d0 --- /dev/null +++ b/crypto/bn/bn_rsa_fips186_4.c @@ -0,0 +1,346 @@ +/* + * Copyright 2018-2019 The OpenSSL Project Authors. All Rights Reserved. + * Copyright (c) 2018-2019, Oracle and/or its affiliates. All rights reserved. + * + * Licensed under the OpenSSL license (the "License"). You may not use + * this file except in compliance with the License. You can obtain a copy + * in the file LICENSE in the source distribution or at + * https://www.openssl.org/source/license.html + */ + +/* + * According to NIST SP800-131A "Transitioning the use of cryptographic + * algorithms and key lengths" Generation of 1024 bit RSA keys are no longer + * allowed for signatures (Table 2) or key transport (Table 5). In the code + * below any attempt to generate 1024 bit RSA keys will result in an error (Note + * that digital signature verification can still use deprecated 1024 bit keys). + * + * Also see FIPS1402IG A.14 + * FIPS 186-4 relies on the use of the auxiliary primes p1, p2, q1 and q2 that + * must be generated before the module generates the RSA primes p and q. + * Table B.1 in FIPS 186-4 specifies, for RSA modulus lengths of 2048 and + * 3072 bits only, the min/max total length of the auxiliary primes. + * When implementing the RSA signature generation algorithm + * with other approved RSA modulus sizes, the vendor shall use the limitations + * from Table B.1 that apply to the longest RSA modulus shown in Table B.1 of + * FIPS 186-4 whose length does not exceed that of the implementation's RSA + * modulus. In particular, when generating the primes for the 4096-bit RSA + * modulus the limitations stated for the 3072-bit modulus shall apply. + */ +#include <stdio.h> +#include <openssl/bn.h> +#include "bn_lcl.h" +#include "internal/bn_int.h" + +/* + * FIPS 186-4 Table B.1. "Min length of auxiliary primes p1, p2, q1, q2". + * + * Params: + * nbits The key size in bits. + * Returns: + * The minimum size of the auxiliary primes or 0 if nbits is invalid. + */ +static int bn_rsa_fips186_4_aux_prime_min_size(int nbits) +{ + if (nbits >= 3072) + return 171; + if (nbits == 2048) + return 141; + return 0; +} + +/* + * FIPS 186-4 Table B.1 "Maximum length of len(p1) + len(p2) and + * len(q1) + len(q2) for p,q Probable Primes". + * + * Params: + * nbits The key size in bits. + * Returns: + * The maximum length or 0 if nbits is invalid. + */ +static int bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(int nbits) +{ + if (nbits >= 3072) + return 1518; + if (nbits == 2048) + return 1007; + return 0; +} + +/* + * FIPS 186-4 Table C.3 for error probability of 2^-100 + * Minimum number of Miller Rabin Rounds for p1, p2, q1 & q2. + * + * Params: + * aux_prime_bits The auxiliary prime size in bits. + * Returns: + * The minimum number of Miller Rabin Rounds for an auxiliary prime, or + * 0 if aux_prime_bits is invalid. + */ +static int bn_rsa_fips186_4_aux_prime_MR_min_checks(int aux_prime_bits) +{ + if (aux_prime_bits > 170) + return 27; + if (aux_prime_bits > 140) + return 32; + return 0; /* Error case */ +} + +/* + * FIPS 186-4 Table C.3 for error probability of 2^-100 + * Minimum number of Miller Rabin Rounds for p, q. + * + * Params: + * nbits The key size in bits. + * Returns: + * The minimum number of Miller Rabin Rounds required, + * or 0 if nbits is invalid. + */ +int bn_rsa_fips186_4_prime_MR_min_checks(int nbits) +{ + if (nbits >= 3072) /* > 170 */ + return 3; + if (nbits == 2048) /* > 140 */ + return 4; + return 0; /* Error case */ +} + +/* + * Find the first odd integer that is a probable prime. + * + * See section FIPS 186-4 B.3.6 (Steps 4.2/5.2). + * + * Params: + * Xp1 The passed in starting point to find a probably prime. + * p1 The returned probable prime (first odd integer >= Xp1) + * ctx A BN_CTX object. + * cb An optional BIGNUM callback. + * Returns: 1 on success otherwise it returns 0. + */ +static int bn_rsa_fips186_4_find_aux_prob_prime(const BIGNUM *Xp1, + BIGNUM *p1, BN_CTX *ctx, + BN_GENCB *cb) +{ + int ret = 0; + int i = 0; + int checks = bn_rsa_fips186_4_aux_prime_MR_min_checks(BN_num_bits(Xp1)); + + if (checks == 0 || BN_copy(p1, Xp1) == NULL) + return 0; + + /* Find the first odd number >= Xp1 that is probably prime */ + for(;;) { + i++; + BN_GENCB_call(cb, 0, i); + /* MR test with trial division */ + if (BN_is_prime_fasttest_ex(p1, checks, ctx, 1, cb)) + break; + /* Get next odd number */ + if (!BN_add_word(p1, 2)) + goto err; + } + BN_GENCB_call(cb, 2, i); + ret = 1; +err: + return ret; +} + +/* + * Generate a probable prime (p or q). + * + * See FIPS 186-4 B.3.6 (Steps 4 & 5) + * + * Params: + * p The returned probable prime. + * Xpout An optionally returned random number used during generation of p. + * p1, p2 The returned auxiliary primes. If NULL they are not returned. + * Xp An optional passed in value (that is random number used during + * generation of p). + * Xp1, Xp2 Optional passed in values that are normally generated + * internally. Used to find p1, p2. + * nlen The bit length of the modulus (the key size). + * e The public exponent. + * ctx A BN_CTX object. + * cb An optional BIGNUM callback. + * Returns: 1 on success otherwise it returns 0. + */ +int bn_rsa_fips186_4_gen_prob_primes(BIGNUM *p, BIGNUM *Xpout, + BIGNUM *p1, BIGNUM *p2, + const BIGNUM *Xp, const BIGNUM *Xp1, + const BIGNUM *Xp2, int nlen, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) +{ + int ret = 0; + BIGNUM *p1i = NULL, *p2i = NULL, *Xp1i = NULL, *Xp2i = NULL; + int bitlen; + + if (p == NULL || Xpout == NULL) + return 0; + + BN_CTX_start(ctx); + + p1i = (p1 != NULL) ? p1 : BN_CTX_get(ctx); + p2i = (p2 != NULL) ? p2 : BN_CTX_get(ctx); + Xp1i = (Xp1 != NULL) ? (BIGNUM *)Xp1 : BN_CTX_get(ctx); + Xp2i = (Xp2 != NULL) ? (BIGNUM *)Xp2 : BN_CTX_get(ctx); + if (p1i == NULL || p2i == NULL || Xp1i == NULL || Xp2i == NULL) + goto err; + + bitlen = bn_rsa_fips186_4_aux_prime_min_size(nlen); + if (bitlen == 0) + goto err; + + /* (Steps 4.1/5.1): Randomly generate Xp1 if it is not passed in */ + if (Xp1 == NULL) { + /* Set the top and bottom bits to make it odd and the correct size */ + if (!BN_priv_rand(Xp1i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) + goto err; + } + /* (Steps 4.1/5.1): Randomly generate Xp2 if it is not passed in */ + if (Xp2 == NULL) { + /* Set the top and bottom bits to make it odd and the correct size */ + if (!BN_priv_rand(Xp2i, bitlen, BN_RAND_TOP_ONE, BN_RAND_BOTTOM_ODD)) + goto err; + } + + /* (Steps 4.2/5.2) - find first auxiliary probable primes */ + if (!bn_rsa_fips186_4_find_aux_prob_prime(Xp1i, p1i, ctx, cb) + || !bn_rsa_fips186_4_find_aux_prob_prime(Xp2i, p2i, ctx, cb)) + goto err; + /* (Table B.1) auxiliary prime Max length check */ + if ((BN_num_bits(p1i) + BN_num_bits(p2i)) >= + bn_rsa_fips186_4_aux_prime_max_sum_size_for_prob_primes(nlen)) + goto err; + /* (Steps 4.3/5.3) - generate prime */ + if (!bn_rsa_fips186_4_derive_prime(p, Xpout, Xp, p1i, p2i, nlen, e, ctx, cb)) + goto err; + ret = 1; +err: + /* Zeroize any internally generated values that are not returned */ + if (p1 == NULL) + BN_clear(p1i); + if (p2 == NULL) + BN_clear(p2i); + if (Xp1 == NULL) + BN_clear(Xp1i); + if (Xp2 == NULL) + BN_clear(Xp2i); + BN_CTX_end(ctx); + return ret; +} + +/* + * Constructs a probable prime (a candidate for p or q) using 2 auxiliary + * prime numbers and the Chinese Remainder Theorem. + * + * See FIPS 186-4 C.9 "Compute a Probable Prime Factor Based on Auxiliary + * Primes". Used by FIPS 186-4 B.3.6 Section (4.3) for p and Section (5.3) for q. + * + * Params: + * Y The returned prime factor (private_prime_factor) of the modulus n. + * X The returned random number used during generation of the prime factor. + * Xin An optional passed in value for X used for testing purposes. + * r1 An auxiliary prime. + * r2 An auxiliary prime. + * nlen The desired length of n (the RSA modulus). + * e The public exponent. + * ctx A BN_CTX object. + * cb An optional BIGNUM callback object. + * Returns: 1 on success otherwise it returns 0. + * Assumptions: + * Y, X, r1, r2, e are not NULL. + */ +int bn_rsa_fips186_4_derive_prime(BIGNUM *Y, BIGNUM *X, const BIGNUM *Xin, + const BIGNUM *r1, const BIGNUM *r2, int nlen, + const BIGNUM *e, BN_CTX *ctx, BN_GENCB *cb) +{ + int ret = 0; + int i, imax; + int bits = nlen >> 1; + int checks = bn_rsa_fips186_4_prime_MR_min_checks(nlen); + BIGNUM *tmp, *R, *r1r2x2, *y1, *r1x2; + + if (checks == 0) + return 0; + BN_CTX_start(ctx); + + R = BN_CTX_get(ctx); + tmp = BN_CTX_get(ctx); + r1r2x2 = BN_CTX_get(ctx); + y1 = BN_CTX_get(ctx); + r1x2 = BN_CTX_get(ctx); + if (r1x2 == NULL) + goto err; + + if (Xin != NULL && BN_copy(X, Xin) == NULL) + goto err; + + if (!(BN_lshift1(r1x2, r1) + /* (Step 1) GCD(2r1, r2) = 1 */ + && BN_gcd(tmp, r1x2, r2, ctx) + && BN_is_one(tmp) + /* (Step 2) R = ((r2^-1 mod 2r1) * r2) - ((2r1^-1 mod r2)*2r1) */ + && BN_mod_inverse(R, r2, r1x2, ctx) + && BN_mul(R, R, r2, ctx) /* R = (r2^-1 mod 2r1) * r2 */ + && BN_mod_inverse(tmp, r1x2, r2, ctx) + && BN_mul(tmp, tmp, r1x2, ctx) /* tmp = (2r1^-1 mod r2)*2r1 */ + && BN_sub(R, R, tmp) + /* Calculate 2r1r2 */ + && BN_mul(r1r2x2, r1x2, r2, ctx))) + goto err; + /* Make positive by adding the modulus */ + if (BN_is_negative(R) && !BN_add(R, R, r1r2x2)) + goto err; + + imax = 5 * bits; /* max = 5/2 * nbits */ + for (;;) { + if (Xin == NULL) { + /* + * (Step 3) Choose Random X such that + * sqrt(2) * 2^(nlen/2-1) < Random X < (2^(nlen/2)) - 1. + * + * For the lower bound: + * sqrt(2) * 2^(nlen/2 - 1) == sqrt(2)/2 * 2^(nlen/2) + * where sqrt(2)/2 = 0.70710678.. = 0.B504FC33F9DE... + * so largest number will have B5... as the top byte + * Setting the top 2 bits gives 0xC0. + */ + if (!BN_priv_rand(X, bits, BN_RAND_TOP_TWO, BN_RAND_BOTTOM_ANY)) + goto end; + } + /* (Step 4) Y = X + ((R - X) mod 2r1r2) */ + if (!BN_mod_sub(Y, R, X, r1r2x2, ctx) || !BN_add(Y, Y, X)) + goto err; + /* (Step 5) */ + i = 0; + for (;;) { + /* (Step 6) */ + if (BN_num_bits(Y) > bits) { + if (Xin == NULL) + break; /* Randomly Generated X so Go back to Step 3 */ + else + goto err; /* X is not random so it will always fail */ + } + BN_GENCB_call(cb, 0, 2); + + /* (Step 7) If GCD(Y-1) == 1 & Y is probably prime then return Y */ + if (BN_copy(y1, Y) == NULL + || !BN_sub_word(y1, 1) + || !BN_gcd(tmp, y1, e, ctx)) + goto err; + if (BN_is_one(tmp) + && BN_is_prime_fasttest_ex(Y, checks, ctx, 1, cb)) + goto end; + /* (Step 8-10) */ + if (++i >= imax || !BN_add(Y, Y, r1r2x2)) + goto err; + } + } +end: + ret = 1; + BN_GENCB_call(cb, 3, 0); +err: + BN_clear(y1); + BN_CTX_end(ctx); + return ret; +} diff --git a/crypto/bn/build.info b/crypto/bn/build.info index a463eddabb..7e34ce41b3 100644 --- a/crypto/bn/build.info +++ b/crypto/bn/build.info @@ -5,7 +5,8 @@ SOURCE[../../libcrypto]=\ bn_kron.c bn_sqrt.c bn_gcd.c bn_prime.c bn_err.c bn_sqr.c \ {- $target{bn_asm_src} -} \ bn_recp.c bn_mont.c bn_mpi.c bn_exp2.c bn_gf2m.c bn_nist.c \ - bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c + bn_depr.c bn_const.c bn_x931p.c bn_intern.c bn_dh.c bn_srp.c \ + bn_rsa_fips186_4.c INCLUDE[../../libcrypto]=../../crypto/include INCLUDE[bn_exp.o]=.. |